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Abstract
A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0
being the root. We present a characterization of all connected binary rooted matroids
whose root lies in at most three circuits, and a characterization of all connected binary
rooted matroids whose root lies in all but at most three circuits. While there exist
infinitely many such matroids, the number of serial reductions of such matroids is
finite. In particular, we find two finite families of binary matroids M1 and M2 and
prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing
e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If
for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the
serial reduction of M is isomorphic to a member inM2. These characterizations will
be applied to show that every connected binary matroid M with at least four circuits
has a 1-hamiltonian circuit graph.
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1 The problem

Matroids and graphs considered in this paper are finite. We follow the notations and
terminology in Bondy and Murty (2008) for graphs and Oxley (2011) for matroids
except otherwise defined. As in Bondy and Murty (2008), κ(G), δ(G) denote the
connectivity and minimum degree of a graph G. For a matroid M , let C(M) and rM
denote the collection of circuits and the rank function of M , respectively. Following
(Oxley 2011), a matroid M is connected if for any pair of distinct elements e, e′ ∈
E(M), there exists a circuit C ∈ C(M) with e, e′ ∈ C . Throughout this paper, for
any edge subset X ⊆ E(G) of a graph G, X denotes an edge subset as well as the
subgraph G[X ] induced by the edge subset X . Following matroid terminology, if G is
a graph and M = M(G) is the cycle matroid of M , any edge subset Z (as well as the
subgraph G[Z ] induced by Z ) will be called a circuit if Z ∈ C(M(G)). Let h > 0 be
an integer. If Z ∈ C(M) with |Z | = h, we often call Z an h-circuit of M .

The distribution of circuits in a graph or a matroid has been studied by quite a few
researchers. Murty (1971a) initially characterized all connected binary matroids with
exactly one circuit length. Lemos et al. (2011) extendedMurty’s result by successfully
characterizing all connected binary matroids with at most two circuit lengths. It is
indicated in Lemos et al. (2011) that it is difficult to characterize the matroids having a
particular circuit-spectrum set even when the set is small and the matroids belong to an
interesting class. Cordovil et al. (2009), and Junior and Lemos (2001) constructed all
matroidsM whose circuit lengths are at most 5, and constructed all 3-connected binary
matroids M whose circuit lengths are in {3, 4, 5, 6, 7}. Bollobás (1978) presented a
characterization of all graphs with minimum degree at least 3 that do not have edge
disjoint circuits. He indicated that this characterization can be applied to imply a
slight extension of an earlier result of Erdös and Pósa (1965). The corresponding
characterization of regular matroids without disjoint circuits is obtained in Fan et al.
(2010). In this paper, we consider the problem of determining all binary matroids with
an element lying in at most 3 circuits, as well as all binary matroids with an element
lying in all but at most three circuits. The main results of this paper, to be stated in
the next section after some of the terms are defined, are characterizations of such
matroids.

Li and Liu (2007, 2008, 2010) initiated the investigation of graphical properties of
matroid circuit graphs. Let M be a matroid, and let k > 0 be an integer. The circuit
graph G(M) of M has vertex set V (G(M)) = C(M). Two vertices Z , Z ′ ∈ C(M) are
adjacent in G(M) if and only if |Z ∩ Z ′| ≥ 1. As an application of our main results,
we prove that the circuit graph of a connected binary matroid with at least 4 circuits
is 1-hamiltonian.

In the next section, we introduce rooted matroids and present characterizations of
binary rooted matroids in which the root is in certain restricted number of circuits. An
application of the characterizations to 1-hamiltonian circuit graphs will be presented
in the last section.
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2 Binarymatroids with an element in restricted number of circuits

Themain purpose of this section is to characterize all connected binary rootedmatroids
whose root is lying in at most three circuits, and all connected binary rooted matroids
whose root is lying in all but at most three circuits.

A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with
e0 being the root. We often use M(e0) to emphasize the root e0. Two rooted matroids
M(e0) and N ( f0) are isomorphic if e0 corresponds to f0 under the matroid isomor-
phism. When f0 is not emphasized, we often just say that M or M(e0) is isomorphic
to N . Given a matroid M(e0), define CM,e0 = {C ∈ C(M) : e0 ∈ C},

F1 = {M = M(e0) : |CM,e0 | ≤ 3}, and F2

= {M = M(e0) : |C(M)| − |CM,e0 | ≤ 3}, (1)

Throughout this section, for fixed i ∈ {1, 2}, if M is such a matroid that for any
e0 ∈ E(M), M(e0) is in F1, then we simply say that M ∈ F i without indicating the
root.

Excluded minor characterizations will be developed in this section. Let F be a
collection of matroids. Define EX(F) to be the family of matroids such that M ∈
EX(F) if and only if M does not have a minor isomorphic to a member in F . When
F = {N1, N2, . . . , Nk} is a finite collection, we also use EX(N1, N2, . . . , Nk) for
EX({N1, N2, . . . , Nk}). Following (Oxley 2011), F7 and F∗

7 are the two binary vector
matroids F7 = M2[I3|D] and F∗

7 = M2[DT |I4], where

[I3|D] =
⎡
⎣
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎤
⎦ and [DT |I4] =

⎡
⎢⎢⎣
1 1 0 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 1 0 0 0 1

⎤
⎥⎥⎦ .

(2)

Let M and N be matroids. If for some element f ∈ E(M), f lies in a 2-circuit of
M and M − f = N , then M is a single element parallel extension of N and N is a
single parallel deletion of M . If M is obtained from N by taking a finite number of
single element parallel extensions, then M is a parallel extension of N . If for some
element f ∈ E(M), f lies in a 2-cocircuit of M and M/ f = N , then M is a single
element serial extension of N and N is a serial contraction of M . If M is obtained
from N by taking a finite number of single element serial extensions, thenM is a serial
extension of N . A subset X ⊆ E(M) is a serial class if every pair of elements in X
form a cocircuit of M such that X is a maximal subset of E(M) with this property.

Proposition 2.1 (Li and Liu, Lemma 6 of Li and Liu (2008)) Suppose that e, e′ ∈
E(M) and {e, e′} ∈ C(M∗).

(i) For any element e0 	= e′, |CM,e0 | ≤ 3 if and only if |CM/e′,e0 | ≤ 3; and |C(M)| −
|CM,e0 | ≤ 3 if and only if |C(M/e′)| − |CM/e′,e0 | ≤ 3.

123

Author's personal copy



890 Journal of Combinatorial Optimization (2019) 38:887–910

(ii) Consequently, if M is a serial extension of a matroid N, and if e0 ∈ E(N ), then
|CM,e0 | ≤ 3 if and only if |CN ,e0 | ≤ 3; and |C(M)| − |CM,e0 | ≤ 3 if and only if
|C(N )| − |CN ,e0 | ≤ 3.

2.1 Rootedmatroid minors

Let M(e0) be a rooted matroid. A rooted minor of M(e0) is a rooted matroid
N = N (e0) such that for some disjoint subsets S, T ⊆ E(M − e0), N = M/S − T .
Proposition 2.1 can be slightly extended to Lemma 2.2 below, showing that the prop-
erties of satisfying |CM,e0 | ≤ 3 and of satisfying |C(M)| − |CM,e0 | ≤ 3 are in fact
closed under taking rooted minors.

Lemma 2.2 Let M = M(e0) be a matroid rooted at e0.

(i) If |CM,e0 | ≤ 3, the for any x ∈ E(M) − e0, |CM−x,e0 | ≤ 3.
(ii) If |CM,e0 | ≤ 3, the for any x ∈ E(M) − e0, |CM/x,e0 | ≤ 3.
(iii) If |C(M)|−|CM,e0 | ≤ 3, the for any x ∈ E(M)−e0, |C(M−x)|−|CM−x,e0 | ≤ 3.
(iv) If |C(M)|− |CM,e0 | ≤ 3, the for any x ∈ E(M)− e0, |C(M/x)|− |CM/x,e0 | ≤ 3.

Proof Let M = M(e0) ∈ F1, and let x ∈ E(M) − e0. By definition, |CM,e0 | ≤ 3.
As C(M − x) ⊆ C(M), we have CM−x,e0 ⊆ CM,e0 . Moreover, for any C ∈ C(M −
x) − CM−x,e0 , as C(M − x) ⊆ C(M) and e0 /∈ C , we have C ∈ C(M) − CM,e0 ,
implying that C(M − x) − CM−x,e0 ⊆ C(M) − CM,e0 . Therefore, we have both
|CM−x,e0 | ≤ |CM,e0 | ≤ 3 and |C(M − x) − CM−x,e0 | ≤ |C(M) − CM,e0 | ≤ 3, and so
(i) and (iii) must hold.

We now prove (ii). As C(M/x) consists of the minimal members of {C − x : C ∈
C(M)}, for each C ′ ∈ CM/x,e0 , there exists a circuit C ∈ CM,e0 with C ′ = C − x .
Thus the mapping f (C ′) = C is injective. This implies that |CM/x,e0 | ≤ |CM,e0 | ≤ 3,
and so (ii) holds. Similarly, for each C ′ ∈ C(M/x) − CM/x,e0 , there exists a C ∈
C(M) − CM,e0 with C

′ = C − x . As the mapping from C ′ to C is injective, it follows
that |C(M/x) − CM/x,e0 | ≤ |C(M) − CM,e0 | ≤ 3, implying (iv). 
�

The following theorem of Brylawski and Seymour will be needed in our arguments.

Theorem 2.3 (Brylawski 1972 and Seymour 1977) Let N be a connected minor of
a connected matroid M. For any f ∈ E(M) − E(N ), one of M − f and M/ f is
connected and contains N as a minor.

Lemma 2.4 Let M, N be a connected matroids such that N is a minor of M, and let
e0 ∈ E(M) − E(N ). Each of the following holds.

(i) Either |E(M)| = |E(N )| + 1, or M has a connected proper minor L with e0 ∈
E(L) such that L contains N as a minor.

(ii) M(e0) contains a connected rooted minor L(e0) such that L(e0) − e0 = N.

Proof As (ii) follows from (i), we argue by induction on |E(M)| to prove (i). By
assumption, |E(M)| ≥ |E(N ) ∪ e0| = |E(N )| + 1. If |E(M)| = |E(N )| + 1, then
L = M . Assume that |E(M)| > |E(N )| + 1 and the lemma holds for smaller values
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of |E(M)|. Pick f ∈ E(M) − (E(N ) ∪ e0). By Theorem 2.3, either M − f or M/ f
is connected, contains e0 as an element and N as a minor. Thus by induction, either
M − f or M/ f has a connected minor L with e0 ∈ E(L) such that L contains N as
a minor. 
�

We need a few more notational conventions.

