Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On *s*-hamiltonian line graphs of claw-free graphs

Hong-Jian Lai^{a,1}, Mingquan Zhan^b, Taoye Zhang^c, Ju Zhou^d

^a Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^b Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

^c Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, USA

^d Department of Mathematics, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA

ARTICLE INFO

Article history: Received 19 May 2018 Received in revised form 23 January 2019 Accepted 5 June 2019 Available online 28 June 2019

Keywords: Claw-free graphs Line graphs s-hamiltonian graphs

ABSTRACT

For an integer $s \ge 0$, a graph *G* is *s*-hamiltonian if for any vertex subset $S \subseteq V(G)$ with $|S| \le s, G - S$ is hamiltonian, and *G* is *s*-hamiltonian connected if for any vertex subset $S \subseteq V(G)$ with $|S| \le s, G - S$ is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Kučzel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjáček and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of *s*-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for $s \ge 2$, a line graph L(G) is *s*-hamiltonian if and only if L(G) is (s + 2)-connected. In this paper we prove the following.

(i) For an integer $s \ge 2$, the line graph L(G) of a claw-free graph G is s-hamiltonian if and only if L(G) is (s + 2)-connected.

(ii) The line graph L(G) of a claw-free graph G is 1-hamiltonian connected if and only if L(G) is 4-connected.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered here are finite and loopless. Unless otherwise noted, we follow [1] for notation and terms. As in [1], $\kappa(G)$ and $\kappa'(G)$ denote the connectivity and the edge-connectivity of a graph *G*, respectively. A graph is **nontrivial** if it contains edges. An edge cut *X* is **essential** if G - X has at least two nontrivial components. For an integer k > 0, a graph *G* is **essentially** *k*-**edge-connected** if *G* does not have an essential edge cut *X* with |X| < k. For a connected graph *G*, let $ess'(G) = \max\{k : G \text{ is essentially } k$ -edge-connected}, and for an integer $i \ge 0$, let $D_i(G) = \{u \in V(G) : d_G(u) = i\}$ and $d_i(G) = |D_i(G)|$. Throughout this paper, for an integer $n \ge 2$, C_n denotes a cycle on *n* vertices (called an *n*-cycle), nK_2 denotes the loopless graph on two vertices with *n* edges, W_n denotes the graph obtained from an *n*-cycle by adding a new vertex and connecting it to every vertex of the *n*-cycle, and K_5^- denotes the graph obtained from K_5 by deleting an edge. If $S \subseteq V(G)$ or $S \subseteq E(G)$, G[S] is the subgraph induced in *G* by *S*. We use $H \subseteq G$ to denote the fact that *H* is a subgraph of *G*. For $H \subseteq G$, $x \in V(G)$, $A \subseteq V(G)$, $X \subseteq E(G)$, and $Y \subseteq E(G) - E(H)$, define $N_H(x) = N_G(x) \cap V(H)$, $d_H(x) = |N_H(x)|$, G - A = G[V(G) - A], G - X = G[E(G) - X], and $H + Y = G[E(H) \cup Y]$. When $A = \{v\}$ and $X = \{e\}$, we use G - v for $G - \{v\}$ and G - e for $G - \{e\}$. Different from the notation in [1], for vertex-disjoint subgraphs H_1 and H_2 in *G*, we define $H_1 + H_2 = G[V(H_1) \cup V(H_2)]$.

A graph *G* is **claw-free** if it does not contain $K_{1,3}$ as an induced subgraph. The **line graph** of a graph *G*, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in *G* are

https://doi.org/10.1016/j.disc.2019.06.006 0012-365X/© 2019 Elsevier B.V. All rights reserved.

E-mail address: Mingquan.Zhan@millersville.edu (M. Zhan).

¹ The research is partially supported by National Natural Science Foundation of China grants (Nos. 11771039 and 11771443).

adjacent. It is straight forward to see that for a graph *G* with $|E(G)| \ge 3$, L(G) is *k*-connected if and only if *G* is essentially *k*-edge-connected. The following are several fascinating conjectures in the literature.

Conjecture 1.1. (i) (Thomassen [18]) Every 4-connected line graph is hamiltonian.

- (ii) (Matthews and Sumner [15]) Every 4-connected claw-free graph is hamiltonian.
- (iii) (Kučzel and Xiong [11]) Every 4-connected line graph is hamiltonian connected.
- (iv) (Ryjáček and Vrána [16]) Every 4-connected claw-free graph is hamiltonian connected.

Ryjacek and Vrána in [16] indicated that the statements in Conjecture 1.1 are mutually equivalent. There have been many studies on these conjectures in the literature. Among them are the following.

Theorem 1.2 (Zhan [19]). Every 7-connected line graph is hamiltonian connected.

Theorem 1.3 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is hamiltonian connected.

For an integer $s \ge 0$, a graph *G* is *s*-hamiltonian (or *s*-hamiltonian connected, respectively) if for any vertex subset $S \subseteq V(G)$ with $|S| \le s$, G - S is hamiltonian (or hamiltonian connected, respectively). In [2], Broersma and Veldman proposed an open problem: for a given positive integer *k* determine the value *s* for which the statement "for a *k*-triangular graph *G*, the line graph L(G) of *G* is *s*-hamiltonian if and only L(G) is (s + 2)-connected" is valid. Broersma and Veldman in [2] proved that the statement holds for all values *s* with $0 \le s \le k$, and conjectured that it holds if $s \le 2k$. Chen et al. in [7] proved this conjecture for all values *s* with $0 \le s \le \max\{2k, 6k - 16\}$. In [13], an attempt to characterize *s*-hamiltonian line graphs is made and the following is proved.

Theorem 1.4 ([13]). For $s \ge 5$, a line graph is s-hamiltonian if and only if it is (s + 2)-connected.

An open problem was raised in [13] that whether a line graph L(G) is *s*-hamiltonian if and only if L(G) is (s+2)-connected for $s \in \{2, 3, 4\}$. The case when s = 2 implies Conjecture 1.1(i). Motivated by Conjecture 1.1 as well as the results in [7] and [13], we propose the following conjectures.

Conjecture 1.5. Let s be an integer.

(i) For $s \ge 2$, a line graph is s-hamiltonian if and only if it is (s + 2)-connected.

- (ii) For $s \ge 2$, a claw-free graph is s-hamiltonian if and only if it is (s + 2)-connected.
- (iii) For $s \ge 1$, a line graph is s-hamiltonian connected if and only if it is (s + 3)-connected.
- (iv) For $s \ge 1$, a claw-free graph is s-hamiltonian connected if and only if it is (s + 3)-connected.

The main result in this paper is presented below, as an effort to support Conjecture 1.5(i) and (iii).

Theorem 1.6. Let G be a claw-free graph.

(i) For an integer $s \ge 2$, L(G) is s-hamiltonian if and only if $\kappa(L(G)) \ge s + 2$. (ii) L(G) is 1-hamiltonian connected if and only if $\kappa(L(G)) \ge 4$.

In Section 2, we introduce Catlin's reduction method and the related results. In Section 3 we introduce a property of graphs which will be used in our arguments to prove the main results. The proof of Theorem 1.6 is given in Section 4.

2. Preliminaries

We view a trail of *G* as a vertex-edge alternating sequence $v_0, e_1, v_1, e_2, \ldots, e_k, v_k$ such that all the e_i 's are distinct and for each $i = 1, 2, \ldots, k, e_i$ is incident to both v_{i-1} and v_i . The vertices in $v_1, v_2, \ldots, v_{k-1}$ are **internal vertices** of the trail. For edges $e', e'' \in E(G)$, an (e', e'')-trail of *G* is a trail *T* of *G* whose first edge is e' and whose last edge is e''. A **dominating** (e', e'')-**trail** of *G* is an (e', e'')-trail *T* of *G* such that every edge of *G* is incident to an internal vertex of *T*, and a **spanning** (e', e'')-**trail** of *G* is a dominating (e', e'')-trail *T* of *G* such that V(T) = V(G). Harary and Nash–Williams [8] first showed the relationship between eulerian subgraphs in *G* and hamiltonicity in L(G). Theorem 2.1(ii) is observed in [14].

Theorem 2.1. Let G be a graph with $|E(G)| \ge 3$. Each of the following holds.

- (i) (Harary and Nash–Williams [8]) L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.
- (ii) [14] L(G) is hamiltonian connected if and only if for any pair of edges $e', e'' \in E(G)$, G has a dominating (e', e'')-trail.

We say that an edge $e \in E(G)$ is **subdivided** when it is replaced by a path of length 2 whose internal vertex, denoted by v(e), has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the path of length 2 is called **subdividing** e. For a graph G and edges $e', e'' \in E(G)$, let G(e') denote the graph obtained from G by subdividing e', and let G(e', e'') denote the graph obtained from G by subdividing both e' and e''. Then $V(G(e', e'')) - V(G) = \{v(e'), v(e'')\}$. **Lemma 2.2** (Lemma 1.4 of [12]). For a graph G and edges $e', e'' \in E(G)$, if G(e', e'') has a spanning (v(e'), v(e''))-trail, then G has a spanning (e', e'')-trail.

Let $X \subseteq E(G)$ be an edge subset of G. The **contraction** G/X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G/H for G/E(H). If v_H is the vertex in G/H onto which H is contracted, then H is called the **preimage** of v, and denoted by PI(v). Let O(G) denote the set of odd degree vertices of *G*. A graph *G* is **eulerian** if $O(G) = \emptyset$ and *G* is connected. A graph *G* is **supereulerian** if *G* has a spanning eulerian subgraph. In [4] Catlin defined collapsible graphs. Given an even subset R of V(G), a subgraph Γ of G is called an *R***-subgraph** if $O(\Gamma) = R$ and $G - E(\Gamma)$ is connected. A graph G is **collapsible** if for any even subset R of V(G), G has an *R*-subgraph. In particular, K_1 is collapsible. Catlin [4] showed that for any graph G, one can obtain the **reduction** G' of G by contracting all maximal collapsible subgraphs of G. A graph G' is **reduced** if G' has no nontrivial collapsible subgraphs. A vertex in G' is **c-nontrivial** (or **c-trivial**) if |V(PI(x))| > 2 (or |V(PI(x))| = 1). By definition, every collapsible graph is supereulerian. We summarize some results on Catlin's reduction method and other related facts below. Theorem 2.3(v) is a straightforward application of the definition of collapsible graphs.

Theorem 2.3. Let G be a graph and let H be a collapsible subgraph of G. Let v_H denote the vertex onto which H is contracted in G/H. Each of the following holds.

(i) (Catlin, Theorem 3 of [4]) G is collapsible if and only if G/H is collapsible. In particular, G is collapsible if and only if the reduction of G is K_1 .

(ii) (Catlin, implied by definition and Theorem 3 of [4]) C_2, C_3 are collapsible, and when $n \ge 4$, for any $e_1, e_2 \in E(W_n)$, $(W_n - e_1)(e_2)$ is collapsible.

(iii) (Theorem 2.3 (iii) of [14]) If G is collapsible, then for any pair of vertices $u, v \in V(G)$, G has a spanning (u, v)-trail.

(iv) (Theorem 2.3 (iv) of [14]) For vertices $u, v \in V(G/H) - \{v_H\}$, if G/H has a spanning (u, v)-trail, then G has a spanning (u, v)-trail.

