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a b s t r a c t

Let G be a graph and let κ(G) be the vertex-connectivity of G. The maximum subgraph
connectivity of G is κ(G) = max{κ(H) : H ⊆ G}. A simple graph G is vertex-k-maximal
if κ(G) ≤ k, but for any e ∈ E(Gc ), κ(G + e) ≥ k + 1. Mader conjectured that every
vertex-k-maximal simple graph of order n satisfies |E(G)| ≤

3
2 (k −

1
3 )(n − k).

We prove the following.
(i) Every vertex-k-maximal simple graph of order n satisfies |E(G)| ≥ (n−k)k+

k(k−1)
2 .

This lower bound is best possible.
(ii) For every integer m in the range 2n − 3 ≤ m ≤ 5n/2 −

21+(−1)n+1

4 there exists a
vertex 2-maximal graph of order n with m edges.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we consider finite simple graphs. Undefined terms and notation will follow [5]. In particular,
κ(G) denotes the connectivity of a graph G, and Gc is the complement of G. We use H ⊆ G to mean that H is a subgraph of
G. If X ⊆ E(Gc), then G+X is the simple graph with vertex set V (G) and edge set E(G)∪X . We will use G+ e for G+{e}. If
W ⊆ V (G) or if W ⊆ E(G), then G[W ] denotes the subdigraph of G induced by W . For v ∈ V (G), define G−v = G[V (G)−v],
and

NG(v) = {u ∈ V (G) : uv ∈ E(G)} and EG(v) = {e ∈ E(G) : ∃u ∈ NG(u), e = uv}.

Matula [16] first explicitly studied the quantity κ(G) = max{κ(H) : H ⊆ G}. For an integer k > 0, a simple graph G with
|V (G)| ≥ k+1 is vertex k-maximal if κ(G) ≤ k but for any edge e ∈ E(Gc), κ(G+ e) > k. By definition, a vertex k-maximal
graph on n = k + 1 vertices must be Kk+1. Mader [11] constructed an infinite family of graph without (k + 1)-connected
subgraphs and with a large number of edges.

Example 1.1 (Mader [11]). Let k, n, q and r be nonnegative integers with n = kq + r and 0 ≤ r ≤ k. Let Gn,k be a graph
with vertex set ∪

q
i=0Vi, where V0, . . . , Vq are pairwise disjoint vertex subsets satisfying each of the following:

(a) |V0| = · · · = |Vq−1| = k, while |Vq| = r .
(b) V0 is an independent set in Gn,k; and for 1 ≤ i ≤ q, Vi is a clique in Gn,k.
(c) Every vertex in V0 is adjacent to every vertex in ∪

q
i=1Vi, and Gn,k has no other edges.
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Then each of the following holds.
(i) V0 is a vertex cut with |V0| = k, and every component of Gn,k − V0 has at most k vertices.
(ii) Gn,k is a vertex k-maximal graph.
(iii) |E(Gn,k)| ≤

3
2 (k −

1
3 )(n − k), where the equality holds if r = 0.

Mader in [11] investigated the extremal size a vertex-k-maximal graph on n vertices may have, and he conjectured
that, for large order of graphs, the graphs in Example 1.1 would in fact present the best possible upper bound for the size
of a vertex k-maximal graph.

Conjecture 1.2 (Mader [11]). Let k ≥ 2 be an integer. Then for sufficiently large n, every vertex k-maximal graph on n vertices
satisfies |E(G)| ≤

3
2 (k −

1
3 )(n − k).

There have been some progress towards Conjecture 1.2. To the best of our knowledge, there has been little studies
on the characterizations of the extremal graphs for the cases that the conjecture is proved. Apparently the structures of
these extremal graphs are quite elusive and not easy to be determined.

Theorem 1.3. Let k > 0 be an integer, and G be a vertex k-maximal simple graph of order n.
(i) (Mader [10], see also [11]) Conjecture 1.2 holds for k ≤ 6.
(ii) (Mader [10], see also [11]) For sufficiently large n, every vertex k-maximal graph on n vertices satisfies |E(G)| ≤ (1 +
1

√
2
)k(n − k).

(iii) (Yuster [18]) If n ≥
9k
4 , then every vertex k-maximal graph on n vertices satisfies |E(G)| ≤

193
120k(n − k).

(iv) (Bernshteyn and Kostochka [4]) If n ≥
5k
2 , then every vertex k-maximal graph on n vertices satisfies |E(G)| ≤

19
12k(n − k).

The related studies on the maximum subgraph edge-connectivity and its extremal problems related to edge k-maximal
graphs have been conducted by quite a few researchers, as seen in [7,9–15,17], among others. The corresponding digraph
problems have been investigated recently, which can be found in [1–3,8], among others.

These motivate the current research. The objective of this study is to determine the best possible lower bound of the
extremal size a vertex-k-maximal graph on n vertices. A main result of this paper is the following.

Theorem 1.4. Let k, n be positive integers with n ≥ k + 1, and let G be a simple graph on n vertices. Each of the following
holds.
(i) If G is vertex-k-maximal, then |E(G)| ≥ (n − k)k +

k(k−1)
2 .

(ii) This lower bound is best possible in the sense that there exists an infinite family of vertex-k-maximal simple graphs on n
vertices with |E(G)| = (n − k)k +

k(k−1)
2 .