Notation 2.5 For an integer r > 0, let V (r , 2) denote the r-dimensional vector space
over the 2-element field GF(2). Suppose that M = M2[Ir |D] is a binary matroid with
E(M) = {e1, e2, . . . , em} such that, for 1 ≤ i ≤ m, ei is the label of the i th column
vector vi of [Ir |D]. Then B = {e1, e2, . . . , er } is a basis of M and {v1, v2, . . . , vr }
is the standard basis of V (r , 2). For any nonzero vector v = (x1, x2, . . . , xr ) ∈
V (r , 2) − {0},

S(v) = {i : xi 	= 0} and B(v) = {ei : 1 ≤ i ≤ r and xi 	= 0}. (3)

Thus B(v) is the unique minimum subset of B such that the vectors {v} ∪ {vi : ei ∈
B(v)} is a linearly dependent set in {v1, v2, . . . , vr , v} that contains v.

Using the notation in Definition 2.5, we have the following observations. Observa-
tion 2.6 follows immediately from the definition of a vector matroid and from (3).

Observation 2.6 Let M = M2[Ir |D] denote a binary matroid.
(i) M is simple if and only if [Ir |D] does not have an all zero column and does not

have two identical columns. Consequently, if M is simple, then for any j ≥ r +1,
|S(v j )| ≥ 2.

(ii) For vectors w1, w2 ∈ V (r , 2), B(w1) = B(w2) if and only if w1 = w2.

Observation 2.7 Let M = M2[Ir |D] be a simple binary matroid, let vi1 , vi2 , . . . , vit
be distinct column vectors of D, and suppose that {ei1 , ei2 , . . . , eit } ∈ I(M). Let
v = vi1 + vi2 + · · · + vit . Then the following are equivalent.

(i) B(v) ∪ {ei1 , ei2 , . . . , eit } is a circuit of M.
(ii) For any partition of the set {i1, i2, . . . , it } into two disjoint nonempty sets J1 and

J2, we have S(
∑

i∈J1 vi ) ∩ S(
∑

j∈J2 v j ) 	= ∅.
Proof Let X = B(v) ∪ {ei1 , ei2 , . . . , eit } and J = {i1, i2, . . . , it }. Since M is binary
and since v 	= 0, it follows by (3) that X is a disjoint union of circuits, and so there
exist disjoint circuits C1,C2, . . . ,Cs such that X = ∪s

i=1Ci .
Assume (i) holds. Then s = 1. To show (ii), we argue by contradiction and

assume that J can be partitioned into two disjoint nonempty sets J1 and J2 satis-
fying S(

∑
i∈J1 vi ) ∩ S(

∑
j∈J2 v j ) = ∅. Let w1 = ∑

i∈J1 vi and w2 = ∑
j∈J2 v j .

Since {ei1 , ei2 , . . . , eit } ∈ I(M), we have w1 	= 0 and w2 	= 0. By (3), each of
B(w1) ∪ {ei : i ∈ J1} and B(w2) ∪ {ei : i ∈ J2} is a disjoint union of circuits of M
contained in X , contrary to the assumption that s = 1. Hence (i) implies (ii).

We shall show that (ii) implies s = 1. By contradiction, we assume that s ≥ 2.
Define J ′

1 = {i : ei ∈ C1} and J ′
2 = {i : ei /∈ C1}. Since B is a basis, we must

have J1 = J ′
1 − {1, 2, . . . , r} 	= ∅. With a similar argument, we also have J2 =
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J ′
2 − {1, 2, . . . , r} 	= ∅. Since C1 ∩ (∪s

i=2Ci ) = ∅, we have J2 = J − J1. Define
w1 = ∑

i∈J1 vi and w2 = ∑
i∈J2 vi . By (3), B(w1) = {ei : i ∈ J ′

1 ∩ {1, 2, . . . , r}}
and B(w2) = {ei : i ∈ J ′

2 ∩ {1, 2, . . . , r}}. Thus for any 1 ≤ j ≤ r , if j ∈ S(w1),
then e j ∈ B(w1) ⊂ C1; and if j ∈ S(w2), then e j ∈ B(w2) ⊂ X −C1. It follows that
S(w1) ∩ S(w2) = ∅, contrary to (ii). This shows that (ii) implies (i). 
�
Corollary 2.8 Suppose that M = M2[Ir |D] is connected and simple such that D is an
r by m−r matrix with m−r ≥ 3. If there exist distinct h, k, � ∈ {r +1, r +2, . . . ,m}
satisfying

S(v�) ∩ S(vh) 	= ∅, S(v�) ∩ S(vk) 	= ∅, and S(vh) ∩ S(vk) = ∅, (4)

then either B(v�+vh+vk)∪{e�, eh, ek} ∈ C(M) (if v�+vh+vk 	= 0), or {eh, ek, e�} ∈
C(M) (if v� + vh + vk = 0).

Proof Since M is simple, eh, ek, e� are mutually distinct non-zero vectors, and so if
v�+vh+vk = 0, then {eh, ek, e�} ∈ C(M). Hencewe assume that {eh, ek, e�} /∈ C(M).
Again as M is simple, M contains no circuit of length at most 2, and so {eh, ek, e�} ∈
I(M). For any partition of {eh, ek, e�} into two nonempty pats J1 and J2, (4) implies
that S(

∑
i∈J1 vi )∩ S(

∑
i∈J2 vi ) contains either S(v�)∩ S(vh) or S(v�)∩ S(vk). Hence

by Observation 2.7, Corollary 2.8 holds. 
�
As in Oxley (2011), for a basis B of M , for any e ∈ E(M) − B, we let

CM (e, B) denote the fundamental circuit of e with respect to B. For the given basis
B = {e1, e2, . . . , er }, define a graph H = HB with V (H) being the fundamental
circuits of er+1, . . . , em , with respect to B, such that two vertices of H are adjacent
if and only if the corresponding fundamental circuits have a non-empty intersection.
This graph H facilitates our arguments.

Observation 2.9 A binary matroid M = M2[Ir |D] is connected if and only if M does
not have any coloop and HB is connected for any B. Or in another words, each of the
following holds.

(i) For any i ∈ {1, 2, . . . , r}, there must be a j ∈ {r + 1, . . . ,m} such that if
v j = (x1, x2, . . . , xr ), then xi = 1.

(ii) If there exist distinct i, j ∈ {r+1, . . . ,m} satisfying S(vi )∩S(v j ) = ∅, then there
must be a t1, t2, . . . , tk ∈ {r+1, . . . ,m}−{i, j}, such that both S(vi )∩S(vt1) 	= ∅,
S(vt1) ∩ S(vt2) 	= ∅, . . ., S(vtk−1) ∩ S(vtk ) 	= ∅, and S(v j ) ∩ S(vtk ) 	= ∅.

Proof For sufficiency, we assume the validity of (i)-(ii) to show that M has only
one component. Let H = HB denote the graph defined right before this observation.
Condition (ii) indicates that H is connected. Let E1 denote the component that contains
the fundamental circuit of er+1 with respect to the basis B. If E1 = E(M), then M is
connected. Assume to the contrary, that there exists an element et ∈ E(M) − E1.

If t ∈ {r + 1, r + 2, . . . ,m}, then as H is connected, there exists a sequence of
fundamental circuits C1,C2, . . . ,C� with respect to B such that C1 = CM (er+1, B)

and C� = CM (et , B), and such that Ci ∩ Ci+1 	= ∅, for each i = 1, 2, . . . � − 1.
It follows that for each i = 1, 2, . . . � − 1, elements in Ci ∪ Ci+1 are in the same
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component of M . Thus the elements in C�, in particular et , must be in E1, contrary to
the assumption that et ∈ E(M) − E1.

Hence we may assume that t ∈ {1, 2, . . . , r}. By (i), there must be an index j ∈
{r + 1, . . . ,m} such that if v j = (x1, x2, . . . , xr ), then xt = 1. This implies that
et ∈ CM (e j , B). By the connectedness of H , we once again conclude that et must be
in E1, contrary to the assumption that et ∈ E(M) − E1.

For necessity, by definition, M does not have any coloop. We use contradiction to
show HB is connected. Assume M is the minimum connected matroid such that HB

is disconnected for some B. Then HB has two components, say H1 and H2. Similarly
arguing as above, M(H1) and M(H2) are connected. Also E(M(H1))∩ E(M(H2)) =
∅ and E(M(H1)) ∪ E(M(H2)) = E(M). The contradiction justifies this necessity. 
�
Observation 2.10 In a binary matroid M = M2[Ir |D], we denote D = (di j ) with
1 ≤ i ≤ r and r + 1 ≤ j ≤ m; and let wi = (di(r+1), di(r+2), . . . , dim) be the i th
row of D. Each of the following holds.

(i) If for some i ∈ {1, 2, . . . , r}, there is an i ′ ∈ {r + 1, . . . ,m} such that if di j = 1
if and only if j = i ′, then {ei , ei ′ } ∈ C(M∗).

(ii) If there exist distinct i, j ∈ {1, 2, . . . , r} satisfying wi = w j , then then {ei , e j } ∈
C(M∗).

(iii) If there exist distinct i, j, k ∈ {1, 2, . . . ,m} such that ei , e j , ek belong to the
same serial class of M, then M/ei = M2[Ir−1|D1], where D1 is obtained from
D by deleting the i th row of D, is also a simple matroid.

(iv) If there exist distinct i, j ∈ {1, 2, . . . ,m} such that ei , e j belong to the same
serial class of M, then M/ei = M2[Ir−1|D1], where D1 is obtained from D by
deleting the i th row of D, is also a connected matroid.

Proof The justification of Observation 2.10 (i) and (ii) follow immediately from the
fact that the dual of M = M2[Ir |D] is M∗ = M2[DT |Im−r ], in which every pair
of identical columns form a cocircuit of M . The simpleness and the connectedness
of M/ei = M2[Ir−1|D1] follow from Observation 2.6, and from Observation 2.9,
respectively. 
�
Definition 2.11 For an integer h > 0, we have the following definitions.

(i) Let Kh
2 be the loopless graph with 2 vertices and h parallel edges.

(ii) Let K3P3 be the loopless graph spanned by a 3-circuit Z = u1u2u3u1 such that
K3P3 − E(Z) is a path u1u2u3. Thus the edge u1u3 is the only edge in K3P3 not
lying in a 2-circuit. For any serial extension of M(K3P3), let [u1u3] denote the
set of edges obtained by subdividing the edge u1u3 ∈ E(K3P3).

