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Let κ(G), µn−1(G), λ2(G) and q2(G) denote the vertex-
connectivity, the algebraic connectivity, the second largest 
adjacency eigenvalue, and the second largest signless Laplacian 
eigenvalue of G, respectively. In this paper, we prove that 
for an integer k > 0 and any simple graph G of order n
with maximum degree ∆ and minimum degree δ ≥ k, the 
vertex-connectivity κ(G) ≥ k if µn−1(G) > H2(∆, δ, k) or 
λ2(G) < δ − H2(∆, δ, k) or q2(G) < 2δ − H2(∆, δ, k), where 
H2(∆, δ, k) = (k−1)n∆

(n−k+1)(k−1)+4(δ−k+2)(n−δ−1) , which improves 
the result in [Appl. Math. Comput. 344–345 (2019) 141–149] 
and the result in [Electron. J. Linear Algebra 34 (2018) 
428–443]. Analogue results involving µn−1(G), λ2(G) and 
q2(G) to characterize vertex-connectivity of regular graphs, 
triangle-free graphs and graphs with fixed girth are also 
presented.

© 2019 Elsevier Inc. All rights reserved.

✩ The research of Zhen-Mu Hong is supported by NSFC (No. 11601002), Outstanding Young Talents 
International Visiting Program of Anhui Provincial Department of Education (No. gxgwfx2018031) and Key 
Projects in Natural Science Research of Anhui Provincial Department of Education (No. KJ2016A003). The 
research of Zheng-Jiang Xia is supported by Key Projects in Natural Science Research of Anhui Provincial 
Department of Education (No. KJ2018A0438). The research of Hong-Jian Lai is supported by NSFC (Nos. 
11771039 and 11771443).
* Corresponding author.

E-mail addresses: zmhong@mail.ustc.edu.cn (Z.-M. Hong), xzj@mail.ustc.edu.cn (Z.-J. Xia), 
hjlai@math.wvu.edu (H.-J. Lai).

https://doi.org/10.1016/j.laa.2019.05.030
0024-3795/© 2019 Elsevier Inc. All rights reserved.



Z.-M. Hong et al. / Linear Algebra and its Applications 579 (2019) 72–88 73

1. Introduction

We only consider finite and simple graphs in this paper. Undefined notation and 
terminologies will follow Bondy and Murty [3]. Let G = (V, E) be a graph of order n. We 
use κ(G), δ(G) and ∆(G) to denote the vertex-connectivity, the minimum degree and 
the maximum degree of a graph G, respectively. For a vertex subset S ⊆ V (G), G[S] is 
the subgraph of G induced by S.

Let G = (V, E) be a simple graph with vertex set V = V (G) = {v1, v2, . . . , vn}
and edge set E = E(G). The adjacency matrix of G is defined to be a (0, 1)-matrix 
A(G) = (aij)n×n, where aij = 1 if vi and vj are adjacent, aij = 0 otherwise. As G is 
simple and undirected, A(G) is a symmetric (0, 1)-matrix. The adjacency eigenvalues of 
G are the eigenvalues of A(G). Denoted by D(G) = diag{dG(v1), dG(v2), . . . , dG(vn)}, 
the degree diagonal matrix of G, where dG(vi) denotes the degree of vi. The matrices 
L(G) = D(G) −A(G) and Q(G) = D(G) +A(G) are called the Laplacian matrix and the 
signless Laplacian matrix of G, respectively. We use λi(G), µi(G) and qi(G) to denote 
the ith largest eigenvalue of A(G), L(G) and Q(G), respectively. The second smallest 
Laplacian eigenvalue µn−1(G) is called algebraic connectivity by Fiedler [8]. In [1], Abiad 
et al. raised the following research problem.

Problem 1.1 (Abiad et al. [1]). For a d-regular simple graph or multigraph G and for 
2 ≤ k ≤ d, what is the best upper bound for λ2(G) which guarantees κ′(G) ≥ k or 
κ(G) ≥ k ?

