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a b s t r a c t

For a graph G, the flow index φ(G) is the smallest rational number t > 0 such that
the graph has a circular t-flow. Li et al. (2018) recently proved that φ(G) < 3 for any
8-edge-connected graph G, and conjectured that 6-edge-connectivity would suffice. Here
we present a contraction method to investigate this problem and apply it to verify this
conjecture for certain 6-edge-connected graph families, including chordal graphs, graphs
with few odd vertices, and graphs with small independence number.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This paper studies finite loopless graphs, which may contain parallel edges. Given integers k ≥ 2d > 0, a circular
k/d-flow of a graph G consists of an orientation D of G together with a mapping f : E(G) ↦→ {±d, ±(d+ 1), . . . ,±(k − d)}
such that for any vertex the total incoming flow equals the total outgoing flow. The d = 1 case is known as nowhere-zero
k-flow, introduced by Tutte [18]. Goddyn, Tarsi, Zhang [3] showed that every graph admitting a circular t-flow must have
a circular s-flow for any rational numbers s ≥ t ≥ 2. Thus the circular flow property is monotonic. Following [3,13],
define the flow index φ(G) of a graph G to be the infimum of all rational numbers r such that G has a circular r-flow. It
is proved in [3] that this flow index exists as a rational number for any finite bridgeless graph. Tutte’s 5-flow conjecture
asserts that every bridgeless graph G satisfies φ(G) ≤ 5, and Seymour [16] proved that φ(G) ≤ 6 for any bridgeless graph
G. Tutte’s 3-flow conjecture states that φ(G) ≤ 3 for any 4-edge-connected graph G, while Jaeger [7] proved that every
4-edge-connected graph G satisfies φ(G) ≤ 4 and Lovász, Thomassen, Wu and Zhang [14] showed φ(G) ≤ 3 for any
6-edge-connected graph G.

Extending Tutte’s flow conjectures, Jaeger [8] proposed a circular flow conjecture that φ(G) ≤ 2 + 1/p for any 4p-
edge-connected graph G. The weak version of this conjecture was established by Thomassen [17]. Later, Lovász et al. [14]
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improved this result to show that φ(G) ≤ 2 + 1/p for any 6p-edge-connected graph G. However, Jaeger’s circular flow
conjecture was disproved in [6] recently by constructing infinitely many counterexamples for every p ≥ 3. The cases
when p = 1, 2, which are more important due to their connection to Tutte’s flow conjectures, remain open.

Tutte initiated the investigation on the relationship between the edge connectivity and the existence of flows. Tutte’s
5-flow conjecture, 3-flow conjecture, and Jaeger’s circular flow conjecture for p = 2 are proposed for 2-edge-connected,
4-edge-connected, and 8-edge-connected graphs, respectively. Motivated by those conjectures as well as the main result
in [14], a new flow conjecture for 6-edge-connected graphs was proposed in [13].

Conjecture 1.1 ([13]). For every 6-edge-connected graph G, the flow index φ(G) < 3.

It is known that φ(K6) = 3 and an infinite family of 5-edge-connected planar graphs with flow index exactly 3 is
also constructed in [13]. Hence in Conjecture 1.1 the edge-connectivity condition cannot be relaxed. The authors in [13]
verified Conjecture 1.1 within 8-edge-connected graphs.

Theorem 1.2 ([13]). For every 8-edge-connected graph G, the flow index φ(G) < 3.

In this paper, we develop a contraction method to study the φ < 3 problem and Conjecture 1.1. This method is also
related to some Hamiltonian property of graphs, as to be seen in Section 2. We also apply this contraction method to
verify Conjecture 1.1 for certain graph families.

Theorem 1.3. Let G be a 6-edge-connected graph.
(i) If G has at most 12 vertices of odd degree, then φ(G) < 3.
(ii) If G has the independence number α(G) ≤ 2, then φ(G) < 3.

Note that the family of graphs with independence number at most two is as rich as triangle-free graphs, since simple
graphs with independence number at most two are exactly complement of triangle-free simple graphs.

A simple graph G is chordal if each cycle of length at least 4 contains a chord. Formed by perfect elimination ordering,
the family of chordal graphs is an important graph class in graph algorithm theory, since various NP-complete graph
problems can be efficiently solved for chordal graphs. Applying our reduction methods, Conjecture 1.1 is verified for
chordal graphs in a strong sense.

Theorem 1.4. If G is a simple 5-connected chordal graph other than K6, then φ(G) < 3.

The rest of the paper is organized as follows: We first develop contraction and reduction methods in Section 2, and
then apply those tools to prove Theorem 1.4 in Section 3. The proof of Theorem 1.3, which involves additional orientation
techniques from Hakimi’s orientation theorem [4], will be presented in Sections 4 and 5.

2. Preliminaries on orientations and reduction methods

For a graph G, let δ(G) and α(G) denote the minimum degree and the independence number, respectively. Given two
nonempty vertex subsets A, B ⊆ V (G), let [A, B]G = {ab ∈ E(G)|a ∈ A, b ∈ B}. When A = {a} or B = {b}, we use [a, B]G or
[A, b]G for [A, B]G, respectively. Define ∂G(A) = [A, V (G) − A]G and d(A) = |∂G(A)|. The neighborhood of a vertex v is the
set NG(v) = {x|vx ∈ ∂G(v)}. When the graph G is understood from the contest, the subscript G is often omitted.

