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Abstract
Let α′(G), ess′(G), κ(G), κ ′(G), NG(v) and Di (G) denote the matching number,
essential edge connectivity, connectivity, edge connectivity, the set of neighbors of v

in G and the set of degree i vertices of a graph G, respectively. For u, v ∈ V (G),
define u ∼ v if and only if u = v or both u, v ∈ D2(G) and NG(u) = NG(v). Then,
∼ is an equivalence relation, and [v] denotes the equivalence class containing v. A
subgraph H of G is almost spanning if H ⊆ G − D1(G),

⋃
j≥3 Dj (G) ⊆ V (H)

and for any v ∈ D2(G), |[v] − V (H)| ≤ 1. The line graph version of Chvátal–Erdős
theorem for a connected graph G are extended as follows.

(i) If ess′(G) ≥ α′(G), then G has an almost spanning closed trail.
(ii) If ess′(G) ≥ α′(G) − 1, then G has an almost spanning trail.
(iii) If ess′(G) ≥ α′(G) + 1, then for e, e′ ∈ E(G − D1(G)),G − D1(G) has an

almost spanning trail starting from e and ending at e′.
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1 Introduction

Graphs considered here are finite and loopless. We follow [3] for undefined terms and
notation. As in [3], for a graphG, let α(G), α′(G), κ(G) and κ ′(G) denote the stability
number (also called the independence number), matching number, connectivity and
edge connectivity of G, respectively. A cycle on n vertices is often called an n-cycle.
The girth of G, denoted by g(G), is the length of a shortest cycle of G. For a subset
X ⊆ V (G) or X ⊆ E(G), G[X ] is the subgraph of G induced by X . A path from a
vertex u to a vertex v is referred as to a (u, v)-path. As in [3], a graphG isHamiltonian
ifG has a spanning cycle, and isHamilton-connected if for any pair of distinct vertices
u and v,G contains a spanning (u, v)-path. The line graph of a graphG, written L(G),
has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the
corresponding edges in G are adjacent. For a graph G, let O(G) denote the set of odd
degree vertices of G and G is Eulerian if G is connected with O(G) = ∅. A graph is
supereulerian if it has a spanning closed trail. An edge cut X ofG is essential ifG−X
has at least two nontrivial components. For an integer k > 0, a graph G is essentially
k-edge-connected if G is connected and does not have an essential edge cut X with
|X | < k. For a connected graph G, let ess′(G) be the largest integer k such that G is
essentially k-edge-connected, if at least one such k exists, or ess′(G) = |E(G)| − 1
if for any integer k, G does not have an essential edge cut.

This research is motivated by the following well-known theorems of Chvátal and
Erdős on Hamiltonian graphs.

Theorem 1.1 (Chvátal and Erdős [14]) Let G be a graph with at least three vertices.

(i) If κ(G) ≥ α(G), then G is Hamiltonian.
(ii) If κ(G) ≥ α(G) − 1, then G has a Hamiltonian path.
(iii) If κ(G) ≥ α(G) + 1, then G is Hamilton-connected.

There have been researches on conditions analogous to this Chvátal–Erdős Theo-
rem to assure the existence of spanning trails in a graph utilizing relationship among
independence number, matching number and edge connectivity, as seen in [1,16,18]
and [27], among others. Given a trail T = v0e1v1 . . . en−1vn−1envn in a graph G, we
often refer this trail as a (v0, vn)-trail to emphasize the end vertices, or as an (e1, en)-
trail to emphasize the end edges. The vertices v1, v2, . . . , vn−1 are the internal vertices
of T . As a vertex may occur more than once in a trail, when either v0 or vn occurs in
the trail as a vi with 0 < i < n, it is also an internal vertex by definition. A trail T ofG
is dominating if every edge of G is incident with an internal vertex of T , is spanning
if T is dominating with V (T ) = V (G). A Eulerian subgraph (a closed trail) H of G
is dominating if E(G − V (H)) = ∅. Harary and Nash-Williams discovered a close
relationship between dominating Eulerian subgraphs and hamiltonian line graphs.

Theorem 1.2 (Harary and Nash-Williams [15]) Let G be a connected graph with at
least three edges. The line graph L(G) is hamiltonian if and only if G has a dominating
Eulerian subgraph.

Following the same idea of Theorem 1.2, the following have been observed.
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Proposition 1.3 Let G be a connected graph with at least three edges.

(i) The line graph L(G) has a Hamilton path if and only if G has a dominating trail.
(ii) (Theorem 1.5 of [19]) The line graph L(G) is Hamilton-connected if and only if

for any edges e, e′ ∈ E(G), G has a dominating (e, e′)-trail.

By the definitions of line graphs and essential edge connectivity, for a connected
graph G,

κ(L(G)) = ess′(G) and α(L(G)) = α′(G). (1)

Therefore by Theorem 1.2, Proposition 1.3 and (1), the line graph version of Theorem
1.1 can be stated as follows.

Theorem 1.4 (Chvátal and Erdős [14]) Let G be a connected graph with |E(G)| ≥ 3.

(i) If ess′(G) ≥ α′(G), then G has a dominating Eulerian subgraph.
(ii) If ess′(G) ≥ α′(G) − 1, then G has a dominating trail.
(iii) If ess′(G) ≥ α′(G) + 1, then for any edges e, e′ ∈ E(G), G has a dominating

(e, e′)-trail.

Our goal is to extend Theorem 1.4. Let G be a connected graph. For an integer
i ≥ 0, define

Di (G) = {v ∈ V (G) : dG(v) = i} and di (G) = |Di (G)|.

For a subset X ⊆ V (G), define NG(X) = {y ∈ V (G) − X for some x ∈ X , xy ∈
E(G)}. When X = {v}, we use NG(v) for NG({v}). For u, v ∈ V (G), define a relation
u ∼ v if and only if either u = v or both u, v ∈ D2(G) and NG(u) = NG(v). It is
routine to verify that this is an equivalent relation. The equivalence class containing
v will be denoted by [v], and the equivalence classes are called the D2-equivalent
classes. A subgraph H of G is almost spanning if

(AS1) H ⊆ G − D1(G),
(AS2)

⋃
j≥3 Dj (G) ⊆ V (H),

(AS3) For any v ∈ D2(G), |[v] − V (H)| ≤ 1.

