On s-hamiltonian line graphs of claw-free graphs

Hong-Jian Lai ${ }^{\mathrm{a}, 1}$, Mingquan Zhan ${ }^{\text {b }}$, Taoye Zhang ${ }^{\text {c }}$, Ju Zhou ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA
${ }^{\text {c }}$ Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, USA
${ }^{\text {d }}$ Department of Mathematics, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA

ARTICLE INFO

Article history:

Received 19 May 2018
Received in revised form 23 January 2019
Accepted 5 June 2019
Available online 28 June 2019

Keywords:

Claw-free graphs
Line graphs
s-hamiltonian graphs

Abstract

For an integer $s \geq 0$, a graph G is s-hamiltonian if for any vertex subset $S \subseteq V(G)$ with $|S| \leq s, G-S$ is hamiltonian, and G is s-hamiltonian connected if for any vertex subset $S \subseteq V(G)$ with $|S| \leq s, G-S$ is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Kučzel and Xiong in 2004 conjectured that every 4 -connected line graph is hamiltonian connected (see Ryjáček and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of s-hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for $s \geq 2$, a line graph $L(G)$ is s-hamiltonian if and only if $L(G)$ is ($s+2$)-connected. In this paper we prove the following. (i) For an integer $s \geq 2$, the line graph $L(G)$ of a claw-free graph G is s-hamiltonian if and only if $L(G)$ is ($s+2$)-connected. (ii) The line graph $L(G)$ of a claw-free graph G is 1-hamiltonian connected if and only if $L(G)$ is 4-connected.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered here are finite and loopless. Unless otherwise noted, we follow [1] for notation and terms. As in [1], $\kappa(G)$ and $\kappa^{\prime}(G)$ denote the connectivity and the edge-connectivity of a graph G, respectively. A graph is nontrivial if it contains edges. An edge cut X is essential if $G-X$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge cut X with $|X|<k$. For a connected graph G, let $\operatorname{ess}^{\prime}(G)=\max \{k: G$ is essentially k-edge-connected $\}$, and for an integer $i \geq 0$, let $D_{i}(G)=\left\{u \in V(G): d_{G}(u)=i\right\}$ and $d_{i}(G)=\left|D_{i}(G)\right|$. Throughout this paper, for an integer $n \geq 2, C_{n}$ denotes a cycle on n vertices (called an n-cycle), $n K_{2}$ denotes the loopless graph on two vertices with n edges, W_{n} denotes the graph obtained from an n-cycle by adding a new vertex and connecting it to every vertex of the n-cycle, and K_{5}^{-}denotes the graph obtained from K_{5} by deleting an edge. If $S \subseteq V(G)$ or $S \subseteq E(G), G[S]$ is the subgraph induced in G by S. We use $H \subseteq G$ to denote the fact that H is a subgraph of G. For $H \subseteq G, x \in V(G), A \subseteq V(G), X \subseteq E(G)$, and $Y \subseteq E(G)-E(H)$, define $N_{H}(x)=N_{G}(x) \cap V(H), d_{H}(x)=\left|N_{H}(x)\right|$, $G-A=G[V(G)-A], G-X=G[E(G)-X]$, and $H+Y=G[E(H) \cup Y]$. When $A=\{v\}$ and $X=\{e\}$, we use $G-v$ for $G-\{v\}$ and $G-e$ for $G-\{e\}$. Different from the notation in [1], for vertex-disjoint subgraphs H_{1} and H_{2} in G, we define $H_{1}+H_{2}=G\left[V\left(H_{1}\right) \cup V\left(H_{2}\right)\right]$.

A graph G is claw-free if it does not contain $K_{1,3}$ as an induced subgraph. The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G are

[^0]adjacent. It is straight forward to see that for a graph G with $|E(G)| \geq 3, L(G)$ is k-connected if and only if G is essentially k-edge-connected. The following are several fascinating conjectures in the literature.

Conjecture 1.1. (i) (Thomassen [18]) Every 4-connected line graph is hamiltonian.
(ii) (Matthews and Sumner [15]) Every 4-connected claw-free graph is hamiltonian.
(iii) (Kučzel and Xiong [11]) Every 4-connected line graph is hamiltonian connected.
(iv) (Ryjáček and Vrána [16]) Every 4-connected claw-free graph is hamiltonian connected.

Ryjacek and Vrána in [16] indicated that the statements in Conjecture 1.1 are mutually equivalent. There have been many studies on these conjectures in the literature. Among them are the following.

Theorem 1.2 (Zhan [19]). Every 7-connected line graph is hamiltonian connected.
Theorem 1.3 (Kriesell [10]). Every 4-connected line graph of a claw-free graph is hamiltonian connected.
For an integer $s \geq 0$, a graph G is s-hamiltonian (or s-hamiltonian connected, respectively) if for any vertex subset $S \subseteq V(G)$ with $|S| \leq s, G-S$ is hamiltonian (or hamiltonian connected, respectively). In [2], Broersma and Veldman proposed an open problem: for a given positive integer k determine the value s for which the statement "for a k-triangular graph G, the line graph $L(G)$ of G is s-hamiltonian if and only $L(G)$ is $(s+2)$-connected" is valid. Broersma and Veldman in [2] proved that the statement holds for all values s with $0 \leq s \leq k$, and conjectured that it holds if $s \leq 2 k$. Chen et al. in [7] proved this conjecture for all values s with $0 \leq s \leq \max \{2 k, 6 k-16\}$. In [13], an attempt to characterize s-hamiltonian line graphs is made and the following is proved.

Theorem 1.4 ([13]). For $s \geq 5$, a line graph is s-hamiltonian if and only if it is $(s+2)$-connected.
An open problem was raised in [13] that whether a line graph $L(G)$ is s-hamiltonian if and only if $L(G)$ is ($s+2$)-connected for $s \in\{2,3,4\}$. The case when $s=2$ implies Conjecture 1.1(i). Motivated by Conjecture 1.1 as well as the results in [7] and [13], we propose the following conjectures.

Conjecture 1.5. Let s be an integer.
(i) For $s \geq 2$, a line graph is s-hamiltonian if and only if it is $(s+2)$-connected.
(ii) For $s \geq 2$, a claw-free graph is s-hamiltonian if and only if it is $(s+2)$-connected.
(iii) For $s \geq 1$, a line graph is s-hamiltonian connected if and only if it is $(s+3)$-connected.
(iv) For $s \geq 1$, a claw-free graph is s-hamiltonian connected if and only if it is $(s+3)$-connected.

The main result in this paper is presented below, as an effort to support Conjecture 1.5(i) and (iii).
Theorem 1.6. Let G be a claw-free graph.
(i) For an integer $s \geq 2, L(G)$ is s-hamiltonian if and only if $\kappa(L(G)) \geq s+2$.
(ii) $L(G)$ is 1 -hamiltonian connected if and only if $\kappa(L(G)) \geq 4$.

In Section 2, we introduce Catlin's reduction method and the related results. In Section 3 we introduce a property of graphs which will be used in our arguments to prove the main results. The proof of Theorem 1.6 is given in Section 4.

2. Preliminaries

We view a trail of G as a vertex-edge alternating sequence $v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{k}, v_{k}$ such that all the e_{i} 's are distinct and for each $i=1,2, \ldots, k, e_{i}$ is incident to both v_{i-1} and v_{i}. The vertices in $v_{1}, v_{2}, \ldots, v_{k-1}$ are internal vertices of the trail. For edges $e^{\prime}, e^{\prime \prime} \in E(G)$, an ($e^{\prime}, e^{\prime \prime}$)-trail of G is a trail T of G whose first edge is e^{\prime} and whose last edge is $e^{\prime \prime}$. A dominating ($e^{\prime}, e^{\prime \prime}$)-trail of G is an ($e^{\prime}, e^{\prime \prime}$)-trail T of G such that every edge of G is incident to an internal vertex of T, and a spanning ($e^{\prime}, e^{\prime \prime}$)-trail of G is a dominating $\left(e^{\prime}, e^{\prime \prime}\right)$-trail T of G such that $V(T)=V(G)$. Harary and Nash-Williams [8] first showed the relationship between eulerian subgraphs in G and hamiltonicity in $L(G)$. Theorem 2.1(ii) is observed in [14].

Theorem 2.1. Let G be a graph with $|E(G)| \geq 3$. Each of the following holds.
(i) (Harary and Nash-Williams [8]) $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.
(ii) [14] $L(G)$ is hamiltonian connected if and only if for any pair of edges $e^{\prime}, e^{\prime \prime} \in E(G), G$ has a dominating ($\left.e^{\prime}, e^{\prime \prime}\right)$-trail.

We say that an edge $e \in E(G)$ is subdivided when it is replaced by a path of length 2 whose internal vertex, denoted by $v(e)$, has degree 2 in the resulting graph. The process of taking an edge e and replacing it by the path of length 2 is called subdividing e. For a graph G and edges $e^{\prime}, e^{\prime \prime} \in E(G)$, let $G\left(e^{\prime}\right)$ denote the graph obtained from G by subdividing e^{\prime}, and let $G\left(e^{\prime}, e^{\prime \prime}\right)$ denote the graph obtained from G by subdividing both e^{\prime} and $e^{\prime \prime}$. Then $V\left(G\left(e^{\prime}, e^{\prime \prime}\right)\right)-V(G)=\left\{v\left(e^{\prime}\right), v\left(e^{\prime \prime}\right)\right\}$.

Lemma 2.2 (Lemma 1.4 of [12]). For a graph G and edges $e^{\prime}, e^{\prime \prime} \in E(G)$, if $G\left(e^{\prime}, e^{\prime \prime}\right)$ has a spanning ($v\left(e^{\prime}\right)$, $\left.v\left(e^{\prime \prime}\right)\right)$-trail, then G has a spanning ($e^{\prime}, e^{\prime \prime}$)-trail.

Let $X \subseteq E(G)$ be an edge subset of G. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. If H is a subgraph of G, we write G / H for $G / E(H)$. If v_{H} is the vertex in G / H onto which H is contracted, then H is called the preimage of v, and denoted by $\operatorname{PI}(v)$. Let $O(G)$ denote the set of odd degree vertices of G. A graph G is eulerian if $O(G)=\emptyset$ and G is connected. A graph G is supereulerian if G has a spanning eulerian subgraph. In [4] Catlin defined collapsible graphs. Given an even subset R of $V(G)$, a subgraph Γ of G is called an R-subgraph if $O(\Gamma)=R$ and $G-E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of $V(G)$, G has an R-subgraph. In particular, K_{1} is collapsible. Catlin [4] showed that for any graph G, one can obtain the reduction G^{\prime} of G by contracting all maximal collapsible subgraphs of G. A graph G^{\prime} is reduced if G^{\prime} has no nontrivial collapsible subgraphs. A vertex in G^{\prime} is c-nontrivial (or c-trivial) if $|V(P I(x))| \geq 2$ (or $|V(P I(x))|=1$). By definition, every collapsible graph is supereulerian. We summarize some results on Catlin's reduction method and other related facts below. Theorem 2.3(v) is a straightforward application of the definition of collapsible graphs.

Theorem 2.3. Let G be a graph and let H be a collapsible subgraph of G. Let v_{H} denote the vertex onto which H is contracted in G / H. Each of the following holds.
(i) (Catlin, Theorem 3 of [4]) G is collapsible if and only if G / H is collapsible. In particular, G is collapsible if and only if the reduction of G is K_{1}.
(ii) (Catlin, implied by definition and Theorem 3 of [4]) C_{2}, C_{3} are collapsible, and when $n \geq 4$, for any $e_{1}, e_{2} \in E\left(W_{n}\right)$, $\left(W_{n}-e_{1}\right)\left(e_{2}\right)$ is collapsible.
(iii) (Theorem 2.3 (iii) of [14]) If G is collapsible, then for any pair of vertices $u, v \in V(G), G$ has a spanning (u, v)-trail.
(iv) (Theorem 2.3 (iv) of [14]) For vertices $u, v \in V(G / H)-\left\{v_{H}\right\}$, if G / H has a spanning (u, v)-trail, then G has a spanning (u,v)-trail.
(v) Let $e^{\prime}, e^{\prime \prime} \in E(G)-E(H)$. Then G has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail if and only if G / H has a spanning $\left(e^{\prime}, e^{\prime \prime}\right)$-trail.
(vi) (Theorem 3.3 of [14]) Let G be a 3-edge-connected graph. If every 3-edge-cut X has at least one edge in a 2-cycle or 3 -cycle of G, then, for any two edges $e^{\prime}, e^{\prime \prime} \in E(G), G\left(e^{\prime}, e^{\prime \prime}\right)$ is collapsible.

Let $\tau(G)$ denote the maximum number of edge-disjoint spanning trees of G. Let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following theorem summarizes results related to $F(G)$ and supereulerianicity.

Theorem 2.4. Let G be a connected graph and let G^{\prime} be the reduction of G. Then each of the following holds.
(i) (Jaeger [9]) If $F(G)=0$, then G is collapsible.
(ii) (Catlin [4]) If $F(G) \leq 1$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$. Therefore, G is supereulerian if and only if $G^{\prime} \neq K_{2}$.
(iii) (Catlin et al. [5]) If $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$ for some integer $t \geq 1$. Therefore, G is supereulerian if and only if $G^{\prime} \notin\left\{K_{2}, K_{2, t}\right\}$ for some odd integer t.
(iv) (Catlin [3]) $F\left(G^{\prime}\right)=2\left|V\left(G^{\prime}\right)\right|-\left|E\left(G^{\prime}\right)\right|-2$. Therefore, if $F\left(G^{\prime}\right) \geq 3$, then $3 d_{1}\left(G^{\prime}\right)+2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \geq 10$.
(v) (Theorem 1.1 of [6]) Let $k \geq 1$ be an integer. Then $\kappa^{\prime}(G) \geq 2 k$ if and only if for any edge subset $X \subseteq E(G)$ with $|X| \leq k$, $\tau(G-X) \geq k$.