In a given graph G, a function β : V (G) → Z3 is called a boundary function if
∑

x∈V (G) β(x) = 0 (mod 3). The set of all
boundary functions in G is denoted by Z(G,Z3). We call an orientation D of G a β-orientation if for any vertex x ∈ V (G),
d+

D (x) − d−

D (x) ≡ β(x) (mod 3). The special case of β-orientation with β(x) = 0 for any x ∈ V (G) is known as a modulo
3-orientation of G. The following proposition is well-known (cf. [8,18]).

Proposition 2.1 ([18]). A graph G has φ(G) ≤ 3 if and only if G admits a modulo 3-orientation.

In [13], a relation between flow index strictly less than 3 and strongly connected orientations is established.

Theorem 2.2 ([13]). A graph G satisfies φ(G) < 3 if and only if it has a strongly connected modulo 3-orientation.

Group connectivity, introduced by Jaeger et al. [9], is a useful tool in studying nowhere-zero 3-flows and modulo
3-orientations. A graph G is called Z3-connected if for every β ∈ Z(G,Z3), there exists a β-orientation in G. A similar
concept to study the problems for flow index strictly less than 3 was introduced in [11].

Definition 2.3. A graph G is called strongly-connected Z3-contractible if there exists a strongly-connected β-orientation
in G for any β ∈ Z(G,Z3). Let S3 denote the family of all strongly-connected Z3-contractible graphs.

For notational convenience, a strongly-connected β-orientation is called a β-SCO, and a strongly-connected Z3-
contractible graph is also called an S3-graph in the rest of this paper. That is, an S3-graph is a graph such that for any
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boundary function β ∈ Z(G,Z3), one can always find a β-SCO, i.e., a strongly-connected orientation D with d+

D (x)−d−

D (x) ≡

β(x) (mod 3), ∀x ∈ V (G).
Given B ⊂ E(G), the contraction G/B is the graph obtained from G by identifying the two ends of each edge in B, and

then removing the resulting loops. We use G/H for G/E(H) if H is a connected subgraph of G.
Let G be a graph with boundary β ∈ Z(G,Z3). If H is a subgraph of G and G′

= G/H , then the corresponding boundary
β ′ of G′ is defined by

β ′(x) =

{
β(x), if x ∈ V (G) \ V (H),∑

v∈V (H) β(v), if x = vH ,
(1)

where vH is the vertex in G′ onto which H is contracted. This notation will be used through out the rest of the paper.
Some useful properties of S3-graphs can be seen in the following proposition, which are associated with some

contraction and reduction methods. Families of connected graphs satisfying those properties are called complete families
and have been investigated in [1,2].

Proposition 2.4 ([11]). Each of the following holds.
(C1) K1 ∈ S3.
(C2) If G ∈ S3 and e ∈ E(G), then G/e ∈ S3.
(C3) For a subgraph H of G, if both H ∈ S3 and G/H ∈ S3, then G ∈ S3.

To apply this reduction idea in a wider class of graphs, we will also need the following weak version of contractible
graphs, which plays a significant role in our later proofs. In [11], a similar reduction idea with closure operation was
introduced to study the flow index problem of complementary graphs. The new weakly contractible concept in this paper
is much more general. For a graph H , we call G a proper supergraph of H , if H ⊆ G and there exist two distinct vertices
u, v ∈ V (H) with a (u, v)-path in G − E(H).

Definition 2.5. A graph H is called weakly contractible, if for any proper supergraph G of H and any boundary β of G,
any corresponding β ′-SCO of G/H can be extended to a β-SCO of G. Let W3 denote the family of all weakly contractible
graphs. A weakly contractible graph is also called a W3-graph for short.

If H ∈ W3 and G is a proper supergraph of H , then we also say that H is a proper W3-subgraph of G. By Definitions 2.3
and 2.5, together with Theorem 2.2, it is routine to verify the following fact.

Proposition 2.6. Let H be a proper W3-subgraph of a graph G. Then each of the following holds.
(i) φ(G) < 3 if and only if φ(G/H) < 3.
(ii) G ∈ S3 if and only if G/H ∈ S3.

Clearly, we have S3 ⊆ W3. The following proposition characterizes the relation between S3-graphs and W3-graphs.

Proposition 2.7. A graph H ∈ W3 if and only if H + xy ∈ S3 for any two distinct vertices x, y ∈ V (H).

Proof. If H ∈ W3, we let G = H + xy for some distinct vertices x, y ∈ V (H). Note that G is a proper supergraph of H
and G/H = K1. By Definition 2.5, for any boundary β of G, the graph G/H = K1 can be extended to a β-SCO of G. Thus
G = H + xy ∈ S3.

Conversely, assume that for any two distinct vertices x, y ∈ V (H), it holds that H+xy ∈ S3. Let G be a proper supergraph
of H . Given β ∈ Z(G,Z3), we are to show that any corresponding β ′-SCO D′ of G/H can be extended to a β-SCO in G. The
orientation D′ of G/H results in an orientation D1 of G−E(H) (after uncontracting the subgraph H and arbitrarily orienting
the edges in E(G[V (H)]) − E(H) if any). We claim that

there exist distinct vertices x, y ∈ V (H) such that there is a directed path from x to y in D1. (2)

Since G is a proper supergraph of H , there is a path P in G−E(H) connecting two distinct vertices u, v ∈ V (H). If each edge
in P is contained in a directed cycle under orientation D1, then there exists a directed path between u and v, and hence
(2) holds. Otherwise, there is an edge e0 in P that is not contained in any directed cycle under orientation D1. Notice that
D′

= D′(G/H) is a strongly connected orientation, and so it must have a directed cycle C containing the edge e0 in D′.
Since E(C), the edge set of C , is not a directed cycle in D1, it must be a directed path from x to y, where x, y ∈ V (H). This
proves (2).