The edge-connectivity problem was earlier investigated by Cioabă [6], and has been 
intensively studied by many researchers, as found in [1,5– 7,9,10,12– 15,17,18], among 
others. For the vertex-connectivity of simple graphs, the following results have been 
proved in [1,16]. There are corresponding results when multiple edges are allowed, as 
seen in O [19] and Abiad et al. [1].

Theorem 1.2 (Abiad et al. [1]). Let d and k be integers with d ≥ k ≥ 2 and G be a 
d-regular simple graph of order n. Let

f(d, k) =
{

d + 1, if k = 2;
d + 2 − k, if k ≥ 3.

If λ2(G) < d − (k−1)dn
2f(d,k)(n−f(d,k)) , then κ(G) ≥ k.

Theorem 1.3 (Liu et al. [16 ]). Let G be a simple graph of order n with maximum degree 
∆ and minimum degree δ ≥ k ≥ 2. Let α =

⌈
1
2(δ + 1 +

√
(δ + 1)2 − 2(k − 1)∆)

⌉
, and

φ(δ,∆, k) =
{

(δ − k + 2)(n− δ + k − 2), if ∆ ≥ 2(δ − k + 2);
α(n− α), if δ ≤ ∆ < 2(δ − k + 2).
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If µn−1(G) > (k−1)n∆
2φ(δ,∆,k) , or λ2(G) < δ − (k−1)n∆

2φ(δ,∆,k) , or q2(G) < 2δ − (k−1)n∆
2φ(δ,∆,k) , then

κ(G) ≥ k.

Theorem 1.4 (Liu et al. [16 ]). Let G be a d-regular simple graph of order n with d ≥ k ≥ 2. 
Let β =

⌈
1
2 (d + 1 +

√
(d + 1)2 − 2(k − 1)d)

⌉
, and

ϕ(d, k) =

⎧
⎪⎨

⎪⎩

(d + 1)(n− d− 1), if k = 2;
(d− k + 2)(n− d + k − 2), if k ≥ 3 and d ≤ 2k − 4;
β(n− β), if k ≥ 3 and d > 2k − 4.

If µn−1(G) > (k−1)nd
2ϕ(d,k) , or λ2(G) < d − (k−1)nd

2ϕ(d,k) , or q2(G) < 2d − (k−1)nd
2ϕ(d,k) , then κ(G) ≥ k.

Theorem 1.5 (Liu et al. [16 ]). Let G be a simple bipartite graph of order n with maximum 
degree ∆ and minimum degree δ ≥ k ≥ 2. Let γ =

⌈
δ +

√
δ2 − (k − 1)∆

⌉
, and

ψ(δ,∆, k) =
{

(2δ − k + 1)(n− 2δ + k − 1), if ∆ ≥ 2δ − k + 1;
γ(n− γ), if δ ≤ ∆ < 2δ − k + 1.

If µn−1(G) > (k−1)n∆
2ψ(δ,∆,k) , or λ2(G) < δ − (k−1)n∆

2ψ(δ,∆,k) , or q2(G) < 2δ − (k−1)n∆
2ψ(δ,∆,k) , then 

κ(G) ≥ k.

Motivated by these former results, we aim to find better bounds on λ2(G), µn−1(G)
or q2(G) which assure that κ(G) ≥ k. The main tool of these former results is quotient 
matrix and Cauchy Interlacing Theorem. The interlacing may not be tight, so losing
information is inevitable. Based on the corollary of the following Courant-Weyl inequal-
ities, as seen on page 29 of [4], we focus on establishing the lower bounds on µn−1(G).

Theorem 1.6 (Courant-Weyl Inequalities). Let A and B be Hermitian matrices of order n, 
and let 1 ≤ i, j ≤ n.

(i) If i + j ≤ n + 1, then λi(A) + λj(B) ≥ λi+j−1(A + B).
(ii) If i + j ≥ n + 1, then λi(A) + λj(B) ≤ λi+j−n(A + B).

Corollary 1.7. Let t ≥ 0 be a real number and G be a graph of order n with minimum 
degree δ. If q2(G) < 2δ − t, then λ2(G) < δ − t; if λ2(G) < δ − t, then µn−1(G) > t.