Lemma 2.5. Assume that $K=v_{1} v_{2} v_{3} v_{1}$ is a triangle in a connected graph G with $d_{G}\left(v_{1}\right)=3$. Also assume that $N_{G}\left(v_{1}\right)=$ $\left\{v_{2}, v_{3}, x\right\}$ and $e \in\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$. Let w be the new vertex in G / K to which K is contracted, and let $u(\neq w) \in V(G / K)$. Let T be a spanning (u, w)-trail in G / K. Then each of the following holds.
(i) For $e=v_{1} v_{2}, G(e)$ has a dominating $(u, v(e))$-trail T_{1} such that $V(G(e))-V\left(T_{1}\right) \subseteq\left\{v_{1}\right\}$.
(ii) For $e=v_{2} v_{3}$, if $\chi v_{1} \notin E(T)$, then $G(e)$ has a spanning $(u, v(e))$-trail T_{2}.

Proof. Since $u \neq w$, we have $O(T)=\{u, w\}$. Let H be the subgraph induced by $E(T)$ in G. Then H may not be connected, $O(H) \subseteq\left\{u, v_{1}, v_{2}, v_{3}\right\}$, and $d_{H}(u)$ is odd. Since $d_{G}\left(v_{1}\right)=3$ and $v_{1} v_{2}, v_{1} v_{3} \notin E(T), d_{H}\left(v_{1}\right) \in\{0,1\}$.

Assume $d_{H}\left(v_{1}\right)=0$. Then $x v_{1} \notin E(H)$ and $d_{H}\left(v_{2}\right)+d_{H}\left(v_{3}\right)=d_{T}(w)$ is odd. Thus either $d_{H}\left(v_{2}\right)$ or $d_{H}\left(v_{3}\right)$ is odd. So $T_{1}= \begin{cases}T+\left\{v_{2} v_{3}, v_{3} v_{1}, v_{1} v\left(v_{1} v_{2}\right)\right\}, & \text { if } d_{H}\left(v_{2}\right) \text { is odd } \\ T+\left\{v_{2} v_{3}, v_{2} v\left(v_{1} v_{2}\right)\right\}, & \text { if } d_{H}\left(v_{3}\right) \text { is odd }\end{cases}$
is a dominating $\left(u, v(e)\right.$)-trail of $G(e)$ with $V(G(e))-V\left(T_{1}\right) \subseteq\left\{v_{1}\right\}$ if $e=v_{1} v_{2}$, and $T_{2}=\left\{\begin{array}{cc}T+\left\{v_{2} v_{1}, v_{1} v_{3}, v_{3} v\left(v_{2} v_{3}\right)\right\}, & \text { if } d_{H}\left(v_{2}\right) \text { is odd } \\ T+\left\{v_{2} v_{1}, v_{1} v_{3}, v_{2} v\left(v_{2} v_{3}\right)\right\}, & \text { if } d_{H}\left(v_{3}\right) \text { is odd }\end{array}\right.$ is a spanning $(u, v(e))$-trail in $G(e)$ if $e=v_{2} v_{3}$.

Assume $d_{H}\left(v_{1}\right)=1$. Then $x v_{1} \in E(H), d_{H}\left(v_{2}\right)+d_{H}\left(v_{3}\right)=d_{T}(w)-1$ is even, and $e=v_{1} v_{2}$. Thus both $d_{H}\left(v_{2}\right)$ and $d_{H}\left(v_{3}\right)$ are even or odd. If $d_{H}\left(v_{2}\right)$ and $d_{H}\left(v_{3}\right)$ are even, then $T_{1}=T+\left\{v_{1} v_{3}, v_{2} v_{3}, v_{2} v\left(v_{1} v_{2}\right)\right\}$ is a spanning $\left(u, v\left(v_{1} v_{2}\right)\right)$-trail in $G\left(v_{1} v_{2}\right)$. If both $d_{H}\left(v_{2}\right)$ and $d_{H}\left(v_{3}\right)$ are odd, $O(H) \subseteq\left\{u, v_{1}, v_{2}, v_{3}\right\}$, therefore H has at most two components. If v_{1} and v_{3} are in the same component of H, then $T_{1}=T+\left\{v_{2} v_{3}, v_{1} v\left(v_{1} v_{2}\right)\right\}$ is a spanning $\left(u, v\left(v_{1} v_{2}\right)\right)$-trail in $G\left(v_{1} v_{2}\right)$. If v_{1} and v_{3} are not in the same component of H, then $T_{1}=T+\left\{v_{1} v_{3}, v_{2} v\left(v_{1} v_{2}\right)\right\}$ is a spanning $\left(u, v\left(v_{1} v_{2}\right)\right)$-trail in $G\left(v_{1} v_{2}\right)$.

Lemma 2.6. Let G be a 3-edge-connected, essentially 4-edge-connected graph. Let $v_{1} v_{2} v_{3} v_{1}$ be a triangle in G. If $d_{G}\left(v_{i}\right)=3$ for $i=1,2,3$, then $G=K_{4}$.

Proof. Since G is essentially 4-edge-connected and $d_{G}\left(v_{i}\right)=3$, we have $\left|N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{j}\right)\right| \geq 2$ for some $\{i, j\} \subseteq\{1,2,3\}$. Without loss of generality, we assume that $x \in N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)-\left\{v_{3}\right\}$. Consider $N_{G}\left(v_{3}\right)$ and assume that $N_{G}\left(v_{3}\right)=\left\{v_{1}, v_{2}, y\right\}$. Then $\left\{x v_{1}, x v_{2}, y v_{3}\right\}$ is a 3-edge-cut in G. Since G is 3-edge-connected and essentially 4-edge-connected, we have $x=y$, and so $G=K_{4}$.

Lemma 2.7. Let $s \geq 3$ be an integer and G be a graph with $\kappa^{\prime}(G) \geq 3$ and $\operatorname{ess}^{\prime}(G) \geq s+2$. If $v \in D_{3}(G)$, then $\kappa^{\prime}(G-v) \geq 3$ and $\operatorname{ess}^{\prime}(G-v) \geq s+1$.

Proof. Let $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Let X be an edge cut of $G-v$ and let H_{1}, H_{2} be components of $(G-v)-X$. If $u_{1}, u_{2}, u_{3} \in V\left(H_{i}\right)$ for some $i \in\{1,2\}$, then $|X| \geq 3$. If $u_{1} \in V\left(H_{1}\right)$ and $u_{2}, u_{3} \in V\left(H_{2}\right)$, then $|X| \geq s \geq 3$ since $X \cup\left\{v u_{2}\right.$, vu $\left.u_{3}\right\}$ is an essential edge cut in G, and so $\kappa^{\prime}(G-v) \geq 3$. Let Y be an essential edge cut of $G-v$ and let H_{1}, H_{2} be components of $(G-v)-Y$. If $u_{1}, u_{2}, u_{3} \in V\left(H_{i}\right)$ for some $i \in\{1,2\}$, then $|Y| \geq s+2$. If $u_{1} \in V\left(H_{1}\right)$ and $u_{2}, u_{3} \in V\left(H_{2}\right)$, then $Y \cup\left\{v u_{1}\right\}$ is an essential edge cut of G, implying that $|Y| \geq s+1$ and so $\operatorname{ess}^{\prime}(G-v) \geq s+1$.

3. Graphs with property $\mathcal{K}(s)$

Throughout this section, we assume that $s \geq 2$ is an integer. We shall introduce a property of graphs which will play an important role in our arguments.

Definition 3.1. Let \mathcal{K} denote the graph family such that a (connected) graph G is in \mathcal{K} if and only if G satisfies each of the following.
(KS1) For any $w \in D_{3}(G)$, the subgraph induced by $N_{G}(w)$ contains at least one edge.
(KS2) Let $w \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)$, where $x_{1}, x_{2} \in D_{3}(G)$ and $x_{1} x_{2} \notin E(G)$. If $N_{G}(w)=\left\{x_{1}, x_{2}, v\right\}$, then either $v x_{1} \notin E(G)$ or $v x_{2} \notin E(G)$.
(KS3) Let $w_{1}, w_{2} \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right)$, where $x_{1}, x_{2} \in D_{3}(G)$ and $x_{1} x_{2} \notin E(G)$. If $w_{1} w_{2} \in E(G)$, then $N_{G}\left(w_{1}\right) \cup N_{G}\left(w_{2}\right) \subseteq$ $N_{G}\left(x_{1}\right) \cup N_{G}\left(x_{2}\right) \cup\left\{x_{1}, x_{2}\right\}$.

By definition, every claw-free graph satisfies (KS1) and (KS3). For an integer $s \geq 2$, a graph G is said to have Property $\mathcal{K}(s)$ if G is in $\mathcal{K}-\left\{K_{4}, W_{4}, W_{5}\right\}$ and satisfies both $\kappa^{\prime}(G) \geq 3$ and $\operatorname{ess}^{\prime}(G) \geq s+2$.

Lemma 3.2. If the graph G has Property $\mathcal{K}(s)$, then there is a set $\Delta(G)$ of edge-disjoint triangles in G such that $D_{3}(G) \subseteq V(\Delta(G))$ and $D_{3}(G) \cap V(K) \neq \emptyset$ for each $K \in \triangle(G)$.

Proof. By (KS1), each vertex with degree 3 is in a triangle. We choose a set $\triangle(G)$ of triangles in G such that
(i) $D_{3}(G) \subseteq V(\Delta(G))$ and $D_{3}(G) \cap V(K) \neq \emptyset$ for each $K \in \Delta(G)$;
(ii) subject to (i), the size of $T=\{e \in E(G): e \in E(K) \cap E(L)$, where $K, L \in \triangle(G)\}$ is as small as possible.

To prove this lemma, it suffices to prove that $T=\emptyset$. By contradiction, we assume that $T \neq \emptyset$. Then there are two triangles $K=w_{1} u_{1} u_{2} w_{1}$ and $L=w_{2} u_{1} u_{2} w_{2}$ in $\triangle(G)$.

If $d_{G}\left(w_{1}\right) \geq 4$, then either $d_{G}\left(u_{1}\right)=3$ or $d_{G}\left(u_{2}\right)=3$ since $D_{3}(G) \cap V(K) \neq \emptyset$. Without loss of generality, we assume that $d_{G}\left(u_{1}\right)=3$. By Lemma 2.6, we have either $d_{G}\left(u_{2}\right) \geq 4$ or $d_{G}\left(w_{2}\right) \geq 4$. If one of $d_{G}\left(u_{2}\right)$ and $d_{G}\left(w_{2}\right)$ equals three, we set $\Delta^{\prime}(G)=\Delta(G)-\{K\}$. Then (i) is satisfied but (ii) is violated, a contradiction. So both $d_{G}\left(u_{2}\right) \geq 4$ and $d_{G}\left(w_{2}\right) \geq 4$. Let $\Delta^{\prime}(G)=\Delta(G)-\{K\}$. Then (ii) is violated, a contradiction. So $d_{G}\left(w_{1}\right)=3$. Similarly, $d_{G}\left(w_{2}\right)=3$.

Notice that $G \neq K_{4}$. If $w_{1} w_{2} \in E(G)$, by Lemma 2.6, $d_{G}\left(u_{1}\right) \geq 4$ and $d_{G}\left(u_{2}\right) \geq 4$. Let $\Delta^{\prime}(G)=(\triangle(G)-\{K, L\}) \cup\left\{w_{1} w_{2} u_{2} w_{1}\right\}$. Then (ii) is violated. So $w_{1} w_{2} \notin E(G)$. By (KS2), we have $d_{G}\left(u_{1}\right) \geq 4$ and $d_{G}\left(u_{2}\right) \geq 4$. By (KS3), $N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right) \subseteq N_{G}\left(w_{1}\right) \cup$ $N_{G}\left(w_{2}\right) \cup\left\{w_{1}, w_{2}\right\}$. Then there are two vertices x_{1}, x_{2} such that $x_{1} w_{1}, x_{1} u_{2}, x_{2} u_{1}, x_{2} w_{2} \in E(G)$. Thus $d_{G}\left(u_{1}\right)=d_{G}\left(u_{2}\right)=4$. Since G is essentially 4-edge-connected, $d_{G}\left(x_{1}\right) \geq 4$ and $d_{G}\left(x_{2}\right) \geq 4$. Let $\Delta^{\prime}(G)=(\Delta(G)-\{K\}) \cup\left\{x_{1} w_{1} u_{2} x_{1}\right\}$. Then (ii) is violated. This contradiction tells us that $T=\emptyset$. Hence $\Delta(G)$ is a set of edge-disjoint triangles in G.

Fig. 1. $G_{1}^{*}=G_{1} / \Delta^{\prime}(G)$.