Let e = u1v1 and e′ = u2v2 be two edges of G. If e 	= e′, then the graph G(e, e′)
is the graph obtained from G by replacing e = u1v1 with a path u1vev1 and by
replacing e′ = u2v2 with a path e′ = u2ve′v2, where ve, ve′ are two new vertices
not in V (G). If e = e′, then G(e, e′), also denoted by G(e) in this case, is obtained
from G by replacing e = u1v1 with a path u1vev1. As defined in [22], a graph G is
strongly spanning trailable if for any e, e′ ∈ E(G),G(e, e′) has a (ve, ve′)-trail T with
V (G) = V (T ) − {ve, ve′ }. By definition, every strongly spanning trailable graph is
spanning trailable. As observed in [23] (also in Chapter 1 of [29]), the Wagner graph
H8 (see Fig. 1 below) is spanning trailable but not strongly spanning trailable.

By definition, given a graph G, every spanning (open or closed) trail of G is also
almost spanning, and every almost spanning (open or closed) trail of G is also domi-
nating. Furthermore, it is routine to verify that if for e, e′ ∈ E(G − D1(G)), G(e, e′)
has an almost spanning (ve, ve′)-trail, then for any e, e′ ∈ E(G), G has a dominating
(e, e′)-trail. In these sense, the following main result of this paper extends Theorem
1.4.
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Fig. 1 P(14) and H8

Theorem 1.5 Let G be a connected graph. Each of the following holds.

(i) If ess′(G) ≥ α′(G), then G has an almost spanning closed trail.
(ii) If ess′(G) ≥ α′(G) − 1, then G has an almost spanning trail.
(iii) If ess′(G) ≥ α′(G)+1, then for e, e′ ∈ E(G− D1(G)), G(e, e′) has an almost

spanning (ve, ve′)-trail.

In Sect. 2, we display the mechanism we will use in our arguments. Then, we
provide some auxiliary results that will be applied in Sect. 3 to prove our main results.
The main results will be proved in the last section.

2 Preliminaries

Before obtaining the proof of main theorem, we introduce some notations. For a subset
Y ⊆ E(G), the contraction G/Y is the graph obtained from G by identifying the two
ends of each edge in Y and then by deleting the resulting loops. If H is a subgraph
of G, we often use G/H for G/E(H). For a vertex v ∈ V (G/X), we define P IG(v)

to be the contraction preimage of v in G. A graph G is called collapsible if for any
R ⊆ V (G) with |R| is even, G has a spanning subgraph SR with O(SR) = R. By
definition, collapsible graphs are supereulerian. In [5], Catlin showed that every graph
G has a unique collection of maximal collapsible subgraphs H1, H2, · · · , Hc. The
reduction in G, denoted by G ′, is the graph G/(H1 ∪ H2 ∪ · · · ∪ Hc). A graph G is
reduced ifG ′ = G. The following theorem summarizes some properties of collapsible
graphs and reduced graphs.

Theorem 2.1 (Catlin [5]) Let G be a connected graph, H be a collapsible subgraph
of G and let G ′ be the reduction in G. Each of the following holds:

(i) (Theorem8of [5]) G is collapsible if and only if G/H is collapsible. In particular,
G is collapsible if and only if G ′ = K1.

(ii) (Theorem 5 of [5]) G is reduced if and only if G has no nontrivial collapsible
subgraphs.

(iii) (Theorem 8 of [5]) G is supereulerian (respectively, has a spanning trail) if and
only if G/H is supereulerian (respectively, has a spanning trail) .

(iv) (Corollary of [5]) Any subgraph of a reduced graph is reduced.

Let F(G) be the minimum number of extra edges that must be added to G so that
the resulting graph has two-edge-disjoint spanning trees. Hence, a graph G has two-
edge-disjoint spanning trees if and only if F(G) = 0. Following the notation in [8],
define
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γ (G) = max

{ |X |
|V (G[X ])| − 1

: ∅ 	= X ⊆ E(G)

}

. (2)

Catlin initiated the study and applications of collapsible graphs and the related reduc-
tion method. LetN be a collection of graphs. A graphG isN -clear ifG does not have
a (not necessary induced) subgraph isomorphic to a member inN . Let K−

3,3 denote the
graph obtained from K3,3 by deleting an edge. Basically, studies on reduced graphs
are using the properties stated in Theorem 2.2 (i) below.

Theorem 2.2 Let G be a connected graph. Then,

(i) (Catlin [4] and Theorem 8 of [5]) If G is reduced with |V (G)| ≥ 3, then G
is {K−

3,3}-clear, g(G) ≥ 4 and γ (G) < 2. As a consequence of γ (G) < 2,
δ(G) ≤ 3.

(ii) (Catlin, Theorem 7 of [4], see also Corollary 2.13 of [21]) If γ (G) ≤ 2, then
F(G) = 2(|V (G)| − 1) − |E(G)|.

(iii) (Catlin [5]) If F(G) = 0, or if F(G) ≤ 1 and κ ′(G) ≥ 2, then G is collapsible;
(iv) (Catlin et al., Theorem 1.3 of [9]) If G is reduced and F(G) ≤ 2, then G ∈

{K1, K2} ∪ {K2,t : t ≥ 1}.
(v) (Li et al., Lemma 2.2 of [19]) If G is collapsible, then for any u, v ∈ V (G), G

has a spanning (u, v)-trail.
(vi) Suppose that F(G) = 0. For any e′, e′′ ∈ E(G), G(e′, e′′) has a spanning

(ve′, ve′′)-trail if and only if {e′, e′′} is not an edge cut of G. In particular, if
κ ′(G) ≥ 3, then G is strongly spanning trailable.

Proof It suffices to prove (vi). Let e′, e′′ ∈ E(G). By definition, if {e′, e′′} is an edge
cut ofG, thenG(e′, e′′) cannot have a spanning (ve′, ve′′)-trail. Conversely, we assume
that {e′, e′′} is not an edge cut of G. As F(G) = 0, we have F(G(e′, e′′)) ≤ 2, and
so by Theorem 2.2 (iv), either G(e′, e′′) is collapsible, whence by Theorem 2.2 (v)
that G(e′, e′′) has a spanning (ve′, ve′′)-trail; or the reduction in G(e′, e′′) is a K2,t
for some integer t ≥ 2. Since G has two-edge-disjoint spanning trees, both ve′ and
ve′′ must be vertices of degree 2 in this K2,t . Since {e′, e′′} is not an edge cut of G,
we must have t ≥ 3, and so K2,t has a spanning (ve′, ve′′)-trail. By Theorem 2.1(iii),
G(e′, e′′) has a spanning (ve′ , ve′′)-trail. ��

Theorem 2.2 (vi) improved Theorem 4 of [7]. Let P(10) denote the Petersen graph
and P(14) be the 3-regular graph formed by blowing up a vertex of P(10) by a K2,3.
We follow [25] to denote the Wagner graph by H8. Both P(14) and H8 are depicted
in Fig. 1. Let Pn be a path of order n.