Characterizing the extremal vertex k-maximal graphs reaching the upper or lower bound seems to be a difficult
problem for a generic value of k. While the upper bound of vertex 2-maximal graphs has been obtained by Mader in [10],
(see also [11]), a question to be answered is, what are the vertex 2-maximal graphs whose sizes attain the upper bound?
Another objective of this research is to determine all possible integer values which can be the size of a vertex 2-maximal
graphs, and to characterize the extremal vertex 2-maximal graphs. In particular, the following is proved in this paper.

Theorem 1.5. Let m and n be integers with n ≥ 3. Then there exists a vertex 2-maximal graph G of order n such that m = |E(G)|
if and only if 2n − 3 ≤ m ≤

5n
2 −

21+(−1)n+1

4 . Moreover, all vertex 2-maximal graphs on n vertices with 5n
2 −

21+(−1)n+1

4 edges
are recursively characterized.

In Section 2, we will prove Theorem 1.4. Section 3 will be devoted to the discussion of the extremal structures of vertex
2-maximal graphs and the proof of Theorem 1.5.

2. The lower bound of sizes of vertex-k-maximal graphs

Throughout this section, we assume that k is an integer with k ≥ 2. As in [5], a clique in a graph G is a set of mutually
adjacent vertices. A clique of size k is often referred to as a k-clique. A vertex cut X of a graph G is a peripheral cut if
there exists a vertex v ∈ V (G) such that X = NG(v). We adopt the following definition of a k-tree in [6].

Definition 2.1. For any integer k > 0, we define the family of k-tree, denoted by T k, to be the graph family that contains
the complete graph Kk, such that for n ≥ k, a graph G on n+1 vertices is in T k if and only if there exists a vertex v ∈ V (G)
satisfying both of the following:
(T1) G − v ∈ T k, and
(T2) NG(v) is a clique in G − v.

We often use Tk,n to denote a generic k-tree on n vertices. In particular, Tk,k = Kk and Tk,k+1 = Kk+1.

Lemma 2.2. Let k, n be integers with n ≥ k + 1 > 2. Every k-tree Tk,n is a vertex k-maximal graph.
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Proof. We adopt the notation in Definition 2.1. It is routine to argue by induction by using Definition 2.1 to show that
for any Tk,n ∈ T k,

κ(Tk,n) = k, and every minimum vertex-cut of Tk,n is peripheral and is a k-clique. (1)

Claim 1. κ(Tk,n) = k.

Claim 1 holds trivially if n = k+1 as Tk,k+1 = Kk+1. Assume that n ≥ k+2 and Claim 1 holds for smaller values of n. Let
H be a subgraph of Tk,n such that κ(H) = κ(Tk,n). If κ(H) = k, then done. Assume that κ(H) ≥ k + 1. By (1), Tk,n contains
a peripheral cut NTk,n (v) for some v ∈ V (Tk,n). Since κ(H) ≥ k + 1, v /∈ V (H). Hence H is a subgraph of Tk,n−1 = Tk,n − v.
By induction, κ(H) ≤ κ(Tk,n−1) ≤ k, contrary to the assumption that κ(H) ≥ k + 1. This justifies the claim.

By Claim 1, it remains to show that for any e = xy ∈ E((Tk,n)c), κ(Tk,n+e) ≥ k+1. As Tk,k+1 = Kk+1, we may assume that
n ≥ k+ 2 and Lemma 2.2 holds for smaller values of n. By (1), Tk,n contains a peripheral cut NTk,n (u) for some u ∈ V (Tk,n).
We again denote Tk,n−1 = Tk,n − u. Let e = xy ∈ E((Tk,n)c).

If xy ∈ E((Tk,n−1)c), then by induction, Tk,n−1 + xy contains a (k + 1)-connected subgraph, and so Lemma 2.2 holds.
Hence we assume that x = u and y = v ∈ V (Tk,n−1). If κ(Tk,n + e) ≥ k + 1, then κ(Tk,n + e) ≥ κ(Tk,n + e) ≥ k + 1, and so
we are done. Assume, by (1), that κ(Tk,n + e) = k, and Tk,n + e has a vertex k-cut X . Then X is also a vertex cut of Tk,n.
By (1), there exists a vertex w ∈ V (Tk,n) such that X = NTk,n (w). If w = v or w = u, since X is a vertex cut of Tk,n + e,
then there exists another vertex w′ /∈ {u, v}, such that X = NTk,n (w

′). Let T ′

k,n−1 = Tk,n − w′. Then by induction, T ′

k,n−1 is
vertex k-maximal. Since w′ /∈ {u, v}, xy ∈ E((T ′

k,n−1)
c), and so κ(Tk,n + e) ≥ κ(T ′

k,n−1 + e) ≥ k + 1. Hence we must have
w /∈ {u, v}. Let T ′

k,n−1 = Tk,n − w. Then by induction, T ′

k,n−1 is vertex k-maximal. Since w /∈ {u, v}, xy ∈ E((T ′

k,n−1)
c), and so

κ(Tk,n + e) ≥ κ(T ′

k,n−1 + e) ≥ k + 1. This completes the proof of Lemma 2.2. ■

Lemma 2.3. Let k, n be integers with n ≥ k+1 > 2. If G is a vertex k-maximal graph with n = |V (G)|, then κ(G) = κ(G) = k.