Let $v \in D_{3}(G)$. By Lemma 3.2, there is a triangle containing v in $\Delta(G)$. We denote this triangle by Δ_{v}. Thus, for $v, u \in D_{3}(G)$, we have either $E\left(\Delta_{v}\right)=E\left(\triangle_{u}\right)$ or $E\left(\triangle_{v}\right) \cap E\left(\Delta_{u}\right)=\emptyset$. Fix a given subset $X=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\} \subseteq E(G)$. Define $\Delta^{\prime}(G)=\bigcup_{v \in D_{3}(G), E\left(\Delta_{v}\right) \cap X=\emptyset}\left\{\Delta_{v}\right\}$ and $\Delta^{*}(G)=\Delta(G)-\Delta^{\prime}(G)$. Then $\Delta(G)=\Delta^{\prime}(G)$ if $X \cap E(\Delta(G))=\emptyset$. Define $G_{1}=G / \Delta(G)$, and we use G_{1}^{*} to denote $G / \Delta^{\prime}(G)$. Thus if $X \cap E(\Delta(G))=\emptyset$, then $G_{1}=G_{1}^{*}$, and if $\Delta^{*}(G)=\left\{\Delta_{v_{1}}, \ldots, \Delta_{v_{t}}\right\}$, then $\left\{v_{1}, \ldots, v_{t}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$ and $E\left(\triangle_{v_{i}}\right) \cap X \neq \emptyset$ for $i=1, \ldots, t$ (Fig. 1). We call G_{1} a \triangle-contraction of G. By Theorem 2.4(v), for any $X \subseteq E\left(G_{1}\right)$ with $|X| \leq 2, \tau\left(G_{1}-X\right)=2$, and so $F\left(G_{1}-X\right)=0$. Since $\kappa^{\prime}(G) \geq 3$ and $\operatorname{ess}^{\prime}(G) \geq s+2$, we have

$$
\begin{equation*}
\kappa^{\prime}\left(G_{1}\right) \geq 4, \operatorname{ess}^{\prime}\left(G_{1}\right) \geq s+2, \kappa^{\prime}\left(G_{1}^{*}\right) \geq 3, \operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq s+2, \text { and } D_{i}\left(G_{1}^{*}\right) \subseteq D_{i}(G) \text { for } i \in\{3, \ldots, s+1\} \tag{1}
\end{equation*}
$$

Lemma 3.3. Suppose that $s \in\{2,3,4\}$ and $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right)=\emptyset$ for any $x_{1}, x_{2}, x_{3} \in D_{3}(G)$ if $s \geq 3$. If G has Property $\mathcal{K}(s)$, then for any edge subset $X \subseteq E(G)$ with $|X| \leq s, G-X$ has a dominating eulerian subgraph T such that $V(G)-V(T) \subseteq \bigcup_{i=3}^{s+1} D_{i}(G)$.

Proof. Let $X=\left\{e_{1}, \ldots, e_{s}\right\}$. Let G_{1} be a \triangle-reduction of G. By (1), $D_{i}\left(G_{1}^{*}\right) \subseteq D_{i}(G)$ for $i=3, \ldots, s+1$. Since a triangle is collapsible, to prove Lemma 3.3, it suffices to prove that

$$
\begin{equation*}
G_{1}^{*}-\left\{e_{1}, \ldots, e_{s}\right\} \text { has a dominating eulerian subgraph } T \text { such that } V\left(G_{1}^{*}\right)-V(T) \subseteq \bigcup_{i=3}^{s+1} D_{i}\left(G_{1}^{*}\right) \tag{2}
\end{equation*}
$$

Claim 1. If $s=2$, then $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ has a dominating eulerian subgraph T such that $V\left(G_{1}^{*}\right)-V(T) \subseteq\{v\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Furthermore, if $V\left(G_{1}^{*}\right)-V(T)=\{v\}$, then either e_{1}, e_{2} are incident to v, or the reduction of $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ is $K_{2,3}$.

Proof. Since G_{1}^{*} is 3-edge-connected, $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ is connected. If G_{1}^{*} contains the triangle Δ_{u} with $V\left(\Delta_{u}\right)=\{u, w, v\}$, by Lemma 2.6, we have $\max \left\{d_{G_{1}^{*}}(v), d_{G_{1}^{*}}(w)\right\} \geq 4$. Without loss of generality, we assume that $d_{G_{1}^{*}}(w) \geq 4$. We add the new edge f_{u} parallel to the edge $u w$ in G_{1}^{*}. Let $T=\left\{f_{u}: u \in D_{3}\left(G_{1}^{*}\right)\right\}$. Since G_{1}^{*} has at most two triangles that contain the vertices of degree $3,|T| \leq 2$. Let G_{2} be the graph obtained from G_{1}^{*} by adding the edges in T. Then $\kappa^{\prime}\left(G_{2}\right) \geq 4$. By Theorem 2.4(iv), $F\left(G_{1}^{*}\right)=\bar{F}\left(G_{2}-T\right)=0$, and so $F\left(G_{1}^{*}-\left\{e_{1}, e_{2}\right\}\right) \leq 2$. Let G^{\prime} be the reduction of $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$. By Theorem 2.4(iii), $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$ for some odd integer $t \geq 1$.

If $G^{\prime}=K_{1}$, then $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ is collapsible. Hence $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ has a spanning eulerian subgraph. If $G^{\prime}=K_{2}$ with $V\left(G^{\prime}\right)=\left\{u_{1}, u_{2}\right\}$, then either $\operatorname{PI}\left(u_{1}\right)$ or $\operatorname{PI}\left(u_{2}\right)$ is trivial. Without loss of generality, we assume that $\operatorname{PI}\left(u_{1}\right)$ is trivial. Since G_{1}^{*} is 3-edge-connected, e_{1}, e_{2} are incident to u_{1}. Since $\operatorname{PI}\left(u_{2}\right)$ is collapsible, $\operatorname{PI}\left(u_{2}\right)$ has a spanning eulerian subgraph T. This subgraph T is a dominating eulerian subgraph of $G_{1}^{*}-\left\{e_{1}, e_{2}\right\}$ with $V\left(G_{1}^{*}\right)-V(T)=\left\{u_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. If $G^{\prime}=K_{2, t}$, then $t \neq 1$ since G_{1}^{*} is 3-edge-connected, essentially 4-edge-connected. Notice that if $x \in D_{2}\left(G^{\prime}\right)$ is c-nontrivial, then both e_{1}, e_{2} are incident to some vertices in $P I(x)$; if $x \in D_{2}\left(G^{\prime}\right)$ is c-trivial or $x \in D_{3}\left(G^{\prime}\right)$ is c-nontrivial, then either e_{1} or e_{2} is incident to some vertex in $\operatorname{PI}(x)$. Thus $t \leq 3$ and so $G^{\prime}=K_{2,3}$. Claim 1 holds.

By Claim 1, we assume that $s \in\{3,4\}$. Notice that $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right)=\emptyset$ for $x_{1}, x_{2}, x_{3} \in D_{3}(G)$. By (1), we have for $i \in\{3, \ldots, s+1\}$, if $x \in D_{i}\left(G_{1}^{*}\right)$, then $x \in D_{i}(G)$ and $\left|N_{G_{1}^{*}}(x) \cap D_{3}\left(G_{1}^{*}\right)\right| \leq 2$.

Claim 2. If $s=3$, then $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ has a dominating eulerian subgraph T such that $V\left(G_{1}^{*}\right)-V(T) \subseteq D_{3}\left(G_{1}^{*}\right) \cup D_{4}\left(G_{1}^{*}\right)$ and $\left|V\left(G_{1}^{*}\right)-V(T)\right| \leq 2$. Furthermore, if $V\left(G_{1}^{*}\right)-V(T)=\left\{x_{1}, x_{2}\right\}$, then $x_{1}, x_{2} \in D_{3}\left(G_{1}^{*}\right)$, and if $V\left(G_{1}^{*}\right)-V(T)=\{x\}$ and $x \in D_{4}\left(G_{1}^{*}\right)$, then either e_{1}, e_{2}, e_{3} are incident to x, or $G_{1}^{*}=G=K_{5}^{-}$and $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}=K_{2,3}$.

Proof. Assume that $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ is not connected. Then e_{1}, e_{2}, e_{3} are incident to a vertex v with $d_{G}(v)=3$. As G_{1}^{*} is essentially 5-edge-connected, $d_{G}(x) \geq 4$ for $x \in N_{G}(v)$, and so $D_{3}\left(G_{1}^{*}\right)=\{v\}$. Let G_{2} be the graph obtained from G_{1}^{*} by adding the edge e_{1}^{\prime} that is parallel to the edge e_{1}. Then G_{2} is 4-edge-connected. Thus $\tau\left(G_{2}-\left\{e_{1}, e_{1}^{\prime}\right\}\right)=\tau\left(G_{1}^{*}-e_{1}\right) \geq 2$. As $d_{G_{1}^{*}-e_{1}}(v)=2, \tau\left(G_{1}^{*}-v\right) \geq 2$ and so $G_{1}^{*}-v$ is collapsible. Therefore, $G_{1}^{*}-v$ is supereulerian and $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ has a dominating eulerian subgraph T_{1} such that $V\left(G_{1}^{*}\right)-V\left(T_{1}\right)=\{v\} \subseteq D_{3}\left(G_{1}^{*}\right)$. Next we assume that $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ is connected. Since $\operatorname{ess}^{\prime}(G) \geq 5, D_{3}\left(G_{1}^{*}\right)$ is an independent set. Thus $\left|D_{3}\left(G_{1}^{*}\right)\right| \leq 3$.

If $\left|D_{3}\left(G_{1}^{*}\right)\right|=3$, then there are three triangles $\Delta_{v_{1}}, \Delta_{v_{2}}$ and $\Delta_{v_{3}}$ in G_{1}^{*} such that each triangle contains one of $\left\{e_{1}, e_{2}, e_{3}\right\}$. Let $V\left(\Delta_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}$ and $e_{i} \in E\left(\Delta_{v_{i}}\right)$ for $i=1,2,3$. By Lemma 2.7, $G_{1}^{*}-v_{1}$ is 3-edge-connected and essentially 4-edge-connected. By Claim $1,\left(G_{1}^{*}-v_{1}\right)-\left\{e_{2}, e_{3}\right\}$ has a dominating eulerian subgraph T_{4} such that $V\left(G_{1}^{*}-v_{1}\right)-V\left(T_{4}\right) \subseteq\left\{y_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}-v_{1}\right)$. If $V\left(G_{1}^{*}-v_{1}\right)=V\left(T_{4}\right)$, then T_{4} is a spanning eulerian subgraph of $\left(G_{1}^{*}-v_{1}\right)-\left\{e_{2}, e_{3}\right\}$ and $T_{5}=\left\{\begin{array}{ll}T_{4} & \text { if } e_{1} \notin E\left(T_{4}\right) \\ T_{4}-\left\{u_{1} w_{1}\right\}+\left\{v_{1} u_{1}, v_{1} w_{1}\right\} & \text { if } e_{1} \in E\left(T_{4}\right)\end{array}\right.$ is a dominating eulerian subgraph of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ with $V\left(G_{1}^{*}\right)-V\left(T_{5}\right) \subseteq\{v\} \subseteq D_{3}\left(G_{1}^{*}\right)$. So we assume $V\left(G_{1}^{*}-v_{1}\right)-V\left(T_{4}\right)=\left\{y_{1}\right\}$. Thus $v_{1} y_{1} \in E\left(G_{1}^{*}\right)$ (otherwise, $T_{6}=\left\{\begin{array}{ll}T_{4} & \text { if } e_{1} \notin E\left(T_{4}\right) \\ T_{4}-\left\{u_{1} w_{1}\right\}+\left\{v_{1} u_{1}, v_{1} w_{1}\right\} & \text { if } e_{1} \in E\left(T_{4}\right)\end{array}\right.$ is a dominating eulerian subgraph of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ with $\left.V\left(G_{1}^{*}\right)-V\left(T_{6}\right) \subseteq\left\{v_{1}, y_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)\right)$.

If the reduction Q of $G_{1}^{*}-v_{1}-\left\{e_{2}, e_{3}\right\}$ is $K_{2,3}$ with $D_{2}(Q)=\left\{a_{1}, a_{2}, a_{3}\right\}$, then $y_{1} \in\left\{a_{1}, a_{2}, a_{3}\right\}$. Without loss of generality, we assume that $y_{1}=a_{3}$. Since $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 5, N_{G_{1}^{*}}\left(v_{1}\right) \cap V\left(P I\left(a_{i}\right)\right) \neq \emptyset(i=1,2)$. Thus $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ is supereulerian. So we
assume that the reduction of $G_{1}^{*}-v_{1}-\left\{e_{2}, e_{3}\right\}$ is not $K_{2,3}$. By Claim $1, e_{2}, e_{3}$ are incident to y_{1}, and so $d_{G_{1}^{*}}\left(y_{1}\right)=4$. Similarly, using the above discussion on $\triangle_{v_{2}}$ and $\triangle_{v_{3}}$, there are two vertices y_{2}, y_{3} such that $\left\{e_{1}, e_{3}\right\} \subseteq E_{G_{1}^{*}}\left(y_{2}\right)$ and $\left\{e_{1}, e_{2}\right\} \subseteq E_{G_{1}^{*}}\left(y_{3}\right)$, and $d_{G_{1}^{*}}\left(y_{2}\right)=d_{G_{1}^{*}}\left(v_{3}\right)=4$. Then $E\left(y_{1} y_{2} y_{3} y_{1}\right)=\left\{e_{1}, e_{2}, e_{3}\right\}$, contrary to the fact that e_{1}, e_{2}, e_{3} are on the different triangles in G_{1}^{*}. So $\left|D_{3}\left(G_{1}^{*}\right)\right| \leq 2$.

Let G_{3} be the graph obtained from G_{1}^{*} by adding the new edge $v_{1} v_{2}$ if $D_{3}\left(G_{1}^{*}\right)=\left\{v_{1}, v_{2}\right\}$, or the edge parallel to $v u$ if $D_{3}\left(G_{1}^{*}\right)=\{v\}$ and $u \in N_{G_{1}^{*}}(v)$. Then G_{3} is 4-edge-connected. Thus $F\left(G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}\right) \leq 2$. Let G^{\prime} be the reduction of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$. By Theorem 2.4(iii), $G^{\prime} \in\left\{K_{1}, K_{2}, K_{2, t}\right\}$, where $t \geq 1$ is an odd integer. Notice that if $x \in D_{2}\left(G^{\prime}\right)$ is cnontrivial, $\left|E_{G_{1}^{*}}(P I(x)) \cap\left\{e_{1}, e_{2}, e_{3}\right\}\right| \geq 2$, and if $x \in D_{2}\left(G^{\prime}\right)$ is c-trivial, $\left|E_{G_{1}^{*}}(x) \cap\left\{e_{1}, e_{2}, e_{3}\right\}\right| \geq 1$. So $t \leq 3$. Since $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 4, t \geq 3$. So $G^{\prime}=K_{2,3}$ if $G^{\prime}=K_{2, t}$.