Proof. Let A, L, Q and D be the adjacency matrix, Laplacian matrix, signless Laplacian 
matrix and degree diagonal matrix of G. Since A +D = Q, by Theorem 1.6 (ii), λ2(A) +
λn(D) ≤ λ2(Q). Hence, λ2(G) ≤ q2(G) − δ. Therefore, if q2(G) < 2δ − t, then λ2(G) ≤
q2(G) − δ < δ − t.

Since A + L = D, by Theorem 1.6 (i), λ2(A) + λn−1(L) ≥ λn(D) = δ. Hence, 
µn−1(G) ≥ δ − λ2(G). Thus, if λ2(G) < δ − t, then µn−1(G) ≥ δ − λ2(G) > t. ✷
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By Corollary 1.7, if q2(G) < 2δ − t or λ2(G) < δ − t, then µn−1(G) > t. Therefore, 
we believe that improving the bound on µn−1(G) would be a more effective way to 
improve the bounds on λ2(G) and q2(G). On the other hand, based on the fact that 
if µn−1(G) > 0 then κ(G) ≥ 1, it is natural to consider the function f(k) such that 
µn−1(G) > f(k) to assure that κ(G) ≥ k. In this paper, we mainly use the property 
of the eigenvector corresponding to algebraic connectivity µn−1(G) of G to get better 
bounds on µn−1(G). By Corollary 1.7, the results involving λ2(G) and q2(G) are trivial 
to obtain. For simplicity, we first present some functions that will appear in the following 
discussions.

Definition 1.8. For integers n, ∆, δ, d, k with δ ≥ k and d ≥ k, define

(i) H1(∆, δ, k) = (k−1)(n−k+1)∆
4(δ−k+2)(n−δ−1) ;

(ii) H2(∆, δ, k) = (k−1)n∆
(n−k+1)(k−1)+4(δ−k+2)(n−δ−1) ;

(iii) H3(∆, δ, k) = (k−1)(n−k+1)∆
4(2δ−k+1)(n−2δ) ;

(iv) H4(∆, δ, k) = (k−1)n∆
(n−k+1)(k−1)+4(2δ−k+1)(n−2δ) .

The main results of this paper are presented as Theorems 1.9, 1.10, and Theo-
rems 1.12– 1.15. Using a lemma of Alon and Milman [2], we obtain Theorem 1.9, which 
improves Theorem 1.3.

Theorem 1.9. Let k be an integer and G be a simple graph of order n with maximum 
degree ∆ and minimum degree δ ≥ k ≥ 2 and n ≥ 2k − 2. If µn−1(G) > H1(∆, δ, k), 
then κ(G) ≥ k.

Applying an inequality of Fiedler [8], Theorem 1.10 is obtained, which improves The-
orem 1.3 and Theorem 1.9.

Theorem 1.10. Let k be an integer and G be a simple graph of order n with maximum 
degree ∆ and minimum degree δ ≥ k ≥ 2. If µn−1(G) > H2(∆, δ, k), then κ(G) ≥ k.

For any d-regular graph G, µn−1(G) = d − λ2(G) = 2d − q2(G). Setting ∆ = δ = d

in Theorem 1.10, we get the following corollary for d-regular graphs, which improves 
Theorem 1.2 and Theorem 1.4.

Corollary 1.11. Let k be an integer and G be a d-regular simple graph of order n with d ≥
k ≥ 2. If µn−1(G) > H2(d, d, k), or equivalently λ2(G) < d −H2(d, d, k), or equivalently 
q2(G) < 2d −H2(d, d, k), then κ(G) ≥ k.

Applying a result of Brouwer and Haemers [4], we get the following result with respect 
to µ1 and µn−1.
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Theorem 1.12. Let G be a connected graph of order n with minimum degree δ ≥ k ≥ 2. 
If

µ1
µn−1

< r +
√
r2 − 1 or equivalently µn−1

µ1
> r −

√
r2 − 1,

then κ(G) ≥ k, where r = 2(δ−k+2)(n−δ−1)
n(k−1) + 1.