Theorem 2.3 (Chen and Chen, Theorem 1.1 of [10]) Let G be a 3-edge-connected
graph with at most 15 vertices. Let G ′ be the reduction in G. Then, each of the
following holds:

(i) If |V (G)| ≤ 13, then either G is supereulerian or G ′ ∼= P(10).
(ii) If |V (G)| ≤ 14, then either G is supereulerian or G ′ ∈ {P(10), P(14)}.
(iii) If |V (G)| = 15, G is not supereulerian and G ′ /∈ {P(10), P(14)}, then G is a 2-

connected and essentially 4-edge-connected reduced graph with girth at least 5
and V (G) = D3(G)∪D4(G), such that D4(G) is a stable set with |D4(G)| = 3.
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Theorem 2.4 (Chen et al., Corollary 4.10 of [13]) Let G be a connected graph and G ′
be the reduction in G. If |V (G)| ≤ 15 and κ ′(G) ≥ 3, then G is supereulerian if and
only if G ′ /∈ {P(10), P(14)}.

Some prior results on reduced graphs of small orders are given in the following
theorem:

Theorem 2.5 Let G be a simple connected graph of order n.

(i) (Chen [11]). If n ≤ 7, κ ′(G) ≥ 2, and |D2(G)| ≤ 2, then G is collapsible.
(ii) (Catlin [6]). If n ≤ 8, κ ′(G) ≥ 2 and |D2(G)| ≤ 1, then G is collapsible.
(iii) (Chen [10]). If n ≤ 9, κ ′(G) ≥ 2 and |D2(G)| ≤ 2, then G ′ ∈ {K1, K2,3}.

Furthermore, if g(G) ≥ 4, then G is collapsible.

In the following, we summarize prior results on the relationship between ess′(G)

and α′(G) which may warrant the existence of (possibly open) spanning trails.

Theorem 2.6 Let G be a connected graph. Each of the following holds.

(i) (Zhan [32]) If κ ′(G) ≥ 3 and ess′(G) ≥ 7, then G has two-edge-disjoint span-
ning tree.

(ii) (Chen et al., Theorem 4.4 of [13]) If G is reduced, n = |V (G)| and δ(G) ≥ 3,
then α′(G) ≥ min{ n2 , n+5

3 }.
(iii) (Theorem 2 of [18]) If κ ′(G) ≥ 2 and α′(G) ≤ 2, then G is supereulerian if and

only if G is not K2,t for some odd number t.

Recently, Li et al. [30] further improved Theorem 2.6(iii) and proved the following
Theorem 2.8(i). Here, we first describe the graph family F ′, which is the excluded
graph family stated in Theorem 2.8(i).

Definition 2.7 [11] (The families F and F ′). Let i , s1, s2, s3, m, n, t be integers with
t ≥ 2 and i, m, n ≥ 1.

(i) Let M ∼= K1,3 with center a and ends a1, a2, a3. Define K1,3(s1, s2, s3) to be
the graph obtained from M by adding si vertices with neighbors ai , ai+1, where
i ≡ 1, 2, 3 (mod 3). Define C6(s1, s2, s3) = K1,3(s1, s2, s3) − a.

(ii) Letm and n be two positive integers, H1 ∼= K2,m and H2 ∼= K2,n be two complete
bipartite graphs. Let u1 and v1 be two nonadjacent vertices of degree m in H1
and u2 and v2 be two nonadjacent vertices of degree n in H2. Define S(m, n) to
be the graph obtained from H1 and H2 by identifying u1 with u2 and by adding
a new edge v1v2 joining v1 and v2. As an example, S(1, 1) is the 5-cycle.

(iii) Let K2,3(1, 2, 2) be the union of three internally disjoint (u, w)-paths of lengths
2,3 and 3, respectively.

In Fig. 2, we depict some graphs in Definition 2.7 with small parameters.
Define

F = {
K2,3(1, 2, 2)

} ⋃ {
K2,2t+1 : t ≥ 1

}

⋃ {
K1,3

(
s, s′, s′′) ,C6 (

s, s′, s′′) : s > s′ > 0, s′′ ≥ 0
}
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Chvátal–Erdős Conditions and Almost Spanning Trails

Fig. 2 Some graphs in Definition 2.7 with small parameters

⋃ {
Sm,n : m, n ≥ 1

}
,

F ′ = {G ∈ F : G is non supereulerian}. (3)

The following former results are useful.

Theorem 2.8 Let G be a connected graph. Each of the following holds.

(i) (Li et al., Theorem 1.3 of [30]) If κ ′(G) ≥ 2 and α′(G) ≤ 3, then G is supereu-
lerian if and only if the reduction in G is not a member in F ′.

(ii) (Chen et al., Theorem 4.9 of [13]) Suppose that n = |V (G)|, κ ′(G) ≥ 3, and
G ′ be the reduction in G. If α′(G) ≤ 7, then G is supereulerian if and only if
G ′ /∈ {P(10), P(14)}.

Lemma 2.9 If G is a graph satisfying κ ′(G) ≥ 2, g(G) ≥ 4, γ (G) < 2, d2(G) ≤ 2,
and n = |V (G)| ≤ 10, then n = 10 and either G is collapsible or G is reduced with
d2(G) = 2 and d3(G) = 8.

Proof Throughout the proof, we use di = di (G). As κ ′(G) ≥ 2 and d2 ≤ 2, G /∈
{K2} ∪ {K2,t : t ≥ 1}. By Theorem 2.2(ii), we have 2n − |E(G)| − 2 = F(G) ≥ 3,
and so {

2d2 + 3d3 + · · · + (n − 1)dn−1 ≤ 4n − 10
d2 + d3 + · · · + dn−1 = n.