By (2) there exist distinct vertices x, y ∈ V (H) with a directed path Pxy from x to y in D1. By assumption, we have
H + xy ∈ S3. The orientation D1 restricted to G − E(H) is called a β1-orientation. Define a boundary function β2 of H by

β2(v) =

{
β(x) − β1(x) + 1, if v = x,
β(y) − β1(y) − 1, if v = y,
β(v) − β1(v), otherwise.

Then, similar to the arguments as in Proposition 2.4, it is routine to verify that β2 ∈ Z(H,Z3). Since H + xy ∈ S3, there
exists a β2-SCO D2 of H + xy. We may further assume this new added edge D2(xy) is oriented from x to y. (Otherwise,
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revise the orientation of a directed cycle containing xy, and it still gives a β2-SCO.) Denote D′

2 to be the restriction of D2 in
H . Then D1∪D′

2 is a β-orientation of G. Notice that D′

2∪Pxy is strongly-connected by (2), and (D1∪D′

2)/(D
′

2∪Pxy) = D′/Pxy is
also strongly connected. Hence we deduce that D1 ∪D′

2 is strongly connected. Therefore, D1 ∪D′

2 is a β-SCO of G, extended
from D′(G/H). By Definition 2.5, we have H ∈ W3. ■

Let u1v, u2v ∈ E(G). Denote G[v,u1u2] to be the graph obtained from G− {u1v, u2v} by connecting a new edge u1u2. The
operation of obtaining G[v,u1u2] from G is referred as lifting the edges u1v, u2v in G.

Lemma 2.8. Let G be a connected graph and let u1v, u2v ∈ E(G).
(i) If G[v,u1u2] ∈ S3 (G[v,u1u2] ∈ W3, resp.), then G ∈ S3 (G ∈ W3, resp.).
(ii) If d(v) ≥ 4 and G[v,u1u2] − v ∈ S3, then G ∈ S3.
(iii) Assume that d(v) ≥ 5 and E(v) \ {u1v, u2v} contains at least two non-parallel edges. If G[v,u1u2] − v ∈ W3, then G ∈ W3.

Proof. It is straightforward to verify (i) by definitions.
(ii) Given β ∈ Z(G,Z3), we can orient the edge set E(v)\{u1v, u2v} to archive the boundary β(v) since d(v) ≥ 4. Delete

vertex v and change the boundaries of vertices adjacent to v according to the oriented edges in E(v) \ {u1v, u2v}. Let β ′

be the resulting boundary of G′
= G[v,u1u2] − v. Since G′

∈ S3, there exists a β ′-SCO of G′ with a directed edge u1u2. Then
in G, orient u1v, vu2 to perform as the directed edge u1u2 and add the oriented edges E(v)\{u1v, u2v}. This gives a β-SCO
of G.

(iii) We shall show that G+xy ∈ S3 for any two distinct vertices x, y ∈ V (G). Hence G ∈ W3 by Proposition 2.7. Denote
G′

= G[v,u1u2] − v. If x, y ∈ V (G′), then G′
+ xy ∈ S3 by Proposition 2.7. Thus G + xy ∈ S3 by Lemma 2.8(ii). Otherwise, we

have y ∈ V (G′) and x = v. By assumption there exists zv ∈ E(v) \ {u1v, u2v} with z ̸= y. Since G′
= G[v,u1u2] − v ∈ W3, we

have G′
+ yz ∈ S3. Hence G[x,u1u2] + xy ∈ S3 by Lemma 2.8(ii), and so G + xy ∈ S3 by Lemma 2.8(i). This shows G ∈ W3

by Proposition 2.7. ■

3. Contractible graphs and reduced graphs

There are also some S3-graphs that can be obtained from Hamiltonian properties.

Proposition 3.1. (i) If G contains a Hamiltonian cycle C such that G − E(C) is Z3-connected, then G ∈ S3.
(ii) If for any two distinct vertices x, y of a graph H, there is a Hamiltonian path Pxy such that H − E(Pxy) is Z3-connected,

then H ∈ W3.

Proof. (i) Let β ∈ Z(G,Z3). As G − E(C) is Z3-connected, there exists a β-orientation of G − E(C). We take a directed
Hamiltonian cycle by orienting C . This, together with the β-orientation of G− E(C), provides a β-SCO of G. Hence G ∈ S3.

(ii) For any two distinct vertices x, y ∈ V (H), it follows by (i) that H+xy ∈ S3. Therefore, H ∈ W3 by Proposition 2.7. ■

Note that in Proposition 3.1(i)–(ii) the conditions of Hamiltonian cycle and Hamiltonian path can be replaced by similar
weak conditions of spanning closed trail and spanning trail, respectively.

Denote tK2 to be the graph obtained from K2 by adding t parallel edges.