Proof. Let G be a vertex k-maximal graph. By definition, κ(G) ≤ k. Hence it suffices to show that κ(G) ≥ k. As Kk+1 is
the only vertex k-maximal graph on k+ 1 vertices, we assume that n ≥ k+ 2, and so G is not a complete graph. Arguing
by contradiction, we assume that κ(G) = r < k, and so as G is not a complete graph, G has a vertex r-cut S. Let C1 be a
component of G − S, and C2 = G − (S ∪ V (C1)). Hence there must be a vertex v1 ∈ V (C1) and a vertex v2 ∈ V (C2) such
that e = v1v2 /∈ E(G),

Since G is vertex k-maximal, κ(G + e) ≥ k + 1. Hence G + v1v2 contains a subgraph H with κ(H) = κ(G + e) ≥ k + 1.
Since κ(G) ≤ k, H cannot be a subgraph of G, and so e ∈ E(H). As V (H)∩ V (C1) ̸= ∅ and V (H)∩ V (C2) ̸= ∅, it follows that
V (H) ∩ S is a vertex cut of H − e.

If |V (C1)| = |V (C2)| = 1, then n = |X | + 2 ≤ k+ 1, contrary to the assumption of n ≥ k+ 2. Hence for some i ∈ {1, 2},
|V (Ci)| ≥ 2. Let S ′

= (V (H) ∩ S) ∪ {vi}. Since |V (Ci)| ≥ 2 and since V (H) ∩ S is a vertex cut of H − e, it follows that S ′ is a
vertex cut of H , and so we obtain a contradiction:

k + 1 > r + 1 ≥ |S| + 1 ≥ |V (H) ∩ S| + 1 = |S ′
| ≥ κ(H) ≥ k + 1.

This contradiction shows that the lemma must hold. ■

Following [5], if H, K are subgraphs of a graph G, then H ∪ K is the subgraph of G with V (H ∪ K ) = V (H) ∪ V (K ) and
E(H ∪ K ) = E(H)∪ E(K ). Let G be a vertex k-maximal graph with |V (G)| ≥ k+ 2. By Lemma 2.3, κ(G) = κ(G) = k. For any
vertex cut S of G with |S| = k, G − S has two vertex disjoint subgraphs L1 and L2 such that

G1 := G[S ∪ V (L1)] and G2 := G[S ∪ V (L2)] are connected, (2)
|S| = κ(G),G = G1 ∪ G2 and V (G1) ∩ V (G2) = S.

A triple (S,G1,G2) of a graph G is a separation triple of G if it satisfies (2).

Lemma 2.4. Let k, n be integers with k ≥ 2 and n ≥ k + 1, and G be a vertex k-maximal graph on n vertices. Let (S,G1,G2)
be a separation triple of G.
(i) If e ∈ E(Gc

1)∪E(Gc
2), then any subgraph H of G+ e with κ(H) ≥ k+1 is either a subgraph of G1 + e or a subgraph of G2 + e.

(ii) If G[S] is a clique, then each of G1 and G2 is a vertex k-maximal graph.

Proof. Let e ∈ E(Gc
1). Since G is vertex k-maximal, κ(G+e) ≥ k+1. Let H be a subgraph of G+e with κ(H) ≥ k+1. We are

to show that H is either a subgraph of G1 or a subgraph of G2. By contradiction, assume that we have V (H)∩(V (G1)−S) ̸= ∅

and V (H) ∩ (V (G2) − S) ̸= ∅. This, together with the fact e ∈ E(Gc
1), implies that S ∩ V (H) is a vertex cut of H . Hence we

reach a contradiction:

k = |S| ≥ |S ∩ V (H)| ≥ κ(H) = k + 1.

This contradiction indicates that we cannot have both V (H) ∩ (V (G1) − S) ̸= ∅ and V (H) ∩ (V (G2) − S) ̸= ∅. Hence either
V (H)∩ (V (G1)− S) = ∅, whence H is a subgraph of G2 + e; or V (H)∩ (V (G2)− S) = ∅, whence H is a subgraph of G1 + e.
This proves (i).
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To prove (ii), we assume that G[S] is a clique. If G1 is a clique, then by Lemma 2.3, G1 must be a Kk+1, and so by
definition, G1 is vertex k-maximal. Assume that G1 is not a complete graph. Since G[S] is a clique, every edge in E(Gc

1) is
incident with a vertex in V (G1) − S. Since G1 is not a complete graph, for any edge e ∈ E(Gc

1), as G is vertex k-maximal,
G + e contains a (k + 1)-connected subgraph H , and e ∈ E(H). Hence V (H) ∩ (V (G1) − S) ̸= ∅. By Lemma 2.4(i), H is
a subgraph of G1 + e, and so by definition, G1 is vertex k-maximal. By symmetry, we can similarly show that G2 is also
vertex k-maximal. This proves (ii). ■

For an integer n ≥ k + 1, define

f (n, k) = min{|E(G)| : G is simple, and vertex-k-maximal with n = |V (G)|}.

The goal of this section is to determine the value of f (n, k), thereby proving Theorem 1.4. Theorem 2.5 is the main result
of this section.

Theorem 2.5. For integers k, n with k ≥ 2 and n ≥ k + 1,

f (n, k) = (n − k)k +
k(k − 1)

2
.