For triangle-free graphs, we get Theorems 1.13– 1.15, where Theorem 1.13 improves 
Theorem 1.5, and Theorem 1.14 improves Theorem 1.13.

Theorem 1.13. Let k be an integer and G be a simple triangle-free graph of order n with 
maximum degree ∆ and minimum degree δ ≥ k ≥ 2 and n ≥ 2k − 2. If µn−1(G) >
H3(∆, δ, k), then κ(G) ≥ k.

Theorem 1.14. Let k be an integer and G be a simple triangle-free graph of order n with 
maximum degree ∆ and minimum degree δ ≥ k ≥ 2. If µn−1(G) > H4(∆, δ, k), then 
κ(G) ≥ k.

Theorem 1.15. Let G be a connected triangle-free graph of order n with minimum degree 
δ ≥ k ≥ 2. If

µ1
µn−1

< s +
√

s2 − 1 or equivalently µn−1
µ1

> s−
√

s2 − 1,

then κ(G) ≥ k, where s = 2(2δ−k+1)(n−2δ)
n(k−1) + 1.

In Section 2, we display some preliminaries and mechanisms, including the bounds of 
Laplacian eigenvalues and the scale of the connected component of G −S when deleting 
vertex subset S in G. These will be applied in the proofs of the main results, to be 
presented in Section 3 and Section 4. In the last section, we investigate the relationship 
between vertex-connectivity and algebraic connectivity of graphs with fixed girth.

2. Preliminaries

Lemma 2.1 (Alon and Milman [2 ]). Let G = (V, E) be a graph of order n. Let X and Y
be two disjoint subsets of V such that each vertex of X has distance at least ρ to each 
vertex of Y . Let EX (resp. EY ) be the set of edges of G with both ends in X (resp. in Y ). 
Then

µn−1(G) ≤ 1
ρ2

( 1
|X| + 1

|Y |

)
(|E|− |EX |− |EY |).

Let x = (x1, x2, . . . , xn)T ∈ Rn, and let G be a graph on vertices 1, 2, . . . , n. Then x
can be considered as a function defined on the vertex set of G, that is, for any vertex i, 
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we map it to xi = x(i). We often say that xi is a value of vertex i given by x. Fiedler [8]
derived a useful expression for µn−1(G) as follows.

Lemma 2.2 (Fiedler [8 ]). Let G be a graph of order n. Then

µn−1(G) = min
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

,

where the minimum is taken over all non-constant vectors x ∈ Rn.

Lemma 2.3. Let G be a simple graph of order n with minimum degree δ. Let S be an 
arbitrary minimum vertex-cut with κ vertices and X be the vertex set of a minimum 
component of G − S, and Y = V − (S ∪X). Then

|X| · |Y | ≥ (δ − κ + 1)(n− δ − 1).

Proof. Since each vertex in X is adjacent to at most |X| −1 vertices of X and κ vertices 
of S,

δ|X| ≤
∑

x∈X

dG(x) ≤ |X|(|X| + κ− 1),

which implies |X| ≥ δ − κ + 1. Note that |X| ≤ |Y | and |X| + |Y | = n − κ. Therefore,

δ − κ + 1 ≤ |X| ≤ |Y | ≤ n− δ − 1.

The result follows. ✷

Lemma 2.4. Let G be a simple triangle-free graph of order n with minimum degree δ ≥ 1. 
Let S be an arbitrary minimum vertex-cut with κ vertices and X be the vertex set of a 
minimum component of G − S, and Y = V − (S ∪X). If κ < δ, then

|X| · |Y | ≥ (2δ − κ)(n− 2δ).