(v) Let $e', e'' \in E(G) - E(H)$. Then G has a spanning (e', e'')-trail if and only if G/H has a spanning (e', e'')-trail.

(vi) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut X has at least one edge in a 2-cycle or 3-cycle of G, then, for any two edges $e', e'' \in E(G), G(e', e'')$ is collapsible.

Let $\tau(G)$ denote the maximum number of edge-disjoint spanning trees of G. Let F(G) be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following theorem summarizes results related to F(G) and supereulerianicity.

Theorem 2.4. Let G be a connected graph and let G' be the reduction of G. Then each of the following holds.

(i) (Jaeger [9]) If F(G) = 0, then G is collapsible.

(ii) (Catlin [4]) If F(G) < 1, then $G' \in \{K_1, K_2\}$. Therefore, G is supereulerian if and only if $G' \neq K_2$.

(iii) (Catlin et al. [5]) If $F(G) \leq 2$, then $G' \in \{K_1, K_2, K_{2,t}\}$ for some integer $t \geq 1$. Therefore, G is supereulerian if and only if $G' \notin \{K_2, K_{2,t}\}$ for some odd integer t.

(iv) (Catlin [3]) F(G') = 2|V(G')| - |E(G')| - 2. Therefore, if $F(G') \ge 3$, then $3d_1(G') + 2d_2(G') + d_3(G') \ge 10$.

(v) (Theorem 1.1 of [6]) Let $k \ge 1$ be an integer. Then $\kappa'(G) \ge 2k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \le k$, $\tau(G-X) > k.$

Lemma 2.5. Assume that $K = v_1 v_2 v_3 v_1$ is a triangle in a connected graph G with $d_G(v_1) = 3$. Also assume that $N_G(v_1) = 0$ $\{v_2, v_3, x\}$ and $e \in \{v_1v_2, v_2v_3\}$. Let w be the new vertex in G/K to which K is contracted, and let $u \neq w \in V(G/K)$. Let T be a spanning (u, w)-trail in G/K. Then each of the following holds.

(i) For $e = v_1 v_2$, G(e) has a dominating (u, v(e))-trail T_1 such that $V(G(e)) - V(T_1) \subset \{v_1\}$.

(ii) For $e = v_2 v_3$, if $xv_1 \notin E(T)$, then G(e) has a spanning (u, v(e))-trail T_2 .

Proof. Since $u \neq w$, we have $O(T) = \{u, w\}$. Let H be the subgraph induced by E(T) in G. Then H may not be connected, $O(H) \subseteq \{u, v_1, v_2, v_3\}$, and $d_H(u)$ is odd. Since $d_G(v_1) = 3$ and $v_1v_2, v_1v_3 \notin E(T), d_H(v_1) \in \{0, 1\}$.

Assume $d_H(v_1) = 0$. Then $xv_1 \notin E(H)$ and $d_H(v_2) + d_H(v_3) = d_T(w)$ is odd. Thus either $d_H(v_2)$ or $d_H(v_3)$ is odd. So

are even or odd. If $d_H(v_2)$ and $d_H(v_3)$ are even, then $T_1 = T + \{v_1v_3, v_2v_3, v_2v(v_1v_2)\}$ is a spanning $(u, v(v_1v_2))$ -trail in $G(v_1v_2)$. If both $d_H(v_2)$ and $d_H(v_3)$ are odd, $O(H) \subseteq \{u, v_1, v_2, v_3\}$, therefore H has at most two components. If v_1 and v_3 are in the same component of H, then $T_1 = T + \{v_2v_3, v_1v(v_1v_2)\}$ is a spanning $(u, v(v_1v_2))$ -trail in $G(v_1v_2)$. If v_1 and v_3 are not in the same component of H, then $T_1 = T + \{v_1v_3, v_2v(v_1v_2)\}$ is a spanning $(u, v(v_1v_2))$ -trail in $G(v_1v_2)$.

Lemma 2.6. Let G be a 3-edge-connected, essentially 4-edge-connected graph. Let $v_1v_2v_3v_1$ be a triangle in G. If $d_G(v_i) = 3$ for i = 1, 2, 3, then $G = K_4$.

Proof. Since *G* is essentially 4-edge-connected and $d_G(v_i) = 3$, we have $|N_G(v_i) \cap N_G(v_j)| \ge 2$ for some $\{i, j\} \subseteq \{1, 2, 3\}$. Without loss of generality, we assume that $x \in N_G(v_1) \cap N_G(v_2) - \{v_3\}$. Consider $N_G(v_3)$ and assume that $N_G(v_3) = \{v_1, v_2, y\}$. Then $\{xv_1, xv_2, yv_3\}$ is a 3-edge-cut in *G*. Since *G* is 3-edge-connected and essentially 4-edge-connected, we have x = y, and so $G = K_4$.

Lemma 2.7. Let $s \ge 3$ be an integer and G be a graph with $\kappa'(G) \ge 3$ and $ess'(G) \ge s + 2$. If $v \in D_3(G)$, then $\kappa'(G - v) \ge 3$ and $ess'(G - v) \ge s + 1$.

Proof. Let $N_G(v) = \{u_1, u_2, u_3\}$. Let X be an edge cut of G-v and let H_1, H_2 be components of (G-v)-X. If $u_1, u_2, u_3 \in V(H_i)$ for some $i \in \{1, 2\}$, then $|X| \ge 3$. If $u_1 \in V(H_1)$ and $u_2, u_3 \in V(H_2)$, then $|X| \ge s \ge 3$ since $X \cup \{vu_2, vu_3\}$ is an essential edge cut in G, and so $\kappa'(G-v) \ge 3$. Let Y be an essential edge cut of G-v and let H_1, H_2 be components of (G-v)-Y. If $u_1, u_2, u_3 \in V(H_i)$ for some $i \in \{1, 2\}$, then $|Y| \ge s + 2$. If $u_1 \in V(H_1)$ and $u_2, u_3 \in V(H_2)$, then $Y \cup \{vu_1\}$ is an essential edge cut of G, implying that $|Y| \ge s + 1$ and so $ess'(G-v) \ge s + 1$.

3. Graphs with property $\mathcal{K}(s)$

Throughout this section, we assume that $s \ge 2$ is an integer. We shall introduce a property of graphs which will play an important role in our arguments.

Definition 3.1. Let \mathcal{K} denote the graph family such that a (connected) graph *G* is in \mathcal{K} if and only if *G* satisfies each of the following.

(KS1) For any $w \in D_3(G)$, the subgraph induced by $N_G(w)$ contains at least one edge.

(KS2) Let $w \in N_G(x_1) \cap N_G(x_2)$, where $x_1, x_2 \in D_3(G)$ and $x_1x_2 \notin E(G)$. If $N_G(w) = \{x_1, x_2, v\}$, then either $vx_1 \notin E(G)$ or $vx_2 \notin E(G)$.

(KS3) Let $w_1, w_2 \in N_G(x_1) \cap N_G(x_2)$, where $x_1, x_2 \in D_3(G)$ and $x_1x_2 \notin E(G)$. If $w_1w_2 \in E(G)$, then $N_G(w_1) \cup N_G(w_2) \subseteq N_G(x_1) \cup N_G(x_2) \cup \{x_1, x_2\}$.

By definition, every claw-free graph satisfies (KS1) and (KS3). For an integer $s \ge 2$, a graph *G* is said to have **Property** $\mathcal{K}(s)$ if *G* is in $\mathcal{K} - \{K_4, W_4, W_5\}$ and satisfies both $\kappa'(G) \ge 3$ and $ess'(G) \ge s + 2$.

Lemma 3.2. If the graph G has Property $\mathcal{K}(s)$, then there is a set $\Delta(G)$ of edge-disjoint triangles in G such that $D_3(G) \subseteq V(\Delta(G))$ and $D_3(G) \cap V(K) \neq \emptyset$ for each $K \in \Delta(G)$.

Proof. By (KS1), each vertex with degree 3 is in a triangle. We choose a set $\triangle(G)$ of triangles in G such that

(i) $D_3(G) \subseteq V(\triangle(G))$ and $D_3(G) \cap V(K) \neq \emptyset$ for each $K \in \triangle(G)$;

(ii) subject to (i), the size of $T = \{e \in E(G) : e \in E(K) \cap E(L), \text{ where } K, L \in \triangle(G)\}$ is as small as possible.

To prove this lemma, it suffices to prove that $T = \emptyset$. By contradiction, we assume that $T \neq \emptyset$. Then there are two triangles $K = w_1 u_1 u_2 w_1$ and $L = w_2 u_1 u_2 w_2$ in $\triangle(G)$.

If $d_G(w_1) \ge 4$, then either $d_G(u_1) = 3$ or $d_G(u_2) = 3$ since $D_3(G) \cap V(K) \ne \emptyset$. Without loss of generality, we assume that $d_G(u_1) = 3$. By Lemma 2.6, we have either $d_G(u_2) \ge 4$ or $d_G(w_2) \ge 4$. If one of $d_G(u_2)$ and $d_G(w_2)$ equals three, we set $\triangle'(G) = \triangle(G) - \{K\}$. Then (i) is satisfied but (ii) is violated, a contradiction. So both $d_G(u_2) \ge 4$ and $d_G(w_2) \ge 4$. Let $\triangle'(G) = \triangle(G) - \{K\}$. Then (ii) is violated, a contradiction. So $d_G(w_1) = 3$. Similarly, $d_G(w_2) = 3$.

Notice that $G \neq K_4$. If $w_1w_2 \in E(G)$, by Lemma 2.6, $d_G(u_1) \ge 4$ and $d_G(u_2) \ge 4$. Let $\triangle'(G) = (\triangle(G) - \{K, L\}) \cup \{w_1w_2u_2w_1\}$. Then (ii) is violated. So $w_1w_2 \notin E(G)$. By (KS2), we have $d_G(u_1) \ge 4$ and $d_G(u_2) \ge 4$. By (KS3), $N_G(u_1) \cup N_G(u_2) \subseteq N_G(w_1) \cup N_G(w_2) \cup \{w_1, w_2\}$. Then there are two vertices x_1, x_2 such that $x_1w_1, x_1u_2, x_2u_1, x_2w_2 \in E(G)$. Thus $d_G(u_1) = d_G(u_2) = 4$. Since *G* is essentially 4-edge-connected, $d_G(x_1) \ge 4$ and $d_G(x_2) \ge 4$. Let $\triangle'(G) = (\triangle(G) - \{K\}) \cup \{x_1w_1u_2x_1\}$. Then (ii) is violated. This contradiction tells us that $T = \emptyset$. Hence $\triangle(G)$ is a set of edge-disjoint triangles in *G*.

Fig. 1. $G_1^* = G_1 / \triangle'(G)$.

