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a b s t r a c t

For an integer s ≥ 0, a graph G is s-hamiltonian if for any vertex subset S ⊆ V (G) with
|S| ≤ s, G − S is hamiltonian, and G is s-hamiltonian connected if for any vertex subset
S ⊆ V (G) with |S| ≤ s, G − S is hamiltonian connected. Thomassen in 1984 conjectured
that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Kučzel and
Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected
(see Ryjáček and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman
raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013),
it is conjectured that for s ≥ 2, a line graph L(G) is s-hamiltonian if and only if L(G) is
(s + 2)-connected. In this paper we prove the following.
(i) For an integer s ≥ 2, the line graph L(G) of a claw-free graph G is s-hamiltonian if
and only if L(G) is (s + 2)-connected.
(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if
L(G) is 4-connected.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered here are finite and loopless. Unless otherwise noted, we follow [1] for notation and terms. As in [1],
κ(G) and κ ′(G) denote the connectivity and the edge-connectivity of a graph G, respectively. A graph is nontrivial if it
contains edges. An edge cut X is essential if G− X has at least two nontrivial components. For an integer k > 0, a graph
G is essentially k-edge-connected if G does not have an essential edge cut X with |X | < k. For a connected graph G,
let ess′(G) = max{k : G is essentially k-edge-connected}, and for an integer i ≥ 0, let Di(G) = {u ∈ V (G) : dG(u) = i}
and di(G) = |Di(G)|. Throughout this paper, for an integer n ≥ 2, Cn denotes a cycle on n vertices (called an n-cycle), nK2
denotes the loopless graph on two vertices with n edges, Wn denotes the graph obtained from an n-cycle by adding a new
vertex and connecting it to every vertex of the n-cycle, and K−

5 denotes the graph obtained from K5 by deleting an edge.
If S ⊆ V (G) or S ⊆ E(G), G[S] is the subgraph induced in G by S. We use H ⊆ G to denote the fact that H is a subgraph
of G. For H ⊆ G, x ∈ V (G), A ⊆ V (G), X ⊆ E(G), and Y ⊆ E(G) − E(H), define NH (x) = NG(x) ∩ V (H), dH (x) = |NH (x)|,
G − A = G[V (G) − A], G − X = G[E(G) − X], and H + Y = G[E(H) ∪ Y ]. When A = {v} and X = {e}, we use G − v for
G − {v} and G − e for G − {e}. Different from the notation in [1], for vertex-disjoint subgraphs H1 and H2 in G, we define
H1 + H2 = G[V (H1) ∪ V (H2)].

A graph G is claw-free if it does not contain K1,3 as an induced subgraph. The line graph of a graph G, denoted by
L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G are
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adjacent. It is straight forward to see that for a graph G with |E(G)| ≥ 3, L(G) is k-connected if and only if G is essentially
k-edge-connected. The following are several fascinating conjectures in the literature.

Conjecture 1.1. (i) (Thomassen [18]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [15]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kučzel and Xiong [11]) Every 4-connected line graph is hamiltonian connected.
(iv) (Ryjáček and Vrána [16]) Every 4-connected claw-free graph is hamiltonian connected.

Ryjacek and Vrána in [16] indicated that the statements in Conjecture 1.1 are mutually equivalent. There have been
many studies on these conjectures in the literature. Among them are the following.

Theorem 1.2 (Zhan [19]). Every 7-connected line graph is hamiltonian connected.

Theorem 1.3 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is hamiltonian connected.

For an integer s ≥ 0, a graph G is s-hamiltonian (or s-hamiltonian connected, respectively) if for any vertex subset
S ⊆ V (G) with |S| ≤ s, G − S is hamiltonian (or hamiltonian connected, respectively). In [2], Broersma and Veldman
proposed an open problem: for a given positive integer k determine the value s for which the statement ‘‘for a k-triangular
graph G, the line graph L(G) of G is s-hamiltonian if and only L(G) is (s + 2)-connected’’ is valid. Broersma and Veldman
in [2] proved that the statement holds for all values s with 0 ≤ s ≤ k, and conjectured that it holds if s ≤ 2k. Chen
et al. in [7] proved this conjecture for all values s with 0 ≤ s ≤ max{2k, 6k − 16}. In [13], an attempt to characterize
s-hamiltonian line graphs is made and the following is proved.

Theorem 1.4 ([13]). For s ≥ 5, a line graph is s-hamiltonian if and only if it is (s + 2)-connected.

An open problemwas raised in [13] that whether a line graph L(G) is s-hamiltonian if and only if L(G) is (s+2)-connected
for s ∈ {2, 3, 4}. The case when s = 2 implies Conjecture 1.1(i). Motivated by Conjecture 1.1 as well as the results in [7]
and [13], we propose the following conjectures.

Conjecture 1.5. Let s be an integer.
(i) For s ≥ 2, a line graph is s-hamiltonian if and only if it is (s + 2)-connected.
(ii) For s ≥ 2, a claw-free graph is s-hamiltonian if and only if it is (s + 2)-connected.
(iii) For s ≥ 1, a line graph is s-hamiltonian connected if and only if it is (s + 3)-connected.
(iv) For s ≥ 1, a claw-free graph is s-hamiltonian connected if and only if it is (s + 3)-connected.

The main result in this paper is presented below, as an effort to support Conjecture 1.5(i) and (iii).

Theorem 1.6. Let G be a claw-free graph.
(i) For an integer s ≥ 2, L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2.
(ii) L(G) is 1-hamiltonian connected if and only if κ(L(G)) ≥ 4.

In Section 2, we introduce Catlin’s reduction method and the related results. In Section 3 we introduce a property of
graphs which will be used in our arguments to prove the main results. The proof of Theorem 1.6 is given in Section 4.

2. Preliminaries

We view a trail of G as a vertex-edge alternating sequence v0, e1, v1, e2, . . . , ek, vk such that all the ei’s are distinct and
for each i = 1, 2, . . . , k, ei is incident to both vi−1 and vi. The vertices in v1, v2, . . . , vk−1 are internal vertices of the trail.
For edges e′, e′′

∈ E(G), an (e′, e′′)-trail of G is a trail T of G whose first edge is e′ and whose last edge is e′′. A dominating
(e′, e′′)-trail of G is an (e′, e′′)-trail T of G such that every edge of G is incident to an internal vertex of T , and a spanning
(e′, e′′)-trail of G is a dominating (e′, e′′)-trail T of G such that V (T ) = V (G). Harary and Nash–Williams [8] first showed
the relationship between eulerian subgraphs in G and hamiltonicity in L(G). Theorem 2.1(ii) is observed in [14].

Theorem 2.1. Let G be a graph with |E(G)| ≥ 3. Each of the following holds.
(i) (Harary and Nash–Williams [8]) L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.
(ii) [14] L(G) is hamiltonian connected if and only if for any pair of edges e′, e′′

∈ E(G), G has a dominating (e′, e′′)-trail.

We say that an edge e ∈ E(G) is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted
by v(e), has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the path of length 2 is
called subdividing e. For a graph G and edges e′, e′′

∈ E(G), let G(e′) denote the graph obtained from G by subdividing e′,
and let G(e′, e′′) denote the graph obtained from G by subdividing both e′ and e′′. Then V (G(e′, e′′))−V (G) = {v(e′), v(e′′)}.
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Lemma 2.2 (Lemma 1.4 of [12]). For a graph G and edges e′, e′′
∈ E(G), if G(e′, e′′) has a spanning (v(e′), v(e′′))-trail, then G

has a spanning (e′, e′′)-trail.

Let X ⊆ E(G) be an edge subset of G. The contraction G/X is the graph obtained from G by identifying the two ends of
each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G/H for G/E(H). If vH is the vertex in
G/H onto which H is contracted, then H is called the preimage of v, and denoted by PI(v). Let O(G) denote the set of odd
degree vertices of G. A graph G is eulerian if O(G) = ∅ and G is connected. A graph G is supereulerian if G has a spanning
eulerian subgraph. In [4] Catlin defined collapsible graphs. Given an even subset R of V (G), a subgraph Γ of G is called an
R-subgraph if O(Γ ) = R and G − E(Γ ) is connected. A graph G is collapsible if for any even subset R of V (G), G has an
R-subgraph. In particular, K1 is collapsible. Catlin [4] showed that for any graph G, one can obtain the reduction G′ of G
by contracting all maximal collapsible subgraphs of G. A graph G′ is reduced if G′ has no nontrivial collapsible subgraphs.
A vertex in G′ is c-nontrivial (or c-trivial) if |V (PI(x))| ≥ 2 (or |V (PI(x))| = 1). By definition, every collapsible graph is
supereulerian. We summarize some results on Catlin’s reduction method and other related facts below. Theorem 2.3(v)
is a straightforward application of the definition of collapsible graphs.

Theorem 2.3. Let G be a graph and let H be a collapsible subgraph of G. Let vH denote the vertex onto which H is contracted
in G/H. Each of the following holds.

(i) (Catlin, Theorem 3 of [4]) G is collapsible if and only if G/H is collapsible. In particular, G is collapsible if and only if the
reduction of G is K1.

(ii) (Catlin, implied by definition and Theorem 3 of [4]) C2, C3 are collapsible, and when n ≥ 4, for any e1, e2 ∈ E(Wn),
(Wn − e1)(e2) is collapsible.