Proof. If x ∈ X, then δ ≤ dG(x) ≤ |X| + |S|. The assumption κ < δ implies that x has 
at least one neighbor y ∈ X. Since G is triangle-free, we deduce that NG(x) ∩NG(y) = ∅, 
where NG(x) is the neighbor set of x. As NG(x) ∪NG(y) ⊆ X ∪ S, it follows that

|X| + |S| = |X ∪ S| ≥ |NG(x) ∪NG(y)| = |NG(x)| + |NG(y)| ≥ 2δ

and thus |X| ≥ 2δ− |S| = 2δ−κ. Combining this with |X| ≤ |Y | and |X| + |Y | = n −κ, 
we arrive at
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2δ − κ ≤ |X| ≤ |Y | ≤ n− 2δ.

The result follows. ✷

Lemma 2.5 (Haemers [11]). Let X and Y be disjoint sets of vertices of graph G, such 
that there is no edge between X and Y . Then

|X||Y |
(n− |X|)(n− |Y |) ≤

(
µ1 − µn−1
µ1 + µn−1

)2
.

For applications, a useful Lemma can be derived from Lemma 2.5 as follows.

Lemma 2.6 (Brouwer and Haemers [4 ]). Let G be a connected graph on n vertices, and 
let X and Y be disjoint sets of vertices, such that there is no edge between X and Y . 
Then

|X||Y |
n(n− |X|− |Y |) ≤ (µ1 − µn−1)2

4µ1µn−1
.

3. Vertex-connectivity and Laplacian eigenvalues in graphs

In this section, we present the proofs of Theorem 1.9, Theorem 1.10 and Theorem 1.12.

Proof of Theorem 1.9. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V − (S ∪X). By Lemma 2.3 and 1 ≤ κ ≤ k − 1, we obtain

|X| · |Y | ≥ (δ − κ + 1)(n− δ − 1) ≥ (δ − k + 2)(n− δ − 1). (3.1)

Since each edge in E−(E(G[X]) ∪E(G[Y ])) is incident with at least one of the n −|X| −|Y |
vertices of the set S,

|E|− |E(G[X])|− |E(G[Y ])| ≤ (n− |X|− |Y |)∆ = κ∆. (3.2)

As 1 ≤ κ ≤ k − 1 ≤ n
2 , we have

(n− κ)κ ≤ (k − 1)(n− k + 1). (3.3)

Since each vertex of X has distance at least 2 to each vertex of Y , by Lemma 2.1

µn−1(G) ≤ |X| + |Y |
4|X||Y | (|E|− |E(G[X])|− |E(G[Y ])|). (3.4)

Substituting (3.1) and (3.2) in (3.4), by (3.3) we obtain

厹



Z.-M. Hong et al. / Linear Algebra and its Applications 579 (2019) 72–88 79

µn−1(G) ≤ (|X| + |Y |)κ∆
4(δ − k + 2)(n− δ − 1)

= (n− κ)κ∆
4(δ − k + 2)(n− δ − 1)

≤ (k − 1)(n− k + 1)∆
4(δ − k + 2)(n− δ − 1) ,

which is a contradiction to the hypothesis. Thus κ(G) ≥ k. ✷

Remark 3.1. The lower bound on µn−1(G) of Theorem 1.9 is better than the one of 
Theorem 1.3 in the following cases. If ∆ ≥ 2(δ − k + 2) and n ≥ δ + k, then n > 2k − 2
and 2(n − δ − 1) ≥ n − δ + k − 2, and so

(k − 1)(n− k + 1)∆
4(δ − k + 2)(n− δ − 1) <

(k − 1)n∆
2(δ − k + 2)(n− δ + k − 2) .

If δ ≤ ∆ < 2(δ− k + 2) and n ≥ 2δ + 2, then 2(δ− k + 2) ≥ δ + 1. Thus, for δ− k + 2 <
α < δ + 1≤ n

2 ,

(k − 1)(n− k + 1)∆
4(δ − k + 2)(n− δ − 1) <

(k − 1)n∆
2(δ + 1)(n− δ − 1) <

(k − 1)n∆
2α(n− α) .