(4)

It is routine to show that when n ≤ 6, system (4) has no integral solutions, and so the
lemmaholds for n ≤ 6. LetG ′ be the reduction inG. IfG ′ is a K2,t for some t ≥ 2, then
since g(G) ≥ 4 and by the definition of collapsible graphs, every nontrivial vertex of
G ′ must contain at least 6 vertices inG, and so by d2 ≤ 2, exactly 2 vertices inG ′ must
be trivial vertices. It follows that G ′ = K2,3 with exactly one vertex v0 ∈ D2(G ′)
being a nontrivial vertex in the contraction. But then, H = P IG(v0) satisfies the
hypotheses of the lemma with |V (H)| ≤ n − |V (K2,3 − v0)| ≤ 10 − 4 = 6. It is
known that no such H exists. Hence, we must have G = G ′ and so G is reduced and
the parameters of G must satisfy system (4). It is now routine, for example, examining
each value of n ∈ {7, 8, 9, 10}, to see that system (4) has no integral solution except
that when n = 10, d2 = 2 and d3 = 8. ��
Lemma 2.10 (Li et al. Lemma 2.2(iv) of [22] and Wang [29]) Let G be a connected
graph with n = |V (G)| ≥ 3 and κ ′(G) ≥ 3. If n ≤ 11, then for any e ∈ E(G), then
either G(e) is collapsible or n = 11 and G(e) ∼= P(10)(e).
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3 Proof of theMain Results

Let G be a graph with ess′(G) ≥ 3. The core of G is obtained from G − D1(G)

by contracting exactly one edge xy or yz for each path xyz in G with dG(y) = 2.
Throughout this section, we use G0 to denote the core of G. As G − D1(G) is also
the graph formed by contracting all edges incident with a vertex in D1(G), G0 is a
contraction of G. Observation (5) follows from the definitions.

ess′(G0) ≥ ess′(G), κ ′(G0) ≥ κ ′(G), and α′(G0) ≤ α′(G), (5)

We start with some lemmas.

Lemma 3.1 (Shao [26]) Let G be a connected nontrivial graph with ess′(G) ≥ 3.
Each of the following holds.

(i) The core G0 is uniquely determined by G and κ ′(G0) ≥ 3.
(ii) If G0 is supereulerian, then L(G) is Hamiltonian.
(iii) (see also Lemma 2.9 of [17]) If G0 is strongly spanning trailable, then L(G) is

Hamilton-connected.

Lemma 3.2 If G be a graph with ess′(G) ≥ max{3, α′(G)}, then G0 is supereulerian.

Proof By (5), ess′(G0) ≥ ess′(G), α′(G) ≥ α′(G0). Since ess′(G) ≥ α′(G), it
follows that ess′(G0) ≥ α′(G0). By Lemma 3.1(i), ess′(G0) ≥ κ ′(G0) ≥ 3. If
ess′(G0) ≥ 7, then by Theorem 2.6(i), G0 has two-edge-disjoint spanning tree, and
so by Theorem 2.2(iii), G0 is supereulerian.

Assume that 3 ≤ ess′(G0) ≤ 6. Let G ′
0 be the reduction in G0. By Lemma 3.1,

δ(G ′
0) ≥ δ(G0) ≥ κ ′(G0) ≥ 3. Let |V (G ′

0)| = n. By Theorem 2.6(ii), α′(G ′
0) ≥

min{ n2 , n+5
3 }. If n

2 ≥ n+5
3 , then as 6 ≥ ess′(G0) ≥ α′(G ′

0), we have
n+5
3 ≤ 6, and

so 10 ≤ n ≤ 13. If n
2 ≤ n+5

3 , then n ≤ 10. It follows n ≤ 13. As G ′
0 is reduced

and n ≤ 13, by Theorem 2.3(i), then either G ′
0 is supereulerian or G ′

0
∼= P(10). As

α′(P(10)) = 5 > ess′(P(10)) = 4, G ′
0 	= P(10). Hence, G ′

0 must be supereulerian.
By Theorem 2.1(iii), G0 is also supereulerian. This proves Lemma 3.2. ��
Lemma 3.3 Let G be a connected, essentially 3-edge-connected graph.

(i) If G0 is supereulerian, then G has an almost spanning closed trail.
(ii) If G0 has a spanning trail, then G has an almost spanning trail.
(iii) If G0 is strongly spanning trailable, then for any e, e′ ∈ E(G), G has an almost

spanning (ve, ve′)-trail.

Proof AssumeG0 is supereulerian. Let H ′ be a spanning Eulerian subgraph ofG0.We
will construct an almost spanning closed trail H of G as follows. For each v ∈ D2(G)

with NG(v) = {uv
1, u

v
2}, by the definition of G0, uv

1u
v
2 ∈ E(G0). Let H ′′ = H ′ −

∪v∈D2(G)uv
1u

v
2. As H

′ is a spanning Eulerian subgraph, for each v ∈ D2(G), we have
dH ′′(uv

1) ≡ dH ′′(uv
2) (mod 2). For each v ∈ D2(G), define

Xv =
{
K2,t1 , where |[v] − t1| ≤ 1, if dH ′′(uv

1) ≡ dH ′′(uv
2) ≡ t1 ≡ 1 (mod 2),

K2,t2 , where |[v] − t2| ≤ 1, if dH ′′(uv
1) ≡ dH ′′(uv

2) ≡ t2 ≡ 0 (mod 2),
(6)
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whereuv
1 andu

v
2 are the twononadjacent vertices of degree t1 (ifdH ′′(uv

1) is odd) or t2 (if
dH ′′(uv

1) is even). It follows by (6) that the subgraph H = G[E(H ′′)∪ (∪v∈D2(G)Xv)]
is an almost spanning closed trail of G. This proves (i).

Suppose thatG0 has a spanning (w1, w2)-trail T . By Lemma 3.3(i), wemay assume
thatw1 	= w2. Let G̃0 = G0+w1w2. Then, H ′ = T +w1w2 is a spanning closed trail
of G̃0, and so G̃0 is supereulerian. Since G0 is a contraction of G, for i ∈ {1, 2}, letw′

i
be a vertex in the contraction preimage of wi in G. Then by Lemma 3.3(i), G +w′

1w
′
2

has an almost spanning closed trail T ′ using the edge w′
1w

′
2, and so T ′ − w′

1w
′
2 is an

almost spanning trail of G. This proves (ii).
We justify Lemma 3.3(iii) by considering different possibilities of e and e′. If

e ∈ E(G0), then let e1 = e; if e = uv with u ∈ D1(G) ∪ D2(G), then let e1 be an
edge ofG0 incident with v. Likewise, if e′ ∈ E(G0), then let e2 = e′; if e′ = u′v′ with
u′ ∈ D1(G) ∪ D2(G), then let e2 be an edge of G0 incident with v′. By assumption,
G0(e1, e2) has a spanning (ve1 , ve2)-trail, which can be lifted to an almost spanning
(ve1, ve2)-trail T

′ ofG(e1, e2) by using the same arguments as in the proof for Lemma
3.3(i) and by utilizing (6). By the choices of e1 and e2, it is routine to show that this
trail T ′ can be adjusted to an almost spanning (ve, ve′)-trail of G. ��
Corollary 3.4 Let G be a connected graph, G ′ is the reduction in G, if G ′ ∈ F ′, then
G has an almost spanning trail.