(iii) Let Z ′ = w1w2w3w4w1 denote a a 4-circuit. Define C4M2 to be the loopless
multigraph spanned by Z ′ such that C4M2 − E(Z ′) is a matching with edges
{w1w2, w3w4}; andC4P4 to be the loopless graph spanned by Z ′ such thatC4P4−
E(Z ′) is a path w1w2w3w4. Thus the edge w1w4 is the only edge in C4P4 not
lying in a 2-circuit. For any serial extension of M(C4P4), let [w1w4] denote the
set of edges obtained by subdividing the edge w1w4 ∈ E(C4P4).

(iv) Let L5 denote the graph with V (L5) = {u1, u2, u3, z1, z2} and E(L5) =
{u1u2, u2u3, u3u1, z1u1, z1u2, z2u2, z2u3}. For any serial extension of M(L5),
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u1

u2

K3
2

u1 u3

u2

K2P3

w1 w4

w2 w3

C4M2

w1 w4

w2 w3

C4P4

u1 u3

u2

z1 z2

L5

Fig. 1 Graphs in Definition 2.11

let [u1u3] denote the set of edges obtained by subdividing the edge u1u3 ∈ E(L5)

(Fig. 1).

By definition, both L5 and C4M2 are serial extensions of K3P3. It is routine to
verify the observations stated in Proposition 2.12 below.

Proposition 2.12 We shall use the notation in Definition 2.11. For a given graph G,
let M = M(G) denote its cycle matroids.

(i) If G ∈ {K 2
2 , K 3

2 , K 4
2 }, and e0 is any edge in E(G), or if G = K3P3 and e0 ∈

E(K3P3) − {u1u3}, then |CM,e0 | ≤ 3. If G = K3P3 and e0 = u1u3, then
|CM(K3P3),u1u3 | ≥ 4.

(ii) If G ∈ {K 2
2 , K 3

2 , K
4
2 , K3P3,C4M2, K4}, and e0 is any edge in E(G), or if G =

C4P4 and e0 = w1w4, then |C(M)|−|CM,e0 | ≤ 3. If G = C4P4 and e0 	= w1w4,
then |C(M)| − |CM,e0 | ≥ 4.

(iii) If G is amember in {K 4
2 , K3P3,C4M2}, and if G ′ is obtained fromG by adding an

edge joining two distinct vertices in G, then for any edge e0 ∈ E(G), |CM,e0 | ≥ 4.
(iv) If G is a member in {K 4

2 , K3P3,C4M2,C4P4, K4}, and if G ′ is obtained from G
by adding an edge joining two distinct vertices in G, then for any edge e0 ∈ E(G),
|C(M)| − |CM,e0 | ≥ 4.

(v) If M ∈ {M(K4), F7}, then for any e ∈ E(M), |CM,e| ≥ 4.

In the next lemma, we will follow the language of Notation 2.5.

Lemma 2.13 Let r ≥ 4 be an integer and M = M2[Ir |D] be a connected simple
binary matroid where D is an r by 3 matrix. Then M is isomorphic to M(L5) if each
of the following holds.

(i) S(vr+1) ∩ S(vr+3) 	= ∅ and S(vr+2) ∩ S(vr+3) = ∅.
(ii) For any {ei , e j } ∈ C(M∗), M/ei is not simple.

Proof For j = r + 1, r + 2, r + 3, denote v j = (x j
1 , x j

2 , . . . , x j
r )T . By (i), S(vr+3) ∩

S(vr+2) = ∅, and so without loss of generality, we may assume that for some integers
s, s1, t, t1 with 0 ≤ s1 ≤ s < t ≤ t1 ≤ r , vr+1, vr+2 and vr+3 satisfy the following:

xr+3
1 = xr+3

2 = ...xr+3
s = 1 and xr+3

j = 0 if j > s with 2 ≤ s ≤ r − 2,

xr+2
t = xr+2

t+1 = ...xr+2
r = 1 and xr+2

j = 0 if j < t with r − 1 ≤ t ≤ r ,

xr+1
s1 = xr+1

s1+1 = ...xr+1
t1 = 1 and xr+1

j = 0 if j < s1 or j > t1
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with 0 ≤ s1 ≤ s < t ≤ t1 ≤ r .

Note that the assumed inequalities 2 ≤ s ≤ r − 2 and r − 1 ≤ t ≤ r follow
from Observation 2.6, and the assumed inequalities s1 ≤ s < t ≤ t1 follow from
Observation 2.9.

Claim 1 We have these observations.

(a) 0 ≤ s1 ≤ s = 2. (By symmetry, t = r − 1 ≤ t1 ≤ r .)
(b) t = s + 1.
(c) s = 2, t = 3 and r = 4.

To justify Claim 1, we will use the fact M∗ = M2[DT |I3] and Observation 2.10. If
s ≥ 3, then either s1 ≥ 3 and {e1, e2, er+3} is contained in a serial class ofM , or s1 ≤ 2
and {e2, e3} is contained in a serial glass of M . In either case, by Observation 2.10,
M/e2 is simple, contrary to Lemma 2.13 (ii). Hence s1 ≤ s ≤ 2. By Observation 2.6,
s = |S(vr+3)| ≥ 2 and so s = 2, and Claim 1(a) must hold.

If t ≥ s+2, then {es+1, er+1} ∈ C∗(M). ByObservation 2.9 and as s1 ≤ s < t ≤ t1,
it follows by Observation 2.6 that M/e2 is simple, contrary to Lemma 2.13 (ii). Hence
Claim 1(b) must hold.

By Claim 1(a) and (b), we have s = 2, t = 3 and r = 4, and so (c) follows. This
proves Claim 1.

As a consequence of of Claim 1(c), D must be one of the following matrices:

D ∈

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
1 0 0
1 1 0
0 1 1
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 1 0
1 1 0
0 1 1
0 0 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 0 0
1 1 0
0 1 1
0 1 1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣
1 1 0
1 1 0
0 1 1
0 1 1

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

. (5)

It is routine to show that for any D in (5), M = M2[I4|D] is always isomorphic to
M(L5). 
�

By Observation 2.9, if m = r + 3, the graph HB is either a K3 or a P3. This gives
us a bit more structural information of M . In the next lemma, we adopt the terms and
notation in Definition 2.11.

Lemma 2.14 Let M be a binary matroid with r = r(M) > 0 and |E(M)| ≥ 2, and
let e ∈ E(M) be an arbitrary element. For any serial extension of M(L5), let [u1u3]
denote the set of edges obtained by subdividing the edge u1u3 ∈ E(L5). Each of the
following holds.

(i) If M is loopless and colooplesswith |E(M)| ≥ r(M)+5, then |C(M)−CM,e| ≥ 4.
(ii) If M is connected and simple with |E(M)| ≥ r(M) + 3, then |CM,e| ≥ 4 if and

only if M is not isomorphic to a serial extension of M(L5) with e /∈ [u1u3].
(iii) If M is connected and simple with |E(M)| ≥ r(M)+4, then |C(M)−CM,e| ≥ 4,

unless M is a serial extension of M(C4P4) and e is in the serial class obtained
from subdividing the only edge in C4P4 that is not in a 2-circuit.

(iv) If M is connected and simple with |E(M)| ≥ r(M)+3, then |C(M)−CM,e| ≥ 3,
unless M is a serial extension of M(K3P3) and e is in the serial class obtained
from subdividing the only edge in K3P3 that not in a 2-circuit.
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Proof (i) Since M is coloopless, e is not a coloop and so there exists a basis B ∈ B(M)

such that e /∈ B. Let e1, e2, e3, e4 ∈ E(M) − (B ∪ e). Then the fundamental circuits
CM (ei , B), 1 ≤ i ≤ 4, are all in C(M) − CM,e, and so |C(M) − CM,e| ≥ 4. This
proves (i).

In the proofs for (ii)–(iv), we assume that M is a binary connected simple matroid.
Since M is connected, there exists a basis B ∈ B(M) such that e /∈ B. Thus we
may assume that for some r by (m − r) binary matrix D, M = M2[Ir |D], E(M) =
{e1, e2, . . . , em} such that ei is the label of the i th column vector vi of [Ir |D] with
B = {e1, e2, . . . , er } and e ∈ {er+1, . . . , em}.

We are to argue by induction on r = r(M) to prove (ii). Since M is simple and
|E(M)| ≥ r + 3, we may assume that r ≥ 3. If r = 3, then since M is simple, it
follows by Observation 2.6 that 6 ≤ |E(M)| ≤ 7, and so M ∈ {M(K4), F7}. Now by
Proposition 2.12(v), for any e ∈ E(M), |CM,e| ≥ 4. Therefore, we assume that r ≥ 4
and Lemma 2.14(ii) holds for smaller values of r .

Since L5 is a serial extension of K3P3, it follows by Proposition 2.12 (i) that if
M is isomorphic to a serial extension of M(L5) with e /∈ [u1u3], then |CM .e| ≤ 3. It
remains to prove the sufficiency of (ii). In the proof for (ii), wemay assume that e = em ;
and by Observation 2.9, there must be some j with r + 1 ≤ j ≤ m − 1 satisfying
S(vm)∩S(v j ) 	= ∅.Wemay assume that S(vm)∩S(vr+ j ) 	= ∅ for 1 ≤ j ≤ j0 < m−r .
If j0 ≥ 3, then by Observation 2.7, B(vm) ∪ {em}, B(vm + vr+ j ) ∪ {em, er+ j },
(1 ≤ j ≤ 3) are 4 distinct circuits of M containing em . Hence we assume that j0 ≤ 2.

(ii-A) Suppose that j0 = 2 and m − r ≥ 4. Then for any j with 3 ≤ j < m − r ,
S(vr+ j ) ∩ S(vm) = ∅. By Observation 2.9, we may assume that S(vr+3) ∩
S(vm) = ∅ and S(vr+1) ∩ S(vr+3) 	= ∅. By Observation 2.7, B(vm) ∪ {em},
B(vm +vr+ j )∪{em, er+ j }, (1 ≤ j ≤ 2) are 3 distinct circuits of M containing
em . By Corollary 2.8, either B(vm + vr+1 + vr+3) ∪ {em, er+1, er+3} ∈ CM,e

or {em, er+1, er+3} ∈ CM,e. Thus in this case, |CM,e| ≥ 4.
(ii-B) Suppose that j0 = 1 and m − r ≥ 4. Then S(vm) ∩ S(vr+ j ) = ∅ for j =

2, . . . ,m − r − 1. By Observation 2.9, we assume that S(vr+1)∩ S(vr+3) 	= ∅
and S(vr+2)∩S(vr+3) 	= ∅. ByObservation 2.7, B(vm)∪{em}, B(vm+vr+1)∪
{em, er+1} are distinct circuits of M containing em . By Corollary 2.8, either
B(vm + vr+1 + vr+3) ∪ {em, er+1, er+3} ∈ CM,e or {em, er+1, er+3} ∈ CM,e.
To show that |CM,e| ≥ 4, we need to find an additional circuit containing em .