Corollary 3.2. (i) The graph tK2 ∈ S3 if and only if t ≥ 4. The complete graph Kn ∈ S3 if and only if n ≥ 7.
(ii) The graph tK2 ∈ W3 if and only if t ≥ 3. The complete graph Kn ∈ W3 if and only if n ≥ 6.

Proof. This follows by Proposition 3.1. Note that the graph obtained from K6 by deleting a Hamiltonian path is a Prism
graph plus an edge, which is Z3-connected as shown by Luo et al. in Lemma 2.2 of [15]. ■

Since K1 is an S3-graph by definition, each vertex in G lies in a maximal S3-subgraph. Let H1, . . . ,Hk be all the maximal
S3-subgraphs of G. Then those H1, . . . ,Hk are pairwise vertex-disjoint by Proposition 2.4. We denote G′

= G/(∪c
i=1E(Hi)),

called the S3-reduction of G. If G = G′, then G is also called an S3-reduced graph. By Proposition 2.4, G ∈ S3 if and only
if its S3-reduction is K1, and φ(G) < 3 if and only if its S3-reduction G′ satisfies φ(G′) < 3. This is a standard reduction
method for complete families.

However, the graph family W3 is not a complete family since it does not satisfy (C3) property similarly as in
Proposition 2.4. To see this, take a graph G consisting of three vertices u, v, w with 3 parallel edges between u and v,
3 parallel edges between v and w, and no edge between u and w. Then G/uv ∈ W3 and G[{u, v}] = 3K2 ∈ W3 by
Corollary 3.2(ii). But G ̸∈ W3 as G + uv /∈ S3 and by Proposition 2.7.

In view of Proposition 2.6, we can also use a similar reduction method in certain proper supergraphs. That is, if G
contains a proper W3-subgraph H , then we only need to work on G/H to seek flow index φ < 3 property or S3-property.
By Propositions 2.4 and 2.6, we directly obtain the following lemma.

Lemma 3.3. If for any edge e ∈ E(G), there is a subgraph He of G containing the edge e such that either He ∈ S3 or He is a
proper W3-subgraph of G, then G ∈ S3.
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We also need the following well-known characterization of chordal graphs (cf. [10]).

Lemma 3.4 ([10]). A simple graph G is chordal if and only if every minimal vertex-cut induces a complete subgraph of G.

We shall use these lemmas to verify Theorem 3.5, which implies Theorem 1.4 immediately.

Theorem 3.5. If G is a simple 5-connected chordal graph other than K6, then G ∈ S3.

Proof. If G is a complete graph, say G = Km, then we have m ≥ 7, and so G ∈ S3 and φ(G) < 3 by Corollary 3.2. Thus
we assume G is not a complete graph. In the following, we call a subgraph H good for convenience if either H ∈ S3 or H
is a proper W3-subgraph of G. Note that any K6 in G is a proper W3-subgraph of G since G is 5-connected, and Km ∈ S3
when m ≥ 7 by Corollary 3.2. Thus any complete subgraph on at least 6 vertices in G is good. Now we are to prove that
for every edge e = uv ∈ E(G) there exists a good subgraph He of G containing the edge e. This would imply that G ∈ S3
and φ(G) < 3 by Lemma 3.3. Considering two possibilities of N(u) and N(v), we shall show that such good graph He can
always be found.

We first assume that both N(u) = V (G) \ {u} and N(v) = V (G) \ {v}. Then there must exist two distinct vertices x, y
with xy /∈ E(G), since G is not a complete graph. Let Q ⊂ N(x) be a minimal vertex-cut separating x and y. By Lemma 3.4,
G[Q ] is a complete graph on at least 5 vertices. Since N(u) = V (G) \ {u} and N(v) = V (G) \ {v}, we know that u, v ∈ Q ,
and so let He = G[Q ∪ {x}]. Then He is a complete graph on at least 6 vertices, which is a good subgraph containing uv.

Otherwise, assume that either N(u) ̸= V (G) \ {u} or N(v) ̸= V (G) \ {v}. By symmetry, we assume N(u) ̸= V (G) \ {u}
and there exists a vertex w with uw /∈ E(G). Thus a minimal vertex-cut R separating u and w is contained in N(u). By
Lemma 3.4, G[R ∪ {u}] is a complete graph on at least 6 vertices. If v ∈ R, we choose He = G[R ∪ {u}] as a good subgraph
by Corollary 3.2(i)–(ii). Hence assume that v /∈ R for any minimal vertex R contained in N(u) which separates u and w.
Now we further claim N(v) ⊆ N(u) ∪ {u}. Otherwise, there exists a vertex z with vz ∈ E(G) and uz /∈ E(G). Thus N(u)
contains a minimal vertex-cut separating u, w and containing the vertex v, which is a contradiction. This shows that
N(v) ⊆ N(u)∪{u}. Hence a minimal vertex-cut S is contained in N(v), which separates v and w. By Lemma 3.4, G[S ∪{v}]

is a complete graph on at least 6 vertices. If u ∈ S, we choose He = G[S ∪ {v}] ∈ W3 to be a good subgraph. If u /∈ Y , then
He = G[S ∪ {u, v}] is a complete graph on at least 7 vertices, which is a good subgraph.

Therefore, for any edge e = uv, a good subgraph He containing e can be found in any case. Hence G ∈ S3 by
Lemma 3.3. ■

4. Graphs with few odd vertices

A simple observation in [11] shows that an S3-graph cannot be too sparse, and similar property follows for a W3-graph
by Proposition 2.7.