Let $v \in D_3(G)$. By Lemma 3.2, there is a triangle containing v in $\triangle(G)$. We denote this triangle by \triangle_v . Thus, for $v, u \in D_3(G)$, we have either $E(\triangle_v) = E(\triangle_u)$ or $E(\triangle_v) \cap E(\triangle_u) = \emptyset$. Fix a given subset $X = \{e_1, e_2, \ldots, e_s\} \subseteq E(G)$. Define $\triangle'(G) = \bigcup_{v \in D_3(G), E(\triangle_v) \cap X = \emptyset} \{ \triangle_v \}$ and $\triangle^*(G) = \triangle(G) - \triangle'(G)$. Then $\triangle(G) = \triangle'(G)$ if $X \cap E(\triangle(G)) = \emptyset$. Define $G_1 = G/\triangle(G)$, and we use G_1^* to denote $G/\triangle'(G)$. Thus if $X \cap E(\triangle(G)) = \emptyset$, then $G_1 = G_1^*$, and if $\triangle^*(G) = \{ \triangle_{v_1}, \ldots, \triangle_{v_l} \}$, then $\{v_1, \ldots, v_l\} \subseteq D_3(G_1^*)$ and $E(\triangle_{v_l}) \cap X \neq \emptyset$ for $i = 1, \ldots, t$ (Fig. 1). We call G_1 a \triangle -contraction of G. By Theorem 2.4(v), for any $X \subseteq E(G_1)$ with $|X| \leq 2$, $\tau(G_1 - X) = 2$, and so $F(G_1 - X) = 0$. Since $\kappa'(G) \geq 3$ and $ess'(G) \geq s + 2$, we have

$$\kappa'(G_1) \ge 4, ess'(G_1) \ge s + 2, \kappa'(G_1^*) \ge 3, ess'(G_1^*) \ge s + 2, \text{ and } D_i(G_1^*) \subseteq D_i(G) \text{ for } i \in \{3, \dots, s + 1\}.$$
 (1)

Lemma 3.3. Suppose that $s \in \{2, 3, 4\}$ and $N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) = \emptyset$ for any $x_1, x_2, x_3 \in D_3(G)$ if $s \ge 3$. If G has Property $\mathcal{K}(s)$, then for any edge subset $X \subseteq E(G)$ with $|X| \le s$, G - X has a dominating eulerian subgraph T such that $V(G) - V(T) \subseteq \bigcup_{i=3}^{s+1} D_i(G)$.

Proof. Let $X = \{e_1, \ldots, e_s\}$. Let G_1 be a \triangle -reduction of G. By (1), $D_i(G_1^*) \subseteq D_i(G)$ for $i = 3, \ldots, s + 1$. Since a triangle is collapsible, to prove Lemma 3.3, it suffices to prove that

$$G_1^* - \{e_1, \dots, e_s\}$$
 has a dominating eulerian subgraph T such that $V(G_1^*) - V(T) \subseteq \bigcup_{i=3}^{s+1} D_i(G_1^*).$ (2)

Claim 1. If s = 2, then $G_1^* - \{e_1, e_2\}$ has a dominating eulerian subgraph T such that $V(G_1^*) - V(T) \subseteq \{v\} \subseteq D_3(G_1^*)$. Furthermore, if $V(G_1^*) - V(T) = \{v\}$, then either e_1, e_2 are incident to v, or the reduction of $G_1^* - \{e_1, e_2\}$ is $K_{2,3}$.

Proof. Since G_1^* is 3-edge-connected, $G_1^* - \{e_1, e_2\}$ is connected. If G_1^* contains the triangle Δ_u with $V(\Delta_u) = \{u, w, v\}$, by Lemma 2.6, we have max $\{d_{G_1^*}(v), d_{G_1^*}(w)\} \ge 4$. Without loss of generality, we assume that $d_{G_1^*}(w) \ge 4$. We add the new edge f_u parallel to the edge uw in G_1^* . Let $T = \{f_u : u \in D_3(G_1^*)\}$. Since G_1^* has at most two triangles that contain the vertices of degree 3, $|T| \le 2$. Let G_2 be the graph obtained from G_1^* by adding the edges in T. Then $\kappa'(G_2) \ge 4$. By Theorem 2.4(iv), $F(G_1^*) = F(G_2 - T) = 0$, and so $F(G_1^* - \{e_1, e_2\}) \le 2$. Let G' be the reduction of $G_1^* - \{e_1, e_2\}$. By Theorem 2.4(iii), $G' \in \{K_1, K_2, K_{2,t}\}$ for some odd integer $t \ge 1$.

If $G' = K_1$, then $G_1^* - \{e_1, e_2\}$ is collapsible. Hence $G_1^* - \{e_1, e_2\}$ has a spanning eulerian subgraph. If $G' = K_2$ with $V(G') = \{u_1, u_2\}$, then either $PI(u_1)$ or $PI(u_2)$ is trivial. Without loss of generality, we assume that $PI(u_1)$ is trivial. Since G_1^* is 3-edge-connected, e_1, e_2 are incident to u_1 . Since $PI(u_2)$ is collapsible, $PI(u_2)$ has a spanning eulerian subgraph T. This subgraph T is a dominating eulerian subgraph of $G_1^* - \{e_1, e_2\}$ with $V(G_1^*) - V(T) = \{u_1\} \subseteq D_3(G_1^*)$. If $G' = K_{2,t}$, then $t \neq 1$ since G_1^* is 3-edge-connected, essentially 4-edge-connected. Notice that if $x \in D_2(G')$ is c-nontrivial, then both e_1, e_2 are incident to some vertices in PI(x); if $x \in D_2(G')$ is c-trivial or $x \in D_3(G')$ is c-nontrivial, then either e_1 or e_2 is incident to some vertex in PI(x). Thus $t \leq 3$ and so $G' = K_{2,3}$. Claim 1 holds.

By Claim 1, we assume that $s \in \{3, 4\}$. Notice that $N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) = \emptyset$ for $x_1, x_2, x_3 \in D_3(G)$. By (1), we have

for
$$i \in \{3, \dots, s+1\}$$
, if $x \in D_i(G_1^*)$, then $x \in D_i(G)$ and $|N_{G_1^*}(x) \cap D_3(G_1^*)| \le 2$. (3)

Claim 2. If s = 3, then $G_1^* - \{e_1, e_2, e_3\}$ has a dominating eulerian subgraph *T* such that $V(G_1^*) - V(T) \subseteq D_3(G_1^*) \cup D_4(G_1^*)$ and $|V(G_1^*) - V(T)| \leq 2$. Furthermore, if $V(G_1^*) - V(T) = \{x_1, x_2\}$, then $x_1, x_2 \in D_3(G_1^*)$, and if $V(G_1^*) - V(T) = \{x\}$ and $x \in D_4(G_1^*)$, then either e_1, e_2, e_3 are incident to *x*, or $G_1^* = G = K_5^-$ and $G_1^* - \{e_1, e_2, e_3\} = K_{2,3}$.

Proof. Assume that $G_1^* - \{e_1, e_2, e_3\}$ is not connected. Then e_1, e_2, e_3 are incident to a vertex v with $d_G(v) = 3$. As G_1^* is essentially 5-edge-connected, $d_G(x) \ge 4$ for $x \in N_G(v)$, and so $D_3(G_1^*) = \{v\}$. Let G_2 be the graph obtained from G_1^* by adding the edge e'_1 that is parallel to the edge e_1 . Then G_2 is 4-edge-connected. Thus $\tau(G_2 - \{e_1, e'_1\}) = \tau(G_1^* - e_1) \ge 2$. As $d_{G_1^*-e_1}(v) = 2$, $\tau(G_1^* - v) \ge 2$ and so $G_1^* - v$ is collapsible. Therefore, $G_1^* - v$ is supereulerian and $G_1^* - \{e_1, e_2, e_3\}$ has a dominating eulerian subgraph T_1 such that $V(G_1^*) - V(T_1) = \{v\} \subseteq D_3(G_1^*)$. Next we assume that $G_1^* - \{e_1, e_2, e_3\}$ is connected. Since $ess'(G) \ge 5$, $D_3(G_1^*)$ is an independent set. Thus $|D_3(G_1^*)| \le 3$.

If $|D_3(G_1^*)| = 3$, then there are three triangles $\Delta_{v_1}, \Delta_{v_2}$ and Δ_{v_3} in G_1^* such that each triangle contains one of $\{e_1, e_2, e_3\}$. Let $V(\Delta_{v_i}) = \{v_i, u_i, w_i\}$ and $e_i \in E(\Delta_{v_i})$ for i = 1, 2, 3. By Lemma 2.7, $G_1^* - v_1$ is 3-edge-connected and essentially 4-edge-connected. By Claim 1, $(G_1^* - v_1) - \{e_2, e_3\}$ has a dominating eulerian subgraph T_4 such that $V(G_1^* - v_1) - V(T_4) \subseteq \{y_1\} \subseteq D_3(G_1^* - v_1)$. If $V(G_1^* - v_1) = V(T_4)$, then T_4 is a spanning eulerian subgraph of $(G_1^* - v_1) - \{e_2, e_3\}$ and $T_5 = \begin{cases} T_4 & \text{if } e_1 \notin E(T_4) \\ T_4 - \{u_1w_1\} + \{v_1u_1, v_1w_1\} & \text{if } e_1 \in E(T_4) \end{cases}$ is a dominating eulerian subgraph of $G_1^* - \{e_1, e_2, e_3\}$ with $V(G_1^*) - V(T_5) \subseteq \{v\} \subseteq D_3(G_1^*)$. So we assume $V(G_1^* - v_1) - V(T_4) = \{y_1\}$. Thus $v_1y_1 \in E(G_1^*)$ (otherwise, $T_6 = \begin{cases} T_4 & \text{if } e_1 \notin E(T_4) \\ T_4 - \{u_1w_1\} + \{v_1u_1, v_1w_1\} & \text{if } e_1 \in E(T_4) \end{cases}$ is a dominating eulerian subgraph of $G_1^* - \{e_1, e_2, e_3\}$ with $V(G_1^*) - V(T_5) \subseteq \{v\} \subseteq D_3(G_1^*)$. So we assume $V(G_1^* - v_1) - V(T_4) = \{y_1\}$. Thus $v_1y_1 \in E(G_1^*)$ with $V(G_1^*) - V(T_6) \subseteq \{v_1, y_1\} \subseteq D_3(G_1^*)$.

If the reduction Q of $G_1^* - v_1 - \{e_2, e_3\}$ is $K_{2,3}$ with $D_2(Q) = \{a_1, a_2, a_3\}$, then $y_1 \in \{a_1, a_2, a_3\}$. Without loss of generality, we assume that $y_1 = a_3$. Since $ess'(G_1^*) \ge 5$, $N_{G_1^*}(v_1) \cap V(PI(a_i)) \ne \emptyset(i = 1, 2)$. Thus $G_1^* - \{e_1, e_2, e_3\}$ is supereulerian. So we

assume that the reduction of $G_1^* - v_1 - \{e_2, e_3\}$ is not $K_{2,3}$. By Claim 1, e_2, e_3 are incident to y_1 , and so $d_{G_1^*}(y_1) = 4$. Similarly, using the above discussion on \triangle_{v_2} and \triangle_{v_3} , there are two vertices y_2, y_3 such that $\{e_1, e_3\} \subseteq E_{G_1^*}(y_2)$ and $\{e_1, e_2\} \subseteq E_{G_1^*}(y_3)$. and $d_{G_*^*}(y_2) = d_{G_*^*}(v_3) = 4$. Then $E(y_1y_2y_3y_1) = \{e_1, e_2, e_3\}$, contrary to the fact that e_1, e_2, e_3 are on the different triangles in G_1^* . So $|D_3(G_1^*)| \le 2$.