If S(vr+1) ∩ S(vr+2) 	= ∅, then by Corollary 2.8, either B(vm + vr+1 + vr+2) ∪
{em, er+1, er+2} ∈ CM,e or {em, er+1, er+2} ∈ CM,e. Hence B(vm) ∪ {em}, B(vm +
vr+1)∪{em, er+1}, either B(vm +vr+1+vr+2)∪{em, er+1, er+2} or {em, er+1, er+2},
and either B(vm + vr+1 + vr+3) ∪ {em, er+1, er+3} or {em, er+1, er+3} are in CM,e,
and so |CM,e| ≥ 4.

Assume that S(vr+1)∩S(vr+2) = ∅ and {em, er+1, er+3} ∈ CM,e. Then vm+vr+1+
vr+3 = 0. As S(vm)∩S(vr+1) 	= ∅, S(vr+1)∩S(vr+3) 	= ∅ and S(vm)∩S(vr+3) = ∅,
we must have S(vr+1) = S(vm) ∪ S(vr+3). It follows that S(vr+1) ∩ S(vr+2) 	= ∅ as
S(vr+3)∩S(vr+2) ⊆ S(vr+1)∩S(vr+2); and vm +vr+1+vr+2 	= 0. By Corollary 2.8,
B(vm) ∪ {em}, B(vm + vr+1) ∪ {em, er+1}, B(vm + vr+1 + vr+2) ∪ {em, er+1, er+2}
and {em, er+1, er+3} are in CM,e. Thus |CM,e| ≥ 4.
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Assume that S(vr+1) ∩ S(vr+2) = ∅ and {em, er+1, er+3} /∈ CM,e. We are to apply
Observe 2.7 to show that B(vr+1+vr+2+vr+3+vm)∪{er+1, er+2, er+3, em} ∈ CM,e.
Supposewe partition {r+1, r+2, r+3,m} into two non-empty subsets J1 and J2 with
m ∈ J1. If r+1 ∈ J2, then S(

∑
i∈J1 vi )∩S(

∑
i∈J2 vi ) contains either S(vm)∩S(vr+1);

if J1 = {r+1,m}, then S(
∑

i∈J1 vi )∩ S(
∑

i∈J2 vi ) contains either S(vr+1)∩ S(vr+3);
if {r+1,m} ⊂ J1 and |{r+2, r+3}∩J1| = 1, then S(

∑
i∈J1 vi )∩S(

∑
i∈J2 vi ) contains

either S(vr+2) ∩ S(vr+3). In any case, S(
∑

i∈J1 vi ) ∩ S(
∑

i∈J2 vi ) 	= ∅. It follows by
Observation 2.7 that B(vm)∪{em}, B(vm +vr+1)∪{em, er+1}, B(vm +vr+1+vr+3)∪
{em, er+1, er+3} and B(vr+1+vr+2+vr+3+vm)∪{er+1, er+2, er+3, em} are in CM,e.
Thus |CM,e| ≥ 4.

(ii-C) Suppose that j0 = 1 and m − r = 3. Recall that S(vm) ∩ S(vr+1) 	= ∅ and
S(vm) ∩ S(vr+2) = ∅. If M has a cocircuit {ei , e j } such that M/ei is simple,
then by Observation 2.10, M/ei is also a connected simple binary matroid with
r(M/ei ) < r(M) and |E(M/ei )| = r(M/ei ) + 3. It follows by induction that
|CM/ei ,e| ≥ 4 if and only if M/ei is not isomorphic to a serial extension of
M(L5) with e ∈ [u1u3]. By Proposition 2.1, and since M is a serial extension
of M/ei , the conclusion of Lemma 2.14(ii) must hold. Hence we assume that
for any {ei , e j } ∈ C(M∗), M/ei is not simple. It follows by Lemma 2.13 that
M is isomorphic to M(L5). This completes the proof for Lemma 2.14(ii).

To justify Lemma 2.14(iii) and (iv), we observe that

|C(M(L5))| ≥ 4. (6)

For a fixed element e ∈ E(M), if M − e is connected, then Lemma 2.14(iii) and (iv)
follow by (6) and by applying Lemma 2.14(ii) to M − e. Therefore, we may assume
that M − e has connected components M1, M2, . . . , Mc with c ≥ 2 such that

|E(M1)| − r(M1) ≥ |E(M2)| − r(M2) ≥ · · · ≥ |E(Mc)| − r(Mc).

Since M is connected, r(M − e) = r(M). Thus
∑c

i=1 |E(Mi )| = |E(M − e)| =
|E(M)|−1 and r(M−e) = r(M) = ∑c

i=1 r(Mi ), and so
∑c

i=1(|E(Mi )|−r(Mi )) =
|E(M)| − r(M) − 1. Note that by matroid rank axioms, if for some i , |E(Mi )| ≥
r(Mi ) + 1, then E(Mi ) ∈ C(M); and that by matroid circuit axioms, if for some i ,
|E(Mi )| ≥ r(Mi ) + 2, then |C(Mi )| ≥ 3. These, together with |C(M) − CM,e| =
|C(M − e)| = ∑c

i=1 |C(Mi )|, lead us to the following observations.

(iii-A) If |E(M)| − r(M) ≥ 5, then
∑c

i=1(|E(Mi )| − r(Mi )) ≥ 4 and so |C(M) −
CM,e| ≥ 4.

(iii-B) If |E(M)| − r(M) = 4, then as
∑c

i=1(|E(Mi )| − r(Mi )) = 3, we conclude
that either |E(Mi )| − r(Mi ) = 1 for i = 1, 2, 3 and |E(Mi )| − r(Mi ) = 0 for
i ≥ 4, whence M is isomorphic to a serial extension of M(C4P4) with e being
in the serial class obtained from subdividing the only edge in C4P4 that is not
in a 2-circuit; or |E(M1|)−r(M1) = 2, |E(M2)|−r(M2) = 1, and |E(Mi )|−
r(Mi ) = 0 for i ≥ 3,whence |C(M)−CM,e| ≥ |C(M1)|+|C(M2)| ≥ 3+1 = 4;
or |E(M1)| − r(M1) = 3, and |E(Mi )| − r(Mi ) = 0 for i ≥ 3, whence by
applying Lemma 2.14(ii) to M1 and by (6), |C(M) − CM,e| ≥ |C(M1)| ≥ 4.
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(iv) If |E(M)| − r(M) = 3, then as
∑c

i=1(|E(Mi )| − r(Mi )) = 2, we conclude
that either |E(Mi )| − r(Mi ) = 1 for i = 1, 2 and |E(Mi )| − r(Mi ) = 0 for
i ≥ 3, whence whence M is isomorphic to a serial extension of M(K3P3)with
e being in the serial class obtained from subdividing the only edge in K3P3
that is not in a 2-circuit; or |E(M1)| − r(M1) = 2, and |E(Mi )| − r(Mi ) = 0
for i ≥ 2, whence |C(M) − CM,e| ≥ |C(M1)| ≥ 3. This proves the lemma.


�

2.2 Graphic matroids

We in this subsections study the graphic matroid memberships of F1 and F2. Let
G(e0) be a graph with a distinguished edge e0 ∈ E(G), and let M(e0) = M(G(e0))
denote the cycle matroid of G rooted at e0. Following (Oxley 2011), a matroid M is
planar if for some planar graph G, M = M(G) is the cycle matroid of G. The goal of
this subsection is to determine all rooted planar matroids M(e0) such that |CM,e0 | ≤ 3,
as well as all rooted planar matroids M(e0) such that |C(M)| − |CM,e0 | ≤ 3.

Definition 2.15 Let M = M(e0) be a connected rooted matroid with r(M) ≥ 1.

(i) The serial reduction (a rooted serial reduction, respectively) of M is a matroid
obtained from M by repeatedly taking serial contractions (serial contractions of
elements in M − e0, respectively) until the contraction either is isomorphic to
U1,2 or has no more 2-cocircuit left.

(ii) A rooted matroid M(e0) is a rooted serial extension of N ( f0) if M is a serial
extension of N and e0 is in the serial class of M that contains f0.

(iii) If r(M) = 1 or if r(M) ≥ 2 and M contains no 2-cocircuits, then M is the serial
reduction of itself. In this case, we said that M is serially reduced.

Theorem 2.16 Let G be a planar graph with κ(G) ≥ 2, and let M = M(G). Each of
the following holds.

(i) For some e0 ∈ E(G), |CM,e0 | ≤ 3 if and only if the serial reduction of M is
isomorphic to M(H), where H is a member in {K 2

2 , K 3
2 , K

4
2 } and with e0 being

an arbitrary edge in E(H), or H = K3P3, with e0 being any edge of K3P3 lying
in a 2-circuit.

(ii) If for some e0 ∈ E(G), |C(M)| − |CM,e0 | ≤ 3 if and only if the serial reduction
of M is isomorphic to M(H), where H is a member in {K 2

2 , K 3
2 , K

4
2 , K3P3, K4}

with e0 being an arbitrary edge in E(H), or H = C4P4, with e0 being the only
edge not lying in a 2-circuit.

Proof By Propositions 2.1 and 2.12 , it suffices to prove the necessity in (i) and (ii).
Let M ′ denote the serial reduction of M = M(G). As a serial contraction in the cycle
matroid M(G) amounts to contracting one edge in an edge cut of size 2, we have
M ′ = M(H) is also a cycle matroid of some planar graph H , where either H = K 2

2
or H is 3-edge-connected. If H = K 2

2 , then done. Hence we assume that H 	= K 2
2 .

Hence κ ′(H) ≥ 3. Since serial contraction does not reduce connectivity, we assume
that κ(H) ≥ 2 as well.

123

Author's personal copy



Journal of Combinatorial Optimization (2019) 38:887–910 899

(i) Suppose that for some e0 ∈ E(H), |CM ′,e0 | ≤ 3. By Lemma 2.2 and Proposi-
tion 2.12(v), we may assume that H does not have a K4-minor. Let Z0 be a shortest
circuit in H with e0 ∈ Z0. Since Z0 is shortest, every chord of Z1 in H is parallel to
an edge of Z0. Let

s = |Z0|, e0 = vsv1 and Z0 − e0 = v1v2...vs denote the (v1, vs)-path.

If 3 ≥ |V (H)| ≥ |Z0| ≥ 2, then by the assumption of |CM ′,e0 | ≤ 3 and by Proposi-
tion 2.12 (i) and (iii), either H ∈ {K 3

2 , K
4
2 }with e0 being any edge of H , or H = K3P3

with e0 being any edge of K3P3 lying in a 2-circuit.
Now we assume that |V (H)| ≥ 4.