Proof. By Lemma 2.2, we have, for any n ≥ k + 1, f (n, k) ≤ (n − k)k +
k(k−1)

2 . Thus to prove the theorem, it remains to
show that for n ≥ k + 1,

f (n, k) ≥ (n − k)k +
k(k − 1)

2
. (3)

As Kk+1 is the only vertex k-maximal graph on n = k+1 vertices, we assume that n ≥ k+2, and that (3) holds for smaller
values of n.

Let G be a vertex k-maximal of order n. Since n ≥ k + 2, G is not a complete graph. By Lemma 2.3, κ(G) = κ(G) = k,
and so G has a separation triple (S,G1,G2) with |S| = k. Let n1 = |G1| and n2 = |G2|.

If G[S] = Kk, then by Lemma 2.4, both G1 and G2 are vertex k-maximal. It follows by induction that both |E(G1)| ≥

(n1 − k)k +
k(k−1)

2 and |E(G2)| ≥ (n2 − k)k +
k(k−1)

2 . Thus (3) holds by induction.

|E(G)| = |E(G1)| + |E(G2)| −
k(k − 1)

2

≥ (n1 − k)k +
k(k − 1)

2
+ (n2 − k)k +

k(k − 1)
2

−
k(k − 1)

2

= (n1 + n2 − 2k)k + k(k − 1) −
k(k − 1)

2
= (n − k)k +

k(k − 1)
2

.

Therefore we assume that

G[S] is not a k-clique. (4)

Since G is vertex k-maximal, for any e ∈ E((G[S])c), there exists a (k + 1)-connected subgraph H of G + e. By Lemma 2.4,
H is either a subgraph of G1 + e or a subgraph of G2 + e. Define

E1 = {e : e ∈ E((G[S])c) and κ(G2 + e) = k}, (5)
E2 = {e : e ∈ E((G[S])c) and κ(G1 + e) = k}.

Claim 2. Each of the following holds.
(i) E1 ∩ E2 = ∅ and E1 ∪ E2 ⊂ E((G[S])c).
(ii) If G1 + E1 is a complete graph, then E(G[S]c) = E1; if G1 + E1 is not a complete graph, then there exists a subset E ′

1 ⊆ E1
such that G1 + E ′

1 is vertex k-maximal.
(iii) If G2 + E2 is a complete graph, then E(G[S]c) = E2; if G2 + E2 is not a complete graph, then there exists a subset E ′

2 ⊆ E2
such that G2 + E ′

2 is vertex k-maximal.

By (5), we have E1 ∪ E2 ⊂ E((G[S])c). Since G is vertex k-maximal, we have E1 ∩ E2 = ∅, and so Claim 2(i) must hold.
By symmetry, it suffices to prove one of Claim 2(ii) and (iii). Assume first that G1+E1 is a complete graph. Since E(G1) ⊆

E(G) and since G1 + E1 is a complete graph, (G1 + E1)[S] is a complete graph with E((G[S])c) = (G1 + E1)[S] − E(G1) = E1.
Next, we assume that G1 + E1 is not a complete graph. Take an arbitrary edge e = xy ∈ E((G1 + E1)c). Then e ∈ E(Gc),

and so as G is vertex k-maximal, G + e has a (k + 1)-connected subgraph H with e ∈ E(H). If {x, y} ∩ (V (G1) − S) ̸= ∅,
then by Lemma 2.4, H is a subgraph of G1 + e. If {x, y} ⊆ S, then as e /∈ E1, by (5), once again H must be a subgraph of
G1 + e. Since G1 + e is a subgraph of (G1 + E1)+ e, we conclude that for any edge e ∈ E((G1 + E1)c), (G1 + E1)+ e contains
a (k + 1)-connected subgraph H with E(H) ∩ E1 = ∅. If κ(G1 + E1) ≤ k, then by definition, G1 + E1 is vertex k-maximal.
Now assume that κ(G1 + E1) ≥ k+ 1. Since κ(G1) ≤ k, there existsa maximum subset E ′

1 ⊆ E1 such that κ(G1 + E ′

1) ≤ k. It
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follows by the maximality of E ′

1 and by the definition of vertex k-maximal graphs that G1 + E ′

1 is vertex k-maximal. This
verifies Claim 2.

By Claim 2(i) and by the definition of (G[S])c , we have

|E1| + |E2| + |E(G[S])| ≤ |E((G[S])c)| + |E(G[S])| = |E(Kk)| =
k(k − 1)

2
. (6)

If both G1 + E1 and G2 + E2 are vertex k-maximal, then by (6), it follows by induction that (3) holds:

|E(G)| = |E(G1)| + |E(G2)| − |E(G[S])|

= |E(G1 + E1)| − |E1| + |E(G2 + E2)| − |E2| − |E(G[S])|

≥ k(n1 − k) +
k(k − 1)

2
+ k(n2 − k) +

k(k − 1)
2

− |E1| − |E2| − |E(G[S])|

≥ k(n1 + n2 − 2k) + k(k − 1) −
k(k − 1)

2

= k(n − k) +
k(k − 1)

2
.

Hence we may assume that

at least one of G1 + E1 and G2 + E2 is not vertex k-maximal. (7)

Case 1. Exactly one of G1 + E1 and G2 + E2 is vertex k-maximal.