If $G^{\prime}=K_{1}$, then $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ is collapsible. Hence $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ has a spanning eulerian subgraph. If $G^{\prime}=K_{2}$ with $V\left(G^{\prime}\right)=\left\{z_{1}, z_{2}\right\}$, then either $\operatorname{PI}\left(z_{1}\right)$ or $\operatorname{PI}\left(z_{2}\right)$ is trivial. Without loss of generality, we assume that $\operatorname{PI}\left(z_{1}\right)$ is trivial. Since G_{1}^{*} is 3-edge-connected, $\left|E_{G_{1}^{*}}\left(z_{1}\right) \cap\left\{e_{1}, e_{2}, e_{3}\right\}\right| \geq 2$. Since $\operatorname{PI}\left(z_{2}\right)$ is collapsible, $\operatorname{PI}\left(z_{2}\right)$ has a spanning eulerian subgraph T. This subgraph T is a dominating eulerian subgraph of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ with $V\left(G_{1}^{*}\right)-V(T)=\left\{z_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right) \cup D_{4}\left(G_{1}^{*}\right)$. In addition, if $z_{1} \in D_{4}\left(D_{1}^{*}\right)$, then e_{1}, e_{2}, e_{3} are incident to z_{1}. If $G^{\prime}=K_{2,3}$, as G is essentially 5-edge-connected, $G=G_{1}^{*}=K_{5}^{-}$and $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}=K_{2,3}$. Thus $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}$ has a dominating eulerian subgraph T with $V\left(G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}\right\}\right)-V(T)=\{x\}$, where $x \in D_{4}\left(G_{1}^{*}\right)$.

We will finish the proof of Lemma 3.3 by proving the following claim.
Claim 3. If $s=4$, then $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ has a dominating eulerian subgraph T such that $V\left(G_{1}^{*}\right)-V(T) \subseteq \bigcup_{i=3}^{5} D_{i}\left(G_{1}^{*}\right)$.
Proof. If $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is not connected, then we assume that H_{1}, H_{2} are the components of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. As $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 6$, we have either H_{1} or H_{2} is trivial. Assume that $V\left(H_{1}\right)=\{v\}$. Then $d_{G_{1}^{*}}(v) \in\{3,4\}, N_{G_{1}^{*}}(v) \subseteq$ $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, and $\kappa^{\prime}\left(H_{2}\right) \geq 2$ and $\operatorname{ess}^{\prime}\left(H_{2}\right) \geq 4$. We assume that $e_{1}, e_{2}, e_{3} \in E_{G_{1}^{*}}(v)$. As $d_{G_{1}^{*}}(x) \geq 4$ for any $x \in N_{G_{1}^{*}}(v), G_{1}^{*}$ contains at most two vertices of degree three. Thus $\tau\left(G_{1}^{*}-e_{4}\right) \geq 2$. As $d_{G_{1}^{*}-e_{4}}(v)=3, F\left(H_{2}\right)=F\left(\left(G_{1}^{*}-e_{4}\right)-v\right) \leq 1$. By Theorem 2.4(ii), H_{2} is collapsible. So G_{1}^{*} has a dominating eulerian subgraph T_{1} with $V\left(G_{1}^{*}\right)-V\left(T_{1}\right)=\{v\} \subseteq D_{3}\left(G_{1}^{*}\right) \cup D_{4}\left(G_{1}^{*}\right)$. Next we assume that $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is connected.

Since $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 6, D_{3}\left(G_{1}^{*}\right) \cup D_{4}\left(D_{1}^{*}\right)$ is independent. Let G^{\prime} be the reduction of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. If $G^{\prime}=K_{1}$, then $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is collapsible. Hence $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ has a spanning eulerian subgraph. If $G^{\prime}=K_{2}$ with $V\left(G^{\prime}\right)=\left\{a_{1}, a_{2}\right\}$, then either $\operatorname{PI}\left(a_{1}\right)$ is trivial or $\operatorname{PI}\left(a_{2}\right)$ is trivial. Without loss of generality, we assume that $\operatorname{PI}\left(a_{1}\right)$ is trivial. As $P I\left(a_{2}\right)$ is collapsible, $P I\left(a_{2}\right)$ has a spanning eulerian subgraph T_{1}. This T_{1} is a dominating eulerian subgraph in $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ with $V\left(G_{1}^{*}\right)-V\left(T_{1}\right)=\left\{a_{1}\right\} \subseteq \bigcup_{i=3}^{5} D_{i}\left(G_{1}^{*}\right)$. So
if $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$, then Claim 3 is true.
Assume that $D_{3}\left(G_{1}^{*}\right)=\emptyset$. Then $G_{1}^{*}=G_{1}$. Since G_{1} is 4-edge-connected, $F\left(G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right) \leq 2$. By Theorem 2.4(iii) and (4), $G^{\prime}=K_{2, p}$, where $p \geq 1$ is an odd integer. As $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 4$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 6, G^{\prime} \neq K_{1,2}$ and $G^{\prime} \neq K_{2, p}(p \geq 5)$. Thus $G^{\prime}=K_{2,3}$. Hence $G_{1}=K_{5}$ and $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}=K_{2,3}$, and so $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ has a dominating eulerian subgraph T_{2} such that $V\left(G_{1}^{*}\right)-V\left(T_{2}\right)=\{x\} \subseteq D_{4}\left(G_{1}^{*}\right)$.

Next we assume that there is a triangle Δ_{v} containing e_{1} in G_{1}^{*} such that $d_{G_{1}^{*}}(v)=3$. Let $V\left(\Delta_{v}\right)=\left\{v, u_{2}, u_{3}\right\}$ and $N_{G_{1}^{*}}(v)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Then $d_{G_{1}^{*}}\left(u_{i}\right) \geq 5(i=1,2,3)$. By Lemma 2.7, $G_{1}^{*}-v$ is 3-edge-connected, essentially 5-edgeconnected. Since $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 6$, we have $G_{1}^{*}-v \neq K_{5}^{-}$. By Claim 2, $\left(G_{1}^{*}-v\right)-\left\{e_{2}, e_{3}, e_{4}\right\}$ has a dominating eulerian subgraph T_{3} with $V\left(G_{1}^{*}-v\right)-V\left(T_{3}\right) \subseteq D_{3}\left(G_{1}^{*}-v\right) \cup D_{4}\left(G_{1}^{*}-v\right)$ and $\left|V\left(G_{1}^{*}-v\right)-V\left(T_{3}\right)\right| \leq 2$. If $\left(V\left(G_{1}^{*}-v\right)-V\left(T_{3}\right)\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$, then $T_{4}=\left\{\begin{array}{ll}T_{3}-\left\{u_{2} u_{3}\right\}+\left\{v u_{2}, v u_{3}\right\}, & \text { if } e_{1}=u_{2} u_{3} \in E\left(T_{3}\right) \\ T_{3}, & \text { otherwise }\end{array}\right.$ is a dominating eulerian subgraph of $G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that $V\left(G_{1}^{*}\right)-V\left(T_{4}\right) \subseteq D_{3}\left(G_{1}^{*}\right) \cup D_{4}\left(G_{1}^{*}\right)$. So we may assume that $u_{i} \in\left(V\left(G_{1}^{*}-v\right)-V\left(T_{3}\right)\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}$ for some $i \in\{1,2,3\}$. As $d_{G_{1}^{*}-v}\left(u_{i}\right) \geq 4$, by Claim 2, $V\left(G_{1}^{*}-v\right)-V\left(T_{4}\right)=\left\{u_{i}\right\} \subseteq D_{4}\left(G_{1}^{*}-v\right)$ and e_{2}, e_{3}, e_{4} are incident to u_{i}. Thus $D_{3}\left(G_{1}^{*}\right)=\{v\}$. Since $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 6, G^{*}-v$ is 4-edge-connected. Thus $F\left(\left(G_{1}^{*}-v\right)-\left\{e_{2}, e_{3}, e_{4}\right\}\right) \leq 1$ and so $F\left(G_{1}^{*}-\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right) \leq 1$. By Theorem 2.4(ii), $G^{\prime} \in\left\{K_{1}, K_{2}\right\}$. By (4), Claim 3 is true.

Lemma 3.4. Let $s \geq 2$ be an integer and G be a graph having Property $\mathcal{K}(s)$. Then for any three edges $e, e_{1}, e_{2}, G-e$ has a dominating $\left(e_{1}, e_{2}\right)$-trail T such that $V(G)-V(T) \subseteq D_{3}(G)$.

Proof. By contradiction, we assume that G is a counterexample to Lemma 3.4 with $|V(G)|$ minimized. Then there exist three edges $e, e_{1}, e_{2} \in E(G)$ such that
$G-e$ does not have a dominating (e_{1}, e_{2})-trail T such that $V(G)-V(T) \subseteq D_{3}(G)$.
Thus $G \notin\left\{K_{4}, W_{4}, W_{5}\right\}$. Let $X=\left\{e, e_{1}, e_{2}\right\}$. Since G satisfies Property $\mathcal{K}(s)$, let G_{1} be a \triangle-reduction of G. By (1), we have $\kappa^{\prime}\left(G_{1}\right) \geq 4, \kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 4$. Notice that a triangle is collapsible. By Theorem 2.3(iii), (iv), and by (5),

$$
\begin{equation*}
\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right) \text { has no a dominating }\left(v\left(e_{1}\right), v\left(e_{2}\right)\right) \text {-trail } T \text { with } V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq D_{3}\left(G_{1}^{*}\right) . \tag{6}
\end{equation*}
$$

Therefore, $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ is not collapsible. Since G is 3-edge-connected and essentially 4-edge-connected, $G_{1}^{*}\left(e_{1}, e_{2}\right)$ is 2-edge-connected and essentially 4-edge-connected, and $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ is 2-edge-connected and essentially 3-edgeconnected. Let G^{\prime} be the reduction of $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$. Then $G^{\prime} \notin\left\{K_{1}, K_{2}\right\}$.

Claim 1. (i) Each vertex in $D_{2}\left(G^{\prime}\right)$ is c-trivial. Therefore, $D_{2}\left(G^{\prime}\right) \subseteq\left\{v\left(e_{1}\right), v\left(e_{2}\right), v, u\right\}$, where $e=u v$.
(ii) If $x \in D_{3}\left(G^{\prime}\right)$ is c-nontrivial, then e is incident to a vertex in $\operatorname{PI}(x)$.
(iii) $F\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right) \geq 3$, and $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \geq 10$.

Proof. If $x \in D_{2}\left(G^{\prime}\right)$ is c-nontrivial, then e is incident to a vertex in $\operatorname{PI}(x)$. Without loss of generality, we assume that $v \in \operatorname{PI}(x)$. Since $G_{1}^{*}\left(e_{1}, e_{2}\right)$ is essentially 4-edge-connected, $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V(\operatorname{PI}(x))=\{u\}$ and $d_{G_{1}^{*}}(u)=3$. Thus $G^{\prime}=2 K_{2}$, a contradiction. Thus any vertex in $D_{2}\left(G^{\prime}\right)$ is trivial, and so $D_{2}\left(G^{\prime}\right) \subseteq\left\{v\left(e_{1}\right), v\left(e_{2}\right), v, u\right\}$. Since G_{1}^{*} is essentially 4-edge-connected, (ii) holds.

Assume that $F\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right) \leq 2$. By Theorem 2.4(iii), $G^{\prime} \in\left\{K_{2,2}, K_{2,3}, K_{2,4}\right\}$. If $G^{\prime}=K_{2,2}$, then $G^{\prime}=v\left(e_{1}\right) u v\left(e_{2}\right) v v\left(e_{1}\right)$. Thus $G_{0}=G_{1}^{*}=3 K_{2}$, contrary to the hypothesis that G is a simple graph. If $G^{\prime}=K_{2,4}$, then $v\left(e_{1}\right), v\left(e_{2}\right) \in D_{2}\left(G^{\prime}\right)$ and G^{\prime} has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. Thus $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, contrary to (6). So $G^{\prime}=K_{2,3}$. If $D_{2}\left(G^{\prime}\right)=\left\{v\left(e_{1}\right), v\left(e_{2}\right), v\right\}$, then G^{\prime} has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail. Hence, $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$ trail, contrary to (6). If $D_{2}\left(G^{\prime}\right)=\left\{v\left(e_{1}\right), u, v\right\}$ with $D_{3}\left(G^{\prime}\right)=\{a, b\}$, then $v\left(e_{2}\right) \in P I(a) \cup P I(b)$. Without loss of generality, we assume that $v\left(e_{2}\right) \in P I(a)$. Then the edge cut between $V(P I(a))$ and $V\left(G_{1}^{*}\right)-V(P I(a))$ is an essential 3-edge cut in G_{1}^{*}, a contradiction. So $F\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right) \geq 3$. By Theorem 2.4(iv) and the fact that $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ is 2-edge-connected, $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \geq 10$.

Claim 2. $\left|D_{3}\left(G_{1}^{*}\right)\right| \geq 2$.
Proof. By contradiction, we assume that $\left|D_{3}\left(G_{1}^{*}\right)\right| \leq 1$. If there is a triangle $x y z x$ in G_{1}^{*} with $d_{G_{1}^{*}}(x)=3$, by Lemma 2.6 , we have either $d_{G_{1}^{*}}(y) \geq 4$ or $d_{G_{1}^{*}}(z) \geq 4$. Let G_{2} be the graph obtained from G_{1}^{*} by adding the edge parallel to $x z$ if $D_{3}\left(G_{1}^{*}\right)=\{x\}$ with $V\left(\Delta_{x}\right)=\{x, y, z\}$ and $d_{G_{1}^{*}}(y) \geq 4$, or $G_{2}=G_{1}^{*}$ if $D_{3}\left(G_{1}^{*}\right)=\emptyset$. Then G_{2} is 4-edge-connected. Thus $\tau\left(G_{1}^{*}-e_{1}\right) \geq 2$ and so $F\left(\left(G_{1}^{*}-e_{1}\right)\left(e_{2}, e_{3}\right)\right) \leq 2$, contrary to Claim 1(iii). Claim 2 holds.