Claim 1 |V (H)| = s. We may assume that |V (H)| > s. Let V (H) − V (Z0) =
w1, w2, . . . , wt . Then t ≥ 1. As κ ′(H) ≥ 3 and κ(H) ≥ 2, for each i with 1 ≤ i ≤ t ,
there exist three edge-disjoint paths Pi

1 , P
i
2 and Pi

3 , internally vertex disjoint from
V (Z0), joiningwi to at least two distinct vertices in V (Z0). Since H is K4-minor-free,
|{zi1, zi2, zi3}| ≤ 2; since κ(H) ≥ 2, we can choose these path so that |{zi1, zi2, zi3}| ≥ 2.
Therefore, we may assume that zi2 = zi3. Let P0 be the (z11, z

1
2)-path in Z0 that contains

e0. Since P1
1 , P1

2 and P1
3 are edge-disjoint paths, it follows that for each j ∈ {2, 3},

there is a circuit Z j ⊆ P0 ∪ P1
1 ∪ P1

j containing e0.
If t ≥ 2, then there exists a circuit Z ′ in H, containing e0 and using at least one edge

in P2
1 ∪P2

2 ∪P2
3 −(Z2∪Z3). It follows that Z0, Z ′, Z2, Z3 are 4 circuits in H containing

e0, contrary to |CM,e0 | ≤ 3. Thus we must have t = 1. Since s + t = |V (H)| ≥ 4, we
must have s = 3, and so there exists a vertex z ∈ V (Z0) − {z11, z12}. As κ ′(H) ≥ 3,
there must be an edge e′ ∈ E(H) − (Z0 ∪ Z2 ∪ Z3) incident with z. Since κ(H) ≥ 2,
there must be a circuit Z ′′ containing both e0 and e′, and so Z0, Z ′′, Z2, Z3 are 4
circuits in H containing e0, contrary to |CM,e0 | ≤ 3.

Claim 2 s ∈ {2, 3}. If s ≥ 4. Since δ(H) ≥ 3, each vi , 1 ≤ i ≤ s − 1, is incident with
an edge ei in E(H) − Z0. Every ei should be parallel to an edge of Z0, and there are
at least two such e′

i s, contrary to the assumption of |CM ′,e0 | ≤ 3.
(ii) We argue by induction on |E(H)| to show that Theorem 2.16(ii) must hold. If
|E(H)| = 2, then we must have H = K 2

2 . We now assume that |E(H)| > 2 and
Theorem 2.16(ii) holds for graphs with fewer edges. Pick an edge x ∈ E(G) and
x 	= e0. Let M ′′ = M(H − x). Since κ ′(H) ≥ 3, then M ′′ is connected. By induction,
H − x ∈ {K 2

2 , K 3
2 , K

4
2 , K3P3, K4} with e0 being an arbitrary edge in E(H − x), or

H−x = C4P4, with e0 being the only edge not lying in a 2-circuit. Since |C(M(H))|−
|CM(H),e0 | ≤ 3, by some routine checking, H has to be a member in {K 2

2 , K 3
2 }. 
�

2.3 Binarymatroids

Let { f , f ′} be a 2-circuit of a matroid L and let M = L − f ′. We denote L = M+, f

and call L the parallel extension of M at f .
The main purpose of this subsection is to characterize all rooted binary matroids

M(e0) with |CM,e0 | ≤ 3, as well as all rooted binary matroids M(e0) with |C(M)| −
|CM,e0 | ≤ 3.
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LetG be a connected graph. If X ,Y are subsets of V (G), then following the notation
of Bondy and Murty (2008), define

[X ,Y ] = {xy ∈ E(G) : x ∈ X and y ∈ Y }, and ∂G(X) = [X , V (G) − X ].

Thus [X ,Y ] is a minimal edge cut if and only if X ∩ Y = ∅ and both G[X ] and
G[Y ] are connected subgraphs of G. Let v ∈ V (G) be a vertex. Define EG(v) =
[{v}, V (G) − {v}]. Let M = M(G) be the cycle matroid of G. If G is 2-connected,
then every edge cut [X , V (G) − X ] with both G[X ] and G − X being connected is a
cocircuit of M(G).

Throughout the rest of this section, we define

N = {F7, M∗(K5), M(K5), (K3,3), M
∗(K3,3)}.

By definition, every matroid in N ∪ {F∗
7 } is serially reduced, and contains K4 as a

minor. The next theorem is well known.

Theorem 2.17 (Kuratowski 1930 and Wagner 1937, see also Theorem 5.2.5 of Oxley
2011) A binary matroid M is in EX(N ∪ {F∗

7 }) if and only if M = M(G) is a cycle
matroid of a planar graph G.

Lemma 2.18 Let M be a connected matroid, N be a minor of M and e0 ∈ E(N ). Each
of the following holds.

(i) If M ∈ N ∪ {F∗
7 }, then |CM,e0 | ≥ 4.

(ii) If M ∈ N, then |C(M)| − |CM,e0 | ≥ 4.
(iii) If a rooted binary matroid M(e0) contains a rooted minor N (e0) ∈ N ∪ {F∗

7 },
then M(e0) /∈ F1; if a rooted binary matroid M(e0) contains a rooted minor
N (e0) ∈ N, then M(e0) /∈ F2.

Proof For any M ∈ N ∪ {F∗
7 }, we have |E(M)| − r(M) ≥ 3. Hence Lemma 2.14

implies both Lemma 2.18(i) and (ii). Lemma 2.18(iii) follows from Lemma 2.2. 
�
Lemma 2.19 If M is a connected matroid and { f , f ′} ∈ C(M∗), then M/ f is also
connected.

Proof Let G(M) denote the circuit graph of M . Then it is known that a coloopless
matroid M is connected if and only if G(M) is a connected graph. By a result of Li
and Liu (2008) (see Lemma 3.3(ii) in Section 3), G(M) = G(M/ f ) and so M/ f is
connected if and only if M is connected. 
�
Proposition 2.20 Define N

′ = {M(K 4
2 ), M(K3P3), M(K4), F∗

7 }. Let r ≥ 3 be an
integer and defineF(r) = {M : M is a connected simple binary matroid with r(M) =
r and |E(M)| = r(M) + 3}. Define A = [Ir |D], where D is an (0,1)-matrix of
dimension r by 3. We shall adopt the notation in Notation 2.5 and so for 1 ≤ i ≤ m,
ei is the label of the i th column vector vi of [Ir |D]. For a fixed matroid M ∈ F(r),
we have the following observations.
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(i) M = M2[A] for some (0, 1)-matrix D with B = {e1, e2, . . . , er } being a basis
of M.

(ii) For any N ∈ F(r), N is serially reduced if and only if r ≤ 4 and DT does not
have a row vector with at most one nonzero entry and does not have two identical
columns.

(iii) M(K4) and F∗
7 are the only serially reduced matroids in ∪r≥3F(r).

(iv) If S(vi ) ∩ S(v j ) = ∅ holds for some distinct i, j ∈ {r + 1, r + 2, r + 3}, then
either {er+1, er+2, er+3} ∈ C(M) or M is not serially reduced.

(v) Every matroid M ∈ ∪r≥3F(r) is a serial extension of a matroid in N′.
(vi) For any e ∈ E(M), if M(e) is not a serial extension of M(K3P3)(e0) where e0

is the only edge in K3P3 lying in a single element parallel class, then |C(M) −
CM,e| = 3.

(vii) Let M ∈ F(r) and M+ be a single parallel extension of M. Then for any
e0 ∈ E(M+), |C(M+) − CM+,e0 | ≥ 4.

To justify (ii), as N = M2[Ir |D], we have N∗ = M2[DT |I3]. Since N is connected,
N∗ is also connected and so N∗ is loopless. It follows that N∗ does not have a zero
column. By definition, N is not serial educed if and only if N∗ has a circuit of size
2, which amounts to that [DT |I3] has two identical columns. As [DT |I3] is a (0, 1)-
matrix of dimension 3 by r + 3 without a zero column, we observe that [DT |I3] does
not have two identical columns only if r ≤ 4 and so (ii) must hold.

We apply (ii) to justify (iii), and assume that M is serially reduced and |E(M)| =
r + 3 with r ∈ {3, 4}. By (ii), the matrix D does not have a row with only one nonzero
entry, and does not have two identical rows. By Observation 2.9, we may assume
without loss of generality that 1, 2 ∈ S(vr+1), and subject to 1, 2 ∈ S(vr+1), |S(v1)|
is maximized. If r = 3, then

D ∈
⎧⎨
⎩

⎡
⎣
1 1 0
1 0 1
0 1 1

⎤
⎦ ,

⎡
⎣
1 1 0
1 0 1
1 1 1

⎤
⎦

⎫⎬
⎭ (7)

and so it is routine to show that M is isomorphic to M(K4). If r = 4, then |E(M)| =
r +3 = 7. Since [DT |I3] is a 3 by 7 matrix without an all zero entry column, it follows
by definition that M∗ = F7, and so M = F∗

7 .
To justify (iv), wemay assume that S(vr+1)∩S(vr+3) = ∅. Thus byObservation 2.9,

S(vr+2) ∩ S(vr+1) 	= ∅ and S(vr+2) ∩ S(vr+3) 	= ∅. If there exists an i ∈ S(vr+1) −
S(vr+2), then the i th component of vr+1 is the only nonzero entry of the i th row of the
matrix D. It follows byObservation 2.10 that {ei , e3+i } is a 2-cocircuit of M. Similarly,
if S(vr+3) − S(vr+2) 	= ∅ or if S(vr+2) − (S(vr+1) ∪ S(vr+3)) 	= ∅, then M contains
a 2-cocircuit and so M is not serially reduced. Thus we may assume that S(vr+2) =
S(vr+1)∪S(vr+3), whence vr+1+vr+2+vr+3 = 0 and so {er+1, er+2, er+3} ∈ C(M).
This proves (iv).

We are to justify (v). Let M ∈ ∪r≥3F(r). By (i), M = M2[Ir |D]. Let M ′ denote
the serial reduction of M. We argue by induction on r(M) to M ′ ∈ N

′. By (iii), M is
not serially reduced, and so there must be a 2-cocircuit { f , f ′} ∈ C(M∗). If r = 3,
then M/ f is a connected matroid with r(M/ f ) = 2 and |E(M/ f )| − r(M/ f ) = 3,
which must be the cycle matroid of a graph H with |V (H)| = 3. It follows that either
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M ′ = M(K3P3) ∈ N
′; or H is spanned by a K3 with 6 edges and a vertex of degree 2,

whence M ′ = M(K 4
2 ) ∈ N

′. Hence we assume that r ≥ 4. If there exists a 2-cocircuit
{ f , f ′} ∈ C(M∗) such that M/ f is simple, then as by Lemma 2.19, M/ f is connected,
we have M/ f ∈ ∪r≥3F(r). Thus by induction, the serial reduction of M/ f , (and so
M ′), must be in N′. Therefore, we assume that

r ≥ 4 and, if { f , f ′} ∈ C(M∗), then M/ f is not simple. (8)

Then M/ f has two parallel elements f ′, f ′′ and (M/ f ) − f ′ is simple and con-
nected. Also |E((M/ f ) − f ′)| − r((M/ f ) − f ′) = 2. Then (M/ f ) − f ′ is a simple
connected matroid of corank 2. Hence (M/ f ) − f ′ is a serial extension of M(K 3

2 )

without parallel elements. Therefore M is a serial extension of M(K 4
2 ) or M(K3P3).