By symmetry, we assume that G1 +E1 is vertex k-maximal and G2 +E2 is not vertex k-maximal. If G2 +E2 is a complete
graph, then by Claim 2, we have E((G[S])c) = E2, and so E1 = ∅. By assumption, G1 is vertex k-maximal. It follows by
induction, by (6) and by n2 ≥ k + 1 that

|E(G)| = |E(G1)| + |E(G2)| − |E(G[S])|

= |E(G1)| + |E(G2 + E2)| − |E2| − |E(G[S])|

≥ k(n1 − k) +
k(k − 1)

2
+

1
2
(n2)(n2 − 1) − |E2| − |E(G[S])|

= k(n1 − k) +
k(k − 1)

2
+

1
2
(n2 − k)(n2 − k − 1)

+(n2 − k)k +
k(k − 1)

2
− |E2| − |E(G[S])|

≥ k(n1 − k) +
k(k − 1)

2
+ (n2 − k)k +

k(k − 1)
2

− |E2| − |E(G[S])|

≥ k(n1 + n2 − 2k) + k(k − 1) −
k(k − 1)

2
= k(n − k) +

k(k − 1)
2

.

Therefore we assume that G2+E2 is not a complete graph. Take an arbitrary edge e = xy ∈ E((G2+E2)c). Then e ∈ E(Gc),
and so as G is vertex k-maximal, G+ e has a (k+ 1)-connected subgraph H with e ∈ E(H). If {x, y} ∩ (V (G2)− S) ̸= ∅, then
by Lemma 2.4, H is a subgraph of G2 + e. Assume that x, y ∈ S. Then as e /∈ E2, by (5), once again H must be a subgraph
of G2 + e. Thus Claim 2 is applicable.

By Claim 2, for some edge subset E ′

2 ⊂ E2, G2 +E ′

2 is vertex k-maximal. By (6) and by induction on G1 +E1 and G2 +E ′

2,
we have

|E(G)| = |E(G1)| + |E(G2)| − |E(G[S])|

= |E(G1 + E1)| − |E1| + |E(G2 + E ′

2)| − |E ′

2| − |E(G[S])|

≥ k(n1 − k) +
k(k − 1)

2
+ (n2 − k)k +

k(k − 1)
2

− |E1| − |E ′

2| − |E(G[S])|

≥ k(n1 + n2 − 2k) + k(k − 1) −
k(k − 1)

2
= k(n − k) +

k(k − 1)
2

.

Hence (3) holds in Case 1.

Case 2. Neither G1 + E1 nor G2 + E2 is vertex k-maximal.
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By Claim 2, if both G1 + E1 and G2 + E2 are complete graphs, then E1 = E((G[S])c) = E2. By Claim 2(i), we must have
E1 = E2 = ∅, and so either both G1 and G2 are vertex k-maximal, contrary to (7), or G[S] is a complete graph, contrary to
(4). Hence by symmetry, we may assume that G1 + E1 is not a complete graph.

If G2 + E2 is a complete graph, then by Claim 2 E1 = ∅ and E2 = E((G[S])c). For any e ∈ E((G[S])c), since G is a vertex
k-maximal graph, G + e contains a (k + 1)-connected subgraph H . By (5) and since E1 = ∅, this H must be a subgraph of
G1 + e. This, together with Lemma 2.3, implies that G1 is a vertex k-maximal graph, contrary to the assumption of Case 2.

Therefore, we conclude that each of G1 + E1 and G2 + E2 is not a complete graph. By Claim 2, there exist E ′

1 ⊆ E1 and
E ′

2 ⊆ E2 such that G1 + E ′

1 and G2 + E ′

2 are vertex k-maximal. By (6) and by induction,

|E(G)| = |E(G1)| + |E(G2)| − |E(G[S])|

= |E(G1 + E ′

1)| − |E ′

1| + |E(G2 + E ′

2)| − |E ′

2| − |E(G[S])|

≥ k(n1 − k) +
k(k − 1)

2
+ (n2 − k)k +

k(k − 1)
2

− |E ′

1| − |E ′

2| − |E(G[S])|

≥ k(n1 + n2 − 2k) + k(k − 1) −
k(k − 1)

2
= k(n − k) +

k(k − 1)
2

.

Hence (3) holds in Case 2 as well, and so (3) is justified by induction.
This proves Theorem 2.5. ■

3. Characterization of extremal vertex 2-maximal graphs

The main goal of this section is to determine the structures of all vertex 2-maximal graphs with maximum possible
edges, as well as the possible values of sizes of vertex 2-maximal graphs. We start defining our notation in the discussion.

Definition 3.1. Let k and n be integers with n ≥ k + 1.
(i) Let G(n, k) be the family of all vertex k-maximal graphs on n vertices, and G(k) = ∪n≥k+1G(n, k) be the family of all
vertex k-maximal graphs with at least k + 1 vertices.
(ii) Define,

MG(n, k) = {G : G ∈ G(n, k) and |E(G)| = max{|E(L)| : L ∈ G(n, k)}},

and

SG(n, k) = {G : G ∈ G(n, k) and |E(G)| = min{|E(L)| : L ∈ G(n, k)}}.

Let F (n, 2) = max{|E(L)| : L ∈ G(n, 2)}. The purpose of this section is to characterize all vertex 2-maximal graphs
whose on n vertices with size F (n, 2). The next lemma is a consequence of Lemma 2.4, whose proof is omitted.