Let G_3 be the graph obtained from G_1^* by adding the new edge v_1v_2 if $D_3(G_1^*) = \{v_1, v_2\}$, or the edge parallel to vuif $D_3(G_1^*) = \{v\}$ and $u \in N_{G_1^*}(v)$. Then G_3 is 4-edge-connected. Thus $F(G_1^* - \{e_1, e_2, e_3\}) \le 2$. Let G' be the reduction of $G_1^* - \{e_1, e_2, e_3\}$. By Theorem 2.4(iii), $G' \in \{K_1, K_2, K_{2,t}\}$, where $t \ge 1$ is an odd integer. Notice that if $x \in D_2(G')$ is cnontrivial, $|E_{C_{*}^{*}}(PI(x)) \cap \{e_{1}, e_{2}, e_{3}\}| \geq 2$, and if $x \in D_{2}(G')$ is c-trivial, $|E_{C_{*}^{*}}(x) \cap \{e_{1}, e_{2}, e_{3}\}| \geq 1$. So $t \leq 3$. Since $\kappa'(G_{1}^{*}) \geq 3$ and $ess'(G_1^*) \ge 4$, $t \ge 3$. So $G' = K_{2,3}$ if $G' = K_{2,t}$.

If $G' = K_1$, then $G_1^* - \{e_1, e_2, e_3\}$ is collapsible. Hence $G_1^* - \{e_1, e_2, e_3\}$ has a spanning eulerian subgraph. If $G' = K_2$ with $V(G') = \{z_1, z_2\}$, then either $PI(z_1)$ or $PI(z_2)$ is trivial. Without loss of generality, we assume that $PI(z_1)$ is trivial. Since G_1^* is 3-edge-connected, $|E_{G_1^*}(z_1) \cap \{e_1, e_2, e_3\}| \ge 2$. Since $PI(z_2)$ is collapsible, $PI(z_2)$ has a spanning eulerian subgraph T. This subgraph *T* is a dominating eulerian subgraph of $G_1^* - \{e_1, e_2, e_3\}$ with $V(G_1^*) - V(T) = \{z_1\} \subseteq D_3(G_1^*) \cup D_4(G_1^*)$. In addition, if $z_1 \in D_4(D_1^*)$, then e_1, e_2, e_3 are incident to z_1 . If $G' = K_{2,3}$, as G is essentially 5-edge-connected, $G = G_1^* = K_5^-$ and $G_1^* - \{e_1, e_2, e_3\} = K_{2,3}$. Thus $G_1^* - \{e_1, e_2, e_3\}$ has a dominating eulerian subgraph T with $V(G_1^* - \{e_1, e_2, e_3\}) - V(T) = \{x\}$, where $x \in D_4(G_1^*)$.

We will finish the proof of Lemma 3.3 by proving the following claim.

Claim 3. If s = 4, then $G_1^* - \{e_1, e_2, e_3, e_4\}$ has a dominating eulerian subgraph T such that $V(G_1^*) - V(T) \subseteq \bigcup_{i=3}^5 D_i(G_1^*)$.

Proof. If $G_1^* - \{e_1, e_2, e_3, e_4\}$ is not connected, then we assume that H_1, H_2 are the components of $G_1^* - \{e_1, e_2, e_3, e_4\}$. As $\kappa'(G_1^*) \ge 3$ and $ess'(G_1^*) \ge 6$, we have either H_1 or H_2 is trivial. Assume that $V(H_1) = \{v\}$. Then $d_{G_1^*}(v) \in \{3, 4\}$, $N_{G_1^*}(v) \subseteq \{v\}$. $\{e_1, e_2, e_3, e_4\}$, and $\kappa'(H_2) \ge 2$ and $ess'(H_2) \ge 4$. We assume that $e_1, e_2, e_3 \in E_{G_*}(v)$. As $d_{G_*}(x) \ge 4$ for any $x \in N_{G_*}(v)$, $G_*^*(v) = 1$. contains at most two vertices of degree three. Thus $\tau(G_1^* - e_4) \ge 2$. As $d_{G_1^* - e_4}(v) = 3$, $F(H_2) = F((G_1^* - e_4) - v) \le 1$. By Theorem 2.4(ii), H_2 is collapsible. So G_1^* has a dominating eulerian subgraph T_1 with $V(G_1^*) - V(T_1) = \{v\} \subseteq D_3(G_1^*) \cup D_4(G_1^*)$. Next we assume that $G_1^* - \{e_1, e_2, e_3, e_4\}$ is connected.

Since $ess'(G_1^*) \ge 6$, $D_3(G_1^*) \cup D_4(D_1^*)$ is independent. Let G' be the reduction of $G_1^* - \{e_1, e_2, e_3, e_4\}$. If $G' = K_1$, then $G_1^* - \{e_1, e_2, e_3, e_4\}$ is collapsible. Hence $G_1^* - \{e_1, e_2, e_3, e_4\}$ has a spanning eulerian subgraph. If $G' = K_2$ with $V(G') = \{a_1, a_2\}$, then either $PI(a_1)$ is trivial or $PI(a_2)$ is trivial. Without loss of generality, we assume that $PI(a_1)$ is trivial. As $PI(a_2)$ is collapsible, $PI(a_2)$ has a spanning eulerian subgraph T_1 . This T_1 is a dominating eulerian subgraph in $G_1^* - \{e_1, e_2, e_3, e_4\}$ with $V(G_1^*) - V(T_1) = \{a_1\} \subseteq \bigcup_{i=3}^5 D_i(G_1^*)$. So

if $G' \in \{K_1, K_2\}$, then Claim 3 is true.

G

Assume that
$$D_3(G_1^*) = \emptyset$$
. Then $G_1^* = G_1$. Since G_1 is 4-edge-connected, $F(G_1^* - \{e_1, e_2, e_3, e_4\}) \le 2$. By Theorem 2.4(iii) and (4), $G' = K_{2,p}$, where $p \ge 1$ is an odd integer. As $\kappa'(G_1^*) \ge 4$ and $ess'(G_1^*) \ge 6$, $G' \ne K_{1,2}$ and $G' \ne K_{2,p}$ ($p \ge 5$). Thus $G' = K_{2,3}$. Hence $G_1 = K_5$ and $G_1^* - \{e_1, e_2, e_3, e_4\} = K_{2,3}$, and so $G_1^* - \{e_1, e_2, e_3, e_4\}$ has a dominating eulerian subgraph T_2 such that $V(G_1^*) - V(T_2) = \{x\} \subseteq D_4(G_1^*)$.

Next we assume that there is a triangle Δ_v containing e_1 in G_1^* such that $d_{G_1^*}(v) = 3$. Let $V(\Delta_v) = \{v, u_2, u_3\}$ and $N_{G_1^*}(v) = \{u_1, u_2, u_3\}$. Then $d_{G_1^*}(u_i) \ge 5$ (i = 1, 2, 3). By Lemma 2.7, $G_1^* - v$ is 3-edge-connected, essentially 5-edgeconnected. Since $ess'(G_1^*) \ge 6$, we have $G_1^* - v \ne K_5^-$. By Claim 2, $(G_1^* - v) - \{e_2, e_3, e_4\}$ has a dominating eulerian subgraph T_3 with $V(G_1^* - v) - V(T_3) \subseteq D_3(G_1^* - v) \cup D_4(G_1^* - v)$ and $|V(G_1^* - v) - V(T_3)| \le 2$. If $(V(G_1^* - v) - V(T_3)) \cap \{u_1, u_2, u_3\} = \emptyset$, then $T_4 = \begin{cases} T_3 - \{u_2u_3\} + \{vu_2, vu_3\}, & \text{if } e_1 = u_2u_3 \in E(T_3) \\ T_3, & \text{otherwise} \end{cases}$ is a dominating eulerian subgraph of $G_1^* - \{e_1, e_2, e_3, e_4\}$ such that $V(G_1^*) - V(T_4) \subseteq D_3(G_1^*) \cup D_4(G_1^*)$. So we may assume that $u_i \in (V(G_1^* - v) - V(T_3)) \cap \{u_1, u_2, u_3\}$ for some $i \in \{1, 2, 3\}$. As $d_{G_1^* - v}(u_i) \ge 4$, by Claim 2, $V(G_1^* - v) - V(T_4) = \{u_i\} \subseteq D_4(G_1^* - v)$ and e_2, e_3, e_4 are incident to u_i . Thus $D_3(G_1^*) = \{v\}$. Since $\kappa'(G_1^*) \ge 3$ and $ess'(G_1^*) \ge 6$, $G^* - v$ is 4-edge-connected. Thus $F((G_1^* - v) - \{e_2, e_3, e_4\}) \le 1$ and so $F(G_1^* - \{e_1, e_2, e_3, e_4\}) \le 1$. By Theorem 2.4(ii), $G' \in \{K_1, K_2\}$. By (4), Claim 3 is true.

Lemma 3.4. Let $s \ge 2$ be an integer and G be a graph having Property $\mathcal{K}(s)$. Then for any three edges $e, e_1, e_2, G - e$ has a dominating (e_1, e_2) -trail T such that $V(G) - V(T) \subseteq D_3(G)$.

Proof. By contradiction, we assume that G is a counterexample to Lemma 3.4 with |V(G)| minimized. Then there exist three edges $e, e_1, e_2 \in E(G)$ such that

G - e does not have a dominating (e_1, e_2) -trail T such that $V(G) - V(T) \subseteq D_3(G)$. (5)

Thus $G \notin \{K_4, W_4, W_5\}$. Let $X = \{e, e_1, e_2\}$. Since G satisfies Property $\mathcal{K}(s)$, let G_1 be a \triangle -reduction of G. By (1), we have $\kappa'(G_1) \ge 4$, $\kappa'(G_1^*) \ge 3$ and $ess'(G_1^*) \ge 4$. Notice that a triangle is collapsible. By Theorem 2.3(iii), (iv), and by (5),

 $(G_1^* - e)(e_1, e_2)$ has no a dominating $(v(e_1), v(e_2))$ -trail T with $V((G_1^* - e)(e_1, e_2)) - V(T) \subseteq D_3(G_1^*)$. (6)

(4)

Therefore, $(G_1^* - e)(e_1, e_2)$ is not collapsible. Since *G* is 3-edge-connected and essentially 4-edge-connected, $G_1^*(e_1, e_2)$ is 2-edge-connected and essentially 4-edge-connected, and $(G_1^* - e)(e_1, e_2)$ is 2-edge-connected and essentially 3-edge-connected. Let *G* be the reduction of $(G_1^* - e)(e_1, e_2)$. Then $G' \notin \{K_1, K_2\}$.

Claim 1. (i) Each vertex in $D_2(G')$ is c-trivial. Therefore, $D_2(G') \subseteq \{v(e_1), v(e_2), v, u\}$, where e = uv. (ii) If $x \in D_3(G')$ is c-nontrivial, then e is incident to a vertex in PI(x). (iii) $F((G_1^* - e)(e_1, e_2)) \ge 3$, and $2d_2(G') + d_3(G') \ge 10$.

Proof. If $x \in D_2(G')$ is c-nontrivial, then *e* is incident to a vertex in PI(x). Without loss of generality, we assume that $v \in PI(x)$. Since $G_1^*(e_1, e_2)$ is essentially 4-edge-connected, $V((G_1^* - e)(e_1, e_2)) - V(PI(x)) = \{u\}$ and $d_{G_1^*}(u) = 3$. Thus $G' = 2K_2$, a contradiction. Thus any vertex in $D_2(G')$ is trivial, and so $D_2(G') \subseteq \{v(e_1), v(e_2), v, u\}$. Since G_1^* is essentially 4-edge-connected, (ii) holds.