To justify (vi), we apply Lemma 2.14(iv) to obtain that |C(M) − CM,e| ≥ 3. To see
that |C(M) − CM,e| < 4, we again assume that B ∈ B(M − e) ⊂ B(M) and so e ∈
{er+1, er+2, er+3}. We further assume that e = er+3. For each C ∈ C(M) − CM,er+3 ,
C − B 	= ∅ and so either {er+1, er+2} ∩ C = {er+1}, or {er+1, er+2} ∩ C = {er+2}
or {er+1, er+2} ∩C = {er+1, er+2}. Accordingly, C ∈ {B(vr+1) ∪ {er+1}, B(vr+2) ∪
{er+2}, B(vr+1 + vr+2) ∪ {er+1, er+2}}. This proves (vi).

To prove (vii), let e ∈ E(M+) − E(M). Then there exists an e′ ∈ E(M) such
that {e, e′} ∈ C(M+). If {e0, e′

0} ∈ C(M+), then by Lemma 2.14(iv), there are three
circuits in C(M+ −{e0, e′

0}). These, together with a circuit using in C(M+ −e0) using
e′
0, implies |C(M+) − CM+,e0 | ≥ 4. If {e0, e′

0} /∈ C(M+), then we may assume that
e′ ∈ E(M−e0) and {e, e′} ∈ C(M+). Thus by Lemma 2.14(iv), there are three circuits
in C(M −{e0}) = C(M+ −{e0, e}). These, together with {e, e′} ∈ C(M − e0), implies
|C(M) − CM,e0 | ≥ 4. This proves (vii).

Definition 2.21 Suppose that N is a minor of M such that N is serially reduced. A
minor L of M is amaximum serial extension of N in M if N is a serial reduction of
L with |E(L)| maximized. We similarly define maximum rooted serial extensions in
a rooted matroid.

DefineM1 = {M(K 2
2 ), M(K 3

2 ), M(K 4
2 ), M(K3P3)} andM2 = {M(K 2

2 ), M(K 3
2 ),

M(K 4
2 ), M(K3P3), M(K4), M(C4P4), F∗

7 }.
Theorem 2.22 Let M be a binary matroid. Each of the following holds.

(i) There exists an e0 ∈ E(M) satisfying |CM,e0 | ≤ 3 if and only if the rooted serial
reduction of M(e0) is isomorphic either to a member in M1 − {M(K3P3)} with
e0 ∈ E(M); or to M(K3P3) with e0 being any edge of K3P3 lying in a 2-circuit.

(ii) There exists an e0 ∈ E(M) satisfying |C(M)|−|CM,e0 | ≤ 3 if and only if the rooted
serial reduction of M(e0) is isomorphic either to a member inM2 − {M(C4P4)}
with e0 ∈ E(M); or to M(C4P4) with e0 being the only edge not lying in a
2-circuit.

Proof The sufficiencies of both (i) and (ii) follow from Proposition 2.1(ii), Proposi-
tion 2.12 and Proposition 2.20(vi). It remains to show the necessities.

Assume that M is a binary matroid with |CM,e0 | ≤ 3. By Lemma 2.18, M(e0) ∈
EX(N∪{F∗

7 }), and so by Theorem 2.17, M is isomorphic to the cycle matroid M(G)
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for a planar graph G. By Theorem 2.16, the rooted serial reduction of M(e0) is iso-
morphic either to a member in {M(K 2

2 ), M(K 3
2 ), M(K 4

2 )} with e0 ∈ E(M); or to
M(K3P3) with e0 being any edge of K3P3 lying in a 2-circuit. This proves the neces-
sity of (i).

Assume that M is a binary matroid with |C(M)| − |CM,e0 | ≤ 3. By Lemma 2.18,
M(e0) ∈ EX(N). Suppose that M contains a minor isomorphic to F∗

7 . If M ∈
∪r≥3F(r), then by Proposition 2.20(v), M is a serial extension of a matroid in
N

′ = {M(K 4
2 ), M(K3P3), M(K4), F∗

7 }. Thus we conclude that if F∗
7 is a minor of M ,

then M is a serial extension of F∗
7 . Now assume that M(e0) ∈ EX(N∪ F∗

7 ). Then by
Theorem 2.17, M is isomorphic to the cycle matroid M(G) for a planar graph G. By
Theorem 2.16, the rooted serial reduction ofM(e0) is isomorphic either to amember in
{M(K 2

2 ), M(K 3
2 ), M(K 4

2 ), M(K3P3), M(K4), F∗
7 } with e0 ∈ E(M); or to M(C4P4)

with e0 being the only edge not lying in a 2-circuit. This proves the necessity of (ii). 
�

3 Application to 1-Hamiltonian circuit graphs of matroids

There have been many studies on the properties of graphs arising from matroids. In
Tutte (1965), Tutte defined a graph C(M) of a matorid M . The vertices of C(M) are
the circuits of M , where the two vertices in C(M) are adjacent if and only if they
are distinct circuits of the same connected line. Tutte (1965) showed that a matroid
M is connected if and only if C(M) is a connected graph. Maurer (1973a, b) defined
the base graph of a matroid. The vertices are the bases of M and two vertices are
adjacent if and only if the symmetric difference of these two bases is of cardinality
2. The graphical properties of the base graph of a matroid are discussed in Maurer
(1973a, b). Alspach and Liu (1989) studied the properties of paths and circuits in base
graphs of matroids. The connectivity of the base graph of matroids is investigated
by Liu (1988, 1990). The graphical properties of the matroid base graphs have also
been investigated by many other researchers, as seen in Harary and Plantholt (1989),
Holzman and Harary (1972), Li and Liu (2004), Liu and Zhang (2005), among others.

Li and Liu (2007, 2008, 2010) initiated the investigation of graphical properties of
matroid circuits graphs. Let M be a matroid, and let k > 0 be an integer. The circuit
graph G(M) of M has vertex set V (G(M)) = C(M). Two vertices Z , Z ′ ∈ C(M)

are adjacent in G(M) if and only if |Z ∩ Z ′| ≥ 1. For notational convenience, for a
circuit Z ∈ C(M), we shall use Z to denote both a vertex in G(M) and a circuit (also
as a subset of E(M)) of M .

In their studies Li and Liu (2007, 2008, 2010), they proved that G(M) possesses
quite good graphical connectivity properties. A recent study on the connectivity of
certain spanning subgraphs of G(M) is done in Xu et al. (2012).

Theorem 3.1 Let M be a connected matroid with |C(M)| ≥ 3 and rank r(M), and let
G = G(M) be the circuit graph of M. Each of the following holds.

(i) (Li and Liu 2010) κ(G) ≥ 2(|E(M)| − r(M) − 1).
(ii) (Li and Liu 2007) G is edge-pancyclic. That is, for any edge e ∈ E(G) and for

any integer � with 3 ≤ � ≤ |V (G)|, G contains a circuit C� containing e with
length �.
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(iii) (Li and Liu 2008) For any edge e ∈ E(G), G has two Hamilton circuits Z ′ and
Z ′′ such that Z ′ contains e and Z ′′ does not contain e.

(iv) (Liu and Li 2008) For any distinct vertices u, v ∈ V (G), and for any integer
� with 2 ≤ � ≤ |V (G)| − 1, G has an (u, v)-path of length �. That is, G is
pan-connected. Consequently, G is hamiltonian with κ(G) ≥ 3.

For an integer s ≥ 0, a graph G is s-hamiltonian if for any subset S ⊂ V (G) with
|S| ≤ s, G − S is hamiltonian. Motivated by Theorem 3.1, the main purpose of this
section is to investigate the conditions to warrant the circuit graph of a binary matroid
to be 1-hamiltonian.

Throughout this section, M denotes a matroid with |C(M)| ≥ 4, and G = G(M)

denotes the circuit graph of M . The main goal of this section is to prove that the circuit
graph of every connected binary matroid M is 1-hamiltonian. The first subsection
below is devoted to developing some useful tools for the arguments; and the main
result will be proved in the second subsection.

3.1 Lemmas

In this section, we will develop some lemmas to be utilized in the arguments of the
next subsection, in which the main result of this section will be proved. For two sets
X and Y , define the symmetric difference of X and Y as

X�Y = (X ∪ Y ) − (X ∩ Y ).

Lemma 3.2 Let M be a loopless matroid with |E(M)| ≥ 2.

(i) (Strong circuit elimination, Page 15 of Oxley (2011)) Let C1,C2 ∈ C(M) be
distinct circuits. If e ∈ C1 ∩ C2 and f ∈ C1 − C2, then there exists C3 ∈ C(M)

such that f ∈ C3 ⊆ (C1 ∪ C2) − e.
(ii) If |E | ≤ 3, then M ∈ {U1,3,U2,3} and so |C(M)| ≤ 3.
(iii) Suppose that |E | = 4. Then |C(M)| ≥ 4 if and only if M ∈ {U1,4,U2,4}.
Proof It suffices to assume to prove (ii) and (iii). Let r = r(M). As M is connected
and |E | ≥ 2, M contains at least one circuit and so 1 ≤ r ≤ max{1, |E | − 1}.

Assume first that |E | ≤ 3. If r = 1, then M = U1,3 and so |C(M)| = 3. If r = 2,
then M = U2,3 and so |C(M)| = 1. This justifies (ii).

To prove (iii), we first observe that if M ∈ {U1,4,U2,4}, then |C(M)| ≥ 4. Now we
assume that |C(M)| ≥ 4. If r = 1, then M = U1,4 and so |C(M)| = 6. If r = 3, then
M = U3,4 and so |C(M)| = 1. Hence we assume that r = 2. If M contains no circuit
of size 2, then M = U2,4 and so |C(M)| = 4. Thus we assume that M has a 3-circuit
C . Then M must be a single parallel extension of U2,3 and so |C(M)| = 3. 
�
Lemma 3.3 (Li and Liu 2008) Let M be a matroid, e ∈ E(M), V1 = C(M − e) and
V2 = C(M) − C(M − e). Each of the following holds.