Lemma 3.2. Let G be a vertex 2-maximal graph with n = |V (G)| ≥ 4. Then for any separation triple (S,G1,G2) with
S = {z1, z2}, one of the following must hold.
(i) The edge z1z2 ∈ E(G) and each of G1 and G2 is vertex 2-maximal.
(ii) The edge z1z2 /∈ E(G) and for each i ∈ {1, 2}, either Gi or Gi + z1z2 is vertex 2-maximal.

We shall present a graph construction such that all graphs in G(2) can be recursively built with this construction.

Definition 3.3. Let G(u, v) denote a graph G with two distinguished vertices u, v ∈ V (G), and G1 = G1(u1, v1) and
G2 = G2(u2, v2) be two vertex disjoint graphs.
(i) Suppose that u1v1 /∈ E(G1) and u2v2 /∈ E(G2). Define [G1(u1, v1),G2(u2, v2)]2 to be the graph obtained from the
disjoint union of G1(u1, v1) and G2(u2, v2) by identifying u1 and u2, v1 and v2, respectively. When we do not emphasize
the distinguished vertices, or when the distinguished vertices are understood in the context, we often use [G1,G2]2 for
[G1(u1, v1),G2(u2, v2)]2. Thus one can also view [G1,G2]2 as a family of graphs.
(ii) Suppose that u1v1 /∈ E(G1) and u2v2 ∈ E(G2). Define

[G1(u1, v1),G2(u2, v2)]2 = [G1(u1, v1),G2(u2, v2) − {u2v2}]2 + u2v2.

(iii) Let w1, w2 denote the two vertices of degree 1 in K1,2. Define K−

4 = [K3(u1, v1), K1,2(w1, w2)]2.
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3.1. Characterization of vertex 2-maximal graphs with maximum sizes

We start with a family of examples, which attain maximum sizes among all vertex 2-maximal graphs with given order.

Example 3.4. Let n be an integer with n ≥ 4, and let t = ⌊
n−2
2 ⌋. Let G(n) be the graph satisfying the following.

(i) V (G(n)) = {z1, z2} ∪ {v1, v2, . . . , vn−2},
(ii) E(G(n)) = {z1vi, z2vi : 1 ≤ i ≤ n − 2} ∪ {vjvt+j : 1 ≤ j ≤ t}.

Thus G(4) = K−

4 and G(5) = [G(4)(z1, z2), K1,2(u2, v2)]2. By definition, it is routine to verify that κ(G(n)) = κ(G(n)) = 2.
When n is even, δ(G(n)) = 3; and when n is odd, vn−2 is the only vertex of degree 2, with all other vertices having degree
at least 3. The only minimum vertex cut of G(n) is S = {z1, z2}. By as κ(K4) = 3, by definition, G(4) ∈ G(2). Similarly,
G(5) ∈ G(2). Assuming that n ≥ 6 and G(n′) ∈ G(2), for any n′ < n. Take any edge e ∈ E((G(n))c). If e = z1z2, then
G(n) + e contains a K4, and so κ(G(n) + e) = 3. Assume that e ̸= z1z2, and so by symmetry, we further assume that
z1 = v1, and z2 = vi for some i ≥ 2 and i ̸= t + 1. Since n ≥ 6, there must be an j with 2 ≤ j such that i /∈ {j, t + j}.
Let G′

= G(n) − {vj, vt+j}. Then G′ ∼= G(n − 2) and e ∈ E((G′)c). By induction, κ(G(n) + e) ≥ κ(G′
+ e) ≥ 3. By definition,

G(n) ∈ G(2). A direct computation yields

F (n, 2) ≥ |E(G(n))| =
5n
2

−
21 + (−1)n+1

4
.

Example 3.4 motivates the following theorem, which is a slightly enhanced version of Theorem 1.3(i) with k = 2.

Theorem 3.5. For n ≥ 4,

F (n, 2) =
5n
2

−
21 + (−1)n+1

4
. (8)

Moreover, MG(4, 2) = {K−

4 } and MG(5, 2) = {[K1,2(w1, w2), K−

4 (u1, v1)]2 : u1, v1 ∈ V (K−

4 )} ∪ {[K1,2(w1, w2), K−

4 (u1, v1)]2 :

u1, v1 ∈ V (K−

4 )}. For n ≥ 6, G ∈ MG(n, 2) if and only if for any separation triple (S,G1,G2) of G with |S| = 2, one of the
following holds.
(i) n ≡ 1 (mod 2), G1 = K3, G2 ∈ MG(n − 1, 2), |E(G[S])| = 1 and G ∈ [K1,2(w1, w2),G2]

2.
(ii) n ≡ 1 (mod 2), G1 = K1,2, G2 ∈ MG(n − 1, 2), |E(G[S])| = 0 and G ∈ [K1,2(w1, w2),G2]2.
(iii) n ≡ 1 (mod 2), G1,G2 ∈ MG(2) such that for some i ∈ {1, 2}, |V (Gi)| ≡ 0 (mod 2) and |V (G3−i)| ≡ 1 (mod 2), E(G[S]) = ∅

and G ∈ [G1,G2]2.
(iv) n ≡ 0 (mod 2), G1,G2 ∈ MG(2) with |V (G1)| ≡ |V (G2)| ≡ 0 (mod 2), and G ∈ [G1,G2]2 such that E(G[S]) = ∅.