Assume that $F((G_1^* - e)(e_1, e_2)) \le 2$. By Theorem 2.4(iii), $G' \in \{K_{2,2}, K_{2,3}, K_{2,4}\}$. If $G' = K_{2,2}$, then $G' = v(e_1)uv(e_2)vv(e_1)$. Thus $G_0 = G_1^* = 3K_2$, contrary to the hypothesis that G is a simple graph. If $G' = K_{2,4}$, then $v(e_1), v(e_2) \in D_2(G')$ and G' has a spanning $(v(e_1), v(e_2))$ -trail. Thus $(G_1^* - e)(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail, contrary to (6). So $G' = K_{2,3}$. If $D_2(G') = \{v(e_1), v(e_2), v\}$, then G' has a spanning $(v(e_1), v(e_2))$ -trail. Hence, $(G_1^* - e)(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail, contrary to (6). If $D_2(G') = \{v(e_1), u, v\}$ with $D_3(G') = \{a, b\}$, then $v(e_2) \in PI(a) \cup PI(b)$. Without loss of generality, we assume that $v(e_2) \in PI(a)$. Then the edge cut between V(PI(a)) and $V(G_1^*) - V(PI(a))$ is an essential 3-edge cut in G_1^* , a contradiction. So $F((G_1^* - e)(e_1, e_2)) \ge 3$. By Theorem 2.4(iv) and the fact that $(G_1^* - e)(e_1, e_2)$ is 2-edge-connected, $2d_2(G') + d_3(G') \ge 10$.

Claim 2. $|D_3(G_1^*)| \ge 2$.

Proof. By contradiction, we assume that $|D_3(G_1^*)| \le 1$. If there is a triangle *xyzx* in G_1^* with $d_{G_1^*}(x) = 3$, by Lemma 2.6, we have either $d_{G_1^*}(y) \ge 4$ or $d_{G_1^*}(z) \ge 4$. Let G_2 be the graph obtained from G_1^* by adding the edge parallel to *xz* if $D_3(G_1^*) = \{x\}$ with $V(\Delta_x) = \{x, y, z\}$ and $d_{G_1^*}(y) \ge 4$, or $G_2 = G_1^*$ if $D_3(G_1^*) = \emptyset$. Then G_2 is 4-edge-connected. Thus $\tau(G_1^* - e_1) \ge 2$ and so $F((G_1^* - e_1)(e_2, e_3)) \le 2$, contrary to Claim 1(iii). Claim 2 holds.

Claim 3. $|D_3(G_1^*)| = 3.$

Proof. Assume that G_1^* contains exactly two triangles \triangle_{v_1} and \triangle_{v_2} with $V(\triangle_{v_i}) = \{v_i, u_i, w_i\}(i = 1, 2)$. Then $\{v_1, v_2\} \subseteq D_3(G_1^*)$ and $\tau(G_1^*) \ge 2$. For i = 1, 2, by Lemma 2.6, either $d_{G_1^*}(w_i) \ge 4$ or $d_{G_1^*}(u_i) \ge 4$. Without loss of generality, we assume that $d_{G_1^*}(w_i) \ge 4$.

Claim 3.1. If $E(\triangle_{v_1})$ contains e_1 only, then $e_1 = u_1 w_1$, and $\{u_1, w_1\} \cap D_3(G_1^*) = \emptyset$.

Proof. By contradiction, we assume that $e_1 = v_1u_1$. Let $G_{11}^* = G_1^*/E(\Delta_{v_1})$ and let z_1 be the vertex in G_{11}^* to which Δ_{v_1} is contracted. Let G_2 be the graph obtained from G_{11}^* by adding the new edge f parallel to v_2u_2 . Then G_2 is 4-edge-connected. Thus $\tau(G_2 - \{f, e\}) = \tau(G_{11}^* - e) \ge 2$ and so $F((G_{11}^* - e)(e_2)) \le 1$. Since $(G_{11}^* - e)(e_2)$ is 2-edge-connected, by Theorem 2.4(ii), $(G_{11}^* - e)(e_2)$ is collapsible. Thus $(G_{11}^* - e)(e_2)$ has a spanning $(v(e_2), z_1)$ -trail. By Lemma 2.5(i), $(G_1^* - e)(e_1, e_2)$ has a dominating eulerian trail T such that $V((G_1^* - e)(e_1, e_2)) - V(T) \subseteq \{v_1\} \subseteq D_3(G_1^*)$, contrary to (6). So $e_1 = u_1w_1$. If $u_1 \in D_3(G_1^*)$, then $\Delta_{u_1} = \Delta_{v_1}$. Using the above discussion on u_1 , $(G_1^* - e)(e_1, e_2)$ has a dominating eulerian trail T such that $V((G_1^* - e)(e_1, e_2)) - V(T) \subseteq \{u_1\} \subseteq D_3(G_1^*)$, contrary to (6). So $\{u_1, w_1\} \cap D_3(G_1^*) = \emptyset$. Claim 3.1 holds.

Claim 3.2. $e, e_1, e_2 \in E(\triangle_{v_1}) \cup E(\triangle_{v_2})$.

Proof. Assume that $e \notin E(\Delta_{v_1}) \cup E(\Delta_{v_2})$. Then for i = 1, 2, $|E(\Delta_{v_i}) \cap \{e_1, e_2\}| = 1$. By Claim 3.1, $\{u_1, w_1, u_2, w_2\} \cap D_3(G_1^*) = \emptyset$. Let G_3 be the graph obtained from G_1^* by adding the edge v_1v_2 . Then G_3 is 4-edge-connected. Thus $\tau(G_1^* - e) \ge 2$ and so $F((G_1^* - e)(e_1, e_2)) \le 2$, contrary to Claim 1(iii). So $e \in E(\Delta_{v_1}) \cup E(\Delta_{v_2})$.

Assume that $e_1 \notin E(\Delta_{v_1}) \cup E(\Delta_{v_2})$. Also we assume that the triangles $\Delta_{v_1}, \Delta_{v_2}$ contain e and e_2 , respectively. By Claim 3.1, $e_2 = u_2w_2$ and $d_{G_1^*}(u_2) \ge 4$ and $d_{G_1^*}(w_2) \ge 4$. Let $v', u', w' \in V(G')$ whose preimages contain v_1, u_1, w_1 , respectively. By Claim 1(i), $d_2(G') \le 4$. If $d_2(G') = 4$, then $D_2(G') = \{v(e_1), v(e_2), v_1, u_1\}$, where $e = v_1u_1$. Thus $d_{G_1^*}(u_1) = 3$. By Claim 1(ii), each vertex in $D_3(G')$ is c-trivial. Thus $D_3(G') \subseteq \{v_2\}$, and so $2d_2(G') + d_3(G') \le 9$, contrary to Claim 1(iii). If $d_2(G') = 3$, Then $D_2(G') = \{v_1, v(e_1), v(e_2)\}$. Thus $D_3(G') \subseteq \{v_2, u', w'\}$, and so $2d_2(G') + d_3(G') \le 9$. If $d_2(G') \le 2$, then $D_3(G') \subseteq \{v_2, v', u', w'\}$, and so $2d_2(G') + d_3(G') \le 9$. If $d_2(G') \le 2$, then $D_3(G') \subseteq \{v_2, v', u', w'\}$, and so $2d_2(G') + d_3(G') \le 9$. If $d_2(G') \le 2$, then $D_3(G') \subseteq \{v_2, v', u', w'\}$, and so $2d_2(G') + d_3(G') \le 9$.

We use the following two cases to finish the proof of Claim 3.

Case 1. $e_1, e_2 \in E(\triangle_{v_1})$, and $e \in E(\triangle_{v_2})$.

Without loss of generality, we assume that $e_2 = v_1w_1$. First we prove that $e_1 = u_1w_1$. Otherwise, $e_1 = v_1u_1$. As $\tau(G_1^*) \ge 2$, $F(G_1^* - e) \le 1$. By Theorem 2.4(ii), $G_1^* - e$ is collapsible. Let T_1 be a spanning eulerian subgraph of $G_1^* - e$. Then

 $|E(T_1) \cap E_{G_1^*}(v_1)| = 2. \text{ Let } E_{G_1^*}(v_1) = \{v_1u_1, v_1w_1, f_1\}. \text{ Then } T_2 = \begin{cases} T_1 - \{e_1\} + \{u_1v(e_1), v_1v(e_2)\}, & \text{if } e_1, f_1 \in E(T_1) \\ T_1 - \{e_1, e_2\} + \{v(e_1)u_1, v(e_2)w_1\}, & \text{if } e_1, e_2 \in E(T_1) \\ \text{is a dominating } (v(e_1), v(e_2)) \text{-trail in } (G_1^* - e)(e_1, e_2) \text{ with } V((G_1^* - e)(e_1, e_2)) - V(T_2) \subseteq \{v_1\} \subseteq D_3(G_1^*), \text{ contrary to } (6). \text{ So } e_1 = u_1w_1. \end{cases}$

Consider $G_4 = G_1^* - \{e, e_2\}$. Then $F(G_4) \le 2$. Since $\kappa'(G_1^*) \ge 3$ and $ess'(G_1^*) \ge 4$, and since e, e_2 are in different triangles, G_4 is 2-edge-connected. Let G'_4 be the reduction of G_4 . By Theorem 2.4(iii), $G'_4 \in \{K_1, K_{2,p}\} (p \ge 2)$. Notice that if $x \in D_2(G'_4)$ is c-nontrivial, then both e, e_2 are incident to some vertices in Pl(x); if $x \in D_2(G'_4)$ is c-trivial or $x \in D_3(G'_4)$ is c-nontrivial, then either e or e_2 is incident to some vertex in Pl(x). So $p \le 4$. Furthermore, $G'_4 \neq K_{2,3}$ (otherwise, $G = W_4$, a contradiction). By Theorem 2.4(iii), G_4 is supereulerian. Let T_3 be a spanning eulerian subgraph of G_4 . Then $T_4 = \begin{cases} T_3 - \{e_1\} + \{u_1v(e_1), w_1v(e_2)\}, & \text{if } e_1 \in E(T_3) \\ T_3 + \{v(e_1)w_1, v(e_2)w_1\}, & \text{if } e_1 \notin E(T_3) \end{cases}$ is a spanning $(v(e_1), v(e_2))$ -trail in $(G_1^* - e)(e_1, e_2)$, contrary to (6).