(iii) (Theorem 2.3 (iii) of [14]) If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a spanning (u, v)-trail.
(iv) (Theorem 2.3 (iv) of [14]) For vertices u, v ∈ V (G/H) − {vH}, if G/H has a spanning (u, v)-trail, then G has a spanning

(u, v)-trail.
(v) Let e′, e′′

∈ E(G) − E(H). Then G has a spanning (e′, e′′)-trail if and only if G/H has a spanning (e′, e′′)-trail.
(vi) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut X has at least one edge in a 2-cycle or

3-cycle of G, then, for any two edges e′, e′′
∈ E(G), G(e′, e′′) is collapsible.

Let τ (G) denote the maximum number of edge-disjoint spanning trees of G. Let F (G) be the minimum number of
additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following
theorem summarizes results related to F (G) and supereulerianicity.

Theorem 2.4. Let G be a connected graph and let G′ be the reduction of G. Then each of the following holds.
(i) (Jaeger [9]) If F (G) = 0, then G is collapsible.
(ii) (Catlin [4]) If F (G) ≤ 1, then G′

∈ {K1, K2}. Therefore, G is supereulerian if and only if G′
̸= K2.

(iii) (Catlin et al. [5]) If F (G) ≤ 2, then G′
∈ {K1, K2, K2,t} for some integer t ≥ 1. Therefore, G is supereulerian if and only

if G′
̸∈ {K2, K2,t} for some odd integer t.

(iv) (Catlin [3]) F (G′) = 2|V (G′)| − |E(G′)| − 2. Therefore, if F (G′) ≥ 3, then 3d1(G′) + 2d2(G′) + d3(G′) ≥ 10.
(v) (Theorem 1.1 of [6]) Let k ≥ 1 be an integer. Then κ ′(G) ≥ 2k if and only if for any edge subset X ⊆ E(G) with |X | ≤ k,

τ (G − X) ≥ k.

Lemma 2.5. Assume that K = v1v2v3v1 is a triangle in a connected graph G with dG(v1) = 3. Also assume that NG(v1) =

{v2, v3, x} and e ∈ {v1v2, v2v3}. Let w be the new vertex in G/K to which K is contracted, and let u(̸= w) ∈ V (G/K ). Let T be
a spanning (u, w)-trail in G/K. Then each of the following holds.

(i) For e = v1v2, G(e) has a dominating (u, v(e))-trail T1 such that V (G(e)) − V (T1) ⊆ {v1}.
(ii) For e = v2v3, if xv1 ̸∈ E(T ), then G(e) has a spanning (u, v(e))-trail T2.

Proof. Since u ̸= w, we have O(T ) = {u, w}. Let H be the subgraph induced by E(T ) in G. Then H may not be connected,
O(H) ⊆ {u, v1, v2, v3}, and dH (u) is odd. Since dG(v1) = 3 and v1v2, v1v3 ̸∈ E(T ), dH (v1) ∈ {0, 1}.

Assume dH (v1) = 0. Then xv1 ̸∈ E(H) and dH (v2) + dH (v3) = dT (w) is odd. Thus either dH (v2) or dH (v3) is odd. So

T1 =

{
T + {v2v3, v3v1, v1v(v1v2)}, if dH (v2) is odd
T + {v2v3, v2v(v1v2)}, if dH (v3) is odd is a dominating (u, v(e))-trail of G(e) with V (G(e))−V (T1) ⊆ {v1}

if e = v1v2, and T2 =

{
T + {v2v1, v1v3, v3v(v2v3)}, if dH (v2) is odd
T + {v2v1, v1v3, v2v(v2v3)}, if dH (v3) is odd is a spanning (u, v(e))-trail in G(e) if e = v2v3.

Assume dH (v1) = 1. Then xv1 ∈ E(H), dH (v2) + dH (v3) = dT (w) − 1 is even, and e = v1v2. Thus both dH (v2) and dH (v3)
are even or odd. If dH (v2) and dH (v3) are even, then T1 = T + {v1v3, v2v3, v2v(v1v2)} is a spanning (u, v(v1v2))-trail in
G(v1v2). If both dH (v2) and dH (v3) are odd, O(H) ⊆ {u, v1, v2, v3}, therefore H has at most two components. If v1 and v3
are in the same component of H , then T1 = T + {v2v3, v1v(v1v2)} is a spanning (u, v(v1v2))-trail in G(v1v2). If v1 and v3
are not in the same component of H , then T1 = T + {v1v3, v2v(v1v2)} is a spanning (u, v(v1v2))-trail in G(v1v2). ■
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Lemma 2.6. Let G be a 3-edge-connected, essentially 4-edge-connected graph. Let v1v2v3v1 be a triangle in G. If dG(vi) = 3
for i = 1, 2, 3, then G = K4.

Proof. Since G is essentially 4-edge-connected and dG(vi) = 3, we have |NG(vi) ∩ NG(vj)| ≥ 2 for some {i, j} ⊆ {1, 2, 3}.
Without loss of generality, we assume that x ∈ NG(v1)∩NG(v2)−{v3}. Consider NG(v3) and assume that NG(v3) = {v1, v2, y}.
Then {xv1, xv2, yv3} is a 3-edge-cut in G. Since G is 3-edge-connected and essentially 4-edge-connected, we have x = y,
and so G = K4. ■

Lemma 2.7. Let s ≥ 3 be an integer and G be a graph with κ ′(G) ≥ 3 and ess′(G) ≥ s + 2. If v ∈ D3(G), then κ ′(G − v) ≥ 3
and ess′(G − v) ≥ s + 1.

Proof. Let NG(v) = {u1, u2, u3}. Let X be an edge cut of G−v and let H1,H2 be components of (G−v)−X . If u1, u2, u3 ∈ V (Hi)
for some i ∈ {1, 2}, then |X | ≥ 3. If u1 ∈ V (H1) and u2, u3 ∈ V (H2), then |X | ≥ s ≥ 3 since X ∪ {vu2, vu3} is an essential
edge cut in G, and so κ ′(G − v) ≥ 3. Let Y be an essential edge cut of G − v and let H1,H2 be components of (G − v) − Y .
If u1, u2, u3 ∈ V (Hi) for some i ∈ {1, 2}, then |Y | ≥ s + 2. If u1 ∈ V (H1) and u2, u3 ∈ V (H2), then Y ∪ {vu1} is an essential
edge cut of G, implying that |Y | ≥ s + 1 and so ess′(G − v) ≥ s + 1. ■

3. Graphs with property K(s)

Throughout this section, we assume that s ≥ 2 is an integer. We shall introduce a property of graphs which will play
an important role in our arguments.

Definition 3.1. Let K denote the graph family such that a (connected) graph G is in K if and only if G satisfies each of
the following.

(KS1) For any w ∈ D3(G), the subgraph induced by NG(w) contains at least one edge.
(KS2) Let w ∈ NG(x1) ∩ NG(x2), where x1, x2 ∈ D3(G) and x1x2 ̸∈ E(G). If NG(w) = {x1, x2, v}, then either vx1 ̸∈ E(G) or

vx2 ̸∈ E(G).
(KS3) Let w1, w2 ∈ NG(x1) ∩ NG(x2), where x1, x2 ∈ D3(G) and x1x2 ̸∈ E(G). If w1w2 ∈ E(G), then NG(w1) ∪ NG(w2) ⊆

NG(x1) ∪ NG(x2) ∪ {x1, x2}.

By definition, every claw-free graph satisfies (KS1) and (KS3). For an integer s ≥ 2, a graph G is said to have Property
K(s) if G is in K − {K4,W4,W5} and satisfies both κ ′(G) ≥ 3 and ess′(G) ≥ s + 2.

Lemma 3.2. If the graph G has Property K(s), then there is a set △(G) of edge-disjoint triangles in G such that D3(G) ⊆ V (△(G))
and D3(G) ∩ V (K ) ̸= ∅ for each K ∈ △(G).

Proof. By (KS1), each vertex with degree 3 is in a triangle. We choose a set △(G) of triangles in G such that
(i) D3(G) ⊆ V (△(G)) and D3(G) ∩ V (K ) ̸= ∅ for each K ∈ △(G);
(ii) subject to (i), the size of T = {e ∈ E(G) : e ∈ E(K ) ∩ E(L), where K , L ∈ △(G)} is as small as possible.
To prove this lemma, it suffices to prove that T = ∅. By contradiction, we assume that T ̸= ∅. Then there are two

triangles K = w1u1u2w1 and L = w2u1u2w2 in △(G).
If dG(w1) ≥ 4, then either dG(u1) = 3 or dG(u2) = 3 since D3(G) ∩ V (K ) ̸= ∅. Without loss of generality, we assume

that dG(u1) = 3. By Lemma 2.6, we have either dG(u2) ≥ 4 or dG(w2) ≥ 4. If one of dG(u2) and dG(w2) equals three, we
set △

′(G) = △(G) − {K }. Then (i) is satisfied but (ii) is violated, a contradiction. So both dG(u2) ≥ 4 and dG(w2) ≥ 4. Let
△

′(G) = △(G) − {K }. Then (ii) is violated, a contradiction. So dG(w1) = 3. Similarly, dG(w2) = 3.
Notice that G ̸= K4. If w1w2 ∈ E(G), by Lemma 2.6, dG(u1) ≥ 4 and dG(u2) ≥ 4. Let △