Proof Let G ′
0 be the core of G

′. As G ′ ∈ F ′, it is routine to verify that G ′
0 is supereu-

lerian. So G ′
0 has a spanning trail. By Theorem 2.1(iii), G0 has a spanning trail. By

Lemma 3.3(ii), then G has an almost spanning trail. ��

3.1 Proof of Theorem 1.5(i)

Assume that ess′(G) ≤ 2, then α′(G) ≤ ess′(G) ≤ 2. As G1 = G − D1(G) can
be viewed as a contraction of G, κ ′(G1) ≤ ess′(G) ≤ 2. By Theorem 2.6(iii), G1 is
supereulerian if and only if G1 is not isomorphic to a K2,t , for some odd integer t ≥ 3.
Since ess′(K2,t ) ≥ 3, G1 cannot be isomorphic to a K2,t , and so we conclude that
G1 is supereulerian. It follows by the definition of G1 that G has an almost spanning
closed trail. Therefore, we may assume that ess′(G) ≥ 3.

By Lemma 3.1(i), G0 is well-defined with κ ′(G0) ≥ 3. As ess′(G0) ≥ ess′(G) ≥
α′(G) ≥ α′(G0), it follows by Lemma 3.2 that G0 is supereulerian. By Lemma 3.3(i),
G has an almost spanning closed trail. This completes the proof for Theorem 1.5(i). ��

3.2 Proof of Theorem 1.5(ii)

To prove Theorem 1.5(ii), we need the following tools. Let G1 = G−D1(G), and G ′
1

be the reduction in G1. Assume first that κ ′(G1) ≥ 3. If α′(G1) ≥ 8, then ess′(G1) ≥
α′(G1)− 1 ≥ 8− 1 = 7. By Theorem 2.6(i), F(G1) = 0, and so by Theorem 2.2(iii),
G1 is collapsible. Hence, G − D1(G) has a spanning trail. If α′(G1) ≤ 7, then by
Theorem 2.8(ii), G1 is supereulerian if and only if G ′

1 /∈ {P(10), P(14)}. As each of
P(10) and P(14) has a spanning trail,G ′

1 has a spanning trail in any case. By Theorem
2.1(iii), G1 has a spanning trail. Therefore, we assume that κ ′(G1) = 2.
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By Theorem 2.8(i), if α′(G1) ≤ 3, then G1 is supereulerian if and only if the
reduction in G1 is not a member in F ′. If G1 ∈ F ′, then by Corollary 3.4, G1 has an
almost spanning trail. Hence, we may assume that α′(G1) ≥ 4, and so ess′(G1) ≥
α′(G1) − 1 ≥ 3. Let G ′

0 be the reduction in the G0. By (5) and by assumption,
ess′(G ′

0) ≥ α′(G ′
0) − 1 ≥ 3. By Lemma 3.1(i), κ ′(G ′

0) ≥ 3. If α′(G ′
0) ≥ 8, then as

ess′(G ′
0) ≥ α′(G ′

0) − 1 ≥ 7, it follows by Theorem 2.6(i) that F(G ′
0) = 0, and so

by Theorem 2.2(iii) and Theorem 2.1, G0 is collapsible. By Lemma 3.3(i), G has an
almost spanning trail. Thus, we may assume 4 ≤ α′(G ′

0) ≤ 7. Let n = |V (G ′
0)|. By

Theorem 2.6(ii), we have α′(G ′
0) ≥ min{ n2 , n+5

3 }, and so

n = |V (G ′
0)| ≤

⎧
⎪⎪⎨

⎪⎪⎩

8, if α′(G ′
0) = 4,

10, if α′(G ′
0) = 5,

13, if α′(G ′
0) = 6,

16, if α′(G ′
0) = 7.

If |V (G ′
0)| ≤ 15, by Theorem 2.4, then either G ′

0 is supereulerian, whence
by Theorem 2.1(iii) and Lemma 3.3(i), G has an almost spanning trail; or G ′

0 ∈
{P(10), P(14)}, whence G ′

0 has a spanning trail, and so by Theorem 2.1(iii) and
Lemma 3.3 (ii), G has an almost spanning trail.

Hence, we may assume that n = |V (G ′
0)| = 16. By Theorem 2.6(ii), we have

α′(G ′
0) ≥ 16+5

3 = 7. By assumption and (5), ess′(G ′
0) ≥ ess′(G0) ≥ α′(G ′

0)−1 ≥ 6
and κ ′(G ′

0) ≥ 3. If F(G ′
0) ≤ 2, then byTheorem2.2(iii),G ′

0 = K1 and so byTheorem
2.1 and Lemma 3.3(i), Theorem 1.5(ii) holds. Hence in the following analysis, we
always assume that n = |V (G0)| = 16 and F(G ′

0) ≥ 3 to find a contradiction to
complete the proof.

For each integer i , let di = |Di (G ′
0)|. As δ(G ′

0) ≥ κ ′(G ′
0) ≥ 3, d1 = d2 = 0.

Since n = ∑
j≥1 d j and 2|E(G ′

0)| = ∑
j≥1 jd j , by Theorem 2.2(ii), we have

6 ≤ 2F
(
G ′

0

) = d3 −
∑

j≥5

( j − 4)d j − 4,

which leads to

10 + d5 + 2d6 + 3d7 + 4d8 + 5d9 +
∑

j≥10

( j − 4)d j

≤ d3 ≤ n − d4 − d5 − d6 − d7 − d8 − d9 −
∑

j≥10

d j . (7)

If d j ≥ 1 for some j ≥ 10, then by (7), 16 ≤ d3 ≤ n − d j ≤ 15, a contradiction.
Hence, d j = 0 for any j ≥ 10. If d9 ≥ 1, then by (7), 15 ≤ d3 ≤ 15, forcing d3 = 15,
d9 = 1 and d j = 0 if j /∈ {3, 9}. Thus, D3(G ′

0) cannot be an independent set of G ′
0,

implying ess′(G ′
0) ≤ 3 + 3 − 2 = 4, contrary to ess′(G ′

0) ≥ 6. Hence, d9 = 0. As
ess′(G0) ≥ 6, we conclude that

for any j ≥ 9, d j = 0, and both E(G[D3(G
′
0)]) = ∅ and
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NG ′
0
(D3(G

′
0)) ⊆ ∪i≥5Di (G

′
0). (8)

Suppose d5 ≥ 1. By (7), d3 ≥ 11, and so there must be 3× 11 = 33 edges incident
with vertices ∪i≥5Di (G ′

0). By (8), d j = 0 for any j ≥ 9, and so

∑

4≤ j≤8

d j ≥ �33/8� = 5. (9)

By (7), we have d8 ≤ 1. If d8 = 1, then by (7), 10 + d5 + 2d6 + 3d7 + 4 ≤ d3 ≤
16−d4−d5−d6−d7−1, forcing 14 ≤ d3 ≤ 15−∑

4≤ j≤7 d j . Hence
∑

4≤ j≤8 d j ≤ 2,
contrary to (9). This implies that d8 = 0. By (7) and (8), we have

for any j ≥ 8, d j = 0, and 10 + d5 + 2d6 + 3d7 ≤ d3 ≤ 16 − d4 − d5 − d6 − d7.