Case 2. $e, e_1 \in E(\triangle_{v_1}), e_2 \in E(\triangle_{v_2}),$

We claim that $e_1 = w_1 u_1$. Otherwise, assume that $e_1 = v_1 w_1$. Let $G_5 = (G_1^* - e)(e_2)$. Then $\kappa'(G_5) \ge 2$ and $ess'(G_5) \ge 3$. Let G'_5 be the reduction of G_5 . Then each vertex $x \in D_2(G'_5)$ is c-trivial. As $d_2(G_5) \le 3$, $d_2(G'_5) \le 3$. Furthermore, if $d_2(G'_5) = 3$, then $D_2(G'_5) = \{v_1, u_1, v(e_2)\}$, where $e = v_1 u_1$ and $d_{G_1^*}(u_1) = 3$. Since $\tau(G_1^*) \ge 2$, $F(G_5) \le 2$. By Theorem 2.4(iii), $G'_5 \in \{K_1, K_{2,3}\}$. If $G'_5 = K_{2,3}$, then $G = K_4$, a contradiction. Thus $G'_5 = K_1$. So G_5 has a spanning $(v_1, v(e_2))$ -trail T_5 . Thus $T_6 = \begin{cases} T_5 + v_1 v(e_1), & \text{if } e_1 \in E(T_5) \\ T_5 - \{e_1\} + \{w_1 v(e_1)\}, & \text{if } e_1 \in E(T_5) \end{cases}$ is a dominating $(v(e_1), v(e_2)$ -trail in $(G_1^* - e)(e_1, e_2)$ with

 $V((G_1^* - e)(e_1, e_2)) - V(T_6) \subseteq \{v_1\} \subseteq D_3(G_1^*)$, contrary to (6). So $e_1 = w_1u_1$. Using this discussion, we can get $d_{G_1^*}(u_1) \ge 4$ and $d_{G_1^*}(w_1) \ge 4$. By Claim 3.1, $e_2 = w_2u_2$ and $\{u_2, w_2\} \cap D_3(G_1^*) = \emptyset$. Thus $G_1^* + v_1v_2$ is 4-edge-connected, and so $F((G_1^* - e)(e_1, e_2)) \le 2$, contrary to Claim 1(iii). We finish the proof of Claim 3.

By Claim 3, we assume that three edges e, e_1 and e_2 belong to 3 distinct triangles Δ_v, Δ_{v_1} , and Δ_{v_2} , respectively. Let $f = vx \in E_{G_1^*}(v) - E(\Delta_v), f_1 = v_1x_1 \in E_{G_1^*}(v_1) - E(\Delta_{v_1})$ and $f_2 = v_2x_2 \in E_{G_1^*}(v_2) - E(\Delta_{v_2})$. Let $V(\Delta_v) = \{v, u, w\}, V(\Delta_{v_1}) = \{v_1, u_1, w_1\}$, and $V(\Delta_{v_2}) = \{v_2, u_2, w_2\}$. Also we assume that z, z_1, z_2 are vertices in G_1 to which $\Delta_v, \Delta_{v_1}, \Delta_{v_2}$ are contracted, respectively. Let $G_2 = G_1^*/E(\Delta_{v_1}) \cup E(\Delta_{v_2})$. Then $\kappa'(G_2) \ge 3$ and $ess'(G_2) \ge 4$, and $\tau(G_2 - e) \ge 2$ and $\tau(G_2 - f_1) \ge 2$ (i = 1, 2). Let $G_3 = G_2 - \{f_1, f_2\}$ and $G_4 = G_2 - \{e, f_1, f_2\}$. Then $F(G_3) \le 1$ and $F(G_4) \le 2$.

If G_3 has a cut edge e', then $f_1 \neq f_2$ and $\{e', f_1, f_2\}$ is a 3-edge-cut of G_2 . Thus $v_1v_2 \notin E(G_1^*)$. As G_2 is essentially 4-edge-connected, e', f_1, f_2 are incident to a vertex y. Thus $d_{G_1^*}(y) = 3$. As $d_{G_2}(z_i) \geq 4(i = 1, 2)$, $x_1 = x_2 = y$. Let e' = yq. Since G is claw-free, we have either $v_1q \in E(G)$ or $yv_2 \in E(G)$. Without loss of generality, we assume that $v_1q \in E(G)$. This implies that $\{q, y_1, u_1, w_1\} \subseteq N_{G_1^*}(v_1)$, contrary to the fact that $d_{G_1^*}(v_1) = 3$. So G_3 is 2-edge-connected.

As $F(G_3) \leq 1$, by Theorem 2.4(ii), G_3 is collapsible, so G_3 has a spanning (z_1, z_2) -trail T. By Lemma 2.5(ii) and (6), $e \in E(T)$. If $|E(\Delta_v) \cap E(T)| = 1$, then $T' = (T - \{e\}) + (E(\Delta_v) - \{e\})$ is a spanning (z_1, z_2) -trail in G_3 . By Lemma 2.5(ii), $(G_1^* - e)(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail, a contradiction. So $|E(\Delta_v) \cap E(T)| \geq 2$. Furthermore, we have the following.

if
$$e = vu$$
 and $d_{G_*^*}(u) = 3$, then $|E(\Delta_v) \cap E(T)| = 3$. (7)

(Otherwise, then $|E(\Delta_v) \cap E(T)| = 2$. Since $d_{G_1^*}(u) = 3$, by symmetry, we may assume that $vu, uw \in E(T)$ and $vw \notin E(T)$. Then $T' = (T - \{vu, uw\}) \cup \{vw\}$ is a dominating (z_1, z_2) -trail in G_3 . By Lemma 2.5(ii), $(G_1^* - e)(e_1, e_2)$ has a dominating $(v(e_1), v(e_2))$ -trail T'' with $V((G_1^* - e)(e_1, e_2)) - V(T'') = \{u\} \subseteq D_3(G_1^*)$, a contradiction).

Consider $G_5 = G_1^*/E(\Delta_{v_2})$. Then $\kappa'(G_5) \ge 3$ and $ess'(G_5) \ge 4$, and $\tau(G_5) \ge 2$. Thus $(G_5 - e)(e_1)$ is 2-edge-connected and $F((G_5 - e)(e_1)) \le 2$. Let G_5' be the reduction of G_5 . Then $G_5' \in \{K_1, K_{2,p}\}(p \ge 2)$ and each vertex in $D_2(G_5')$ is c-trivial. As $d_2(G_5) \le 3$, $p \le 3$. If $G_5' = K_{2,3}$, then $G = G_5 = K_4$, a contradiction. So $G_5' = K_1$ and G_5 has a spanning $(v(e_1), z_2)$ -trail. By Lemma 2.5(i) and (6), $e_2 = w_2u_2$. Using this discussion, we can get $d_{G_1^*}(u_2) \ge 4$ and $d_{G_1^*}(w_2) \ge 4$. Similarly, $e_1 = u_1w_1$, and $d_{G_1^*}(u_1) \ge 4$.

Consider G_4 . Let G'_4 be the reduction of G_4 . Since $F(G_4) \leq 2$, by Theorem 2.4(iii), Lemma 2.5(ii), and (6), $G'_4 \in \{K_2, K_{2,p}\}(p \geq 1)$. Notice that G_2 is 3-edge-connected, essentially 4-edge-connected and $d_{G_1^*}(v_1) = d_{G_1^*}(v_2) = 3$. If $a \in D_1(G'_4)$ is c-trivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 2$. If $a \in D_2(G'_4)$ is c-trivial, then $|N_G(a) \cap \{e, f_1, f_2\}| \geq 1$, and if $a, b \in D_2(G'_4)$ are c-trivial, then $ab \notin \{f_1, f_2\}$. If $a \in D_2(G'_4)$ is c-nontrivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 2$. If $a \in D_2(G'_4)$ is c-nontrivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 2$. If $a \in D_2(G'_4)$ is c-nontrivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 2$. If $a \in D_3(G'_4)$ is c-nontrivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 2$. If $a \in D_3(G'_4)$ is c-nontrivial, then $|E_{G_1^*}(a) \cap \{e, f_1, f_2\}| \geq 1$. Thus, if $G'_4 = K_{2,p}$, then $p \leq 4$. So $G'_4 \in \{K_2, K_{1,2}, K_{2,2}, K_{2,3}, K_{2,4}\}$.

Assume that $G'_4 = K_2$ and $V(G'_4) = \{b_1, b_2\}$. Then one of b_1, b_2 , say b_1 , is c-trivial. Thus $z_1, z_2 \in V(PI(b_2))$ and $PI(b_2)$ has a spanning (z_1, z_2) -trail. By Lemma 2.5(ii), $(G^*_1 - e)(e_1, e_2)$ has a dominating $(v(e_1), v(e_2))$ -trail T with $V((G^*_1 - e)(e_1, e_2)) - V(T) = \{b_1\} \subseteq D_3(G^*_1)$, contrary to (6). So $G'_4 \neq K_2$.

Assume that $G'_4 = K_{1,2}$ and $V(G'_4) = \{b_1, b_2, b_3\}$, where $d_{G'_4}(\dot{b}_3) = 2$. Then b_1, b_2 are c-trivial vertices of G'_4 , $e = b_1b_2$, and $e, f_1 \in E_{G_1^*}(b_1)$ and $e, f_2 \in E_{G_1^*}(b_2)$. Thus $f_1 = b_1v_1, f_2 = b_2v_2, v \in \{b_1, b_2\}$, and $z_1, z_2 \in PI(b_2)$. Let $V(\Delta_v) = \{c, b_1, b_2\}$. Since $PI(b_2)$ is collapsible, $PI(b_2)$ has a spanning (c, z_2) -trail T_2 . Let H be the subgraph in $G_1^*/E(\Delta_{v_2})$ induced by $E(T_2)$. Then $d_H(u_1) + d_H(w_1)$ is even. If $d_H(u_1)$ and $d_H(w_1)$ are even, then c and z_2 are in the same component of T_2 . Also this component contains (at least) one of u_1 and w_1 . Without loss of generality, we assume that w_1 is in this component. Let $T_3 = T_2 + \{cb_1, b_1v_1, v_1u_1, u_1v(e_1)\}$. If $d_H(u_1)$ and $d_H(w_1)$ are odd, by symmetry, we assume that c and w_1 are in a component of H and z_2 and u_1 are in a component of H. Let $T_3 = T_2 + \{cb_1, b_1v_1, v_1u_1, w_1v(e_1)\}$. Then T_3 is a dominating $(v(e_1), z_2)$ -trail of $(G_1^*/E(\Delta_{v_2}) - e)(e_1)$ with $V((G_1^*/E(\Delta_{v_2}) - e)(e_1)) - V(T_3) = \{b_2\} \subseteq D_3(G_1^*)$. By Lemma 2.5(ii), $(G_1^* - e)(e_1, e_2)$ has a dominating $(v(e_1), v(e_2))$ -trail T_3' with $V((G_1^* - e)(e_1, e_2)) - V(T_3') = \{b_2\} \subseteq D_3(G_1^*)$, contrary to (6). So $G_4' \neq K_{1,2}$.

Assume that $G'_4 = K_{2,2}$ and $V(G'_4) = \{b_1, b_2, b_3, b_4\}$. Then two of b_1, b_2, b_3, b_4 are c-trivial and they are not adjacent in G'_4 . Without loss of generality, we assume that b_1 and b_3 are c-trivial. Then $e = b_1b_3$, and b_2 and b_4 are c-nontrivial. Thus f_1 and f_2 are edges joining vertices between $PI(b_2)$ and $PI(b_4)$. So $z_1, z_2 \in V(PI(b_2)) \cup V(PI(b_4))$. Since e is in Δ_v , we may assume that $V(\Delta_v) - \{b_1, b_3\} = \{c_1\} \subseteq V(PI(b_2))$. Also we assume that $N_{G_4}(b_1) \cap V(PI(b_4)) = \{c_2\}$ and $N_{G_4}(b_3) \cap V(PI(b_4)) = \{c_3\}$. Consider G_3 and the spanning (z_1, z_2) -trail T. By (7), $b_1b_3, b_1c_1, b_3c_1 \in E(T)$. Thus $b_1c_2, b_3c_3 \notin E(T)$. It is impossible. So $G'_4 \neq K_{2,2}$.