Lemma 4.1. (i) [11] Let G be an S3-graph on n vertices. Then |E(G)| ≥ 3n − 2.
(ii) Let G be a W3-graph on n vertices. Then |E(G)| ≥ 3n − 3.

Proof. By Proposition 2.7 and by (i), we immediately have that |E(G)| ≥ 3n − 3 for any W3-graph G on n vertices. ■

A graph G is called W3-reduced if for any H ⊆ G with |V (H)| > 1, we have H /∈ W3. Let m(n,W3) denote the maximum
number of edges in a W3-reduced graph on n vertices. Some bounds of m(n,W3), when n is small, would be very helpful
in later proofs.

Lemma 4.2. We have m(2,W3) = 2, m(3,W3) = 5, m(4,W3) = 8, m(5,W3) ≤ 12, and m(6,W3) ≤ 17.

Proof. Let G3 be a W3-reduced graph with |V (G)| = 3 and with maximum number of edges. By Corollary 3.2(ii), the edge
multiplicity is at most 2 in G3. If G3 = 2C3, then by Proposition 3.1(ii), we have G3 ∈ W3, a contradiction. Thus |E(G3)| = 5
and m(3,W3) = 5.

Now we are to prove m(4,W3) = 8. By contradiction, suppose that G4 is a W3-reduced graph on 4 vertices with
|E(G4)| = 9. Since m(3,W3) = 5 and deleting any vertex of G4 still results in a W3-reduced graph, we have δ(G4) = 4.
Thus we have G4 ∈ {G1

4,G
2
4,G

3
4} as in Fig. 1. By applying Proposition 2.6(ii), adding any edge to each of those graphs results

in an S3-graph. Hence G4 ∈ W3 by Proposition 2.7, a contradiction. This proves m(4,W3) = 8.
Since 3K2 ∈ W3 and 2C3 ∈ W3, the following graphs in Fig. 2 are all the W3-reduced graphs with 4 vertices and 8

edges.
Now we are to prove m(5,W3) ≤ 12. By contradiction, suppose that G5 is a W3-reduced graph on 5 vertices with

|E(G5)| = 13. Thus δ(G5) ≤ 5 and denote d(v) = δ(G5). Since m(4,W3) = 8 and G5 − v is a W3-reduced graph, we
have d(v) = 5. Moreover, G5 − v is isomorphic to one of the graphs in Fig. 2, where x, y are two specified vertices. Since
δ(G5) = 5, we have vx, vy ∈ E(G5). Obtain a graph G′ from G5 by lifting two edges xv, vy and deleting the vertex v. Thus
|E(G′)| = 9 and G′

∈ {G1
4,G

2
4,G

3
4}, which implies G′

∈ W3. By Lemma 2.8(iii), we have G5 ∈ W3, a contradiction.
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Fig. 1. The graphs G1
4,G

2
4,G

3
4 .

Fig. 2. All the W3-reduced graphs with 4 vertices and 8 edges.

Now we show that m(6,W3) ≤ 17. Suppose, for contradiction, that G6 is a W3-reduced graph on 6 vertices with
|E(G6)| = 18. Thus δ(G6) ≤ 6. Denote d(v) = δ(G6). Then G − v is a W3-reduced graph with 18 − δ(G6) ≥ 12 edges. Since
m(5,W3) ≤ 12, we have δ(G6) = 6, and so G6 is 6-regular. Moreover, G − v has 12 edges, and hence it contains a vertex,
say u, of degree 4. G− v − u is a W3-reduced graph on 4 vertices with 8 edges, which is isomorphic to one of the graphs
in Fig. 2. Since G6 is 6-regular, each of u and v is connected to G − v − u with four edges. As G6 is a W3-reduced graph
which contains no 3K2 nor 2C3, we can check that either ux, uy ∈ E(G6) or vx, vy ∈ E(G6). By symmetry, we assume
ux, uy ∈ E(G6). Obtain a graph G′ from G6 by lifting two edges xu, uy and deleting the vertex u. Then G′

−v ∈ {G1
4,G

2
4,G

3
4},

which implies G′
− v ∈ W3. Clearly, G′ is a proper supergraph of G′

− v. As G′/(G′
− v) = 4K2 ∈ S3 and by Proposition 2.6,

we have G′
∈ S3. Thus G6 ∈ S3 by Lemma 2.8(ii), leading to a contradiction. ■

Theorem 4.3 (Hakimi [4]). For a graph G, let ℓ : V (G) ↦→ Z be a function with
∑

x∈V (G) ℓ(x) = 0 such that ℓ(u) ≡ dG(u)
(mod 2) for any u ∈ V (G). Then the following statements are equivalent.
(i) There is an orientation D of G such that d+

D (v) − d−

D (v) = ℓ(v) for any v ∈ V (G).
(ii) For any S ⊂ V (G), |

∑
v∈S ℓ(v)| ≤ |∂G(S)|.

By modifying Hakimi Theorem above, we obtain the following useful tool immediately.

Theorem 4.4. For a graph G, let ℓ : V (G) ↦→ Z be a function with
∑

v∈V (G) ℓ(v) = 0 such that ℓ(v) ≡ dG(v) (mod 2),
∀v ∈ V (G). Then G has a strongly connected orientation D such that d+

D (v) − d−

D (v) = ℓ(v), ∀v ∈ V (G) if and only if

|

∑
v∈S

ℓ(v)| < |∂G(S)|, ∀S ⊂ V (G).