(10)

If d7 ≥ 2, then by (10), 16 ≤ d3 ≤ 14, a contradiction. If d7 = 1, then by (10),
13 ≤ d3 ≤ 15 − ∑

4≤ j≤6 d j . It follows that
∑

4≤ j≤7 d j ≤ 3, contrary to (9). Hence
d7 = 0. This, together with (10), implies that (7) now reduces to

for any j ≥ 7, d j = 0, and 10 + d5 + 2d6 ≤ d3 ≤ 16 − d4 − d5 − d6. (11)

If d6 ≥ 3, then by (11), 16 ≤ d3 ≤ 13, a contradiction. If d6 = 2, then by (11),
14 ≤ d3 ≤ 14, whence

∑
4≤ j≤6 d j = 2, contrary to (9). If d6 = 1, then by (11), we

have 12 + d5 ≤ d3 ≤ 15 − d4 − d5. Therefore, d4 + d5 ≤ 3 and so
∑

4≤ j≤6 d j = 4,
contrary to (9) again. Hence d6 = 0, which further reduces (11) to

for any j ≥ 6, d j = 0, and 10 + d5 ≤ d3 ≤ 16 − d4 − d5. (12)

If d5 ≥ 4, then by (12), 14 ≤ d3 ≤ 12, a contradiction. Hence, d5 ≤ 3 and d5 = 3
only if d4 = 0. By (12), d4 ≤ 6 and d4 = 6 only when d5 = 0. As D3(G ′

0) is an
independent set, we have

∑
v∈D3(G ′

0)
d(v) ≤ |E(G ′

0)| ≤ ∑
v∈V (G ′

0)−D3(G ′
0)
d(v).

Thus if d5 = 3, then d3 = 13 and 39 ≤ ∑
v∈D3(G ′

0)
d(v) ≤ |E(G ′

0)| ≤
∑

v∈V (G ′
0)−D3(G ′

0)
d(v) = 5d5 ≤ 15, a contradiction; if d4 = 6, then d3 ≥ 10 and

30 ≤ ∑
v∈D3(G ′

0)
d(v) ≤ |E(G ′

0)| ≤ ∑
v∈V (G ′

0)−D3(G ′
0)
d(v) = 4d6 ≤ 24, another

contradiction. This, together with (12) the assumption of d5 ≥ 1, we must have
either d4 ≤ 5 and d5 = 1, whence by d3 ≥ 10, 30 ≤ ∑

v∈D3(G ′
0)
d(v) ≤ |E(G ′

0)| ≤
∑

v∈V (G ′
0)−D3(G ′

0)
d(v) = 4d4+5d5 ≤ 25, a contradiction; or d4 ≤ 4 and 1 ≤ d5 ≤ 2,

whence by d3 ≥ 10, 30 ≤ ∑
v∈D3(G ′

0)
d(v) ≤ |E(G ′

0)| ≤ ∑
v∈V (G ′

0)−D3(G ′
0)
d(v) =

4d4 + 5d5 ≤ 26, another contradiction. This indicates that we must have d5 = 0.
Recall that n = 16, as d5 = 0 and by (12), wemust have d3 ≥ 10 and d4 ≤ n−d3 ≤

6. Again by (8), both E(G[D3(G ′
0)]) = ∅ and NG ′

0
(D3(G ′

0)) ⊆ ∪i≥5Di (G ′
0), which

implies that 30 ≤ 3d3 ≤ |E(G ′
0)| ≤ 4d4 ≤ 24, a contradiction. This completes the

proof of Theorem 1.5(ii). ��
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3.3 AMatching Bound for the Proof of Theorem 1.5(iii)

The main result of this subsection proves a lower bound of the matching number,
which is a needed tool for our proof Theorem 1.5(iii). However, the main arguments
are modifications of those in the proofs of Lemma 4.3 and Theorem 4.4 of [13]. As the
conclusions are not the same, we include the proofs here for the sake of completeness.

A component H of G is an odd component if |V (H)| ≡ 1 (mod 2). Let o(G) =
|{Q : Q be an odd component of G}|. Tutte [28] and Berge [2] proved the following
theorem.

Theorem 3.5 (Tutte [28]; Berge [2]) Let G be a graph with n vertices. Then, α′(G) =
(n − t)/2, if

t = max
S⊂V (G)

{o(G − S) − |S|}. (13)

The following lemma can be justified by the same argument or a slight modification
in counting as those in Lemma 4.3 of [13].

Lemma 3.6 Let G be a connected graph with |D1(G)| = 0, |D2(G)| ≤ 2 and g(G) ≥
4. Suppose that S ⊆ V (G) is a vertex subset attaining the maximum in (13) with
|S| > 0, m = o(G − S) and that G1,G2, · · · ,Gm are the odd components of G − S
satisfying |V (G1)| ≤ |V (G2)| ≤ · · · ≤ |V (Gm)|. Define

X = {Gi : |V (Gi )| = 1, 1 ≤ i ≤ m},
Y = {Gi : |V (Gi )| = 3, 1 ≤ i ≤ m}, x = |X |, y = |Y |.

V ∗ =
x+y⋃

k=1

V (Gk), G∗ = G[V ∗ ∪ S∗] and

s∗ = |S∗|, where S∗ = {s ∈ S : v∗s ∈ E(G), v∗ ∈ V ∗}. (14)

Thus, G∗ is spanned by a bipartite subgraph with (V ∗, S∗) being its vertex bipartition
with |V ∗| = x + 3y ≥ 1. Each of the following holds.

(i) n ≥ ∑m
i=1 |V (Gi )| + |S| ≥ m|V (G1)| + |S| and, if |S| ≥ 2, then G∗ /∈

{K1, K2, K1,2}.
(ii) If x > 0, then s∗ ≥ 2.

(iii) m ≤ n+4x+2y−|S|
5 .

(iv) |E(G∗)| ≥ 3x + 7y − 2.

Theorem 3.7 Let G be a connected reduced graph with n vertices, d1(G) = 0 and
d2(G) ≤ 2. Then, α′(G) ≥ min{ n−1

2 , n+3
3 }.