Claim 3. $\left|D_{3}\left(G_{1}^{*}\right)\right|=3$.
Proof. Assume that G_{1}^{*} contains exactly two triangles $\triangle_{v_{1}}$ and $\triangle_{v_{2}}$ with $V\left(\triangle_{v_{i}}\right)=\left\{v_{i}, u_{i}, w_{i}\right\}(i=1,2)$. Then $\left\{v_{1}, v_{2}\right\} \subseteq$ $D_{3}\left(G_{1}^{*}\right)$ and $\tau\left(G_{1}^{*}\right) \geq 2$. For $i=1,2$, by Lemma 2.6, either $d_{G_{1}^{*}}\left(w_{i}\right) \geq 4$ or $d_{G_{1}^{*}}\left(u_{i}\right) \geq 4$. Without loss of generality, we assume that $d_{G_{1}^{*}}\left(w_{i}\right) \geq 4$.

Claim 3.1. If $E\left(\triangle_{v_{1}}\right)$ contains e_{1} only, then $e_{1}=u_{1} w_{1}$, and $\left\{u_{1}, w_{1}\right\} \cap D_{3}\left(G_{1}^{*}\right)=\emptyset$.
Proof. By contradiction, we assume that $e_{1}=v_{1} u_{1}$. Let $G_{11}^{*}=G_{1}^{*} / E\left(\Delta_{v_{1}}\right)$ and let z_{1} be the vertex in G_{11}^{*} to which $\triangle_{v_{1}}$ is contracted. Let G_{2} be the graph obtained from G_{11}^{*} by adding the new edge f parallel to $v_{2} u_{2}$. Then G_{2} is 4-edgeconnected. Thus $\tau\left(G_{2}-\{f, e\}\right)=\tau\left(G_{11}^{*}-e\right) \geq 2$ and so $F\left(\left(G_{11}^{*}-e\right)\left(e_{2}\right)\right) \leq 1$. Since $\left(G_{11}^{*}-e\right)\left(e_{2}\right)$ is 2-edge-connected, by Theorem 2.4(ii), $\left(G_{11}^{*}-e\right)\left(e_{2}\right)$ is collapsible. Thus $\left(G_{11}^{*}-e\right)\left(e_{2}\right)$ has a spanning $\left(v\left(e_{2}\right), z_{1}\right)$-trail. By Lemma 2.5(i), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating eulerian trail T such that $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $e_{1}=u_{1} w_{1}$. If $u_{1} \in D_{3}\left(G_{1}^{*}\right)$, then $\Delta_{u_{1}}=\Delta_{v_{1}}$. Using the above discussion on $u_{1},\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating eulerian trail T such that $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V(T) \subseteq\left\{u_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $\left\{u_{1}, w_{1}\right\} \cap D_{3}\left(G_{1}^{*}\right)=\emptyset$. Claim 3.1 holds.

Claim 3.2. $e, e_{1}, e_{2} \in E\left(\Delta_{v_{1}}\right) \cup E\left(\Delta_{v_{2}}\right)$.
Proof. Assume that $e \notin E\left(\triangle_{v_{1}}\right) \cup E\left(\triangle_{v_{2}}\right)$. Then for $i=1,2,\left|E\left(\triangle_{v_{i}}\right) \cap\left\{e_{1}, e_{2}\right\}\right|=1$. By Claim 3.1, $\left\{u_{1}, w_{1}, u_{2}, w_{2}\right\} \cap D_{3}\left(G_{1}^{*}\right)=$ \emptyset. Let G_{3} be the graph obtained from G_{1}^{*} by adding the edge $v_{1} v_{2}$. Then G_{3} is 4-edge-connected. Thus $\tau\left(G_{1}^{*}-e\right) \geq 2$ and so $F\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right) \leq 2$, contrary to Claim 1(iii). So $e \in E\left(\Delta_{v_{1}}\right) \cup E\left(\triangle_{v_{2}}\right)$.

Assume that $e_{1} \notin E\left(\triangle_{v_{1}}\right) \cup E\left(\triangle_{v_{2}}\right)$. Also we assume that the triangles $\triangle_{v_{1}}, \Delta_{v_{2}}$ contain e and e_{2}, respectively. By Claim 3.1, $e_{2}=u_{2} w_{2}$ and $d_{G_{1}^{*}}\left(u_{2}\right) \geq 4$ and $d_{G_{1}^{*}}\left(w_{2}\right) \geq 4$. Let $v^{\prime}, u^{\prime}, w^{\prime} \in V\left(G^{\prime}\right)$ whose preimages contain v_{1}, u_{1}, w_{1}, respectively. By Claim 1(i), $d_{2}\left(G^{\prime}\right) \leq 4$. If $d_{2}\left(G^{\prime}\right)=4$, then $D_{2}\left(G^{\prime}\right)=\left\{v\left(e_{1}\right), v\left(e_{2}\right), v_{1}, u_{1}\right\}$, where $e=v_{1} u_{1}$. Thus $d_{G_{1}^{*}}\left(u_{1}\right)=3$. By Claim 1(ii), each vertex in $D_{3}\left(G^{\prime}\right)$ is c-trivial. Thus $D_{3}\left(G^{\prime}\right) \subseteq\left\{v_{2}\right\}$, and so $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \leq 9$, contrary to Claim 1(iii). If $d_{2}\left(G^{\prime}\right)=3$, Then $D_{2}\left(G^{\prime}\right)=\left\{v_{1}, v\left(e_{1}\right), v\left(e_{2}\right)\right\}$. Thus $D_{3}\left(G^{\prime}\right) \subseteq\left\{v_{2}, u^{\prime}, w^{\prime}\right\}$, and so $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \leq 9$. If $d_{2}\left(G^{\prime}\right) \leq 2$, then $D_{3}\left(G^{\prime}\right) \subseteq\left\{v_{2}, v^{\prime}, u^{\prime}, w^{\prime}\right\}$, and so $2 d_{2}\left(G^{\prime}\right)+d_{3}\left(G^{\prime}\right) \leq 8$, contrary to Claim 1(iii). So Claim 3.2 holds.

We use the following two cases to finish the proof of Claim 3.
Case 1. $e_{1}, e_{2} \in E\left(\triangle_{v_{1}}\right)$, and $e \in E\left(\triangle_{v_{2}}\right)$.
Without loss of generality, we assume that $e_{2}=v_{1} w_{1}$. First we prove that $e_{1}=u_{1} w_{1}$. Otherwise, $e_{1}=v_{1} u_{1}$. As $\tau\left(G_{1}^{*}\right) \geq 2, F\left(G_{1}^{*}-e\right) \leq 1$. By Theorem 2.4(ii), $G_{1}^{*}-e$ is collapsible. Let T_{1} be a spanning eulerian subgraph of $G_{1}^{*}-e$. Then
$\left|E\left(T_{1}\right) \cap E_{G_{1}^{*}}\left(v_{1}\right)\right|=2$. Let $E_{G_{1}^{*}}\left(v_{1}\right)=\left\{v_{1} u_{1}, v_{1} w_{1}, f_{1}\right\}$. Then $T_{2}= \begin{cases}T_{1}-\left\{e_{1}\right\}+\left\{u_{1} v\left(e_{1}\right), v_{1} v\left(e_{2}\right)\right\}, & \text { if } e_{1}, f_{1} \in E\left(T_{1}\right) \\ T_{1}\end{cases}$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V\left(T_{2}\right) \subseteq\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $e_{1}=u_{1} w_{1}$.

Consider $G_{4}=G_{1}^{*}-\left\{e, e_{2}\right\}$. Then $F\left(G_{4}\right) \leq 2$. Since $\kappa^{\prime}\left(G_{1}^{*}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{1}^{*}\right) \geq 4$, and since e, e_{2} are in different triangles, G_{4} is 2-edge-connected. Let G_{4}^{\prime} be the reduction of G_{4}. By Theorem 2.4(iii), $G_{4}^{\prime} \in\left\{K_{1}, K_{2, p}\right\}(p \geq 2)$. Notice that if $x \in D_{2}\left(G_{4}^{\prime}\right)$ is c-nontrivial, then both e, e_{2} are incident to some vertices in $P I(x)$; if $x \in D_{2}\left(G_{4}^{\prime}\right)$ is c-trivial or $x \in D_{3}\left(G_{4}^{\prime}\right)$ is c-nontrivial, then either e or e_{2} is incident to some vertex in $\operatorname{PI}(x)$. So $p \leq 4$. Furthermore, $G_{4}^{\prime} \neq K_{2,3}$ (otherwise, $G=W_{4}$, a contradiction). By Theorem 2.4(iii), G_{4} is supereulerian. Let T_{3} be a spanning eulerian subgraph of G_{4}. Then $T_{4}=\left\{\begin{array}{ll}T_{3}-\left\{e_{1}\right\}+\left\{u_{1} v\left(e_{1}\right), w_{1} v\left(e_{2}\right)\right\}, & \text { if } e_{1} \in E\left(T_{3}\right) \\ T_{3}+\left\{v\left(e_{1}\right) w_{1}, v\left(e_{2}\right) w_{1}\right\}, & \text { if } e_{1} \notin E\left(T_{3}\right)\end{array}\right.$ is a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$, contrary to (6).
Case 2. $e, e_{1} \in E\left(\triangle_{v_{1}}\right), e_{2} \in E\left(\triangle_{v_{2}}\right)$,
We claim that $e_{1}=w_{1} u_{1}$. Otherwise, assume that $e_{1}=v_{1} w_{1}$. Let $G_{5}=\left(G_{1}^{*}-e\right)\left(e_{2}\right)$. Then $\kappa^{\prime}\left(G_{5}\right) \geq 2$ and $\operatorname{ess}^{\prime}\left(G_{5}\right) \geq 3$. Let G_{5}^{\prime} be the reduction of G_{5}. Then each vertex $x \in D_{2}\left(G_{5}^{\prime}\right)$ is c-trivial. As $d_{2}\left(G_{5}\right) \leq 3, d_{2}\left(G_{5}^{\prime}\right) \leq 3$. Furthermore, if $d_{2}\left(G_{5}^{\prime}\right)=3$, then $D_{2}\left(G_{5}^{\prime}\right)=\left\{v_{1}, u_{1}, v\left(e_{2}\right)\right\}$, where $e=v_{1} u_{1}$ and $d_{G_{1}^{*}}\left(u_{1}\right)=3$. Since $\tau\left(G_{1}^{*}\right) \geq 2, F\left(G_{5}\right) \leq 2$. By Theorem 2.4(iii), $G_{5}^{\prime} \in\left\{K_{1}, K_{2,3}\right\}$. If $G_{5}^{\prime}=K_{2,3}$, then $G=K_{4}$, a contradiction. Thus $G_{5}^{\prime}=K_{1}$. So G_{5} has a spanning $\left(v_{1}, v\left(e_{2}\right)\right)$ trail T_{5}. Thus $T_{6}=\left\{\begin{array}{ll}T_{5}+v_{1} v\left(e_{1}\right), & \text { if } e_{1} \notin E\left(T_{5}\right) \\ T_{5}-\left\{e_{1}\right\}+\left\{w_{1} v\left(e_{1}\right)\right\}, & \text { if } e_{1} \in E\left(T_{5}\right)\end{array}\right.$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right.$-trail in $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ with $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V\left(T_{6}\right) \subseteq\left\{v_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $e_{1}=w_{1} u_{1}$. Using this discussion, we can get $d_{G_{1}^{*}}\left(u_{1}\right) \geq 4$ and $d_{G_{1}^{*}}\left(w_{1}\right) \geq 4$. By Claim 3.1, $e_{2}=w_{2} u_{2}$ and $\left\{u_{2}, w_{2}\right\} \cap D_{3}\left(G_{1}^{*}\right)=\emptyset$. Thus $G_{1}^{*}+v_{1} v_{2}$ is 4 -edge-connected, and so $F\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right) \leq 2$, contrary to Claim 1 (iii). We finish the proof of Claim 3.

By Claim 3, we assume that three edges e, e_{1} and e_{2} belong to 3 distinct triangles $\triangle_{v}, \triangle_{v_{1}}$, and $\triangle_{v_{2}}$, respectively. Let $f=v x \in E_{G_{1}^{*}}(v)-E\left(\Delta_{v}\right), f_{1}=v_{1} x_{1} \in E_{G_{1}^{*}}\left(v_{1}\right)-E\left(\Delta_{v_{1}}\right)$ and $f_{2}=v_{2} x_{2} \in E_{G_{1}^{*}}\left(v_{2}\right)-E\left(\Delta_{v_{2}}\right)$. Let $V\left(\Delta_{v}\right)=$ $\{v, u, w\}, V\left(\triangle_{v_{1}}\right)=\left\{v_{1}, u_{1}, w_{1}\right\}$, and $V\left(\triangle_{v_{2}}\right)=\left\{v_{2}, u_{2}, w_{2}\right\}$. Also we assume that z, z_{1}, z_{2} are vertices in G_{1} to which $\Delta_{v}, \Delta_{v_{1}}, \Delta_{v_{2}}$ are contracted, respectively. Let $G_{2}=G_{1}^{*} / E\left(\Delta_{v_{1}}\right) \cup E\left(\Delta_{v_{2}}\right)$. Then $\kappa^{\prime}\left(G_{2}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{2}\right) \geq 4$, and $\tau\left(G_{2}-e\right) \geq 2$ and $\tau\left(G_{2}-f_{i}\right) \geq 2(i=1,2)$. Let $G_{3}=G_{2}-\left\{f_{1}, f_{2}\right\}$ and $G_{4}=G_{2}-\left\{e, f_{1}, f_{2}\right\}$. Then $F\left(G_{3}\right) \leq 1$ and $F\left(G_{4}\right) \leq 2$.