Proof. ‘‘⇒’’ Let D be a strongly connected orientation of the graph G such that d+

D (v) − d−

D (v) = ℓ(v), ∀v ∈ V (G). Thus
any vertex set S ⊂ V (G) satisfies ∂+

D (S) > 0 and ∂−

D (S) > 0, which implies that |
∑

v∈S ℓ(v)| = |∂+

D (S) − ∂−

D (S)| < |∂G(S)|.
‘‘⇐’’ By Theorem 4.3, there exists an orientation D such that d+

D (v) − d−

D (v) = ł(v), ∀v ∈ V (G). Furthermore, for any
set S ⊂ V (G), since |

∑
v∈S ℓ(v)| = |∂+

D (S) − ∂−

D (S)| < |∂G(S)|, we have both ∂+

D (S) > 0 and ∂−

D (S) > 0. Thus D is a strongly
connected orientation. ■

Recall that G[v,u1u2] denotes the graph obtained from G − {u1v, u2v} by adding a new edge u1u2. A graph is odd-(2t +

1)-edge-connected if the smallest odd-edge-cut has cardinality at least 2t + 1.

Lemma 4.5 (Zhang [19]). Let G be an odd-(2k+1)-edge-connected graph, and let x ∈ V (G) with d(x) ̸∈ {2, 2k+1}. Then there
exist two edges u1x, u2x ∈ EG(x) such that G[v,u1u2] is odd-(2k + 1)-edge-connected.

We shall apply the above lemmas to prove the following stronger version of Theorem 1.3(i).

Theorem 4.6. (i) For every odd-7-edge-connected graph G with at most 12 vertices of odd degree, we have φ(G) < 3.
(ii) For every odd-7-edge-connected graph G with |V (G)| ≤ 13, we have φ(G) < 3.

Proof. Clearly, (ii) follows from (i) since a graph G with |V (G)| ≤ 13 has at most 12 vertices of odd degree. It remains to
prove (i). Let G be a counterexample with |E(G)| + |V (G)| as small as possible. Assume that there exists a vertex v ∈ V (G)
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with d(v) ̸= 7 or d(v) is even. By Lemma 4.5, there exists a pair of edges u1v, u2v ∈ E(G) such that G[v,u1u2] remains odd-
edge-connectivity 7. By minimality, φ(G[v,u1u2]) < 3 and we could extend the strongly connected modulo 3-orientation of
G[v,u1u2] to the graph G, and so φ(G) < 3, which is a contradiction. Therefore, we may assume that G is a 7-regular graph
and |V (G)| is even.

Let [U,W ] be the maximal edge-cut of G with |U | ≤ |W |. This implies that for any x ∈ U and any y ∈ W , we have
|[x,W ]| ≥ 4 and |[y,U]| ≥ 4. Thus

4|W | ≤ |[U,W ]| = 7|U | − 2|E(G[U])| ≤ 7|U |. (3)

By Theorem 4.4, we must have that for any function ℓ : V (G) ↦→ {3, −3} with
∑

v∈V (G) ℓ(v) = 0, there exists an
S ⊂ V (G) such that

|S| ≤
|V (G)|

2
and |

∑
v∈S

ℓ(v)| ≥ |∂G(S)|. (4)

Denote S ∩ U = SU and S ∩ W = SW . By (4), we have

SU ̸= ∅ and SW ̸= ∅. (5)

We first show that G[S] is a W3-reduced graph. Otherwise, let H ∈ W3 be a nontrivial subgraph graph of G[S]. Clearly,
G is a proper supergraph of H since G is 2-connected. By minimality, φ(G/H) < 3, and it follows from Proposition 2.6(i)
that φ(G) < 3, a contradiction. This shows that G[S] is a W3-reduced graph, and so |E(G[S])| ≤ m(|S|,W3). Hence
|∂G(S)| = 7|S| − 2|E(G[S])| ≥ 7|S| − 2m(|S|,W3), and it follows from Lemma 4.2 that

|∂G(S)| ≥

{ 7 if |S| = 1,
10 if |S| = 2,
11 if |S| = 3,

and |∂G(S)| ≥

{ 12 if |S| = 4,
11 if |S| = 5,
8 if |S| = 6.

(6)

By (4) and (6), we must have 4 ≤ |S| ≤
1
2 |V (G)|.

Assume that |V (G)| = 8. By (3), we have |U | = 3, |W | = 5 or |U | = |W | = 4. Define a function ℓ such that four vertices
in W having value 3, and the rest vertices of G having value −3. Then there is an S ⊂ V (G) satisfying (4) and (5). By (6),
we have |S| = 4 and |

∑
v∈S ℓ(v)| = 12. This implies that S ⊂ W or (V (G) \ S) ⊂ W , a contradiction to (5). Therefore, we

must have |V (G)| = 10 or 12.

Case 1: |V (G)| = 10.
By (3), we have 4(10 − |U |) = 4|W | ≤ |[U,W ]| ≤ 7|U |, which shows 4 ≤ |U | ≤ 5.

Subcase 1.1: |U | = |W | = 5.
Set ℓ(v) = 3 for every v ∈ U and ℓ(w) = −3 for every w ∈ W . If |S| = 4, by (4) and (6), we have |

∑
v∈S ℓ(v)| = 12,

and so S ⊂ U or S ⊂ W , a contradiction to (5). If |S| = 5, by (5), we have |SU | ̸= 0 and |SW | ̸= 0. Hence
|
∑

v∈S ℓ(v)| ≤ 9 < 11 ≤ |∂G(S)| by (6), which is a contradiction to (4).