′(G) = (△(G)−{K , L})∪{w1w2u2w1}.
Then (ii) is violated. So w1w2 ̸∈ E(G). By (KS2), we have dG(u1) ≥ 4 and dG(u2) ≥ 4. By (KS3), NG(u1)∪NG(u2) ⊆ NG(w1)∪
NG(w2) ∪ {w1, w2}. Then there are two vertices x1, x2 such that x1w1, x1u2, x2u1, x2w2 ∈ E(G). Thus dG(u1) = dG(u2) = 4.
Since G is essentially 4-edge-connected, dG(x1) ≥ 4 and dG(x2) ≥ 4. Let △

′(G) = (△(G) − {K }) ∪ {x1w1u2x1}. Then (ii) is
violated. This contradiction tells us that T = ∅. Hence △(G) is a set of edge-disjoint triangles in G. ■

Fig. 1. G∗

1 = G1/△
′(G).
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Let v ∈ D3(G). By Lemma 3.2, there is a triangle containing v in △(G). We denote this triangle by △v . Thus, for
v, u ∈ D3(G), we have either E(△v) = E(△u) or E(△v) ∩ E(△u) = ∅. Fix a given subset X = {e1, e2, . . . , es} ⊆ E(G).
Define △

′(G) =
⋃

v∈D3(G),E(△v )∩X=∅
{△v} and △

∗(G) = △(G) − △
′(G). Then △(G) = △

′(G) if X ∩ E(△(G)) = ∅. Define
G1 = G/△(G), and we use G∗

1 to denote G/△′(G). Thus if X ∩ E(△(G)) = ∅, then G1 = G∗

1, and if △
∗(G) = {△v1 , . . . ,△vt },

then {v1, . . . , vt} ⊆ D3(G∗

1) and E(△vi )∩X ̸= ∅ for i = 1, . . . , t (Fig. 1). We call G1 a △-contraction of G. By Theorem 2.4(v),
for any X ⊆ E(G1) with |X | ≤ 2, τ (G1 − X) = 2, and so F (G1 − X) = 0. Since κ ′(G) ≥ 3 and ess′(G) ≥ s + 2, we have

κ ′(G1) ≥ 4, ess′(G1) ≥ s + 2, κ ′(G∗

1) ≥ 3, ess′(G∗

1) ≥ s + 2, and Di(G∗

1) ⊆ Di(G) for i ∈ {3, . . . , s + 1}. (1)

Lemma 3.3. Suppose that s ∈ {2, 3, 4} and NG(x1) ∩ NG(x2) ∩ NG(x3) = ∅ for any x1, x2, x3 ∈ D3(G) if s ≥ 3. If G has
Property K(s), then for any edge subset X ⊆ E(G) with |X | ≤ s, G − X has a dominating eulerian subgraph T such that
V (G) − V (T ) ⊆

⋃s+1
i=3 Di(G).

Proof. Let X = {e1, . . . , es}. Let G1 be a △-reduction of G. By (1), Di(G∗

1) ⊆ Di(G) for i = 3, . . . , s + 1. Since a triangle is
collapsible, to prove Lemma 3.3, it suffices to prove that

G∗

1 − {e1, . . . , es} has a dominating eulerian subgraph T such that V (G∗

1) − V (T ) ⊆

s+1⋃
i=3

Di(G∗

1). (2)

Claim 1. If s = 2, then G∗

1 − {e1, e2} has a dominating eulerian subgraph T such that V (G∗

1) − V (T ) ⊆ {v} ⊆ D3(G∗

1).
Furthermore, if V (G∗

1) − V (T ) = {v}, then either e1, e2 are incident to v, or the reduction of G∗

1 − {e1, e2} is K2,3.

Proof. Since G∗

1 is 3-edge-connected, G∗

1 − {e1, e2} is connected. If G∗

1 contains the triangle △u with V (△u) = {u, w, v},
by Lemma 2.6, we have max{dG∗

1
(v), dG∗

1
(w)} ≥ 4. Without loss of generality, we assume that dG∗

1
(w) ≥ 4. We add the

new edge fu parallel to the edge uw in G∗

1. Let T = {fu : u ∈ D3(G∗

1)}. Since G∗

1 has at most two triangles that contain
the vertices of degree 3, |T | ≤ 2. Let G2 be the graph obtained from G∗

1 by adding the edges in T . Then κ ′(G2) ≥ 4.
By Theorem 2.4(iv), F (G∗

1) = F (G2 − T ) = 0, and so F (G∗

1 − {e1, e2}) ≤ 2. Let G′ be the reduction of G∗

1 − {e1, e2}. By
Theorem 2.4(iii), G′

∈ {K1, K2, K2,t} for some odd integer t ≥ 1.
If G′

= K1, then G∗

1 − {e1, e2} is collapsible. Hence G∗

1 − {e1, e2} has a spanning eulerian subgraph. If G′
= K2 with

V (G′) = {u1, u2}, then either PI(u1) or PI(u2) is trivial. Without loss of generality, we assume that PI(u1) is trivial. Since G∗

1
is 3-edge-connected, e1, e2 are incident to u1. Since PI(u2) is collapsible, PI(u2) has a spanning eulerian subgraph T . This
subgraph T is a dominating eulerian subgraph of G∗

1 −{e1, e2} with V (G∗

1)−V (T ) = {u1} ⊆ D3(G∗

1). If G
′
= K2,t , then t ̸= 1

since G∗

1 is 3-edge-connected, essentially 4-edge-connected. Notice that if x ∈ D2(G′) is c-nontrivial, then both e1, e2 are
incident to some vertices in PI(x); if x ∈ D2(G′) is c-trivial or x ∈ D3(G′) is c-nontrivial, then either e1 or e2 is incident to
some vertex in PI(x). Thus t ≤ 3 and so G′

= K2,3. Claim 1 holds. ■

By Claim 1, we assume that s ∈ {3, 4}. Notice that NG(x1) ∩ NG(x2) ∩ NG(x3) = ∅ for x1, x2, x3 ∈ D3(G). By (1), we have

for i ∈ {3, . . . , s + 1}, if x ∈ Di(G∗

1), then x ∈ Di(G) and |NG∗
1
(x) ∩ D3(G∗

1)| ≤ 2. (3)

Claim 2. If s = 3, then G∗

1 − {e1, e2, e3} has a dominating eulerian subgraph T such that V (G∗

1) − V (T ) ⊆ D3(G∗

1) ∪ D4(G∗

1)
and |V (G∗

1) − V (T )| ≤ 2. Furthermore, if V (G∗

1) − V (T ) = {x1, x2}, then x1, x2 ∈ D3(G∗

1), and if V (G∗

1) − V (T ) = {x} and
x ∈ D4(G∗

1), then either e1, e2, e3 are incident to x, or G∗

1 = G = K−

5 and G∗

1 − {e1, e2, e3} = K2,3.

Proof. Assume that G∗

1 − {e1, e2, e3} is not connected. Then e1, e2, e3 are incident to a vertex v with dG(v) = 3. As G∗

1 is
essentially 5-edge-connected, dG(x) ≥ 4 for x ∈ NG(v), and so D3(G∗

1) = {v}. Let G2 be the graph obtained from G∗

1 by
adding the edge e′

1 that is parallel to the edge e1. Then G2 is 4-edge-connected. Thus τ (G2 − {e1, e′

1}) = τ (G∗

1 − e1) ≥ 2.
As dG∗

1−e1 (v) = 2, τ (G∗

1 − v) ≥ 2 and so G∗

1 − v is collapsible. Therefore, G∗

1 − v is supereulerian and G∗

1 − {e1, e2, e3}
has a dominating eulerian subgraph T1 such that V (G∗

1) − V (T1) = {v} ⊆ D3(G∗

1). Next we assume that G∗

1 − {e1, e2, e3} is
connected. Since ess′(G) ≥ 5, D3(G∗

1) is an independent set. Thus |D3(G∗

1)| ≤ 3.
If |D3(G∗

1)| = 3, then there are three triangles △v1 , △v2 and △v3 in G∗

1 such that each triangle contains one of
{e1, e2, e3}. Let V (△vi ) = {vi, ui, wi} and ei ∈ E(△vi ) for i = 1, 2, 3. By Lemma 2.7, G∗

1 − v1 is 3-edge-connected
and essentially 4-edge-connected. By Claim 1, (G∗

1 − v1) − {e2, e3} has a dominating eulerian subgraph T4 such that
V (G∗

1 − v1) − V (T4) ⊆ {y1} ⊆ D3(G∗

1 − v1). If V (G∗

1 − v1) = V (T4), then T4 is a spanning eulerian subgraph of

(G∗

1 − v1) − {e2, e3} and T5 =

{
T4 if e1 ̸∈ E(T4)
T4 − {u1w1} + {v1u1, v1w1} if e1 ∈ E(T4)

is a dominating eulerian subgraph of

G∗

1 − {e1, e2, e3} with V (G∗

1) − V (T5) ⊆ {v} ⊆ D3(G∗

1). So we assume V (G∗

1 − v1) − V (T4) = {y1}. Thus v1y1 ∈ E(G∗

1)

(otherwise, T6 =

{
T4 if e1 ̸∈ E(T4)
T4 − {u1w1} + {v1u1, v1w1} if e1 ∈ E(T4)

is a dominating eulerian subgraph of G∗

1 − {e1, e2, e3}

with V (G∗

1) − V (T6) ⊆ {v1, y1} ⊆ D3(G∗

1)).
If the reduction Q of G∗

1−v1−{e2, e3} is K2,3 with D2(Q ) = {a1, a2, a3}, then y1 ∈ {a1, a2, a3}. Without loss of generality,
we assume that y1 = a3. Since ess′(G∗