Proof. By Example 3.4, to justify (8), it suffices to show that for any G ∈ G(2) with n = |V (G)|, we always have

|E(G)| ≤
5n
2

−
21 + (−1)n+1

4
. (9)

When n ∈ {4, 5}, it is routine to show that

MG(4, 2) = {K−

4 } and MG(4, 5) = {[K−

4 (u1, v1), K1,2(w1, w2)]2 : u1, v1 ∈ V (K−

4 )},

and so (9) holds for n ∈ {4, 5}. Therefore, we assume that n ≥ 6 and Theorem 3.5 holds for smaller values of n.
Let G ∈ G(n, 2) be a graph. As n ≥ 6, G is not a complete graph. Hence G has a vertex cut of size 2. Let (S,G1,G2)

be a separation triple of G with S = {u0, v0}. Let n1 = |V (G1)| and n2 = |V (G2)|. Thus n = n1 + n2 − 2. Without loss of
generality, we assume that n1 ≤ n2.

Claim 3. If u0v0 ∈ E(G), then (9) holds. Moreover, equality in (9) holds if and only if Theorem 3.5(i) holds.

By Lemma 3.2, both G1 and G2 are vertex 2-maximal. Assume first that n1 ≥ 4. Then as G1 and G2 are vertex 2-maximal,
neither G1 nor G2 is a complete graph. By induction and by the fact that n and n1 + n2 have the same parity,

|E(G)| = |E(G1)| + |E(G2)| − |{u0v0}| (10)

=
5n1

2
−

21 + (−1)n1+1

4
+

5n2

2
−

21 + (−1)n2+1

4
− 1

=
5(n1 + n2 − 2)

2
−

21 + (−1)n+1

4
+

(
4 +

21 + (−1)n+1

4
−

2∑
i=1

21 + (−1)ni+1

4

)

=
5(n1 + n2 − 2)

2
−

21 + (−1)n+1

4
−

5 + (−1)n1+1
+ (−1)n2+1

− (−1)n+1

4

<
5n
2

−
21 + (−1)n+1

4
.
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Now assume that n1 = 3. Then G1 = K3 and as n ≥ 5, we have n = n2 + 1 > n2 ≥ 4. In this case, by induction on G2,

|E(G)| = |E(G1)| + |E(G2)| − |{u0v0}| = |E(G2)| + 2 (11)

=
5n2

2
−

21 + (−1)n2+1

4
+ 2

=
5n
2

−
21 + (−1)n+1

4
+ 2 −

5
2

+
21 + (−1)n+1

4
−

21 + (−1)n2+1

4

=
5n
2

−
21 + (−1)n+1

4
−

2 + (−1)n2+1
− (−1)n+1

4

≤
5n
2

−
21 + (−1)n+1

4
.

As u0v0 ∈ E(G), the last inequality in (11) is an equality if and only if Theorem 3.5(i) holds. This proves the claim.
By Claim 3, in the rest of the arguments, we assume that u0v0 /∈ E(G). By Lemma 3.2, for each i ∈ {1, 2}, either Gi or

Gi + u0v0 is vertex 2-maximal.

Claim 4. If u0v0 /∈ E(G), n1 ≥ 4, and for some i ∈ {1, 2}, both Gi and G3−i + u0v0 are vertex 2-maximal, then (9) holds with
strict inequality.

Without lost of generality, we assume that G1 and G2 + u0v0 are vertex 2-maximal. By induction, we have, as in (10),
that |E(G)| = |E(G1)| + |E(G2)| − 1 < 5n

2 −
21+(−1)n+1

4 . Thus the claim must hold.

Claim 5. If u0v0 /∈ E(G), n1 = 3, and both G1 + u0v0 and G2 are vertex 2-maximal, then (9) holds. Moreover, equality in (9)
holds if and only if Theorem 3.5(ii) holds.

As n1 = 3 and G1 + u0v0 ∈ G(2), we have G1 ∼= K1,3. As n ≥ 6, we have n2 = n − 1 ≥ 5. By induction, we have, as in
(11),

|E(G)| = |E(G1 + u0v0)| + |E(G2)| − |{u0v0}| = |E(G2)| + 2 (12)

=
5n
2

−
21 + (−1)n+1

4
−

2 + (−1)n2+1
− (−1)n+1

4
≤

5n
2

−
21 + (−1)n+1

4
.

As u0v0 /∈ E(G) and G1 ∼= K1,2, the last inequality in (12) is an equality if and only if Theorem 3.5 (ii) holds. This proves
the claim.

Claim 6. If u0v0 /∈ E(G) and G1 and G2 are both vertex 2-maximal, then (9) holds. Moreover equality in (9) holds if and only
if Theorem 3.5(iii) or (iv) holds.

If G1 and G2 are both vertex 2-maximal, then by induction,

|E(G)| = |E(G1)| + |E(G2)| =
5n1

2
−

21 + (−1)n1+1

4
+

5n2

2
−

21 + (−1)n2+1

4
(13)

=
5(n1 + n2 − 2)

2
−

21 + (−1)n+1

4
+

(
5 +

21 + (−1)n+1

4
−

2∑
i=1

21 + (−1)ni+1

4

)

=
5(n1 + n2 − 2)

2
−

21 + (−1)n+1

4
−

1 + (−1)n1+1
+ (−1)n2+1

− (−1)n+1

4

≤
5n
2

−
21 + (−1)n+1

4
.