Subcase 1.2: |U | = 4 and |W | = 6.
By (3), there is a vertex w1 ∈ W such that |[w1,U]| = 4. Otherwise, we have 30 = 5|W | ≤ |[U,W ]| ≤ 7|U | = 28,

which is a contradiction. Set ℓ(w1) = −3, ℓ(w) = 3 for every w ∈ W \ {w1} and ℓ(v) = −3 for every v ∈ U .
If |S| = 4, then |SU | = 3 and SW = {w1}, by (4) and (5). Thus we have |E(G[U])| ≤ 2 by (3). Hence |∂G(S)| =

7|S| − 2|E(G[S])| = 28 − 2(|[w1,U]| + |E(G[U])|) ≥ 28 − 2(4 + 2) = 16 > |
∑

v∈S ℓ(v)| = 12, contrary to (4).
If |S| = 5, then we have |

∑
v∈S ℓ(v)| ≥ |∂G(S)| ≥ 11 by (4) and (6). Thus |

∑
v∈S ℓ(v)| = 15, and so S = U ∪ {w1} or

S = W − {w1}. By (5), we must have S = U ∪ {w1}. But now |∂G(S)| = 7|S| − 2|E(G[S])| ≥ 35− 2(|[w1,U]| + |E(G[U])|) ≥

35 − 2(4 + 2) = 23 > 15 = |
∑

v∈S ℓ(v)|, which is a contradiction to (4).

Case 2: |V (G)| = 12
In this case we have 5 ≤ |U | ≤ 6 by (3).

Subcase 2.1: |U | = 5 and |W | = 7.
Denote w1 to be the vertex such that |[w,U]| is minimized among all w ∈ W . Since |[U,W ]|

|W |
≤

7|U |

|W |
= 5, we have

|[w1,U]| ≤ 5. Set ℓ(v) = 3 for every v ∈ U , ℓ(w1) = 3 and ℓ(u) = −3 for every u ∈ W \ {w1}. Applying (3) again, we
have the following holds: If |[w1,U]| ≤ 4, then we have |E(G[U])| ≤ 3; otherwise |[w1,U]| = 5, then |E(G[U])| = 0 and
|[w,U]| = 5 for every w ∈ W. Thus in any case we have

|[w1,U]| + |E(G[U])| ≤ 7. (7)

If |S| = 4 or 5, then |SU | = |S| − 1 and SW = {w1}, by (4) and (5). By (7), we have

|∂G(S)| = 7|S| − 2|E(G[S])| ≥ 28 − 2(|[w1,U]| + |E(G[U])|) = 7|S| − 2(7) ≥ 3|S| + 2 > |

∑
v∈S

ℓ(v)|,

a contradiction to (4).
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If |S| = 6, then |
∑

v∈S ℓ(v)| ≥ |∂G(S)| ≥ 8 by (6). Thus |
∑

v∈S ℓ(v)| = 12 or 18. By (5), we must have |
∑

v∈S ł(v)| = 12,
which implies |SU | = 4, |SW | = 2 and w1 ∈ SW .

When |[w1,U]| = 4, we have |∂G(S)| = 7|S| − 2|E(G[S])| ≥ 42 − 2(|E(G[U])| + |[w1,U]| + 7) ≥ 42 − 2(3 + 4 + 7) =

14 >
∑

v∈S ℓ(v) = 12, contrary to (4). When |[w1,U]| = 5, we have |∂G(S)| = 7|S|−2|E(S)| ≥ 42−2(|E(G[U])|+5+5) =

42 − 20 = 22 >
∑

v∈S ℓ(v) = 12, again a contradiction to (4).

Subcase 2.2: |X | = |Y | = 6.
In this subcase, set ℓ(v) = 3 for every v ∈ U and ℓ(w) = −3 for every w ∈ W . By (5), we have |

∑
v∈S ℓ(v)| ≤ 3|S| − 6.

Thus |S| > 5 by (6), and so |S| = 6. Then either |SU | = 5, |SW | = 1 or |SU | = 4, |SW | = 2. In the former case, we have
|∂G(S)| ≥ 4|SU | − 7 = 13 > |

∑
v∈S ℓ(v)| = 12, contradicting (4). In the later case, |∂G(S)| ≥ 8 > |

∑
v∈S ℓ(v)| = 6 by (6),

again a contradiction. The proof is completed. ■

5. Graphs with small independence number

We shall adopt similar ideas as in [5,12] to study properties of reduced graphs and to prove Theorem 1.3(ii). Let G be
a graph and β ∈ Z(G,Z3). For a vertex set A ⊂ V (G), denote β(A) ≡

∑
v∈A β(v) (mod 3) and d(A) = |∂G(A)|. Define an

integer-valued mapping τ : 2V (G)
↦→ {0, ±1, ±2, ±3} as follows: for each vertex set A ⊂ V (G),

τ (A) ≡

{
β(A) (mod 3);
d(A) (mod 2).