Assume that $G'_4 = K_{2,3}$ and $V(G'_4) = \{b_1, b_2, b_3, b_4, b_5\}$, where $d_{G'_4}(b_4) = d_{G'_4}(b_5) = 3$. Then b_1, b_2 are c-trivial vertices and b_3, b_4, b_5 are c-nontrivial vertices of G'_4 , and $e = b_1b_2$. Since e is in \triangle_v , we may assume that $V(\triangle_v) - \{b_1, b_2\} =$ $\{c_1\} \subseteq V(PI(b_4))$. Also we assume that $N_{G_4}(b_1) \cap V(PI(b_5)) = \{c_2\}$ and $N_{G_4}(b_2) \cap V(PI(b_5)) = \{c_3\}$. Since b_3 is a c-nontrivial vertex, we assume that f_1 joins $PI(b_3)$ and $PI(b_4)$ and f_2 joins $PI(b_3)$ and $PI(b_5)$. Let c_4c_5 be the edge joining $PI(b_4)$ and $PI(b_3)$, where $c_4 \in V(PI(b_4))$ and $c_5 \in V(PI(b_3))$, and let c_6c_7 be the edge joining $PI(b_5)$ and $PI(b_5)$ and $PI(b_5)$ and $PI(b_5)$ and $PI(b_5)$, where $c_6 \in V(PI(b_3))$ and $c_7 \in V(PI(b_5))$. Consider G_3 and the spanning (z_1, z_2) -trail T. By $(7), b_1b_2, b_1c_1, b_2c_1 \in E(T)$. Thus $b_1c_2, b_2c_3 \notin E(T)$. So we may assume that $z_1 \in V(PI(b_4))$ and $z_2 \in V(PI(b_5))$. Consider the subgraph Q_1 induced by $V(PI(b_5)) \cup \{b_1, b_2\}$ in G_2 . Then Q_1 is collapsible. Let T_4 be a spanning (c_7, z_2) -trail in Q_1 . Since $d_{Q_1}(b_1) = d_{Q_1}(b_2) = 2$, $e, b_1c_2, b_2c_3 \in E(T_4)$. Let T_5 be a spanning (z_1, c_4) -trail in $PI(b_4)$, T_6 be spanning (z_1, z_2) -trail in G_4 . By Lemma 2.5(ii), $(G_1^* - e)(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail, contrary to (6). So $G'_4 \neq K_{2,3}$.

Therefore, $G'_4 = K_{2,4}$. Let $V(G'_4) = \{b_1, b_2, b_3, b_4, b_5, b_6\}$, where $d_{G'_4}(b_5) = d_{G'_4}(b_6) = 4$. Then b_1, b_2 are c-trivial vertices and b_3, b_4 are c-nontrivial vertices of G'_4 , and $e = b_1b_2$. Since e is in Δ_v , we may assume that $V(\Delta_v) - \{b_1, b_2\} = \{c_1\} \subseteq V(P(b_5))$. Also we assume that $N_{G_4}(b_1) \cap V(P(b_6)) = \{c_2\}$ and $N_{G_4}(b_2) \cap V(P(b_6)) = \{c_3\}$. Since b_3, b_4 are c-nontrivial vertices, f_1 and f_2 join $P(b_3)$ and $P(b_4)$, so $z_1, z_2 \in V(P(b_3)) \cup V(P(b_4))$. Let $c_4, c_6 \in V(P(b_5)), c_5, c_9 \in V(P(b_3)), c_7, c_{11} \in V(P(b_4))$, and $c_8, c_{10} \in V(P(b_6))$ such that $c_4c_5, c_6c_7, c_8c_9, c_{10}c_{11} \in E(G_4)$. Consider G_3 and the spanning (z_1, z_2) -trail T. By $(7), b_1b_2, b_1c_1, b_2c_1 \in E(T)$. Thus $b_1c_2, b_2c_3 \notin E(T)$. So $z_1, z_2 \in V(P(b_3))$ or $z_1, z_2 \in V(P(b_4))$. Without loss of generality, we assume that $z_1, z_2 \in V(P(b_3))$. Consider the subgraph Q_2 induced by $V(P(b_6)) \cup \{b_1, b_2\}$ in G_2 . Then Q_2 is collapsible. Thus there is a spanning (c_8, c_{10}) -trail T_7 in Q_2 . Since $d_{Q_2}(b_1) = d_{Q_2}(b_2) = 2$, $e, b_1c_2, b_2c_3 \in E(T_7)$. Let Q_3 be the graph obtained from $P(b_3)$ by adding a new vertex c_{12} and the new edges $c_{12}z_1$ and $c_{12}z_2$. Then Q_3 is collapsible. Let T_8 be a spanning (c_5, c_9) -trail in Q_3 . Then $c_{12}z_1, c_{12}z_2 \in E(T_8)$. Let $T_9 = T_8 - \{c_{12}\}$. Let T_{10} be the spanning (c_7, c_{11}) -trail in $P(b_4), T_{11}$ be the spanning (c_4, c_6) -trail in $P(b_5)$. Then the subgraph induced by $E(T_9) \cup (E(T_7) - \{e\}) \cup \{b_1c_1, c_1b_2\} \cup E(T_{10}) \cup E(T_{11}) \cup \{c_4c_5, c_6c_7, c_8c_9, c_{10}c_{11}\}$ is a spanning (z_1, z_2) -trail in G_4 . By Lemma 2.5(ii), $(G_1^* - e)(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail, contrary to (6).

4. Proof of Theorem 1.6

In this section we assume that *s* is a positive integer, and assume that *G* is connected with $ess'(G) \ge 4$. Following [17], we define the **core** of *G*, denoted by *G*₀, to be the graph obtained from *G* by deleting all the vertices of degree 1, and contracting the edge *xy* for each path *xyz* for each $y \in D_2(G)$. As shown in [17], we observe that *G*₀ is well-defined, and

 G_0 is claw-free with $\kappa'(G_0) \ge 3$, *ess*'(G_0) ≥ 4 and $D_3(G_0) = D_3(G)$.

We need one more notation. Let $e = xy \in E(W_5)$ with $x, y \in D_3(W_5)$ and H be a graph and $e' = x'y' \in E(H)$. Define a new graph $H \oplus W_5$ to be a graph obtained from the disjoint union of H - e and W_5 by identifying x and x' to form a new vertex, also called x, and by identifying y and y' to form a new vertex, also called y.

(8)

Lemma 4.1. Suppose that $s \ge 2$ and that *G* is claw-free such that $\kappa(L(G)) \ge s + 2$. Let G_0 be the core of *G* and let $w_1, w_2, w_3 \in D_3(G_0)$ be vertices with $N_{G_0}(w_2) = \{w_1, w_3, v\}$. If $vw_1, vw_3 \in E(G_0)$, then each of the following holds. (i) s = 2.

(2) either
$$G = G_0 \in \{K_4, W_4, W_5\}$$
, or there exists a subgraph Γ of G with $\kappa'(\Gamma) \ge 3$ and $ess'(\Gamma) \ge 4$ such that $G_0 = \Gamma \oplus W_5$.

Proof. Since $(E_{G_0}(w_1) - \{w_1w_2\}) \cup \{w_2v, w_2w_3\}$ is an essential 4-edge cut of G_0 , we must have s = 2. If $w_1w_3 \in E(G_0)$ or $d_{G_0}(v) = 3$, then by Lemma 2.6, we have $G = G_0 = K_4$. Thus we assume that $d_{G_0}(v) \ge 4$ and $w_1w_3 \notin E(G_0)$. Let $w_4 \in N_{G_0}(v) - \{w_1, w_2, w_3\}$. As G_0 is claw-free and by symmetry, we may assume that $w_4w_3 \in E(G_0)$.

If $d_{G_0}(v) = 4$, then $w_1w_4 \in E(G_0)$ (otherwise, let $z \in N_{G_0}(w_1) - \{v, w_2\}$. Then $\{zw_1, w_4v, w_4w_3\}$ is an essential 3-edge cut in G_0 , a contradiction). As G_0 is claw-free and $d_{G_0}(w_1) = d_{G_0}(w_3) = 3$, $G_0 = W_4$. Since G is essentially 4-edge-connected, $G = G_0 = W_4$.

Assume that $d_{G_0}(v) \ge 5$. Let $w_5 \in N_{G_0}(v) - \{w_1, w_2, w_3, w_4\}$. Since G_0 is claw-free and since $w_1, w_3 \in D_3(G_0)$, we have $w_1w_5 \in E(G_0)$ and $d_{G_0}(v) = 5$. Since $G_0[\{v, w_2, w_4, w_5\}] \ne K_{1,3}$, we must have $w_4w_5 \in E(G_0)$. Let $X = N_{G_0}(w_4) \cup N_{G_0}(w_5) - \{v, w_1, w_2, \dots, w_5\}$. If $X = \emptyset$, then $G_0 = W_5$, and so $G = G_0$. Assume that $X = \{v_1, \dots, v_k\} \ne \emptyset$. As G_0 is claw-free, $G_0[\{v_1, \dots, v_k, w_4, w_5\}] = K_{k+2}$, as depicted in Fig. 2. Since $\kappa'(G_0) \ge 3$, we have $k \ge 2$. Let $\Gamma = G_0 - \{w_1, w_2, w_3, v\}$. Then $G_0 = \Gamma \oplus W_5$. As $G_0[\{v_1, \dots, v_k, w_4, w_5\}] = K_{k+2}$ and $k \ge 2$, we conclude that $\kappa'(\Gamma) \ge 3$ and $ess'(\Gamma) \ge 4$.

Fig. 2. $K_{k+2} \oplus W_5$ in Lemma 4.1.

Throughout the rest of the proofs, we will adopt the following notation and assumptions. Let $s \ge 2$ be an integer, G be a claw-free graph, H = L(G) with $\kappa(L(G)) \ge s + 2$ in the proof of Theorem 1.6(i) or $\kappa(L(G)) \ge 4$ in the proof of Theorem 1.6(ii). Since every complete graph of order at least s + 3 is s-hamiltonian and 1-hamiltonian-connected, we will assume that L(G) is not a complete graph, and so $ess'(G) = \kappa(L(G))$. Let G_0 be the core of G. As shown in [17], we have $\kappa'(G_0) \ge 3$ and $ess'(G_0) \ge \kappa(L(G))$. Thus if $ess'(G_0) \ge s + 2$, then for $i = 3, \ldots, s + 1$, we have $D_i(G) = D_i(G_0)$. As G is claw-free, G_0 is also claw-free.

Proof of Theorem 1.6. (i). It suffices to prove that if $\kappa(L(G)) \ge s + 2$, then L(G) is *s*-hamiltonian. By Theorem 1.4, we assume that $s \in \{2, 3, 4\}$. To prove *H* is *s*-hamiltonian, it suffices to prove that for any $X = \{e_1, \ldots, e_s\} \subset E(G_0)$,

$$G_0 - X$$
 has a dominating eulerian subgraph T such that $V(G_0) - V(T) \subseteq \bigcup_{i=3}^{s+1} D_i(G_0).$ (9)

If $G_0 \in \{K_4, W_4, W_5\}$, then s = 2 and $G = G_0$. Thus (9) holds, and so we may assume that $G_0 \notin \{K_4, W_4, W_5\}$.