1) ≥ 5, NG∗
1
(v1)∩V (PI(ai)) ̸= ∅(i = 1, 2). Thus G∗

1 −{e1, e2, e3} is supereulerian. So we
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assume that the reduction of G∗

1−v1−{e2, e3} is not K2,3. By Claim 1, e2, e3 are incident to y1, and so dG∗
1
(y1) = 4. Similarly,

using the above discussion on △v2 and △v3 , there are two vertices y2, y3 such that {e1, e3} ⊆ EG∗
1
(y2) and {e1, e2} ⊆ EG∗

1
(y3),

and dG∗
1
(y2) = dG∗

1
(v3) = 4. Then E(y1y2y3y1) = {e1, e2, e3}, contrary to the fact that e1, e2, e3 are on the different triangles

in G∗

1. So |D3(G∗

1)| ≤ 2.
Let G3 be the graph obtained from G∗

1 by adding the new edge v1v2 if D3(G∗

1) = {v1, v2}, or the edge parallel to vu
if D3(G∗

1) = {v} and u ∈ NG∗
1
(v). Then G3 is 4-edge-connected. Thus F (G∗

1 − {e1, e2, e3}) ≤ 2. Let G′ be the reduction of
G∗

1 − {e1, e2, e3}. By Theorem 2.4(iii), G′
∈ {K1, K2, K2,t}, where t ≥ 1 is an odd integer. Notice that if x ∈ D2(G′) is c-

nontrivial, |EG∗
1
(PI(x)) ∩ {e1, e2, e3}| ≥ 2, and if x ∈ D2(G′) is c-trivial, |EG∗

1
(x) ∩ {e1, e2, e3}| ≥ 1. So t ≤ 3. Since κ ′(G∗

1) ≥ 3
and ess′(G∗

1) ≥ 4, t ≥ 3. So G′
= K2,3 if G′

= K2,t .
If G′

= K1, then G∗

1 −{e1, e2, e3} is collapsible. Hence G∗

1 −{e1, e2, e3} has a spanning eulerian subgraph. If G′
= K2 with

V (G′) = {z1, z2}, then either PI(z1) or PI(z2) is trivial. Without loss of generality, we assume that PI(z1) is trivial. Since G∗

1
is 3-edge-connected, |EG∗

1
(z1) ∩ {e1, e2, e3}| ≥ 2. Since PI(z2) is collapsible, PI(z2) has a spanning eulerian subgraph T . This

subgraph T is a dominating eulerian subgraph of G∗

1 −{e1, e2, e3} with V (G∗

1)−V (T ) = {z1} ⊆ D3(G∗

1)∪D4(G∗

1). In addition,
if z1 ∈ D4(D∗

1), then e1, e2, e3 are incident to z1. If G′
= K2,3, as G is essentially 5-edge-connected, G = G∗

1 = K−

5 and
G∗

1 −{e1, e2, e3} = K2,3. Thus G∗

1 −{e1, e2, e3} has a dominating eulerian subgraph T with V (G∗

1 −{e1, e2, e3})−V (T ) = {x},
where x ∈ D4(G∗

1). ■

We will finish the proof of Lemma 3.3 by proving the following claim.

Claim 3. If s = 4, then G∗

1 − {e1, e2, e3, e4} has a dominating eulerian subgraph T such that V (G∗

1) − V (T ) ⊆
⋃5

i=3 Di(G∗

1).

Proof. If G∗

1 − {e1, e2, e3, e4} is not connected, then we assume that H1,H2 are the components of G∗

1 − {e1, e2, e3, e4}. As
κ ′(G∗

1) ≥ 3 and ess′(G∗

1) ≥ 6, we have either H1 or H2 is trivial. Assume that V (H1) = {v}. Then dG∗
1
(v) ∈ {3, 4}, NG∗

1
(v) ⊆

{e1, e2, e3, e4}, and κ ′(H2) ≥ 2 and ess′(H2) ≥ 4. We assume that e1, e2, e3 ∈ EG∗
1
(v). As dG∗

1
(x) ≥ 4 for any x ∈ NG∗

1
(v), G∗

1
contains at most two vertices of degree three. Thus τ (G∗

1 − e4) ≥ 2. As dG∗
1−e4 (v) = 3, F (H2) = F ((G∗

1 − e4) − v) ≤ 1. By
Theorem 2.4(ii), H2 is collapsible. So G∗

1 has a dominating eulerian subgraph T1 with V (G∗

1)−V (T1) = {v} ⊆ D3(G∗

1)∪D4(G∗

1).
Next we assume that G∗

1 − {e1, e2, e3, e4} is connected.
Since ess′(G∗

1) ≥ 6, D3(G∗

1) ∪ D4(D∗

1) is independent. Let G′ be the reduction of G∗

1 − {e1, e2, e3, e4}. If G′
= K1,

then G∗

1 − {e1, e2, e3, e4} is collapsible. Hence G∗

1 − {e1, e2, e3, e4} has a spanning eulerian subgraph. If G′
= K2 with

V (G′) = {a1, a2}, then either PI(a1) is trivial or PI(a2) is trivial. Without loss of generality, we assume that PI(a1) is
trivial. As PI(a2) is collapsible, PI(a2) has a spanning eulerian subgraph T1. This T1 is a dominating eulerian subgraph
in G∗

1 − {e1, e2, e3, e4} with V (G∗

1) − V (T1) = {a1} ⊆
⋃5

i=3 Di(G∗

1). So

if G′
∈ {K1, K2}, then Claim 3 is true. (4)

Assume that D3(G∗

1) = ∅. Then G∗

1 = G1. Since G1 is 4-edge-connected, F (G∗

1 − {e1, e2, e3, e4}) ≤ 2. By Theorem 2.4(iii)
and (4), G′

= K2,p, where p ≥ 1 is an odd integer. As κ ′(G∗

1) ≥ 4 and ess′(G∗

1) ≥ 6, G′
̸= K1,2 and G′

̸= K2,p (p ≥ 5). Thus
G′

= K2,3. Hence G1 = K5 and G∗

1 − {e1, e2, e3, e4} = K2,3, and so G∗

1 − {e1, e2, e3, e4} has a dominating eulerian subgraph
T2 such that V (G∗

1) − V (T2) = {x} ⊆ D4(G∗

1).
Next we assume that there is a triangle △v containing e1 in G∗

1 such that dG∗
1
(v) = 3. Let V (△v) = {v, u2, u3} and

NG∗
1
(v) = {u1, u2, u3}. Then dG∗

1
(ui) ≥ 5 (i = 1, 2, 3). By Lemma 2.7, G∗

1 − v is 3-edge-connected, essentially 5-edge-
connected. Since ess′(G∗

1) ≥ 6, we have G∗

1 −v ̸= K−

5 . By Claim 2, (G∗

1 −v)−{e2, e3, e4} has a dominating eulerian subgraph
T3 with V (G∗

1 −v)−V (T3) ⊆ D3(G∗

1 −v)∪D4(G∗

1 −v) and |V (G∗

1 − v) − V (T3)| ≤ 2. If (V (G∗

1 −v)−V (T3))∩{u1, u2, u3} = ∅,

then T4 =

{
T3 − {u2u3} + {vu2, vu3}, if e1 = u2u3 ∈ E(T3)
T3, otherwise is a dominating eulerian subgraph of G∗

1 − {e1, e2, e3, e4}

such that V (G∗

1) − V (T4) ⊆ D3(G∗

1) ∪ D4(G∗

1). So we may assume that ui ∈ (V (G∗

1 − v) − V (T3)) ∩ {u1, u2, u3} for some
i ∈ {1, 2, 3}. As dG∗

1−v(ui) ≥ 4, by Claim 2, V (G∗

1 − v) − V (T4) = {ui} ⊆ D4(G∗

1 − v) and e2, e3, e4 are incident to ui. Thus
D3(G∗

1) = {v}. Since κ ′(G∗

1) ≥ 3 and ess′(G∗

1) ≥ 6, G∗
− v is 4-edge-connected. Thus F ((G∗

1 − v) − {e2, e3, e4}) ≤ 1 and so
F (G∗

1 − {e1, e2, e3, e4}) ≤ 1. By Theorem 2.4(ii), G′
∈ {K1, K2}. By (4), Claim 3 is true. ■

Lemma 3.4. Let s ≥ 2 be an integer and G be a graph having Property K(s). Then for any three edges e, e1, e2, G − e has a
dominating (e1, e2)-trail T such that V (G) − V (T ) ⊆ D3(G).

Proof. By contradiction, we assume that G is a counterexample to Lemma 3.4 with |V (G)| minimized. Then there exist
three edges e, e1, e2 ∈ E(G) such that

G − e does not have a dominating (e1, e2)-trail T such that V (G) − V (T ) ⊆ D3(G). (5)

Thus G ̸∈ {K4,W4,W5}. Let X = {e, e1, e2}. Since G satisfies Property K(s), let G1 be a △-reduction of G. By (1), we have
κ ′(G1) ≥ 4, κ ′(G∗

1) ≥ 3 and ess′(G∗

1) ≥ 4. Notice that a triangle is collapsible. By Theorem 2.3(iii), (iv), and by (5),

(G∗

1 − e)(e1, e2) has no a dominating (v(e1), v(e2))-trail T with V ((G∗

1 − e)(e1, e2)) − V (T ) ⊆ D3(G∗

1). (6)
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Therefore, (G∗

1 − e)(e1, e2) is not collapsible. Since G is 3-edge-connected and essentially 4-edge-connected, G∗

1(e1, e2)
is 2-edge-connected and essentially 4-edge-connected, and (G∗

1 − e)(e1, e2) is 2-edge-connected and essentially 3-edge-
connected. Let G′ be the reduction of (G∗

1 − e)(e1, e2). Then G′
̸∈ {K1, K2}.