(i) The circuit graph of M − e is a subgraph of G induced by V1, and the subgraph
of G induced by V2 is a complete subgraph of G.

(ii) If {e′, e′′} ∈ C(M∗), then G(M) = G(M/e′).
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(iii) Suppose that e ∈ E(M) is an element such that M − e is connected, If |V1| ≥ 2,
then for any Z1Z2 ∈ E(G), there exists a 4-circuit � = Z1Z2Z3Z4Z1 in G such
that |E(�) ∩ E(G1)| ≥ 1, |E(�) ∩ E(G2)| ≥ 1 and both Z1Z2, Z2Z3, Z3Z1 ∈
E(G).

We need a slightly stronger version of Lemma 3.3(iii) for binary matroids, as stated
in Lemma 3.4 below.

Lemma 3.4 Let M be a connected binary matroid, G = G(M) be the circuit graph of
M. For a fixed element e ∈ E(M), let V1 = C(M − e) and V2 = C(M) − C(M − e),
and define G1 = G[V1] and G2 = G[V2]. If M − e is connected, and both |V1| ≥ 3
and |V2| ≥ 4, then for any Z0 ∈ V (G) and for any Z1Z2 ∈ E(G − Z0), there
exists a 4-circuit � = Z1Z2Z3Z4Z1 in G − Z0 such that |E(�) ∩ E(G1)| = 1 and
|E(�) ∩ E(G2)| = 1.

Proof Let Z0 ∈ V1, and Z1Z2 ∈ E(G − Z0). We shall show that existence of the
desired 4-circuit � = Z1Z2Z3Z4Z1 in G − Z0 according to the different situations
of e.

Case 1 e ∈ E − (Z1 ∪ Z2).
Then Z1Z2 ∈ E(G − Z0), and so there exists an element e1 ∈ Z1 ∩ Z2. Since M

is connected, both e1 and e are contained in a circuit Z3 ∈ V2. Thus Z3 	= Z0 and
Z1Z3, Z2Z3 ∈ E(G). Since e ∈ Z3 − (Z1 ∪ Z2), both Z1 	= Z3 and Z2 	= Z3.

Assume first that e /∈ Z0. Since Z1 	= Z3, there exists an e2 ∈ Z1 − Z3. As
Z1 ∈ V1, e 	= e2. Since M is connected, M has a circuit Z4 with e2, e ∈ Z4. Thus
e ∈ (Z3 ∩ Z4) − (Z1 ∪ Z2), e1 ∈ (Z1 ∩ Z3) − Z4 and e2 ∈ (Z1 ∩ Z4) − Z3,
and so � = Z1Z2Z3Z4Z1 is a 4-circuit of G with E(�) ∩ E(G1) = {Z1Z2} and
E(�)∩ E(G2) = {Z3Z4}. As Z1, Z2 ∈ V (G − Z0) and as Z3, Z4 ∈ V2, we conclude
that Z0 /∈ {Z1, Z2, Z3, Z4}. Hence� = Z1Z2Z3Z4Z1 is a desired 4-circuit ofG−Z0.

Next we assume that e ∈ Z0. If there exists an element e3 ∈ Z1 − (Z0 ∪ Z3), then
as M is connected, M has a circuit Z4 with e, e3 ∈ Z4. As e3 ∈ Z4, Z4 /∈ {Z0, Z3}.
Thus �1 = Z1Z2Z3Z4Z1 is a 4-circuit of G − Z0 with E(�) ∩ E(G1) = {Z1Z2}
and E(�) ∩ E(G2) = {Z3Z4}. Therefore, we assume that Z1 ⊆ Z0 ∪ Z3. As Z1 is
not a proper subset of Z0, we have Z1 ∩ Z3 	= ∅. Since M is binary, Z1�Z3 is a
disjoint union of circuits different from Z1 and Z3. Since e ∈ Z3 − Z1, there must
be a circuit Z ′ ⊆ Z1�Z3 such that e ∈ Z ′. If Z ′ 	= Z0, then set Z ′

4 = Z ′ and
so in this case Z1Z2Z3Z ′

4Z1 is a desired 4-circuit of G − Z0. Thus we assume that
Z ′ = Z0. If Z0 is a proper subset of Z1�Z3, then Z1�Z3 contains another circuit Z ′′,
disjoint from Z0 and intersecting with both Z1 and Z3. Hence there exists an element
e′
1 ∈ Z1 − (Z0 ∪ Z3). In this case, by the connectedness of M , there must be a circuit
Z ′′
4 ∈ C(M) such that e, e′

1 ∈ Z ′′
4 . It follows that Z1Z2Z3Z ′′

4 Z1 is a desired 4-circuit
of G − Z0. Hence we conclude that if no desirable 4-circuit exists, then we must have
Z1�Z3 = Z0. By the symmetry between Z1 and Z2, we also have Z2�Z3 = Z0,
which leads to the contradiction that Z1 = Z0�Z3 = Z2. This contradiction indicates
that we always can find a desirable 4-circuit satisfying the conclusion of the lemma.

Case 2 e ∈ Z1 − Z2 or e ∈ Z2 − Z1.
By symmetry, we assume that e ∈ Z2 − Z1, e1 ∈ Z1 ∩ Z2.
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Assume first that e /∈ Z0. By Lemma 3.2(i), M has a circuit Z3 ⊆ Z1 ∪ Z2 − {e1}
with e ∈ Z3. Since e ∈ Z3 and Z0 ∈ V1, we have Z3 	= Z0. As Z3 cannot be a proper
subset of Z2, there must be an element e2 ∈ Z1 ∩ Z3. Since Z1 ∈ V1, we note that
e2 	= e.

If there exists an element e3 ∈ E(M) − (Z0 ∪ Z1 ∪ e), then by the assumption
that M − e is connected, there exists a circuit Z4 ∈ C(M − e) with e2, e3 ∈ Z4. In
this case, � = Z1Z2Z3Z4Z1 is a 4-circuit of G with E(�) ∩ E(G1) = {Z1Z4} and
E(�) ∩ E(G2) = {Z2Z3}. As Z1, Z2 ∈ V (G − Z0), Z3 	= Z0 and e3 ∈ Z4 − Z0, we
conclude that Z0 /∈ {Z1, Z2, Z3, Z4}. It follows that in this case � = Z1Z2Z3Z4Z1
is a desired 4-circuit of G − Z0. Hence we may assume that E(M) = Z0 ∪ Z1 ∪ e.
Since Z0 	= Z1, e /∈ Z0 ∪ Z1 and since M − e is also binary, Z0�Z1 is a disjoint
union of circuits. Since Z3 ⊂ E(M) = Z0 ∪ Z1 ∪ e, Z3 	= e and Z3 	= Z0, there must
be an element e′

3 ∈ Z3 − (Z0 ∪ e). Let Z ′
4 be a circuit in Z0�Z1 with e′

3 ∈ Z ′
4. In

this case, �′ = Z1Z2Z3Z ′
4Z1 is a 4-circuit of G with E(�′) ∩ E(G1) = {Z1Z4} and

E(�′) ∩ E(G2) = {Z2Z3}. As Z1, Z2 ∈ V (G − Z0), Z3 	= Z0 and e′
3 ∈ Z4 − Z0,

we conclude that Z0 /∈ {Z1, Z2, Z3, Z ′
4}, and so in this case �′ = Z1Z2Z3Z ′

4Z1 is a
desired 4-circuit of G − Z0.

Next we assume that e ∈ Z0. Since |V2| ≥ 4, we may assume that Z0, Z1, Z ′
1, Z

′′
1

are different vertices in V2. If there is an element e′
1 ∈ Z ′

1−(Z2∪{e}), then set Z4 = Z ′
1

and, as M is connected, there exists a circuit Z3 ∈ C(M − e) with e1, e′
1 ∈ Z3. As

Z1Z4 ∈ E(G2) and Z2Z3 ∈ E(G1), Z1Z2Z3Z4Z1 is a desired 4-circuit of G − Z0.
Hence we may assume that Z ′

1 ⊆ Z2 ∪ e. By the symmetry between Z ′
1 and Z ′′

1 , we
may also assume that Z ′′

1 ⊆ Z2 ∪ e. This forces that Z2 = Z ′
1�Z ′′

1 . Let Z3 be a
circuit in Z1�Z ′

1. Then Z3 ∩ Z ′
1 	= ∅ and Z3 ∩ Z2 	= ∅. Hence letting Z4 = Z ′

1, once
again we have Z1Z4 ∈ E(G2) and Z2Z3 ∈ E(G1), and so Z1Z2Z3Z4Z1 is a desired
4-circuit of G − Z0. This proves Case 2.

Case 3 e ∈ Z1 ∩ Z2, whence both Z1 and Z2 are vertices in G2.
Assume first that e /∈ Z0. If Z0 = Z1�Z2, then as Z1 	= Z2, there must be an

element e1 ∈ Z1 − Z2 and an element e2 ∈ Z2 − Z1. As e1, e2 ∈ E(M − e) and
as M − e is connected, there exists a circuit Z3 ∈ C(M − e) such that e1, e2 ∈ Z3.
Since Z3 is not a proper subset of Z0, we have Z3 	= Z0. Since |V1| ≥ 3, there
must be a Z ∈ V1 − {Z0, Z3}. If e1 ∈ Z , then �1 = Z1Z2Z3Z Z1 is a 4-circuit
of G with E(�1) ∩ E(G1) = {Z3Z} and E(�1) ∩ E(G2) = {Z1Z2}, and with
Z0 /∈ {Z1, Z2, Z3, Z}. Hence by symmetry, we may assume that {e1, e2} ∩ Z = ∅. In
this case, we pick e3 ∈ Z − Z3. As M − e is connected and as e1, e3 ∈ E(M − e),
there must be a Z4 ∈ C(M − e) with e1, e3 ∈ Z4. It follows that �2 = Z1Z2Z3Z4Z1
is a 4-circuit of G with E(�2) ∩ E(G1) = {Z3Z4} and E(�2) ∩ E(G2) = {Z1Z2},
and with Z0 /∈ {Z1, Z2, Z3, Z4}.