Proof Let t be defined as in (13). By Theorem 3.5, we may assume that t ≥ 2. By
Theorem 2.2(i), we have γ (G) < 2 and g(G) ≥ 4. By Lemma 2.9, we may assume
that n ≥ 10 and so n+3

3 < n−1
2 . By Theorem 3.5, to prove Theorem 3.7, it suffices to

show that

α′(G) ≥ n − t

2
≥ n + 3

3
, or equivalently , t ≤ n − 6

3
. (15)
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If x = y = 0, then |V (G1)| ≥ 5, and so by Lemma 3.6(i) that n ≥ 5m + |S|, or
m ≤ n−|S|

5 . It follows that

t = m − |S| ≤ n − 6|S|
5

≤ n − 6

5
,

and so (15) must hold. Therefore, wemay assume that x+ y > 0, and so |S| ≥ δ(G) ≥
2.

If x = 0, then |V (G1)| ≥ 3, and so by Lemma 3.6(i) that n ≥ 3m + |S|, or
m ≤ n−|S|

3 . Thus, |S| ≥ 2, (15) follows:

t = m − |S| ≤ n − 4|S|
3

≤ n − 8

3
.

Therefore, we may assume that x > 0. If F(G∗) ≤ 2, then by Theorem 2.2(iv) and
Lemma 3.6(i), and as d2(G) ≤ 2, we must have G∗ = K2,2 and so x = 2 ad y = 0.
It follows by Lemma 3.6(iii) and by n ≥ 10 that (15) must hold:

t = m − |S| ≤ n + 8 − 6|S|
5

≤ n + 8 − 12

5
<

n − 6

3
.

Therefore, we may assume that F(G∗) ≥ 3, and so y > 0. By Lemma 3.6(iv) and
Theorem 2.2(ii), 3x + 7y − 2 ≤ |E(G∗)| ≤ 2|V (G∗)| − 5 ≤ 2(x + 3y + |S|) − 5.
This leads to x + y ≤ 2|S|−3 or 6|S| ≥ 3(x + y+3). It follows by Lemma 3.6(i) and
by y > 0 that n ≥ x + 3y + |S| ≥ 3x+7y+3

2 ≥ 3x−3y+3
2 . This, together with Lemma

3.6(ii) and n ≥ 10, implies that

t = m − |S| ≤ n + 4x + 2y − 6|S|
5

≤ n + 4x + 2y − 3(x + y + 3)

5

= n + x − y − 9

5
≤ n − 6

3
.

Thus (15) always holds, and so the theorem is proved. ��
Let G be a graph with n = |V (G)|, κ ′(G) ≥ 2 and γ (G) ≤ 2. By Theorem 2.2(ii),

2|E(G)| = 4n − 4 − 2F(G). As 2|E(G)| = ∑
i≥2 idi and n = ∑

i≥2 di , we have

2F(G) + 4 +
∑

j≥5

( j − 4)d j ≤ 2d2 + d3 ≤ n + d2 −
∑

j≥4

d j . (16)

Corollary 3.8 If G is a graph with κ ′(G) ≥ 3 and γ (G) ≤ 2. If ess′(G) ≥ α′(G) + 1,
then G is strongly spanning trailable.

Proof By contradiction, we assume that for some edges e′, e′′ ∈ E(G), G(e′, e′′)
does not have a spanning (ve′ , ve′′)-trail. By Theorem 2.2(iv), we may assume that
F(G) ≥ 1. Let n = |V (G)|. By (16) with κ ′(G) ≥ 3 and F(G) ≥ 1, we have
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6 + d5 + 2d6 + 3d7 + 4d8 +
∑

j≥9

( j − 4)d j

≤ d3 ≤ n − d4 − d5 − d6 − d7 − d8 −
∑

j≥9

d j . (17)

By Theorem 2.6(i), if ess′(G) ≥ 7, then F(G) = 0. Hence, we may assume that
ess′(G) ≤ 6.

Assume first that n ≤ 9, which implies that n−1
2 ≤ n+3

3 . As α′(G) ≤ ess′(G) − 1
and by Theorem 3.7, we conclude that

n ≤ 2ess′(G) − 1. (18)

If n ≤ 7, then construct a new graph J from G(e′, e′′) by adding a new vertex w

and two new edges wve′ and wve′′ . Observe that |V (J )| ≤ 10 and, as κ ′(G) ≥ 3,
κ ′(J/wve′) ≥ 3 also. It follows by Lemma 2.10 that J is collapsible, and so J
has a spanning Eulerian subgraph T . But then T − w is a spanning (ve′, ve′′)-trail of
G(e′, e′′), contrary to the assumption thatG(e′, e′′) does not have a spanning (ve′ , ve′′)-
trail. Hence, we may assume that 8 ≤ n ≤ 9, and so by (18), ess′(G) ∈ {5, 6}. This
implies that E(G[D3(G)]) = ∅. Since n ≤ 9 and by (17), we conclude that d j = 0
for any j ≥ 7 and d6 ≤ 1. As d3 ≥ 6, d4 + d5 + d6 = n − d3 ≤ 3. It follows by
E(G[D3(G)]) = ∅ that 18 ≤ 3d3 ≤ |E(G)| ≤ 4d4 + 5d5 + 6d6 ≤ 5× 2+ 6 = 16, a
contradiction.

Hence, we may assume that n ≥ 10, which implies that n−1
2 > n+3

3 . By Theorem
3.7 and as α′(G) ≤ ess′(G) − 1, we conclude that

n ≤ 3(ess′(G) − 2). (19)

Thus by (19),wemust have ess′(G) = 6 and n ∈ {10, 11, 12}. By (17), for any j ≥ 10,
d j = 0 and d9 ≤ 1. If d9 = 1, then by (17), 11 ≤ d3 ≤ 11, forcing d3 = 11, d9 = 1
and d j = 0 if j /∈ {3, 9}. Thus, D3(G) cannot be an independent set of G, implying
ess′(G) ≤ 3+3−2 = 4, contrary to ess′(G) = 6. Hence d9 = 0. If d7+d8 > 0, then
by (17), d7 + d8 ≤ 1, d3 ≥ 9, and d4 + d5 + d6 + d7 + d8 ≤ 12 − d3 ≤ 3. It follows
by E(G[D3(G)]) = ∅ that 27 ≤ 3d3 ≤ |E(G)| ≤ 4d4 + 5d5 + 6d6 + 7d7 + 8d8 ≤
2 × 6 + 8 = 20, a contradiction. This implies that d7 + d8 = 0. Thus for any
j ≥ 7, d j = 0. If d5 + d6 ≥ 1, by (17), we have d3 ≥ 7, and so there must be
3 × 7 = 21 edges incident with vertices ∪i≥5Di (G). Since d j = 0 for any j ≥ 7,
d4 + d5 + d6 ≥ �21/6� = 4. Hence by (17), 10 ≤ d3 ≤ 12 − 4 = 8, a contradiction.
This implies that d5 = d6 = 0 also, and so a vertex in D3(G) must be adjacent to a
vertex in D4(G) in G, causing a contradiction to the assumption of ess′(G) ≥ 6. This
justifies the corollary. ��

3.4 Proof of Theorem 1.5(iii)

Additional lemmas are needed in our arguments to prove Theorem 1.5(iii).
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Lemma 3.9 (Lemma 2.5 of [12], see also Lemma 4.2.1 of [29]). Let e, e′ ∈ E(G), H
be a collapsible subgraph of G(e, e′) and vH denote the vertex in G(e, e′)/H onto
which H is contracted. Define

v′
e =

{
ve if ve /∈ V (H),

vH if ve ∈ V (H),
and v′

e′ =
{

ve′ if ve′ /∈ V (H),

vH if ve′ ∈ V (H).

If G(e, e′)/H has a spanning (v′
e, v

′
e′)-trail, then G(e, e′) has a spanning (ve, ve′)-

trail.

Lemma 3.10 Let k ≥ 1 be an integer and G be a connected nontrivial graph.

(i) (Nash–Williams [24], see also Yao et al., Theorem 2.4 of [31]) If |E(G)| ≥
k(|V (G)| − 1), then G contains a nontrivial subgraph H that contains k-edge-
disjoint spanning trees.

(ii) (Theorem 1.5 of [20]) If F(G) = 0 and γ (G) > 2, then for any edge e ∈ E(G),
F(G − e) = 0.

We start the proof of Theorem 1.5(iii). If α′(G) = 1, then G is either spanned by
a K3 or there exists an vertex v ∈ V (G) such that very edge of G is incident with
v. Thus, it is routine to verify that for any edges e, e′ ∈ E(G), G(e, e′) always has
a (ve, ve′)-trail that misses only vertices in D1(G) and at most one vertex in D2(G).
Therefore, we shall assume that ess′(G) ≥ α′(G) + 1 ≥ 3.

Let G0 be the core of G. By (5), ess′(G0) ≥ ess′(G) ≥ 3. By Lemma 3.3(iii), it
suffices to show that

if ess′(G) ≥ α′(G) + 1 ≥ 3, then G0 is strongly spanning trailable. (20)

We shall prove (20) by contradiction, and assume that

G is a counterexample to (20) with |V (G)| + |E(G)| minimized. (21)

Therefore, there exists a pair of distinct edges e′, e′′ ∈ E(G0) such that

G0(e
′, e′′) does not have a spanning (ve′, ve′′)-trail. (22)

Claim 1 Each of the following holds.

(i) κ ′(G0) ≥ 3 and ess′(G0) ≤ 6.
(ii) G0(e′, e′′) is reduced and not collapsible.
(iii) γ (G0) ≤ 2.

By Lemma 3.1, κ ′(G0) ≥ 3. If ess′(G0) ≥ 7, then by Theorem 2.6(i), F(G0) = 0,
and so by Theorem 2.2(vi),G0(e′, e′′)would have a spanning (ve′, ve′′)-trail, violating
(21). Hence, (i) holds.

By Theorem 2.2(v), if G0(e′, e′′) is collapsible, then G0(e′, e′′) has a spanning
(ve′, ve′′)-trail, contrary to the assumption. Hence, G0(e′, e′′) is not collapsible. Sup-
pose thatG0(e′, e′′) has a nontrivial collapsible subgraph H ′. Then by the definition of
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G0(e′, e′′),G0 has a subgraph H0 satisfying both E(H ′ −{ve, ve′ }) = E(H0−{e, e′})
and

H ′ =

⎧
⎪⎪⎨

⎪⎪⎩

H0 if {ve′, ve′ } ∩ V (H ′) = ∅,

H0(e′) if {ve′, ve′′ } ∩ V (H ′) = {ve′ },
H0(e′′) if {ve′, ve′′ } ∩ V (H ′) = {ve′′ },
H0(e′, e′′) if {ve′, ve′′ } ⊆ V (H ′).

As G0 is obtained from G via edge contractions, G contains a subgraph H such that
H is the contraction preimage of H0. Since ess′(G/H) ≥ ess′(G) ≥ α′(G) + 1 ≥
α′(G/H) + 1, it follows by (21) that the core (G/H)0 of G/H is strongly spanning
trailable. By the definition of cores, G0/H0 = (G/H)0, and so by Lemma 3.9, G0 is
also strongly spanning trailable, contrary to (21). Hence, G0(e, e′) must be reduced.
This proves Claim 1(ii).

To prove (iii), we assume that γ (G) > 2. Then by (2), G contains a nontrivial
subgraph H with γ (H) > 2. By Claim 1(ii) and Theorem 2.2(i), γ (G0(e′, e′′)) < 2
and so {e′, e′′} ∩ E(H) 	= ∅. By symmetry, we assume that e′ ∈ E(H). By Lemma
3.10(ii), F(H − e′) = 0 and so by (2), γ (H − e′) ≥ 2. If e′′ /∈ E(H), then H − e′ is a
subgraph ofG0(e′, e′′), and so by (2), γ (G0(e′, e′′)) ≥ γ (H −e′) ≥ 2, contrary to the
fact that γ (G0(e′, e′′)) < 2. Hence, we must have e′′ ∈ E(H), and so (H − e′)(e′′) is
a subgraph of (G0 − e′)(e′′) = G0(e′, e′′) − ve′ .

Since F(H − e′) = 0, it follows by definition that κ ′(H − e′) ≥ 2, and so F((H −
e′)(e′′)) ≤ 1 and κ ′((H − e′)(e′′)) ≥ 2. Hence by Theorem 2.2(iii), (H − e′)(e′′) is
a nontrivial collapsible subgraph of G0(e′, e′′), contrary to Claim 1(ii). This justifies
Claim 1(iii).

By Claim 1, κ ′(G0) ≥ 3 and γ (G0) ≤ 2. By (5), we have ess′(G0) ≥ α′(G0)+1. It
follows fromCorollary 3.8 thatG0 is strongly spanning trailable, and soG0(e′, e′′) has
a spanning (ve′, ve′′)-trail, contrary to (22). This completes the proof of the theorem.
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