If G_{3} has a cut edge e^{\prime}, then $f_{1} \neq f_{2}$ and $\left\{e^{\prime}, f_{1}, f_{2}\right\}$ is a 3-edge-cut of G_{2}. Thus $v_{1} v_{2} \notin E\left(G_{1}^{*}\right)$. As G_{2} is essentially 4-edge-connected, e^{\prime}, f_{1}, f_{2} are incident to a vertex y. Thus $d_{G_{1}^{*}}(y)=3$. As $d_{G_{2}}\left(z_{i}\right) \geq 4(i=1,2), x_{1}=x_{2}=y$. Let $e^{\prime}=y q$. Since G is claw-free, we have either $v_{1} q \in E(G)$ or $y v_{2} \in E(G)$. Without loss of generality, we assume that $v_{1} q \in E(G)$. This implies that $\left\{q, y_{1}, u_{1}, w_{1}\right\} \subseteq N_{G_{1}^{*}}\left(v_{1}\right)$, contrary to the fact that $d_{G_{1}^{*}}\left(v_{1}\right)=3$. So G_{3} is 2-edge-connected.

As $F\left(G_{3}\right) \leq 1$, by Theorem 2.4(ii), G_{3} is collapsible, so G_{3} has a spanning (z_{1}, z_{2})-trail T. By Lemma 2.5(ii) and (6), $e \in E(T)$. If $\left|E\left(\Delta_{v}\right) \cap E(T)\right|=1$, then $T^{\prime}=(T-\{e\})+\left(E\left(\Delta_{v}\right)-\{e\}\right)$ is a spanning $\left(z_{1}, z_{2}\right)$-trail in G_{3}. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, a contradiction. So $\left|E\left(\Delta_{v}\right) \cap E(T)\right| \geq 2$. Furthermore, we have the following.

$$
\begin{equation*}
\text { if } e=v u \text { and } d_{G_{1}^{*}}(u)=3, \text { then }\left|E\left(\triangle_{v}\right) \cap E(T)\right|=3 \tag{7}
\end{equation*}
$$

(Otherwise, then $\left|E\left(\triangle_{v}\right) \cap E(T)\right|=2$. Since $d_{G_{1}^{*}}(u)=3$, by symmetry, we may assume that $v u, u w \in E(T)$ and $v w \notin E(T)$. Then $T^{\prime}=(T-\{v u, u w\}) \cup\{v w\}$ is a dominating $\left(z_{1}, z_{2}\right)$-trail in G_{3}. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail $T^{\prime \prime}$ with $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V\left(T^{\prime \prime}\right)=\{u\} \subseteq D_{3}\left(G_{1}^{*}\right)$, a contradiction $)$.

Consider $G_{5}=G_{1}^{*} / E\left(\Delta_{v_{2}}\right)$. Then $\kappa^{\prime}\left(G_{5}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{5}\right) \geq 4$, and $\tau\left(G_{5}\right) \geq 2$. Thus $\left(G_{5}-e\right)\left(e_{1}\right)$ is 2-edge-connected and $F\left(\left(G_{5}-e\right)\left(e_{1}\right)\right) \leq 2$. Let G_{5}^{\prime} be the reduction of G_{5}. Then $G_{5}^{\prime} \in\left\{K_{1}, K_{2, p}\right\}(p \geq 2)$ and each vertex in $D_{2}\left(G_{5}^{\prime}\right)$ is c-trivial. As $d_{2}\left(G_{5}\right) \leq 3, p \leq 3$. If $G_{5}^{\prime}=K_{2,3}$, then $G=G_{5}=K_{4}$, a contradiction. So $G_{5}^{\prime}=K_{1}$ and G_{5} has a spanning $\left(v\left(e_{1}\right), z_{2}\right)$-trail. By Lemma 2.5(i) and (6), $e_{2}=w_{2} u_{2}$. Using this discussion, we can get $d_{G_{1}^{*}}\left(u_{2}\right) \geq 4$ and $d_{G_{1}^{*}}\left(w_{2}\right) \geq 4$. Similarly, $e_{1}=u_{1} w_{1}$, and $d_{G_{1}^{*}}\left(u_{1}\right) \geq 4$ and $d_{G_{1}^{*}}\left(w_{1}\right) \geq 4$.

Consider G_{4}. Let G_{4}^{\prime} be the reduction of G_{4}. Since $F\left(G_{4}\right) \leq 2$, by Theorem 2.4(iii), Lemma 2.5(ii), and (6), $G_{4}^{\prime} \in$ $\left\{K_{2}, K_{2, p}\right\}(p \geq 1)$. Notice that G_{2} is 3-edge-connected, essentially 4-edge-connected and $d_{G_{1}^{*}}\left(v_{1}\right)=d_{G_{1}^{*}}\left(v_{2}\right)=3$. If $a \in D_{1}\left(G_{4}^{\prime}\right)$ is c-trivial, then $\left|E_{G_{1}^{*}}(a) \cap\left\{e, f_{1}, f_{2}\right\}\right| \geq 2$. If $a \in D_{2}\left(G_{4}^{\prime}\right)$ is c-trivial, then $\left|N_{G}(a) \cap\left\{e, f_{1}, f_{2}\right\}\right| \geq 1$, and if $a, b \in D_{2}\left(G_{4}^{\prime}\right)$ are c-trivial, then $a b \notin\left\{f_{1}, f_{2}\right\}$. If $a \in D_{2}\left(G_{4}^{\prime}\right)$ is c-nontrivial, then $\left|E_{G_{1}^{*}}(a) \cap\left\{e, f_{1}, f_{2}\right\}\right| \geq 2$. If $a \in D_{3}\left(G_{4}^{\prime}\right)$ is c-nontrivial, then $\left|E_{G_{1}^{*}}(a) \cap\left\{e, f_{1}, f_{2}\right\}\right| \geq 1$. Thus, if $G_{4}^{\prime}=K_{2, p}$, then $p \leq 4$. So $G_{4}^{\prime} \in\left\{K_{2}, K_{1,2}, K_{2,2}, K_{2,3}, K_{2,4}\right\}$.

Assume that $G_{4}^{\prime}=K_{2}$ and $V\left(G_{4}^{\prime}\right)=\left\{b_{1}, b_{2}\right\}$. Then one of b_{1}, b_{2}, say b_{1}, is c-trivial. Thus $z_{1}, z_{2} \in V\left(\operatorname{PI}\left(b_{2}\right)\right)$ and $\operatorname{PI}\left(b_{2}\right)$ has a spanning $\left(z_{1}, z_{2}\right)$-trail. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T with $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V(T)=\left\{b_{1}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $G_{4}^{\prime} \neq K_{2}$.

Assume that $G_{4}^{\prime}=K_{1,2}$ and $V\left(G_{4}^{\prime}\right)=\left\{b_{1}, b_{2}, b_{3}\right\}$, where $d_{G_{4}^{\prime}}\left(b_{3}\right)=2$. Then b_{1}, b_{2} are c-trivial vertices of $G_{4}^{\prime}, e=b_{1} b_{2}$, and $e, f_{1} \in E_{G_{1}^{*}}\left(b_{1}\right)$ and $e, f_{2} \in E_{G_{1}^{*}}\left(b_{2}\right)$. Thus $f_{1}=b_{1} v_{1}, f_{2}=b_{2} v_{2}, v \in\left\{b_{1}, b_{2}\right\}$, and $z_{1}, z_{2} \in \operatorname{PI}\left(b_{2}\right)$. Let $V\left(\triangle_{v}\right)=\left\{c, b_{1}, b_{2}\right)$. Since $\operatorname{PI}\left(b_{2}\right)$ is collapsible, $\operatorname{PI}\left(b_{2}\right)$ has a spanning $\left(c, z_{2}\right)$-trail T_{2}. Let H be the subgraph in $G_{1}^{*} / E\left(\Delta_{v_{2}}\right)$ induced by $E\left(T_{2}\right)$. Then $d_{H}\left(u_{1}\right)+d_{H}\left(w_{1}\right)$ is even. If $d_{H}\left(u_{1}\right)$ and $d_{H}\left(w_{1}\right)$ are even, then c and z_{2} are in the same component of T_{2}. Also this component contains (at least) one of u_{1} and w_{1}. Without loss of generality, we assume that w_{1} is in this component. Let $T_{3}=T_{2}+\left\{c b_{1}, b_{1} v_{1}, v_{1} u_{1}, u_{1} v\left(e_{1}\right)\right\}$. If $d_{H}\left(u_{1}\right)$ and $d_{H}\left(w_{1}\right)$ are odd, by symmetry, we assume that c and w_{1} are in a component of H and z_{2} and u_{1} are in a component of H. Let $T_{3}=T_{2}+\left\{c b_{1}, b_{1} v_{1}, v_{1} u_{1}, w_{1} v\left(e_{1}\right)\right\}$. Then T_{3} is a dominating
$\left(v\left(e_{1}\right), z_{2}\right)$-trail of $\left(G_{1}^{*} / E\left(\triangle_{v_{2}}\right)-e\right)\left(e_{1}\right)$ with $V\left(\left(G_{1}^{*} / E\left(\triangle_{v_{2}}\right)-e\right)\left(e_{1}\right)\right)-V\left(T_{3}\right)=\left\{b_{2}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{3}^{\prime} with $V\left(\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)\right)-V\left(T_{3}^{\prime}\right)=\left\{b_{2}\right\} \subseteq D_{3}\left(G_{1}^{*}\right)$, contrary to (6). So $G_{4}^{\prime} \neq K_{1,2}$.

Assume that $G_{4}^{\prime}=K_{2,2}$ and $V\left(G_{4}^{\prime}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$. Then two of $b_{1}, b_{2}, b_{3}, b_{4}$ are c-trivial and they are not adjacent in G_{4}^{\prime}. Without loss of generality, we assume that b_{1} and b_{3} are c-trivial. Then $e=b_{1} b_{3}$, and b_{2} and b_{4} are c-nontrivial. Thus f_{1} and f_{2} are edges joining vertices between $P I\left(b_{2}\right)$ and $P I\left(b_{4}\right)$. So $z_{1}, z_{2} \in V\left(P I\left(b_{2}\right)\right) \cup V\left(P I\left(b_{4}\right)\right)$. Since e is in \triangle_{v}, we may assume that $V\left(\Delta_{v}\right)-\left\{b_{1}, b_{3}\right\}=\left\{c_{1}\right\} \subseteq V\left(P I\left(b_{2}\right)\right)$. Also we assume that $N_{G_{4}}\left(b_{1}\right) \cap V\left(P I\left(b_{4}\right)\right)=\left\{c_{2}\right\}$ and $N_{G_{4}}\left(b_{3}\right) \cap V\left(P I\left(b_{4}\right)\right)=\left\{c_{3}\right\}$. Consider G_{3} and the spanning $\left(z_{1}, z_{2}\right)$-trail T. By (7), $b_{1} b_{3}, b_{1} c_{1}, b_{3} c_{1} \in E(T)$. Thus $b_{1} c_{2}, b_{3} c_{3} \notin E(T)$. It is impossible. So $G_{4}^{\prime} \neq K_{2,2}$.

Assume that $G_{4}^{\prime}=K_{2,3}$ and $V\left(G_{4}^{\prime}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\}$, where $d_{G_{4}^{\prime}}\left(b_{4}\right)=d_{G_{4}^{\prime}}\left(b_{5}\right)=3$. Then b_{1}, b_{2} are c-trivial vertices and b_{3}, b_{4}, b_{5} are c-nontrivial vertices of G_{4}^{\prime}, and $e=b_{1} b_{2}$. Since e is in Δ_{v}, we may assume that $V\left(\Delta_{v}\right)-\left\{b_{1}, b_{2}\right\}=$ $\left\{c_{1}\right\} \subseteq V\left(P I\left(b_{4}\right)\right)$. Also we assume that $N_{G_{4}}\left(b_{1}\right) \cap V\left(\operatorname{PI}\left(b_{5}\right)\right)=\left\{c_{2}\right\}$ and $N_{G_{4}}\left(b_{2}\right) \cap V\left(\operatorname{PI}\left(b_{5}\right)\right)=\left\{c_{3}\right\}$. Since b_{3} is a c-nontrivial vertex, we assume that f_{1} joins $P I\left(b_{3}\right)$ and $P I\left(b_{4}\right)$ and f_{2} joins $P I\left(b_{3}\right)$ and $P I\left(b_{5}\right)$. Let $c_{4} c_{5}$ be the edge joining $P I\left(b_{4}\right)$ and $P I\left(b_{3}\right)$, where $c_{4} \in V\left(P I\left(b_{4}\right)\right)$ and $c_{5} \in V\left(P I\left(b_{3}\right)\right)$, and let $c_{6} c_{7}$ be the edge joining $P I\left(b_{5}\right)$ and $P I\left(b_{3}\right)$, where $c_{6} \in V\left(P I\left(b_{3}\right)\right)$ and $c_{7} \in V\left(P I\left(b_{5}\right)\right)$. Consider G_{3} and the spanning $\left(z_{1}, z_{2}\right)$-trail T. By (7), $b_{1} b_{2}, b_{1} c_{1}, b_{2} c_{1} \in E(T)$. Thus $b_{1} c_{2}, b_{2} c_{3} \notin E(T)$. So we may assume that $z_{1} \in V\left(\operatorname{PI}\left(b_{4}\right)\right)$ and $z_{2} \in V\left(\operatorname{PI}\left(b_{5}\right)\right)$. Consider the subgraph Q_{1} induced by $V\left(P I\left(b_{5}\right)\right) \cup\left\{b_{1}, b_{2}\right\}$ in G_{2}. Then Q_{1} is collapsible. Let T_{4} be a spanning $\left(c_{7}, z_{2}\right)$-trail in Q_{1}. Since $d_{Q_{1}}\left(b_{1}\right)=d_{Q_{1}}\left(b_{2}\right)=2$, $e, b_{1} c_{2}, b_{2} c_{3} \in E\left(T_{4}\right)$. Let T_{5} be a spanning $\left(z_{1}, c_{4}\right)$-trail in $\operatorname{PI}\left(b_{4}\right), T_{6}$ be spanning ($\left.c_{5}, c_{6}\right)$-trail in $P I\left(b_{4}\right)$. Then the subgraph induced by $\left(E\left(T_{4}\right)-\{e\}\right) \cup\left\{b_{1} c_{1}, c_{1} b_{2}\right\} \cup E\left(T_{5}\right) \cup E\left(T_{6}\right) \cup\left\{c_{4} c_{5}, c_{6} c_{7}\right\}$ is a spanning $\left(z_{1}, z_{2}\right)$-trail in G_{4}. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, contrary to (6). So $G_{4}^{\prime} \neq K_{2,3}$.