Next, we assume that e /∈ Z0 and Z0 	= Z1�Z2. Since M is binary, Z1�Z2
contains a circuit Z ′

3 such that Z ′
3 contains an element e′

1 ∈ (Z1�Z2) − Z0. As
e′
1 ∈ Z1�Z2, we by symmetry may assume that e′

1 ∈ Z1 − Z2. Since Z ′
3 cannot be

a proper subset of Z1, there must be an element e′
2 ∈ Z ′

3 ∩ Z2 − Z1. Since |V1| ≥ 3,
there must be a Z ′′ ∈ V1 − {Z0, Z ′

3}. If e′
1 ∈ Z ′′, then �3 = Z1Z2Z ′

3Z
′′Z1 is a 4-

circuit of G with E(�3)∩ E(G1) = {Z ′
3Z

′′} and E(�3)∩ E(G2) = {Z1Z2}, and with
Z0 /∈ {Z1, Z2, Z ′

3, Z
′′}. Hence by symmetry, we may assume that {e1, e2} ∩ Z ′′ = ∅.
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In this case, we pick e′
3 ∈ Z ′′ − Z ′

3. As M − e is connected and as e′
1, e

′
3 ∈ E(M − e),

there must be a Z ′
4 ∈ C(M − e) with e′

1, e
′
3 ∈ Z4. It follows that �4 = Z1Z2Z ′

3Z
′
4Z1

is a 4-circuit of G with E(�4) ∩ E(G1) = {Z ′
3Z

′
4} and E(�4) ∩ E(G2) = {Z1Z2},

and with Z0 /∈ {Z1, Z2, Z ′
3, Z

′
4}.

As the arguments above show that if e /∈ Z0, then a desirable 4-circuit always
exists, we assume throughout the rest of the proof of this lemma that e ∈ Z0. Since
e ∈ Z1 ∩ Z2, Z1 	= Z2, and as M is binary, Z1�Z2 contains a circuit Z3 ∈ V1. Since
|V1| ≥ 3, there exists a circuit Z ′ ∈ V1 − {Z3}. Pick e′ ∈ Z ′ − Z3 ⊆ E − {e}. As
Z3 ⊆ Z1�Z2, there must be an element e′′ ∈ Z3 ∩ Z1. Since e /∈ Z3, e′′ 	= e. By the
connectedness of M − e, there exists a circuit Z4 ∈ C(M − e) such that e′, e′′ ∈ Z4.
Since Z1Z2 ∈ E(G2) and Z3Z4 ∈ E(G1), it follows that Z1Z2Z3Z4Z1 is a desirable
4-circuit. This completes the proof of this case as well as the lemma. 
�

An element e ∈ E(M) of a connectedmatroidM is essential ifM−e is not connected.
A matroid M is critically connected if M is connected and every e ∈ E(M) is
essential.

Theorem 3.5 (Murty 1974) If M is critically connected with r(M) ≥ 2, then M
contains a cocircuit of 2 element.

Lemma 3.6 If M ∈ {K 2
2 , K 3

2 , K
4
2 , K3P2, C4P3, K4, F∗

7 }, then either G(M) has fewer
than 4 vertices, or for any z ∈ V (G(M)) and any edge f ∈ E(G(M)− z), G(M)− z
has a hamiltonian circuit containing f .

Proof If M ∈ {K 2
2 , K 3

2 }, then |V (G(M))| ≤ 3. As every pair of distinct circuits of
F∗
7 or of M(K4) must have nonempty intersection. both G(F∗

7 ) and G(M(K4)) are
complete graphs with at least 6 vertices. By definition, if G(M(K 4

2 )) is the graph
obtained from K6 by deleting perfect matching. Let e be the edge in P2K3 not lying in
a 2-circuit. Then circuits in P2K3 containing e, as vertices in G(M(P2K3)), induces a
K4, and soG(M(P2K3)) is the graph obtained from K6 by deleting an edge. Likewise,
Let e′ be the edge in P3C4 no lying in a 2-circuit. Then circuits in P3C4 containing e′,
as vertices in G(M(P3C4)), induces a K8, and so G(M(P3C4)) is the graph obtained
from K11 by deleting a 3-circuit. It is routine to show that each of these graphs has
the indicated property. 
�

Lemma 3.7 If M be a connected serially reduced binary matroid with |E(M)| −
r(M) ≤ 2. Then M = U1,3.

Proof Let B be a basis of M , let e1, e2 be the only two elements in E(M) − B,
and Z1, Z2 be the fundamental circuit of e1 and e2 with respect to B, respectively.
Then Z1�Z2 = {e1, e2} is a circuit. Since M is connected, It follows that both Z1 =
Z2�{e1, e2} = B ∪ e1 and Z2 = Z1�{e1, e2} = B ∪ e2. As M is serially reduced,
M contains no 2-element cocircuits, and so for some element e3, we have B = {e3}.
This shows that M ∼= U1,3. 
�
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3.2 A result on 1-edge-hamiltonian circuit graphs

If for any vertex subset S ⊂ V (G) with |S| ≤ 1 and for any edge e ∈ E(G − S),
G − S has a Hamilton circuit containing e, then G is said to be 1-edge-hamiltonian.
Recall that M(e0) is a matroid with e0 being its root.

We prove a slightly stronger result than the statement we made in the beginning of
this section, as follows.

Theorem 3.8 Let M = (E, I) be a connected binary matroid with |C(M)| ≥ 4, and
let G = G(M) be the circuit graph of M. Then G is 1-edge-hamiltonian.

Proof By Theorem 3.1(ii), it suffices to show that

for any v ∈ V (G) and e ∈ E(G − v),G − v has a Hamilton circuit containing e.

(9)

We argue by induction on |E | to prove (9). By Lemma 3.2, every matroid M = (E, I)

with |E | ≤ 3 has |C(M)| < 4. By Lemmas 3.2 and 3.6 , (9) holds for any connected
binary matroid on 4 elements. Hence we assume that |E | ≥ 5, and (9) holds for
connected binary matroids with smaller number of elements.

If for some element e0 ∈ E(M), M(e0) is in F1 ∪ F2, then by |E | ≥ 5 and by
Lemma 3.6, G(M) is 1-edge-hamiltonian. Hence we assume that

for any e0 ∈ E(M), M(e0) is not in F1 ∪ F2. (10)

If M has a 2-cocircuit {e′, e′′}, then by Lemma 3.3(ii), G(M) = G(M/e′), and so
by induction, we may assume that

M is serially reduced. (11)

Suppose that M is critically connected. Then by Theorem 3.5, M has a 2-cocircuit
{e′, e′′}. By Lemma 3.3(ii),G(M) = G(M/e′). By inductionG(M/e′), and soG(M),
is 1-edge-hamiltonian. Therefore, we assume that M is not critically connected. By
definition, there exists an element e ∈ E(M) such that M − e is connected. Define
V1 = C(M) − CM,e, V2 = CM,e, G1 = G[V1] and G2 = G[V2]. If |V1| ≥ 4, then it
follows by induction that

G1 = G(M − e) is 1-edge-hamiltonian. (12)

By (1), if |V1| ≤ 3, then M(e) ∈ F2; and if |V2| ≤ 3, then M(e) ∈ F1. In either
case, a contradiction to (10) is found. If |E(M)| − r(M) ≤ 2, then by Lemma 3.7,
G(M) ∈ {K1, K3} and so we may assume |E(M)| − r(M) ≥ 3. These, together with
Lemma 3.3(iii) and Lemma 3.7, imply that

|V1| ≥ 4, |V2| ≥ 4, κ(G) ≥ 4 and that G2is a complete graph. (13)
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Let Z0 ∈ V (G) = C(M), and an edge f = Z ′Z ′′ ∈ E(G − Z0) be given. We shall
show that G − Z0 has a Hamilton circuit containing f . By (12), G1 (if e ∈ Z0) or
G1 − Z0 (if e /∈ Z0) has a Hamilton circuit C .

Case 1. e /∈ Z ′ ∪ Z ′′.
Then f = Z ′Z ′′ ∈ E(G1). By (13), |V1| ≥ 4 and so there must be a two vertices

Z1, Z2 ∈ V1 − {Z ′, Z ′′} such that Z1Z2 ∈ E(C − f ). By Lemma 3.4, G − Z0 has
a 4-circuit Z1Z2Z3Z4Z1 such that Z3Z4 ∈ E(G2). By Lemma 3.3(i) and by (13),
G2 − Z0 (if e ∈ Z0) or G2 (if e /∈ Z0) is a complete graph on at least 3 vertices, and so
G2 − Z0 contains a spanning (Z3, Z4)-path P . It follows that E(C − Z1Z2)∪ E(P)∪
{Z2Z3, Z1Z4} induces a Hamilton circuit of G − Z0 which contains f = Z ′Z ′′.

Case 2. e ∈ Z ′ − Z ′′ or e ∈ Z ′′ − Z ′.
By symmetry, we may assume that e ∈ Z ′′ − Z ′, and so Z ′ ∈ V1 and Z ′′ ∈ V2. Let

Z1 = Z ′ and Z2 = Z ′′. By Lemma 3.4,G− Z0 has a 4-circuit Z1Z2Z3Z4Z1 such that
Z2Z3 ∈ E(G2). If Z1Z4 ∈ E(G1). By (12), G1 − Z0 (if e /∈ Z0) or G1 (if e ∈ Z0)
has a Hamilton circuit C1 with Z1Z4 ∈ E(C1). As G2 is a complete graph on at least
3 vertices, G2 − Z0 (if e ∈ Z0) or G2 (if e /∈ Z0) contains a spanning (Z2, Z3)-path
P . It follows that E(C − Z1Z4) ∪ E(P) ∪ {Z1Z2, Z3Z4} induces a Hamilton circuit
of G − Z0 which contains f = Z ′Z ′′.

Case 3. e ∈ Z ′ ∩ Z ′′.
Then f = Z ′Z ′′ ∈ E(G2). By (13), κ(G) ≥ 4, and so G − {Z0, Z ′, Z ′′} is

connected. Therefore, there must be an edge Z1Z ′
1 ∈ E(G − {Z0, Z ′, Z ′′}) such that

Z1 ∈ V1 and Z ′
1 ∈ V2. Pick and edge Z1Z2 ∈ E(C). By Lemma 3.4, G − Z0 has

a 4-circuit Z1Z2Z3Z4Z1 with Z3, Z4 ∈ V2 − {Z0}. Assume that Z ′
1 	= Z3 (Z ′

1 =
Z3 	= Z4, respectively). By Lemma 3.3(i) and (13), G2 is a complete graph on at
least 4 vertices, and so G2 (if e /∈ Z0) or G2 − Z0 (if e ∈ Z0) has a spanning
(Z ′

1, Z3)-path ((Z ′
1, Z4)-path, respectively) P with f = Z ′Z ′′ ∈ E(P). It follows that

E(C − Z1Z2) ∪ E(P) ∪ {Z1Z ′
1, Z2Z3} (or E(C − Z1Z2) ∪ E(P) ∪ {Z1Z4, Z2Z3},

respectively) induces a Hamilton circuit of G − Z0 which contains f = Z ′Z ′′.
As in every cases, G − Z0 always has a Hamilton circuit containing f , the theorem

is now proved. 
�
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