As G1 is vertex 2-maximal and u0v0 /∈ E(G), we have n1 ≥ 4. As u0v0 /∈ E(G), the equality holds in (13) if and only if
either n ≡ n1 + n2 ≡ 1 (mod 2) and Theorem 3.5(iii) holds or n ≡ n1 ≡ n2 ≡ 0 (mod 2) and Theorem 3.5(iv) holds. This
justifies Claim 6.

Claim 7. If u0v0 /∈ E(G), n1 ≥ 4, and both G1 + u0v0 and G2 + u0v0 are both vertex 2-maximal, then (9) holds with strict
inequality.
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Since G1 + u0v0 and G2 + u0v0 are both vertex 2-maximal and n1 ≥ 4, by induction, we have

|E(G)| = |E(G1 + u0v0)| + |E(G2 + u0v0)| − 2 (14)

=
5n1

2
−

21 + (−1)n1+1

4
+

5n2

2
−

21 + (−1)n2+1

4
− 2

=
5(n1 + n2 − 2)

2
−

21 + (−1)n+1

4
+

(
3 +

21 + (−1)n+1

4
−

2∑
i=1

21 + (−1)ni+1

4

)

<
5n
2

−
21 + (−1)n+1

4
.

The theorem now follows from the claims above. ■
The next corollary follows immediately from Theorem 3.5.

Corollary 3.6. Let G be a graph on n ≥ 3 vertices. Then G ∈ MG(2) if and only if one of the following holds.
(i) G ∈ {K3, K−

4 } ∪ {[K1,2(w1, w2), K−

4 (u1, v1)]2 : u1, v1 ∈ V (K−

4 )} ∪ {[K1,2(w1, w2), K−

4 (u1, v1)]2 : u1, v1 ∈ V (K−

4 )}.
(ii) For some integer t ≥ 3, n = 2t and there exist G1,G2 ∈ MG(2) satisfying |V (G1)| ≡ |V (G2)| ≡ 0 (mod 2) and G ∈ [G1,G2]2.
(iii) For some integer t ≥ 3, n = 2t + 1, and either there exist G1,G2 ∈ MG(2) satisfying |V (G1)| + |V (G2)| ≡ 1 (mod 2) and
G ∈ [G1,G2]2; or there exists a G2 ∈ MG(n − 1, 2) such that G ∈ [K1,2(w1, w2),G2]2 ∪ [K1,2(w1, w2),G2]

2.

3.2. Size range of vertex 2-maximal graphs

The goal of this subsection is to determine the size range of all vertex 2-maximal graphs with given order. We first
present an example which indicates possible values which are attained by the sizes of vertex 2-maximal graphs of
order n.

Example 3.7. Let n and ℓ be integers with n ≥ 4 and ℓ = ⌈
1
2n − 2⌉. For any integer r with 0 ≤ r ≤ ℓ. We define a graph

G = G(n, r) with vertex set

V (G) = {z1, z2} ∪ {ui, vi : 1 ≤ i ≤ r + 1} ∪ {w1, w2, . . . , wn−2r−4},

and edge set

E(G) = {z1ui, z2ui, z1vi, z2vi, uivi : 1 ≤ i ≤ r + 1} ∪ {wju1, wjv1 : 1 ≤ j ≤ n − 2r − 4}.

Then each of the following holds.
(i) Let L = G − {w1, w2, . . . , wn−2r−4}. Then L ∈ G(2).
(ii) G ∈ G(2).
(iii) |E(G)| = 2n − 3 + r .

Proof. By Example 3.4, L ∈ G(2), and so (i) holds.
Let e = x1x2 ∈ E(Gc) be an edge not in E(G). If x1, x2 ∈ V (L), then by (i), G + e has a 3-connected subgraph. If x1, x2 ∈

{w1, w2, . . . , wn−2r−4}, then as G[{u1, v1}∪{w1, w2, . . . , wn−2r−4}] ∼= K2,n−2r−4+u1v1, G[{u1, v1}∪{w1, w2, . . . , wn−2r−4}]+

e contains a K4. Now assume that x1 ∈ {w1, w2, . . . , wn−2r−4} and x2 ∈ V (G) − {w1, w2, . . . , wn−2r−4}. Without lost
of generality, assume that x1 = w1. If x2 ∈ {z1, z2}, say x2 = z1, then G[{z1, u1, v1, w1}] ∼= K4 is 3-connected. Hence
we assume that x2 ∈ {uivi : 2 ≤ i ≤ r + 1}. By symmetry, assume that x2 = u2. Then it is routine to verify that
G[{z1, z2, w1, u1, v1, u2, v2}] is 3-connected. By definition, G ∈ G(2) and so (ii) follows.

As a direct computation yields (iii), we have justified the conclusions of Example 3.7. ■

Example 3.7 motivates the following main result of this subsection.

Theorem 3.8. Let m and n be integers with n ≥ 3. The following are equivalent.
(i) There exists a graph G ∈ G(n, 2) with m = |E(G)|.
(ii) 2n − 3 ≤ m ≤

5n
2 −

21+(−1)n+1

4 .

Proof. By Example 3.7, it is known that (ii) implies (i). Conversely, for any graph G ∈ G(n, 2), by Theorem 2.5 with k = 2
and Theorem 3.5, we conclude that 2n − 3 ≤ m ≤

5n
2 −

21+(−1)n+1

4 , and so (i) implies (ii). ■
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