Claim 1. (i) Each vertex in D2(G′) is c-trivial. Therefore, D2(G′) ⊆ {v(e1), v(e2), v, u}, where e = uv.
(ii) If x ∈ D3(G′) is c-nontrivial, then e is incident to a vertex in PI(x).
(iii) F ((G∗

1 − e)(e1, e2)) ≥ 3, and 2d2(G′) + d3(G′) ≥ 10.

Proof. If x ∈ D2(G′) is c-nontrivial, then e is incident to a vertex in PI(x). Without loss of generality, we assume that
v ∈ PI(x). Since G∗

1(e1, e2) is essentially 4-edge-connected, V ((G∗

1 − e)(e1, e2)) − V (PI(x)) = {u} and dG∗
1
(u) = 3. Thus

G′
= 2K2, a contradiction. Thus any vertex in D2(G′) is trivial, and so D2(G′) ⊆ {v(e1), v(e2), v, u}. Since G∗

1 is essentially
4-edge-connected, (ii) holds.

Assume that F ((G∗

1 − e)(e1, e2)) ≤ 2. By Theorem 2.4(iii), G′
∈ {K2,2, K2,3, K2,4}. If G′

= K2,2, then G′
= v(e1)uv(e2)vv(e1).

Thus G0 = G∗

1 = 3K2, contrary to the hypothesis that G is a simple graph. If G′
= K2,4, then v(e1), v(e2) ∈ D2(G′) and G′

has a spanning (v(e1), v(e2))-trail. Thus (G∗

1 − e)(e1, e2) has a spanning (v(e1), v(e2))-trail, contrary to (6). So G′
= K2,3. If

D2(G′) = {v(e1), v(e2), v}, then G′ has a spanning (v(e1), v(e2))-trail. Hence, (G∗

1 − e)(e1, e2) has a spanning (v(e1), v(e2))-
trail, contrary to (6). If D2(G′) = {v(e1), u, v} with D3(G′) = {a, b}, then v(e2) ∈ PI(a) ∪ PI(b). Without loss of generality,
we assume that v(e2) ∈ PI(a). Then the edge cut between V (PI(a)) and V (G∗

1) − V (PI(a)) is an essential 3-edge cut in
G∗

1, a contradiction. So F ((G∗

1 − e)(e1, e2)) ≥ 3. By Theorem 2.4(iv) and the fact that (G∗

1 − e)(e1, e2) is 2-edge-connected,
2d2(G′) + d3(G′) ≥ 10. ■

Claim 2. |D3(G∗

1)| ≥ 2.

Proof. By contradiction, we assume that |D3(G∗

1)| ≤ 1. If there is a triangle xyzx in G∗

1 with dG∗
1
(x) = 3, by Lemma 2.6, we

have either dG∗
1
(y) ≥ 4 or dG∗

1
(z) ≥ 4. Let G2 be the graph obtained from G∗

1 by adding the edge parallel to xz if D3(G∗

1) = {x}
with V (△x) = {x, y, z} and dG∗

1
(y) ≥ 4, or G2 = G∗

1 if D3(G∗

1) = ∅. Then G2 is 4-edge-connected. Thus τ (G∗

1 − e1) ≥ 2 and
so F ((G∗

1 − e1)(e2, e3)) ≤ 2, contrary to Claim 1(iii). Claim 2 holds. ■

Claim 3. |D3(G∗

1)| = 3.

Proof. Assume that G∗

1 contains exactly two triangles △v1 and △v2 with V (△vi ) = {vi, ui, wi}(i = 1, 2). Then {v1, v2} ⊆

D3(G∗

1) and τ (G∗

1) ≥ 2. For i = 1, 2, by Lemma 2.6, either dG∗
1
(wi) ≥ 4 or dG∗

1
(ui) ≥ 4. Without loss of generality, we assume

that dG∗
1
(wi) ≥ 4.

Claim 3.1. If E(△v1 ) contains e1 only, then e1 = u1w1, and {u1, w1} ∩ D3(G∗

1) = ∅.

Proof. By contradiction, we assume that e1 = v1u1. Let G∗

11 = G∗

1/E(△v1 ) and let z1 be the vertex in G∗

11 to which
△v1 is contracted. Let G2 be the graph obtained from G∗

11 by adding the new edge f parallel to v2u2. Then G2 is 4-edge-
connected. Thus τ (G2 − {f , e}) = τ (G∗

11 − e) ≥ 2 and so F ((G∗

11 − e)(e2)) ≤ 1. Since (G∗

11 − e)(e2) is 2-edge-connected, by
Theorem 2.4(ii), (G∗

11−e)(e2) is collapsible. Thus (G∗

11−e)(e2) has a spanning (v(e2), z1)-trail. By Lemma 2.5(i), (G∗

1−e)(e1, e2)
has a dominating eulerian trail T such that V ((G∗

1 − e)(e1, e2)) − V (T ) ⊆ {v1} ⊆ D3(G∗

1), contrary to (6). So e1 = u1w1. If
u1 ∈ D3(G∗

1), then △u1 = △v1 . Using the above discussion on u1, (G∗

1 − e)(e1, e2) has a dominating eulerian trail T such
that V ((G∗

1 − e)(e1, e2)) − V (T ) ⊆ {u1} ⊆ D3(G∗

1), contrary to (6). So {u1, w1} ∩ D3(G∗

1) = ∅. Claim 3.1 holds. ■

Claim 3.2. e, e1, e2 ∈ E(△v1 ) ∪ E(△v2 ).

Proof. Assume that e ̸∈ E(△v1 )∪E(△v2 ). Then for i = 1, 2, |E(△vi ) ∩ {e1, e2}| = 1. By Claim 3.1, {u1, w1, u2, w2}∩D3(G∗

1) =

∅. Let G3 be the graph obtained from G∗

1 by adding the edge v1v2. Then G3 is 4-edge-connected. Thus τ (G∗

1 − e) ≥ 2 and
so F ((G∗

1 − e)(e1, e2)) ≤ 2, contrary to Claim 1(iii). So e ∈ E(△v1 ) ∪ E(△v2 ).
Assume that e1 ̸∈ E(△v1 )∪ E(△v2 ). Also we assume that the triangles △v1 , △v2 contain e and e2, respectively. By Claim

3.1, e2 = u2w2 and dG∗
1
(u2) ≥ 4 and dG∗

1
(w2) ≥ 4. Let v′, u′, w′

∈ V (G′) whose preimages contain v1, u1, w1, respectively.
By Claim 1(i), d2(G′) ≤ 4. If d2(G′) = 4, then D2(G′) = {v(e1), v(e2), v1, u1}, where e = v1u1. Thus dG∗

1
(u1) = 3. By

Claim 1(ii), each vertex in D3(G′) is c-trivial. Thus D3(G′) ⊆ {v2}, and so 2d2(G′) + d3(G′) ≤ 9, contrary to Claim 1(iii). If
d2(G′) = 3, Then D2(G′) = {v1, v(e1), v(e2)}. Thus D3(G′) ⊆ {v2, u′, w′

}, and so 2d2(G′) + d3(G′) ≤ 9. If d2(G′) ≤ 2, then
D3(G′) ⊆ {v2, v

′, u′, w′
}, and so 2d2(G′) + d3(G′) ≤ 8, contrary to Claim 1(iii). So Claim 3.2 holds. ■

We use the following two cases to finish the proof of Claim 3.

Case 1. e1, e2 ∈ E(△v1 ), and e ∈ E(△v2 ).
Without loss of generality, we assume that e2 = v1w1. First we prove that e1 = u1w1. Otherwise, e1 = v1u1. As

τ (G∗

1) ≥ 2, F (G∗

1 − e) ≤ 1. By Theorem 2.4(ii), G∗

1 − e is collapsible. Let T1 be a spanning eulerian subgraph of G∗

1 − e. Then
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|E(T1) ∩ EG∗
1
(v1)| = 2. Let EG∗

1
(v1) = {v1u1, v1w1, f1}. Then T2 =

{
T1 − {e1} + {u1v(e1), v1v(e2)}, if e1, f1 ∈ E(T1)
T1 − {e1, e2} + {v(e1)u1, v(e2)w1}, if e1, e2 ∈ E(T1)

is a dominating (v(e1), v(e2))-trail in (G∗

1 − e)(e1, e2) with V ((G∗

1 − e)(e1, e2)) − V (T2) ⊆ {v1} ⊆ D3(G∗

1), contrary to (6). So
e1 = u1w1.