Therefore, $G_{4}^{\prime}=K_{2,4}$. Let $V\left(G_{4}^{\prime}\right)=\left\{b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}$, where $d_{G_{4}^{\prime}}\left(b_{5}\right)=d_{G_{4}^{\prime}}\left(b_{6}\right)=4$. Then b_{1}, b_{2} are c-trivial vertices and b_{3}, b_{4} are c-nontrivial vertices of G_{4}^{\prime}, and $e=b_{1} b_{2}$. Since e is in Δ_{v}, we may assume that $V\left(\Delta_{v}\right)-\left\{b_{1}, b_{2}\right\}=\left\{c_{1}\right\} \subseteq$ $V\left(P I\left(b_{5}\right)\right)$. Also we assume that $N_{G_{4}}\left(b_{1}\right) \cap V\left(P I\left(b_{6}\right)\right)=\left\{c_{2}\right\}$ and $N_{G_{4}}\left(b_{2}\right) \cap V\left(P I\left(b_{6}\right)\right)=\left\{c_{3}\right\}$. Since b_{3}, b_{4} are c-nontrivial vertices, f_{1} and f_{2} join $P I\left(b_{3}\right)$ and $P I\left(b_{4}\right)$, so $z_{1}, z_{2} \in V\left(P I\left(b_{3}\right)\right) \cup V\left(P I\left(b_{4}\right)\right)$. Let $c_{4}, c_{6} \in V\left(P I\left(b_{5}\right)\right), c_{5}, c_{9} \in V\left(P I\left(b_{3}\right)\right), c_{7}, c_{11} \in$ $V\left(P I\left(b_{4}\right)\right)$, and $c_{8}, c_{10} \in V\left(P I\left(b_{6}\right)\right)$ such that $c_{4} c_{5}, c_{6} c_{7}, c_{8} c_{9}, c_{10} c_{11} \in E\left(G_{4}\right)$. Consider G_{3} and the spanning (z_{1}, z_{2})-trail T. By (7), $b_{1} b_{2}, b_{1} c_{1}, b_{2} c_{1} \in E(T)$. Thus $b_{1} c_{2}, b_{2} c_{3} \notin E(T)$. So $z_{1}, z_{2} \in V\left(P I\left(b_{3}\right)\right)$ or $z_{1}, z_{2} \in V\left(P I\left(b_{4}\right)\right)$. Without loss of generality, we assume that $z_{1}, z_{2} \in V\left(P I\left(b_{3}\right)\right)$. Consider the subgraph Q_{2} induced by $V\left(P I\left(b_{6}\right)\right) \cup\left\{b_{1}, b_{2}\right\}$ in G_{2}. Then Q_{2} is collapsible. Thus there is a spanning (c_{8}, c_{10})-trail T_{7} in Q_{2}. Since $d_{\mathrm{Q}_{2}}\left(b_{1}\right)=d_{\mathrm{Q}_{2}}\left(b_{2}\right)=2, e, b_{1} c_{2}, b_{2} c_{3} \in E\left(T_{7}\right)$. Let Q_{3} be the graph obtained from $\operatorname{PI}\left(b_{3}\right)$ by adding a new vertex c_{12} and the new edges $c_{12} z_{1}$ and $c_{12} z_{2}$. Then Q_{3} is collapsible. Let T_{8} be a spanning (c_{5}, c_{9})-trail in Q_{3}. Then $c_{12} z_{1}, c_{12} z_{2} \in E\left(T_{8}\right)$. Let $T_{9}=T_{8}-\left\{c_{12}\right\}$. Let T_{10} be the spanning (c_{7}, c_{11})-trail in $P I\left(b_{4}\right)$, T_{11} be the spanning $\left(c_{4}, c_{6}\right)$-trail in $\operatorname{PI}\left(b_{5}\right)$. Then the subgraph induced by $E\left(T_{9}\right) \cup\left(E\left(T_{7}\right)-\{e\}\right) \cup\left\{b_{1} c_{1}, c_{1} b_{2}\right\} \cup E\left(T_{10}\right) \cup E\left(T_{11}\right) \cup$ $\left\{c_{4} c_{5}, c_{6} c_{7}, c_{8} c_{9}, c_{10} c_{11}\right\}$ is a spanning $\left(z_{1}, z_{2}\right)$-trail in G_{4}. By Lemma 2.5(ii), $\left(G_{1}^{*}-e\right)\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail, contrary to (6).

4. Proof of Theorem 1.6

In this section we assume that s is a positive integer, and assume that G is connected with $\operatorname{ess}^{\prime}(G) \geq 4$. Following [17], we define the core of G, denoted by G_{0}, to be the graph obtained from G by deleting all the vertices of degree 1 , and contracting the edge $x y$ for each path $x y z$ for each $y \in D_{2}(G)$. As shown in [17], we observe that G_{0} is well-defined, and
G_{0} is claw-free with $\kappa^{\prime}\left(G_{0}\right) \geq 3, \operatorname{ess}^{\prime}\left(G_{0}\right) \geq 4$ and $D_{3}\left(G_{0}\right)=D_{3}(G)$.
We need one more notation. Let $e=x y \in E\left(W_{5}\right)$ with $x, y \in D_{3}\left(W_{5}\right)$ and H be a graph and $e^{\prime}=x^{\prime} y^{\prime} \in E(H)$. Define a new graph $H \oplus W_{5}$ to be a graph obtained from the disjoint union of $H-e$ and W_{5} by identifying x and x^{\prime} to form a new vertex, also called x, and by identifying y and y^{\prime} to form a new vertex, also called y.

Lemma 4.1. Suppose that $s \geq 2$ and that G is claw-free such that $\kappa(L(G)) \geq s+2$. Let G_{0} be the core of G and let $w_{1}, w_{2}, w_{3} \in D_{3}\left(G_{0}\right)$ be vertices with $N_{G_{0}}\left(w_{2}\right)=\left\{w_{1}, w_{3}, v\right\}$. If $v w_{1}, v w_{3} \in E\left(G_{0}\right)$, then each of the following holds.
(i) $s=2$.
(2) either $G=G_{0} \in\left\{K_{4}, W_{4}, W_{5}\right\}$, or there exists a subgraph Γ of G with $\kappa^{\prime}(\Gamma) \geq 3$ and $\operatorname{ess}^{\prime}(\Gamma) \geq 4$ such that $G_{0}=\Gamma \oplus W_{5}$.

Proof. Since $\left(E_{G_{0}}\left(w_{1}\right)-\left\{w_{1} w_{2}\right\}\right) \cup\left\{w_{2} v, w_{2} w_{3}\right\}$ is an essential 4-edge cut of G_{0}, we must have $s=2$. If $w_{1} w_{3} \in E\left(G_{0}\right)$ or $d_{G_{0}}(v)=3$, then by Lemma 2.6, we have $G=G_{0}=K_{4}$. Thus we assume that $d_{G_{0}}(v) \geq 4$ and $w_{1} w_{3} \notin E\left(G_{0}\right)$. Let $w_{4} \in N_{G_{0}}(v)-\left\{w_{1}, w_{2}, w_{3}\right\}$. As G_{0} is claw-free and by symmetry, we may assume that $w_{4} w_{3} \in E\left(G_{0}\right)$.

If $d_{G_{0}}(v)=4$, then $w_{1} w_{4} \in E\left(G_{0}\right)$ (otherwise, let $z \in N_{G_{0}}\left(w_{1}\right)-\left\{v, w_{2}\right\}$. Then $\left\{z w_{1}, w_{4} v, w_{4} w_{3}\right\}$ is an essential 3-edge cut in G_{0}, a contradiction). As G_{0} is claw-free and $d_{G_{0}}\left(w_{1}\right)=d_{G_{0}}\left(w_{3}\right)=3, G_{0}=W_{4}$. Since G is essentially 4-edge-connected, $G=G_{0}=W_{4}$.

Assume that $d_{G_{0}}(v) \geq 5$. Let $w_{5} \in N_{G_{0}}(v)-\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$. Since G_{0} is claw-free and since $w_{1}, w_{3} \in D_{3}\left(G_{0}\right)$, we have $w_{1} w_{5} \in E\left(G_{0}\right)$ and $d_{G_{0}}(v)=5$. Since $G_{0}\left[\left\{v, w_{2}, w_{4}, w_{5}\right\}\right] \neq K_{1,3}$, we must have $w_{4} w_{5} \in E\left(G_{0}\right)$. Let $X=$ $N_{G_{0}}\left(w_{4}\right) \cup N_{G_{0}}\left(w_{5}\right)-\left\{v, w_{1}, w_{2}, \ldots, w_{5}\right\}$. If $X=\emptyset$, then $G_{0}=W_{5}$, and so $G=G_{0}$. Assume that $X=\left\{v_{1}, \ldots, v_{k}\right\} \neq \emptyset$. As G_{0} is claw-free, $G_{0}\left[\left\{v_{1}, \ldots, v_{k}, w_{4}, w_{5}\right\}\right]=K_{k+2}$, as depicted in Fig. 2. Since $\kappa^{\prime}\left(G_{0}\right) \geq 3$, we have $k \geq 2$. Let $\Gamma=G_{0}-\left\{w_{1}, w_{2}, w_{3}, v\right\}$. Then $G_{0}=\Gamma \oplus W_{5}$. As $G_{0}\left[\left\{v_{1}, \ldots, v_{k}, w_{4}, w_{5}\right\}\right]=K_{k+2}$ and $k \geq 2$, we conclude that $\kappa^{\prime}(\Gamma) \geq 3$ and $\operatorname{ess}^{\prime}(\Gamma) \geq 4$.

Fig. 2. $K_{k+2} \oplus W_{5}$ in Lemma 4.1.

Throughout the rest of the proofs, we will adopt the following notation and assumptions. Let $s \geq 2$ be an integer, G be a claw-free graph, $H=L(G)$ with $\kappa(L(G)) \geq s+2$ in the proof of Theorem 1.6(i) or $\kappa(L(G)) \geq 4$ in the proof of Theorem 1.6(ii). Since every complete graph of order at least $s+3$ is s-hamiltonian and 1-hamiltonian-connected, we will assume that $L(G)$ is not a complete graph, and so $\operatorname{ess}^{\prime}(G)=\kappa(L(G))$. Let G_{0} be the core of G. As shown in [17], we have $\kappa^{\prime}\left(G_{0}\right) \geq 3$ and $\operatorname{ess}^{\prime}\left(G_{0}\right) \geq \kappa(L(G))$. Thus if $\operatorname{ess}^{\prime}\left(G_{0}\right) \geq s+2$, then for $i=3, \ldots, s+1$, we have $D_{i}(G)=D_{i}\left(G_{0}\right)$. As G is claw-free, G_{0} is also claw-free.

Proof of Theorem 1.6. (i). It suffices to prove that if $\kappa(L(G)) \geq s+2$, then $L(G)$ is s-hamiltonian. By Theorem 1.4, we assume that $s \in\{2,3,4\}$. To prove H is s-hamiltonian, it suffices to prove that for any $X=\left\{e_{1}, \ldots, e_{s}\right\} \subset E\left(G_{0}\right)$,

$$
\begin{equation*}
G_{0}-X \text { has a dominating eulerian subgraph } T \text { such that } V\left(G_{0}\right)-V(T) \subseteq \bigcup_{i=3}^{s+1} D_{i}\left(G_{0}\right) \tag{9}
\end{equation*}
$$

If $G_{0} \in\left\{K_{4}, W_{4}, W_{5}\right\}$, then $s=2$ and $G=G_{0}$. Thus (9) holds, and so we may assume that $G_{0} \notin\left\{K_{4}, W_{4}, W_{5}\right\}$.
If $s \geq 3$, then as G_{0} is claw-free and essentially 5 -edge-connected, for any $x_{1}, x_{2}, x_{3} \in D_{3}\left(G_{0}\right)$, we have $N_{G_{0}}\left(x_{1}\right) \cap$ $N_{G_{0}}\left(x_{2}\right) \cap N_{G_{0}}\left(x_{3}\right)=\emptyset$. Hence by Lemma 3.3, G_{0} does not have Property $\mathcal{K}(s)$. Since G_{0} is claw-free, G_{0} must violate (KS2). Arguing by contradiction, we assume that
G is a counterexample to Theorem $1.6(i)$ with $\left|V\left(G_{0}\right)\right|$ minimized.
Since G_{0} violates (KS2), there exist $w_{1}, w_{2}, w_{3} \in D_{3}\left(G_{0}\right)$ with $N_{G_{0}}\left(w_{2}\right)=\left\{w_{1}, w_{3}, v\right\}$ and $v w_{1}, v w_{3} \in E\left(G_{0}\right)$. Since $G_{0} \notin\left\{K_{4}, W_{4}, W_{5}\right\}$, by Lemma 4.1, $s=2$ and $G_{0}=\Gamma \oplus W_{5}$, for a claw-free graph Γ with $\kappa^{\prime}(\Gamma) \geq 3$ and $\operatorname{ess}^{\prime}(\Gamma) \geq 4$. Assume that $V\left(W_{5}\right)=\left\{v, w_{1}, \ldots, w_{5}\right\}$ with $w_{4} w_{5} \in E(\Gamma) \cap E\left(W_{5}\right)$, as depicted in Fig. 2.