Theorem 5.1 ([13]). Let G be a graph with β ∈ Z(G,Z3) and z0 ∈ V (G). Denote Dz0 to be a pre-orientation of E(z0). Assume
that
(i) |V (G)| ≥ 3;
(ii) d(z0) ≤ 4 + |τ (z0)| and d+

Dz0
(z0) − d−

Dz0
(z0) ≡ β(z0) (mod 3) under the orientation Dz0 ;

(iii) d(A) ≥ 6 + |τ (A)| for each vertex subset A not containing z0 with 1 ≤ |A| ≤ |V (G)| − 2.
Then the pre-orientation Dz0 of E(z0) can be extended to a β-orientation D of G such that D(G − z0) is strongly connected.

For a 8-edge-connected graph G, the fact of d(A) ≥ 8 implies d(A) ≥ 6 + |τ (A)| for each A ⊂ V (G). Thus Theorem 5.1
implies Theorem 1.2 immediately and it also shows the following stronger theorem.

Theorem 5.2 ([13]). Let G be a 8-edge-connected graph. Then G ∈ S3.

Now we prove the main result of this section.

Theorem 5.3. Let t be an integer with t ≥ 2. The following are equivalent.
(i) For every odd-7-edge-connected graph G with α(G) ≤ t, the flow index φ(G) < 3.
(ii) For every odd-7-edge-connected graph G with α(G) ≤ t and |V (G)| ≤ 8t − 3, the flow index φ(G) < 3.

Proof. It suffices to show that ‘‘(ii)⇒(i)’’. Let G be a counterexample to (i) with |V (G)| minimized. If |V (G)| ≤ 8t −3, then
we are done by (ii). If |V (G)| > 8t − 3, we shall derive a contradiction below.

Firstly, G contains no K6. If G contains a subgraph H ∼= K6, then, clearly, G/H is still odd-7-edge-connected and
α(G/H) ≤ t . By the minimality of G, we have φ(G/H) < 3. Since G is odd-7-edge-connected, G is a proper supergraph of
H . Since φ(G/H) < 3 and by Proposition 2.6(ii) and Corollary 3.2(ii), we have φ(G) < 3, a contradiction.

Secondly, G is an S3-reduced graph. Assume not, and let H ∈ S3 be a subgraph of G on at least two vertices. Then
φ(G/H) < 3 by minimality. Hence we have φ(G) < 3 by Proposition 2.4, a contradiction. Note that any subgraph of G is
also an S3-reduced graph.

Thirdly, G and each subgraph H of G have minimal degree at most 7. By contradiction, suppose that H is an S3-
reduced graph with δ(H) ≥ 8. By Theorem 5.2, H is not 8-edge-connected. Among all the edge-cuts |∂H (S)| ≤ 7, choose
the one with |S| as small as possible. Denote Sc = V (H) \ S. Let z0 be the contracted vertex which Sc corresponds to in
H/H[Sc]. Let H ′ be the graph obtained from H/H[Sc] by adding 7−dH/H[Sc ](v) edges between z0 and S. Now we prove that
H ′

− z0 = H[S] ∈ S3 by Theorem 5.1. Define β(z0) = 3. By dH ′ (z0) = 7, we obtain τ (z0) = 3. Orient the edges in EH ′ (z0)
with the orientation Dz0 such that d+

Dz0
(z0) = 5 and d−

Dz0
(z0) = 2. For any β ′

∈ Z(H ′
−z0,Z3), define b(v) = d+

Dz0
(v)−d−

Dz0
(v)

for every v ∈ NH ′ (z0) and

β(x) =

{
β ′(x) + b(x), x ∈ NH ′ (z0),
β(z0), x = z0,
β ′(x), otherwise.

Thus we have β ∈ Z(H ′,Z3). For any A ⊂ V (H ′) with |V (H ′) \ A| > 1, we have d(A) ≥ 6 + |τ (A)| since d(A) ≥ 8. By
Theorem 5.1, Dz0 can be extended to an orientation D of H ′ which agrees the boundary β and satisfies H ′

− z0 is strongly
connected under D. Let D′ be the restriction of D on H ′

− z0. Thus D′ is a β ′-SCO of H ′
− z0 = H[S]. Hence H[S] ∈ S3, a

contradiction to the fact that H is an S3-reduced graph.
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Finally, we are ready to derive a contradiction. Let x1 be a minimal degree vertex in G = G1. Then we have dG1 (x1) ≤ 7
by the third statement. Delete x1 and all of its neighbors to obtain a graph G2. Then α(G2) ≤ t − 1. Otherwise, we obtain
an independent set of size t + 1 in G from the vertex x1 and an independent set of size t in G2, contradicting to α(G) ≤ t .
Thus there is a minimal degree vertex x2 in G2 with dG2 (x2) ≤ 7 by the third statement. Delete x2 and all of its neighbors
to obtain a graph G3. Keep on this process until the resulting graph Gs satisfies α(Gs) = 1, where s ≤ t . Since G has no K6,
Gs contains at most 5 vertices. Thus G has at most 8(s − 1) + 5 ≤ 8t − 3 vertices, a contradiction to (ii). This proves the
theorem. ■

Note that Theorem 1.3(i) is a special case of Theorem 4.6(i), and Theorem 1.3(ii) follows from Theorems 5.3 and 4.6(ii).
In fact, we obtain the following stronger version of Theorem 1.3(ii) concerning odd edge-connectivity.

Corollary 5.4. For every odd-7-edge-connected graph G with α(G) ≤ 2, the flow index φ(G) < 3.
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