Consider G4 = G∗

1 − {e, e2}. Then F (G4) ≤ 2. Since κ ′(G∗

1) ≥ 3 and ess′(G∗

1) ≥ 4, and since e, e2 are in different
triangles, G4 is 2-edge-connected. Let G′

4 be the reduction of G4. By Theorem 2.4(iii), G′

4 ∈ {K1, K2,p}(p ≥ 2). Notice that
if x ∈ D2(G′

4) is c-nontrivial, then both e, e2 are incident to some vertices in PI(x); if x ∈ D2(G′

4) is c-trivial or x ∈ D3(G′

4)
is c-nontrivial, then either e or e2 is incident to some vertex in PI(x). So p ≤ 4. Furthermore, G′

4 ̸= K2,3 (otherwise,
G = W4, a contradiction). By Theorem 2.4(iii), G4 is supereulerian. Let T3 be a spanning eulerian subgraph of G4. Then

T4 =

{
T3 − {e1} + {u1v(e1), w1v(e2)}, if e1 ∈ E(T3)
T3 + {v(e1)w1, v(e2)w1}, if e1 ̸∈ E(T3)

is a spanning (v(e1), v(e2))-trail in (G∗

1 −e)(e1, e2), contrary to (6).

Case 2. e, e1 ∈ E(△v1 ), e2 ∈ E(△v2 ),
We claim that e1 = w1u1. Otherwise, assume that e1 = v1w1. Let G5 = (G∗

1 − e)(e2). Then κ ′(G5) ≥ 2 and ess′(G5) ≥ 3.
Let G′

5 be the reduction of G5. Then each vertex x ∈ D2(G′

5) is c-trivial. As d2(G5) ≤ 3, d2(G′

5) ≤ 3. Furthermore,
if d2(G′

5) = 3, then D2(G′

5) = {v1, u1, v(e2)}, where e = v1u1 and dG∗
1
(u1) = 3. Since τ (G∗

1) ≥ 2, F (G5) ≤ 2. By
Theorem 2.4(iii), G′

5 ∈ {K1, K2,3}. If G′

5 = K2,3, then G = K4, a contradiction. Thus G′

5 = K1. So G5 has a spanning (v1, v(e2))-

trail T5. Thus T6 =

{
T5 + v1v(e1), if e1 ̸∈ E(T5)
T5 − {e1} + {w1v(e1)}, if e1 ∈ E(T5)

is a dominating (v(e1), v(e2)-trail in (G∗

1 − e)(e1, e2) with

V ((G∗

1 − e)(e1, e2)) − V (T6) ⊆ {v1} ⊆ D3(G∗

1), contrary to (6). So e1 = w1u1. Using this discussion, we can get dG∗
1
(u1) ≥ 4

and dG∗
1
(w1) ≥ 4. By Claim 3.1, e2 = w2u2 and {u2, w2} ∩ D3(G∗

1) = ∅. Thus G∗

1 + v1v2 is 4-edge-connected, and so
F ((G∗

1 − e)(e1, e2)) ≤ 2, contrary to Claim 1(iii). We finish the proof of Claim 3. ■
By Claim 3, we assume that three edges e, e1 and e2 belong to 3 distinct triangles △v, △v1 , and △v2 , respectively.

Let f = vx ∈ EG∗
1
(v) − E(△v), f1 = v1x1 ∈ EG∗

1
(v1) − E(△v1 ) and f2 = v2x2 ∈ EG∗

1
(v2) − E(△v2 ). Let V (△v) =

{v, u, w}, V (△v1 ) = {v1, u1, w1}, and V (△v2 ) = {v2, u2, w2}. Also we assume that z, z1, z2 are vertices in G1 to which
△v, △v1 , △v2 are contracted, respectively. Let G2 = G∗

1/E(△v1 )∪E(△v2 ). Then κ ′(G2) ≥ 3 and ess′(G2) ≥ 4, and τ (G2−e) ≥ 2
and τ (G2 − fi) ≥ 2 (i = 1, 2). Let G3 = G2 − {f1, f2} and G4 = G2 − {e, f1, f2}. Then F (G3) ≤ 1 and F (G4) ≤ 2.

If G3 has a cut edge e′, then f1 ̸= f2 and {e′, f1, f2} is a 3-edge-cut of G2. Thus v1v2 ̸∈ E(G∗

1). As G2 is essentially
4-edge-connected, e′, f1, f2 are incident to a vertex y. Thus dG∗

1
(y) = 3. As dG2 (zi) ≥ 4(i = 1, 2), x1 = x2 = y. Let e′

= yq.
Since G is claw-free, we have either v1q ∈ E(G) or yv2 ∈ E(G). Without loss of generality, we assume that v1q ∈ E(G). This
implies that {q, y1, u1, w1} ⊆ NG∗

1
(v1), contrary to the fact that dG∗

1
(v1) = 3. So G3 is 2-edge-connected.

As F (G3) ≤ 1, by Theorem 2.4(ii), G3 is collapsible, so G3 has a spanning (z1, z2)-trail T . By Lemma 2.5(ii) and (6),
e ∈ E(T ). If |E(△v) ∩ E(T )| = 1, then T ′

= (T − {e}) + (E(△v) − {e}) is a spanning (z1, z2)-trail in G3. By Lemma 2.5(ii),
(G∗

1 − e)(e1, e2) has a spanning (v(e1), v(e2))-trail, a contradiction. So |E(△v) ∩ E(T )| ≥ 2. Furthermore, we have the
following.

if e = vu and dG∗
1
(u) = 3, then |E(△v) ∩ E(T )| = 3. (7)

(Otherwise, then |E(△v) ∩ E(T )| = 2. Since dG∗
1
(u) = 3, by symmetry, we may assume that vu, uw ∈ E(T ) and vw ̸∈ E(T ).

Then T ′
= (T − {vu, uw}) ∪ {vw} is a dominating (z1, z2)-trail in G3. By Lemma 2.5(ii), (G∗

1 − e)(e1, e2) has a dominating
(v(e1), v(e2))-trail T ′′ with V ((G∗

1 − e)(e1, e2)) − V (T ′′) = {u} ⊆ D3(G∗

1), a contradiction).
Consider G5 = G∗

1/E(△v2 ). Then κ ′(G5) ≥ 3 and ess′(G5) ≥ 4, and τ (G5) ≥ 2. Thus (G5 − e)(e1) is 2-edge-connected and
F ((G5 − e)(e1)) ≤ 2. Let G′

5 be the reduction of G5. Then G′

5 ∈ {K1, K2,p}(p ≥ 2) and each vertex in D2(G′

5) is c-trivial. As
d2(G5) ≤ 3, p ≤ 3. If G′

5 = K2,3, then G = G5 = K4, a contradiction. So G′

5 = K1 and G5 has a spanning (v(e1), z2)-trail. By
Lemma 2.5(i) and (6), e2 = w2u2. Using this discussion, we can get dG∗

1
(u2) ≥ 4 and dG∗

1
(w2) ≥ 4. Similarly, e1 = u1w1,

and dG∗
1
(u1) ≥ 4 and dG∗

1
(w1) ≥ 4.

Consider G4. Let G′

4 be the reduction of G4. Since F (G4) ≤ 2, by Theorem 2.4(iii), Lemma 2.5(ii), and (6), G′

4 ∈

{K2, K2,p}(p ≥ 1). Notice that G2 is 3-edge-connected, essentially 4-edge-connected and dG∗
1
(v1) = dG∗

1
(v2) = 3. If

a ∈ D1(G′

4) is c-trivial, then |EG∗
1
(a) ∩ {e, f1, f2}| ≥ 2. If a ∈ D2(G′

4) is c-trivial, then |NG(a) ∩ {e, f1, f2}| ≥ 1, and if
a, b ∈ D2(G′

4) are c-trivial, then ab ̸∈ {f1, f2}. If a ∈ D2(G′

4) is c-nontrivial, then |EG∗
1
(a) ∩ {e, f1, f2}| ≥ 2. If a ∈ D3(G′

4)
is c-nontrivial, then |EG∗

1
(a) ∩ {e, f1, f2}| ≥ 1. Thus, if G′

4 = K2,p, then p ≤ 4. So G′

4 ∈ {K2, K1,2, K2,2, K2,3, K2,4}.
Assume that G′

4 = K2 and V (G′

4) = {b1, b2}. Then one of b1, b2, say b1, is c-trivial. Thus z1, z2 ∈ V (PI(b2))
and PI(b2) has a spanning (z1, z2)-trail. By Lemma 2.5(ii), (G∗

1 − e)(e1, e2) has a dominating (v(e1), v(e2))-trail T with
V ((G∗

1 − e)(e1, e2)) − V (T ) = {b1} ⊆ D3(G∗

1), contrary to (6). So G′

4 ̸= K2.
Assume that G′

4 = K1,2 and V (G′

4) = {b1, b2, b3}, where dG′
4
(b3) = 2. Then b1, b2 are c-trivial vertices of G′

4, e = b1b2,
and e, f1 ∈ EG∗

1
(b1) and e, f2 ∈ EG∗

1
(b2). Thus f1 = b1v1, f2 = b2v2, v ∈ {b1, b2}, and z1, z2 ∈ PI(b2). Let V (△v) = {c, b1, b2).