If $e_{1}, e_{2} \in E(\Gamma)$, then by (10), $\Gamma-\left\{e_{1}, e_{2}\right\}$ has a dominating eulerian subgraph T_{1} such that $V(\Gamma)-V\left(T_{1}\right) \subseteq D_{3}(\Gamma)$. Thus $T_{2}=T_{1}+w_{1} w_{2} w_{3} w_{4} v w_{5} w_{1}$ is a dominating eulerian subgraph in $G_{0}-\left\{e_{1}, e_{2}\right\}$ such that $V\left(G_{0}\right)-V\left(T_{2}\right) \subseteq D_{3}\left(G_{0}\right)$, a contradiction.

If $e_{1} \in E(\Gamma)$ and $e_{2} \in E\left(W_{5}\right)-E(\Gamma)$, then by (10), $\Gamma-\left\{e_{1}, w_{4} w_{5}\right\}$ has a dominating eulerian subgraph T_{3} such that $V(\Gamma)-V\left(T_{3}\right) \subseteq D_{3}(\Gamma)$. By Theorem 2.3(iii), $W_{5}-e_{2}$ is collapsible. Thus $W_{5}-e_{2}$ has a spanning eulerian subgraph T_{4}. Therefore, $L_{1}=G_{0}\left[E\left(T_{3}\right) \cup E\left(T_{4}\right)\right]$ is a dominating eulerian subgraph in $G_{0}-\left\{e_{1}, e_{2}\right\}$ such that $V\left(G_{0}\right)-V\left(L_{1}\right) \subseteq D_{3}\left(G_{0}\right)$, a contradiction.

If $e_{1}, e_{2} \in E\left(W_{5}\right)-E(\Gamma)$, then $W_{5}-\left\{e_{1}, e_{2}\right\}$ has a dominating eulerian subgraph T_{5} such that $V\left(W_{5}\right)-V\left(T_{5}\right) \subseteq D_{3}\left(G_{0}\right)$. By (10), $\Gamma-\left\{w_{4} w_{5}\right\}$ has a dominating eulerian subgraph T_{6} such that $V(\Gamma)-V\left(T_{6}\right) \subseteq D_{3}(\Gamma)$. Thus $L_{2}=G_{0}\left[E\left(T_{5}\right) \cup E\left(T_{6}\right)\right]$ is a dominating eulerian subgraph in $G_{0}-\left\{e_{1}, e_{2}\right\}$ such that $V\left(G_{0}\right)-V\left(L_{2}\right) \subseteq D_{3}\left(G_{0}\right)$, a contradiction. These contradictions establish the theorem.

Proof of Theorem 1.6. (ii). By Theorem 2.1(ii), it suffices to show that for any three edges $e, e_{1}, e_{2} \in E(G), G-e$ has a dominating $\left(e_{1}, e_{2}\right)$-trail. In view of this goal, for any $y \in D_{2}(G)$ with $N_{G}(y)=\left\{x_{y}, z_{y}\right\}$, we may assume that $x_{y} y \notin\left\{e, e_{1}, e_{2}\right\}$. With this, and letting G_{0} be the core of G, it suffices to assume that $e, e_{1}, e_{2} \in E\left(G_{0}\right)$, and to show $G_{0}-e$ has a dominating (e_{1}, e_{2})-trail T with $V\left(G_{0}\right)-V(T) \subseteq D_{3}\left(G_{0}\right)$. By contradiction, we assume that G is a counterexample to Theorem 1.6(ii) with $\left|V\left(G_{0}\right)\right|$ minimized. Thus by Lemma 2.2 , there exist edges $e, e_{1}, e_{2} \in E\left(G_{0}\right)$, with G_{0}^{*} denoting $\left(G_{0}-e\right)\left(e_{1}, e_{2}\right)$, such that
G_{0}^{*} does not have a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T such that $V\left(G_{0}^{*}\right)-V(T) \subseteq D_{3}\left(G_{0}\right)$.
By (11) and Theorem 2.3(iii), we assume that $G_{0} \notin\left\{K_{4}, W_{4}, W_{5}\right\}$ and G_{0}^{*} is not collapsible. By Lemma 3.4, G_{0} does not have Property $\mathcal{K}(s)$. As G_{0} is claw-free, (KS2) is violated. Thus there exist $w_{1}, w_{2}, w_{3} \in D_{3}\left(G_{0}\right)$ with $N_{G_{0}}\left(w_{2}\right)=\left\{w_{1}, w_{3}, v\right\}$ and $v w_{1}, v w_{3} \in E\left(G_{0}\right)$. By Lemma 4.1, $G_{0}=\Gamma \oplus W_{5}$, for a subgraph Γ of G_{0} with $\kappa^{\prime}(\Gamma) \geq 3$ and $\operatorname{ess}^{\prime}(\Gamma) \geq 4$. Assume that $V\left(W_{5}\right)=\left\{v, w_{1}, \ldots, w_{5}\right\}$ with $w_{4} w_{5} \in E(\Gamma) \cap E\left(W_{5}\right)$, as depicted in Fig. 2.

If $\left\{e, e_{1}, e_{2}\right\} \cap E\left(W_{5}\right)=\emptyset$, then by the minimality of $G_{0},(\Gamma-e)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{1} with $V\left((\Gamma-e)\left(e_{1}, e_{2}\right)\right)-V\left(T_{1}\right) \subseteq D_{3}(\Gamma)$. It follows from $G_{0}=\Gamma \oplus W_{5}$ that (11) is violated. If $e, e_{1}, e_{2} \in E\left(W_{5}\right)$, then by inspection, $\left(W_{5}-e\right)\left(e_{1}, e_{2}\right)$ has a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{2} that contains either w_{4} or w_{5}. By Theorem 2.3(vi), Γ has a spanning eulerian trail T_{3}. Thus $T_{4}=G_{0}^{*}\left[\left(E\left(T_{2}\right)-E\left(T_{3}\right)\right) \cup\left(E\left(T_{3}\right)-E\left(T_{2}\right)\right)\right]$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail
in G_{0}^{*} with $V\left(G_{0}^{*}\right)-V\left(T_{4}\right) \subseteq D_{3}\left(G_{0}\right)$, contrary to (11). Thus we assume that $\left\{e, e_{1}, e_{2}\right\} \cap\left(E(\Gamma)-E\left(W_{5}\right)\right) \neq \emptyset$ and $\left\{e, e_{1}, e_{2}\right\} \cap\left(E\left(W_{5}\right)-E(\Gamma)\right) \neq \emptyset$.

Assume that $e \in E\left(W_{5}\right)$. If $e_{1} \in E\left(W_{5}\right)$, then $e_{2} \in E(\Gamma)-E\left(W_{5}\right)$. By Theorem 2.3(ii), $\left(W_{5}-e\right)\left(e_{1}\right)$ is collapsible. By Theorem 2.3(vi), $\Gamma\left(e_{2}\right)$ is collapsible. Thus G_{0}^{*} is collapsible, a contradiction. If $e_{1}, e_{2} \in E(\Gamma)$, by Theorem 2.3(vi), $\Gamma\left(e_{1}, e_{2}\right)$ is collapsible. Thus G_{0}^{*} is collapsible, a contradiction again. So $e \in E(\Gamma)-E\left(W_{5}\right)$. As $\left\{e, e_{1}, e_{2}\right\} \cap\left(E\left(W_{5}\right)-E(\Gamma)\right) \neq \emptyset$, we assume that $e_{1} \in E\left(W_{5}\right)-E(\Gamma)$.

Assume that $e_{2} \in E(\Gamma)$. As $\left(W_{5}-w_{4} w_{5}\right)\left(e_{1}\right)$ is collapsible, let T_{5} be a spanning $\left(v\left(e_{1}\right), w_{4}\right)$-trail in $W_{5}\left(e_{1}\right)$. Let $f_{1} \in$ $E_{\Gamma}\left(w_{4}\right)-\left\{w_{4} w_{5}, e\right\}$. By the choice of $G,(\Gamma-e)\left(e_{2}, f_{1}\right)$ has a dominating $\left(v\left(e_{2}\right), v\left(f_{1}\right)\right)$-trail T_{6} with $V\left((\Gamma-e)\left(e_{2}, f_{1}\right)\right)-V\left(T_{6}\right) \subseteq$ $D_{3}(\Gamma)$. Let $E_{1}=\left\{\begin{array}{ll}E\left(T_{6}\right)-\left\{w_{4} v\left(f_{1}\right)\right\}, & \text { if } w_{4} v\left(f_{1}\right) \in E\left(T_{6}\right) . \\ E\left(T_{6}\right) \cup\left\{w_{4} v\left(f_{1}\right)\right\}, & \text { if } w_{4} v\left(f_{1}\right) \notin E\left(T_{6}\right)\end{array}\right.$. Then the subgraph T_{7} induced by $E\left(T_{5}\right) \cup E_{1}$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in G_{0}^{*} with $V\left(G_{0}^{*}\right)-V\left(T_{7}\right) \subseteq D_{3}\left(G_{0}\right)$, contrary to (11). So $e_{2} \in E\left(W_{5}\right)-E(\Gamma)$.

Let $f_{2} \in E_{\Gamma}\left(w_{4}\right)-\left\{w_{4} w_{5}, e\right\}$. By the choice of $G,(\Gamma-e)\left(f_{2}, w_{4} w_{5}\right)$ has a dominating $\left(v\left(f_{2}\right), v\left(w_{4} w_{5}\right)\right)$-trail T_{8} with $V\left((\Gamma-e)\left(f_{2}, w_{4} w_{5}\right)\right)-V\left(T_{8}\right) \subseteq D_{3}(\Gamma)$. Let $M=\left\{w_{4} v\left(f_{2}\right), w_{4} v\left(w_{4} w_{5}\right)\right\}$ and $E_{2}=\left(E\left(T_{8}\right)-M\right) \cup\left(M-E\left(T_{8}\right)\right)$. By Theorem 2.3(vi), $W_{5}\left(e_{1}, e_{2}\right)$ is collapsible. Thus $W_{5}\left(e_{1}, e_{2}\right)$ has a spanning $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail T_{9}. So the subgraph T_{10} induced by $\left(E\left(T_{9}\right)-E_{2}\right) \cup\left(E_{2}-E\left(T_{9}\right)\right)$ is a dominating $\left(v\left(e_{1}\right), v\left(e_{2}\right)\right)$-trail in G_{0}^{*} with $V\left(G_{0}^{*}\right)-V\left(T_{10}\right) \subseteq D_{3}\left(G_{0}\right)$, contrary to (11).

Acknowledgment

The authors are indebted to an anonymous reviewer for providing insightful comments which helped to improve the manuscript.

Declaration of competing interest

The authors declared that they had no conflicts of interest with respect to their authorship or the publication of this article.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, 1976.
[2] H.J. Broersma, H.J. Veldman, 3-connected line graphs of triangular graphs are pan-connected and 1-hamiltonian, J. Graph Theory 11 (1987) 399-407.
[3] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223-246.
[4] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[5] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning eulerian subgraphs, Discrete Math. 160 (1996) 81-91.
[6] P.A. Catlin, H.-J. Lai, Y. Shao, Edge-connectivity and edge-disjoint spanning trees, Discrete Math. 309 (2009) 1033-1040.
[7] Z.H. Chen, H.-J. Lai, D.Y. Li, W. Shiu, An s-Hamiltonian line graph problem, Graphs Comb. 23 (2007) 241-248.
[8] F. Harary, C. St. J. A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) $701-710$.
[9] F. Jaeger, A note on subeulerian graphs, J. Graph Theory 3 (1979) 91-93.
[10] M. Kriesell, Every 4-connected line graph of claw free graphs are hamiltonian-connected, J. Combin. Theory Ser. B 82 (2001) $306-315$.
[11] R. Kučzel, L. Xiong, Every 4-connected line graph is hamiltonian if and only if it is hamiltonian connected, in: R. Kučzel: Hamiltonian Properties of Graphs, Ph.D. Thesis, U.W.B. Pilsen, 2004.
[12] H.-J. Lai, X. Li, Y. Ou, H. Poon, Spanning trails connecting given edges, Graphs Combin. 21 (2005) 77-88.
[13] H.-J. Lai, Y. Shao, On s-hamiltonian line graphs, J. Graph Theory 74 (2013) 344-358.
[14] H.-J. Lai, Y. Shao, G. Yu, M. Zhan, Hamiltonian connectedness in 3-connected line graphs, Discrete Appl. Math. 157 (2009) 982-990.
[15] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[16] Z. Ryjáček, P. Vrána, Line graphs of multigraphs and hamilton-connectedness of claw-free graphs, J. Graph Theory 66 (2011) $152-173$.
[17] Y. Shao, Claw-free graphs and line graphs, Ph.D. Dissertation, West Virginia University, 2005.
[18] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[19] S. Zhan, Hamiltonian connectedness of line graphs, Ars Combin. 22 (1986) 89-95.

[^0]: E-mail address: Mingquan.Zhan@millersville.edu (M. Zhan).
 1 The research is partially supported by National Natural Science Foundation of China grants (Nos. 11771039 and 11771443).