If $s \ge 3$, then as G_0 is claw-free and essentially 5-edge-connected, for any $x_1, x_2, x_3 \in D_3(G_0)$, we have $N_{G_0}(x_1) \cap N_{G_0}(x_2) \cap N_{G_0}(x_3) = \emptyset$. Hence by Lemma 3.3, G_0 does not have Property $\mathcal{K}(s)$. Since G_0 is claw-free, G_0 must violate (KS2). Arguing by contradiction, we assume that

G is a counterexample to Theorem 1.6(i) with $|V(G_0)|$ minimized. (10)

Since G_0 violates (KS2), there exist $w_1, w_2, w_3 \in D_3(G_0)$ with $N_{G_0}(w_2) = \{w_1, w_3, v\}$ and $vw_1, vw_3 \in E(G_0)$. Since $G_0 \notin \{K_4, W_4, W_5\}$, by Lemma 4.1, s = 2 and $G_0 = \Gamma \oplus W_5$, for a claw-free graph Γ with $\kappa'(\Gamma) \ge 3$ and $ess'(\Gamma) \ge 4$. Assume that $V(W_5) = \{v, w_1, \dots, w_5\}$ with $w_4w_5 \in E(\Gamma) \cap E(W_5)$, as depicted in Fig. 2.

If $e_1, e_2 \in E(\Gamma)$, then by (10), $\Gamma - \{e_1, e_2\}$ has a dominating eulerian subgraph T_1 such that $V(\Gamma) - V(T_1) \subseteq D_3(\Gamma)$. Thus $T_2 = T_1 + w_1 w_2 w_3 w_4 v w_5 w_1$ is a dominating eulerian subgraph in $G_0 - \{e_1, e_2\}$ such that $V(G_0) - V(T_2) \subseteq D_3(G_0)$, a contradiction.

If $e_1 \in E(\Gamma)$ and $e_2 \in E(W_5) - E(\Gamma)$, then by (10), $\Gamma - \{e_1, w_4w_5\}$ has a dominating eulerian subgraph T_3 such that $V(\Gamma) - V(T_3) \subseteq D_3(\Gamma)$. By Theorem 2.3(iii), $W_5 - e_2$ is collapsible. Thus $W_5 - e_2$ has a spanning eulerian subgraph T_4 . Therefore, $L_1 = G_0[E(T_3) \cup E(T_4)]$ is a dominating eulerian subgraph in $G_0 - \{e_1, e_2\}$ such that $V(G_0) - V(L_1) \subseteq D_3(G_0)$, a contradiction.

If $e_1, e_2 \in E(W_5) - E(\Gamma)$, then $W_5 - \{e_1, e_2\}$ has a dominating eulerian subgraph T_5 such that $V(W_5) - V(T_5) \subseteq D_3(G_0)$. By (10), $\Gamma - \{w_4w_5\}$ has a dominating eulerian subgraph T_6 such that $V(\Gamma) - V(T_6) \subseteq D_3(\Gamma)$. Thus $L_2 = G_0[E(T_5) \cup E(T_6)]$ is a dominating eulerian subgraph in $G_0 - \{e_1, e_2\}$ such that $V(G_0) - V(L_2) \subseteq D_3(G_0)$, a contradiction. These contradictions establish the theorem.

Proof of Theorem 1.6. (ii). By Theorem 2.1(ii), it suffices to show that for any three edges $e, e_1, e_2 \in E(G), G - e$ has a dominating (e_1, e_2) -trail. In view of this goal, for any $y \in D_2(G)$ with $N_G(y) = \{x_y, z_y\}$, we may assume that $x_y \notin \{e, e_1, e_2\}$. With this, and letting G_0 be the core of G, it suffices to assume that $e, e_1, e_2 \in E(G_0)$, and to show $G_0 - e$ has a dominating (e_1, e_2) -trail T with $V(G_0) - V(T) \subseteq D_3(G_0)$. By contradiction, we assume that G is a counterexample to Theorem 1.6(ii) with $|V(G_0)|$ minimized. Thus by Lemma 2.2, there exist edges $e, e_1, e_2 \in E(G_0)$, with G_0^* denoting $(G_0 - e)(e_1, e_2)$, such that

 G_0^* does not have a dominating $(v(e_1), v(e_2))$ -trail T such that $V(G_0^*) - V(T) \subseteq D_3(G_0)$. (11)

By (11) and Theorem 2.3(iii), we assume that $G_0 \notin \{K_4, W_4, W_5\}$ and G_0^* is not collapsible. By Lemma 3.4, G_0 does not have Property $\mathcal{K}(s)$. As G_0 is claw-free, (KS2) is violated. Thus there exist $w_1, w_2, w_3 \in D_3(G_0)$ with $N_{G_0}(w_2) = \{w_1, w_3, v\}$ and $vw_1, vw_3 \in E(G_0)$. By Lemma 4.1, $G_0 = \Gamma \oplus W_5$, for a subgraph Γ of G_0 with $\kappa'(\Gamma) \ge 3$ and $ess'(\Gamma) \ge 4$. Assume that $V(W_5) = \{v, w_1, \ldots, w_5\}$ with $w_4w_5 \in E(\Gamma) \cap E(W_5)$, as depicted in Fig. 2.

If $\{e, e_1, e_2\} \cap E(W_5) = \emptyset$, then by the minimality of G_0 , $(\Gamma - e)(e_1, e_2)$ has a dominating $(v(e_1), v(e_2))$ -trail T_1 with $V((\Gamma - e)(e_1, e_2)) - V(T_1) \subseteq D_3(\Gamma)$. It follows from $G_0 = \Gamma \oplus W_5$ that (11) is violated. If $e, e_1, e_2 \in E(W_5)$, then by inspection, $(W_5 - e)(e_1, e_2)$ has a dominating $(v(e_1), v(e_2))$ -trail T_2 that contains either w_4 or w_5 . By Theorem 2.3(vi), Γ has a spanning eulerian trail T_3 . Thus $T_4 = G_0^*[(E(T_2) - E(T_3)) \cup (E(T_3) - E(T_2))]$ is a dominating $(v(e_1), v(e_2))$ -trail

in G_0^* with $V(G_0^*) - V(T_4) \subseteq D_3(G_0)$, contrary to (11). Thus we assume that $\{e, e_1, e_2\} \cap (E(\Gamma) - E(W_5)) \neq \emptyset$ and $\{e, e_1, e_2\} \cap (E(W_5) - E(\Gamma)) \neq \emptyset$.

Assume that $e \in E(W_5)$. If $e_1 \in E(W_5)$, then $e_2 \in E(\Gamma) - E(W_5)$. By Theorem 2.3(ii), $(W_5 - e)(e_1)$ is collapsible. By Theorem 2.3(vi), $\Gamma(e_2)$ is collapsible. Thus G_0^* is collapsible, a contradiction. If $e_1, e_2 \in E(\Gamma)$, by Theorem 2.3(vi), $\Gamma(e_1, e_2)$ is collapsible. Thus G_0^* is collapsible, a contradiction again. So $e \in E(\Gamma) - E(W_5)$. As $\{e, e_1, e_2\} \cap (E(W_5) - E(\Gamma)) \neq \emptyset$, we assume that $e_1 \in E(W_5) - E(\Gamma)$.

Assume that $e_2 \in E(\Gamma)$. As $(W_5 - w_4w_5)(e_1)$ is collapsible, let T_5 be a spanning $(v(e_1), w_4)$ -trail in $W_5(e_1)$. Let $f_1 \in E_{\Gamma}(w_4) - \{w_4w_5, e\}$. By the choice of G, $(\Gamma - e)(e_2, f_1)$ has a dominating $(v(e_2), v(f_1))$ -trail T_6 with $V((\Gamma - e)(e_2, f_1)) - V(T_6) \subseteq D_3(\Gamma)$. Let $E_1 = \begin{cases} E(T_6) - \{w_4v(f_1)\}, & \text{if } w_4v(f_1) \in E(T_6) \\ E(T_6) \cup \{w_4v(f_1)\}, & \text{if } w_4v(f_1) \notin E(T_6) \end{cases}$. Then the subgraph T_7 induced by $E(T_5) \cup E_1$ is a dominating $E(T_6) \cup \{w_4v(f_1)\}, & \text{if } w_4v(f_1) \notin E(T_6) \end{cases}$.

 $(v(e_1), v(e_2))$ -trail in G_0^* with $V(G_0^*) - V(T_7) \subseteq D_3(G_0)$, contrary to (11). So $e_2 \in E(W_5) - E(\Gamma)$.

Let $f_2 \in E_{\Gamma}(w_4) - \{w_4w_5, e\}$. By the choice of G, $(\Gamma - e)(f_2, w_4w_5)$ has a dominating $(v(f_2), v(w_4w_5))$ -trail T_8 with $V((\Gamma - e)(f_2, w_4w_5)) - V(T_8) \subseteq D_3(\Gamma)$. Let $M = \{w_4v(f_2), w_4v(w_4w_5)\}$ and $E_2 = (E(T_8) - M) \cup (M - E(T_8))$. By Theorem 2.3(vi), $W_5(e_1, e_2)$ is collapsible. Thus $W_5(e_1, e_2)$ has a spanning $(v(e_1), v(e_2))$ -trail T_9 . So the subgraph T_{10} induced by $(E(T_9) - E_2) \cup (E_2 - E(T_9))$ is a dominating $(v(e_1), v(e_2))$ -trail in G_0^* with $V(G_0^*) - V(T_{10}) \subseteq D_3(G_0)$, contrary to (11).

Acknowledgment

The authors are indebted to an anonymous reviewer for providing insightful comments which helped to improve the manuscript.

Declaration of competing interest

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, 1976.
- [2] H.J. Broersma, H.J. Veldman, 3-connected line graphs of triangular graphs are pan-connected and 1-hamiltonian, J. Graph Theory 11 (1987) 399-407.
- [3] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223–246.
- [4] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29–45.
- [5] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning eulerian subgraphs, Discrete Math. 160 (1996) 81–91.
- [6] P.A. Catlin, H.-J. Lai, Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math. 309 (2009) 1033–1040.
- [7] Z.H. Chen, H.-J. Lai, D.Y. Li, W. Shiu, An s-Hamiltonian line graph problem, Graphs Comb. 23 (2007) 241–248.
- [8] F. Harary, C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-710.
- [9] F. Jaeger, A note on subeulerian graphs, J. Graph Theory 3 (1979) 91–93.
- [10] M. Kriesell, Every 4-connected line graph of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) 306–315.
- [11] R. Kučzel, L. Xiong, Every 4-connected line graph is hamiltonian if and only if it is hamiltonian connected, in: R. Kučzel: Hamiltonian Properties of Graphs, Ph.D. Thesis, U.W.B. Pilsen, 2004.
- [12] H.-J. Lai, X. Li, Y. Ou, H. Poon, Spanning trails connecting given edges, Graphs Combin. 21 (2005) 77-88.
- [13] H.-J. Lai, Y. Shao, On s-hamiltonian line graphs, J. Graph Theory 74 (2013) 344–358.
- [14] H.-J. Lai, Y. Shao, G. Yu, M. Zhan, Hamiltonian connectedness in 3-connected line graphs, Discrete Appl. Math. 157 (2009) 982-990.
- [15] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$ -free graphs, J. Graph Theory 8 (1984) 139–146.
- [16] Z. Ryjáček, P. Vrána, Line graphs of multigraphs and hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) 152-173.
- [17] Y. Shao, Claw-free graphs and line graphs, Ph.D. Dissertation, West Virginia University, 2005.
- [18] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309–324.
- [19] S. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89–95.