Since PI(b2) is collapsible, PI(b2) has a spanning (c, z2)-trail T2. Let H be the subgraph in G∗

1/E(△v2 ) induced by E(T2).
Then dH (u1) + dH (w1) is even. If dH (u1) and dH (w1) are even, then c and z2 are in the same component of T2. Also this
component contains (at least) one of u1 and w1. Without loss of generality, we assume that w1 is in this component.
Let T3 = T2 + {cb1, b1v1, v1u1, u1v(e1)}. If dH (u1) and dH (w1) are odd, by symmetry, we assume that c and w1 are in a
component of H and z2 and u1 are in a component of H . Let T3 = T2 + {cb1, b1v1, v1u1, w1v(e1)}. Then T3 is a dominating
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(v(e1), z2)-trail of (G∗

1/E(△v2 )−e)(e1) with V ((G∗

1/E(△v2 )−e)(e1))−V (T3) = {b2} ⊆ D3(G∗

1). By Lemma 2.5(ii), (G∗

1−e)(e1, e2)
has a dominating (v(e1), v(e2))-trail T ′

3 with V ((G∗

1 − e)(e1, e2)) − V (T ′

3) = {b2} ⊆ D3(G∗

1), contrary to (6). So G′

4 ̸= K1,2.
Assume that G′

4 = K2,2 and V (G′

4) = {b1, b2, b3, b4}. Then two of b1, b2, b3, b4 are c-trivial and they are not adjacent in
G′

4. Without loss of generality, we assume that b1 and b3 are c-trivial. Then e = b1b3, and b2 and b4 are c-nontrivial. Thus f1
and f2 are edges joining vertices between PI(b2) and PI(b4). So z1, z2 ∈ V (PI(b2))∪V (PI(b4)). Since e is in △v , we may assume
that V (△v) − {b1, b3} = {c1} ⊆ V (PI(b2)). Also we assume that NG4 (b1) ∩ V (PI(b4)) = {c2} and NG4 (b3) ∩ V (PI(b4)) = {c3}.
Consider G3 and the spanning (z1, z2)-trail T . By (7), b1b3, b1c1, b3c1 ∈ E(T ). Thus b1c2, b3c3 ̸∈ E(T ). It is impossible. So
G′

4 ̸= K2,2.
Assume that G′

4 = K2,3 and V (G′

4) = {b1, b2, b3, b4, b5}, where dG′
4
(b4) = dG′

4
(b5) = 3. Then b1, b2 are c-trivial vertices

and b3, b4, b5 are c-nontrivial vertices of G′

4, and e = b1b2. Since e is in △v , we may assume that V (△v) − {b1, b2} =

{c1} ⊆ V (PI(b4)). Also we assume that NG4 (b1) ∩ V (PI(b5)) = {c2} and NG4 (b2) ∩ V (PI(b5)) = {c3}. Since b3 is a
c-nontrivial vertex, we assume that f1 joins PI(b3) and PI(b4) and f2 joins PI(b3) and PI(b5). Let c4c5 be the edge joining
PI(b4) and PI(b3), where c4 ∈ V (PI(b4)) and c5 ∈ V (PI(b3)), and let c6c7 be the edge joining PI(b5) and PI(b3), where
c6 ∈ V (PI(b3)) and c7 ∈ V (PI(b5)). Consider G3 and the spanning (z1, z2)-trail T . By (7), b1b2, b1c1, b2c1 ∈ E(T ). Thus
b1c2, b2c3 ̸∈ E(T ). So we may assume that z1 ∈ V (PI(b4)) and z2 ∈ V (PI(b5)). Consider the subgraph Q1 induced by
V (PI(b5)) ∪ {b1, b2} in G2. Then Q1 is collapsible. Let T4 be a spanning (c7, z2)-trail in Q1. Since dQ1 (b1) = dQ1 (b2) = 2,
e, b1c2, b2c3 ∈ E(T4). Let T5 be a spanning (z1, c4)-trail in PI(b4), T6 be spanning (c5, c6)-trail in PI(b4). Then the subgraph
induced by (E(T4) − {e}) ∪ {b1c1, c1b2} ∪ E(T5) ∪ E(T6) ∪ {c4c5, c6c7} is a spanning (z1, z2)-trail in G4. By Lemma 2.5(ii),
(G∗

1 − e)(e1, e2) has a spanning (v(e1), v(e2))-trail, contrary to (6). So G′

4 ̸= K2,3.
Therefore, G′

4 = K2,4. Let V (G′

4) = {b1, b2, b3, b4, b5, b6}, where dG′
4
(b5) = dG′

4
(b6) = 4. Then b1, b2 are c-trivial vertices

and b3, b4 are c-nontrivial vertices of G′

4, and e = b1b2. Since e is in △v , we may assume that V (△v) − {b1, b2} = {c1} ⊆

V (PI(b5)). Also we assume that NG4 (b1) ∩ V (PI(b6)) = {c2} and NG4 (b2) ∩ V (PI(b6)) = {c3}. Since b3, b4 are c-nontrivial
vertices, f1 and f2 join PI(b3) and PI(b4), so z1, z2 ∈ V (PI(b3)) ∪ V (PI(b4)). Let c4, c6 ∈ V (PI(b5)), c5, c9 ∈ V (PI(b3)), c7, c11 ∈

V (PI(b4)), and c8, c10 ∈ V (PI(b6)) such that c4c5, c6c7, c8c9, c10c11 ∈ E(G4). Consider G3 and the spanning (z1, z2)-trail T . By
(7), b1b2, b1c1, b2c1 ∈ E(T ). Thus b1c2, b2c3 ̸∈ E(T ). So z1, z2 ∈ V (PI(b3)) or z1, z2 ∈ V (PI(b4)). Without loss of generality, we
assume that z1, z2 ∈ V (PI(b3)). Consider the subgraph Q2 induced by V (PI(b6))∪{b1, b2} in G2. Then Q2 is collapsible. Thus
there is a spanning (c8, c10)-trail T7 in Q2. Since dQ2 (b1) = dQ2 (b2) = 2, e, b1c2, b2c3 ∈ E(T7). Let Q3 be the graph obtained
from PI(b3) by adding a new vertex c12 and the new edges c12z1 and c12z2. Then Q3 is collapsible. Let T8 be a spanning
(c5, c9)-trail in Q3. Then c12z1, c12z2 ∈ E(T8). Let T9 = T8 − {c12}. Let T10 be the spanning (c7, c11)-trail in PI(b4), T11 be
the spanning (c4, c6)-trail in PI(b5). Then the subgraph induced by E(T9) ∪ (E(T7) − {e}) ∪ {b1c1, c1b2} ∪ E(T10) ∪ E(T11) ∪

{c4c5, c6c7, c8c9, c10c11} is a spanning (z1, z2)-trail in G4. By Lemma 2.5(ii), (G∗

1−e)(e1, e2) has a spanning (v(e1), v(e2))-trail,
contrary to (6). ■

4. Proof of Theorem 1.6

In this section we assume that s is a positive integer, and assume that G is connected with ess′(G) ≥ 4. Following [17],
we define the core of G, denoted by G0, to be the graph obtained from G by deleting all the vertices of degree 1, and
contracting the edge xy for each path xyz for each y ∈ D2(G). As shown in [17], we observe that G0 is well-defined, and

G0 is claw-free with κ ′(G0) ≥ 3, ess′(G0) ≥ 4 and D3(G0) = D3(G). (8)

We need one more notation. Let e = xy ∈ E(W5) with x, y ∈ D3(W5) and H be a graph and e′
= x′y′

∈ E(H). Define a
new graph H ⊕W5 to be a graph obtained from the disjoint union of H − e and W5 by identifying x and x′ to form a new
vertex, also called x, and by identifying y and y′ to form a new vertex, also called y.

Lemma 4.1. Suppose that s ≥ 2 and that G is claw-free such that κ(L(G)) ≥ s + 2. Let G0 be the core of G and let
w1, w2, w3 ∈ D3(G0) be vertices with NG0 (w2) = {w1, w3, v}. If vw1, vw3 ∈ E(G0), then each of the following holds.

(i) s = 2.
(2) either G = G0 ∈ {K4,W4,W5}, or there exists a subgraph Γ of G with κ ′(Γ ) ≥ 3 and ess′(Γ ) ≥ 4 such that G0 = Γ ⊕W5.

Proof. Since (EG0 (w1) − {w1w2}) ∪ {w2v, w2w3} is an essential 4-edge cut of G0, we must have s = 2. If w1w3 ∈ E(G0)
or dG0 (v) = 3, then by Lemma 2.6, we have G = G0 = K4. Thus we assume that dG0 (v) ≥ 4 and w1w3 ̸∈ E(G0). Let
w4 ∈ NG0 (v) − {w1, w2, w3}. As G0 is claw-free and by symmetry, we may assume that w4w3 ∈ E(G0).

If dG0 (v) = 4, then w1w4 ∈ E(G0) (otherwise, let z ∈ NG0 (w1)−{v, w2}. Then {zw1, w4v, w4w3} is an essential 3-edge cut
in G0, a contradiction). As G0 is claw-free and dG0 (w1) = dG0 (w3) = 3, G0 = W4. Since G is essentially 4-edge-connected,
G = G0 = W4.

Assume that dG0 (v) ≥ 5. Let w5 ∈ NG0 (v) − {w1, w2, w3, w4}. Since G0 is claw-free and since w1, w3 ∈ D3(G0),
we have w1w5 ∈ E(G0) and dG0 (v) = 5. Since G0[{v, w2, w4, w5}] ̸= K1,3, we must have w4w5 ∈ E(G0). Let X =

NG0 (w4) ∪ NG0 (w5) − {v, w1, w2, . . . , w5}. If X = ∅, then G0 = W5, and so G = G0. Assume that X = {v1, . . . , vk} ̸= ∅.
As G0 is claw-free, G0[{v1, . . . , vk, w4, w5}] = Kk+2, as depicted in Fig. 2. Since κ ′(G0) ≥ 3, we have k ≥ 2. Let
Γ = G0 − {w1, w2, w3, v}. Then G0 = Γ ⊕W5. As G0[{v1, . . . , vk, w4, w5}] = Kk+2 and k ≥ 2, we conclude that κ ′(Γ ) ≥ 3
and ess′(Γ ) ≥ 4. ■
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Fig. 2. Kk+2 ⊕ W5 in Lemma 4.1.

Throughout the rest of the proofs, we will adopt the following notation and assumptions. Let s ≥ 2 be an integer,
G be a claw-free graph, H = L(G) with κ(L(G)) ≥ s + 2 in the proof of Theorem 1.6(i) or κ(L(G)) ≥ 4 in the proof of
Theorem 1.6(ii). Since every complete graph of order at least s+3 is s-hamiltonian and 1-hamiltonian-connected, we will
assume that L(G) is not a complete graph, and so ess′(G) = κ(L(G)). Let G0 be the core of G. As shown in [17], we have
κ ′(G0) ≥ 3 and ess′(G0) ≥ κ(L(G)). Thus if ess′(G0) ≥ s + 2, then for i = 3, . . . , s + 1, we have Di(G) = Di(G0). As G is
claw-free, G0 is also claw-free.

Proof of Theorem 1.6. (i). It suffices to prove that if κ(L(G)) ≥ s + 2, then L(G) is s-hamiltonian. By Theorem 1.4, we
assume that s ∈ {2, 3, 4}. To prove H is s-hamiltonian, it suffices to prove that for any X = {e1, . . . , es} ⊂ E(G0),

G0 − X has a dominating eulerian subgraph T such that V (G0) − V (T ) ⊆

s+1⋃
i=3

Di(G0). (9)

If G0 ∈ {K4,W4,W5}, then s = 2 and G = G0. Thus (9) holds, and so we may assume that G0 ̸∈ {K4,W4,W5}.
If s ≥ 3, then as G0 is claw-free and essentially 5-edge-connected, for any x1, x2, x3 ∈ D3(G0), we have NG0 (x1) ∩

NG0 (x2) ∩ NG0 (x3) = ∅. Hence by Lemma 3.3, G0 does not have Property K(s). Since G0 is claw-free, G0 must violate (KS2).
Arguing by contradiction, we assume that

G is a counterexample to Theorem 1.6(i) with |V (G0)| minimized. (10)

Since G0 violates (KS2), there exist w1, w2, w3 ∈ D3(G0) with NG0 (w2) = {w1, w3, v} and vw1, vw3 ∈ E(G0). Since
G0 ̸∈ {K4,W4,W5}, by Lemma 4.1, s = 2 and G0 = Γ ⊕ W5, for a claw-free graph Γ with κ ′(Γ ) ≥ 3 and ess′(Γ ) ≥ 4.
Assume that V (W5) = {v, w1, . . . , w5} with w4w5 ∈ E(Γ ) ∩ E(W5), as depicted in Fig. 2.

If e1, e2 ∈ E(Γ ), then by (10), Γ − {e1, e2} has a dominating eulerian subgraph T1 such that V (Γ ) − V (T1) ⊆ D3(Γ ).
Thus T2 = T1 + w1w2w3w4vw5w1 is a dominating eulerian subgraph in G0 − {e1, e2} such that V (G0) − V (T2) ⊆ D3(G0), a
contradiction.

If e1 ∈ E(Γ ) and e2 ∈ E(W5) − E(Γ ), then by (10), Γ − {e1, w4w5} has a dominating eulerian subgraph T3 such that
V (Γ ) − V (T3) ⊆ D3(Γ ). By Theorem 2.3(iii), W5 − e2 is collapsible. Thus W5 − e2 has a spanning eulerian subgraph T4.
Therefore, L1 = G0[E(T3) ∪ E(T4)] is a dominating eulerian subgraph in G0 − {e1, e2} such that V (G0) − V (L1) ⊆ D3(G0), a
contradiction.

If e1, e2 ∈ E(W5)− E(Γ ), then W5 − {e1, e2} has a dominating eulerian subgraph T5 such that V (W5)− V (T5) ⊆ D3(G0).
By (10), Γ − {w4w5} has a dominating eulerian subgraph T6 such that V (Γ )− V (T6) ⊆ D3(Γ ). Thus L2 = G0[E(T5)∪ E(T6)]
is a dominating eulerian subgraph in G0 −{e1, e2} such that V (G0)−V (L2) ⊆ D3(G0), a contradiction. These contradictions
establish the theorem. ■

Proof of Theorem 1.6. (ii). By Theorem 2.1(ii), it suffices to show that for any three edges e, e1, e2 ∈ E(G), G − e has a
dominating (e1, e2)-trail. In view of this goal, for any y ∈ D2(G) with NG(y) = {xy, zy}, we may assume that xyy ̸∈ {e, e1, e2}.
With this, and letting G0 be the core of G, it suffices to assume that e, e1, e2 ∈ E(G0), and to show G0 − e has a dominating
(e1, e2)-trail T with V (G0) − V (T ) ⊆ D3(G0). By contradiction, we assume that G is a counterexample to Theorem 1.6(ii)
with |V (G0)| minimized. Thus by Lemma 2.2, there exist edges e, e1, e2 ∈ E(G0), with G∗

0 denoting (G0 − e)(e1, e2), such
that

G∗

0 does not have a dominating (v(e1), v(e2))-trail T such that V (G∗

0) − V (T ) ⊆ D3(G0). (11)

By (11) and Theorem 2.3(iii), we assume that G0 ̸∈ {K4,W4,W5} and G∗

0 is not collapsible. By Lemma 3.4, G0 does not have
Property K(s). As G0 is claw-free, (KS2) is violated. Thus there exist w1, w2, w3 ∈ D3(G0) with NG0 (w2) = {w1, w3, v} and
vw1, vw3 ∈ E(G0). By Lemma 4.1, G0 = Γ ⊕ W5, for a subgraph Γ of G0 with κ ′(Γ ) ≥ 3 and ess′(Γ ) ≥ 4. Assume that
V (W5) = {v, w1, . . . , w5} with w4w5 ∈ E(Γ ) ∩ E(W5), as depicted in Fig. 2.

If {e, e1, e2} ∩ E(W5) = ∅, then by the minimality of G0, (Γ − e)(e1, e2) has a dominating (v(e1), v(e2))-trail T1 with
V ((Γ − e)(e1, e2)) − V (T1) ⊆ D3(Γ ). It follows from G0 = Γ ⊕ W5 that (11) is violated. If e, e1, e2 ∈ E(W5), then by
inspection, (W5 − e)(e1, e2) has a dominating (v(e1), v(e2))-trail T2 that contains either w4 or w5. By Theorem 2.3(vi),
Γ has a spanning eulerian trail T3. Thus T4 = G∗

0[(E(T2) − E(T3)) ∪ (E(T3) − E(T2))] is a dominating (v(e1), v(e2))-trail
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in G∗

0 with V (G∗

0) − V (T4) ⊆ D3(G0), contrary to (11). Thus we assume that {e, e1, e2} ∩ (E(Γ ) − E(W5)) ̸= ∅ and
{e, e1, e2} ∩ (E(W5) − E(Γ )) ̸= ∅.

Assume that e ∈ E(W5). If e1 ∈ E(W5), then e2 ∈ E(Γ ) − E(W5). By Theorem 2.3(ii), (W5 − e)(e1) is collapsible. By
Theorem 2.3(vi), Γ (e2) is collapsible. Thus G∗

0 is collapsible, a contradiction. If e1, e2 ∈ E(Γ ), by Theorem 2.3(vi), Γ (e1, e2)
is collapsible. Thus G∗

0 is collapsible, a contradiction again. So e ∈ E(Γ ) − E(W5). As {e, e1, e2} ∩ (E(W5) − E(Γ )) ̸= ∅, we
assume that e1 ∈ E(W5) − E(Γ ).

Assume that e2 ∈ E(Γ ). As (W5 − w4w5)(e1) is collapsible, let T5 be a spanning (v(e1), w4)-trail in W5(e1). Let f1 ∈

EΓ (w4)−{w4w5, e}. By the choice of G, (Γ −e)(e2, f1) has a dominating (v(e2), v(f1))-trail T6 with V ((Γ −e)(e2, f1))−V (T6) ⊆

D3(Γ ). Let E1 =

{
E(T6) − {w4v(f1)}, if w4v(f1) ∈ E(T6)
E(T6) ∪ {w4v(f1)}, if w4v(f1) ̸∈ E(T6)

. Then the subgraph T7 induced by E(T5) ∪ E1 is a dominating

(v(e1), v(e2))-trail in G∗

0 with V (G∗

0) − V (T7) ⊆ D3(G0), contrary to (11). So e2 ∈ E(W5) − E(Γ ).
Let f2 ∈ EΓ (w4) − {w4w5, e}. By the choice of G, (Γ − e)(f2, w4w5) has a dominating (v(f2), v(w4w5))-trail T8 with

V ((Γ − e)(f2, w4w5)) − V (T8) ⊆ D3(Γ ). Let M = {w4v(f2), w4v(w4w5)} and E2 = (E(T8) − M) ∪ (M − E(T8)). By
Theorem 2.3(vi), W5(e1, e2) is collapsible. Thus W5(e1, e2) has a spanning (v(e1), v(e2))-trail T9. So the subgraph T10 induced
by (E(T9)− E2)∪ (E2 − E(T9)) is a dominating (v(e1), v(e2))-trail in G∗

0 with V (G∗

0)−V (T10) ⊆ D3(G0), contrary to (11). ■
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