Proof of Theorem 1.10. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V − (S ∪X). By Lemma 2.3 and 1 ≤ κ ≤ k − 1, we obtain

δ − κ + 1 ≤ |X| ≤ |Y | ≤ n− δ − 1, (3.5)

|X| · |Y | ≥ (δ − κ + 1)(n− δ − 1). (3.6)

Let x = (x1, x2, . . . , xn)T be a real vector. If i ∈ X, then set xi = 1; if i ∈ Y , then set 
xi = −1; if i ∈ S, then set xi = 0. By Lemma 2.2,

µn−1(G) ≤
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

(3.7)

holds for the real vector x. Denote ES = E \ (E(G[X]) ∪E(G[Y ])). Applying the values 
of the entries of x into the inequality (3.7), we obtain

∑

ij∈E

(xi − xj)2 =
∑

ij∈ES

(xi − xj)2 ≤
∑

ij∈ES

1 ≤ |S|∆ ≤ (k − 1)∆, (3.8)

∑

i,j∈V,i<j

(xi − xj)2 =
∑

i∈X,j∈S

(xi − xj)2 +
∑

i∈Y,j∈S

(xi − xj)2 +
∑

i∈X,j∈Y

(xi − xj)2



80 Z.-M. Hong et al. / Linear Algebra and its Applications 579 (2019) 72–88

=
∑

i∈X,j∈S

(1 − 0)2 +
∑

i∈Y,j∈S

((−1) − 0)2 +
∑

i∈X,j∈Y

(1 − (−1))2

= |X||S| + |Y ||S| + 4|X||Y |

= (n− κ)κ + 4|X||Y |

by (3.6) ≥ (n− κ)κ + 4(δ − κ + 1)(n− δ − 1)
= −κ(κ + (3n− 4δ − 4)) + 4(δ + 1)(n− δ − 1).

Set f(κ) = −κ(κ + (3n − 4δ − 4)). The minimum of f(κ) is attained at f(1) or f(k− 1)
for 1 ≤ κ ≤ k− 1. By (3.5), n ≥ 2δ−κ +2 ≥ 2δ− k+3, which implies f(1) − f(k− 1) =
(k − 2)(3n − 4δ + k − 4) ≥ 0. Thus

∑

i,j∈V,i<j

(xi − xj)2 ≥ f(k − 1) + 4(δ + 1)(n− δ − 1)

= (n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1). (3.9)

Substituting (3.8) and (3.9) in (3.7), we have

µn−1(G) ≤
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

≤ (k − 1)n∆
(n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1) ,

which is a contradiction to the hypothesis. Hence, κ(G) ≥ k. ✷

Remark 3.2. (i) The lower bound on µn−1(G) of Theorem 1.10 is better than the one of 
Theorem 1.9 when n ̸= 2δ − k + 3. In fact, as n − k + 1 = (n − δ − 1) + (δ − k + 2), it is 
easy to find that

(k − 1)n∆
(n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1) <

(k − 1)(n− k + 1)∆
4(δ − k + 2)(n− δ − 1)

is equivalent to (n − 2δ + k − 3)2 > 0.
(ii) The lower bound on µn−1(G) of Theorem 1.10 is better than the one of Theo-

rem 1.3 in the following cases. If ∆ ≥ 2(δ − k + 2) and n ≥ δ + k+1
2 , then

(k − 1)n∆
(n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1) <

(k − 1)n∆
2(δ − k + 2)(n− δ + k − 2)

is equivalent to (n − δ − k)(δ − k + 2) + (δ + 1)(n − δ − 1) > 0, that is

n >
(δ + k)(δ − k + 2) + (δ + 1)2

(δ − k + 2) + (δ + 1) = δ + k − (δ + 1)(k − 1)
2(δ + 1) − (k − 1) ,

which holds when n ≥ δ + k+1
2 = δ + k − k−1

2 . If δ ≤ ∆ < 2(δ − k + 2) and n ≥ 2δ + 2, 
then by Remark 3.2 (i) and Remark 3.1, H2(∆, δ, k) < H1(∆, δ, k) < φ(δ, ∆, k).
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G
H

Fig. 1. The graph G (left) in Example 3.3 and graph H (right) in Example 3.4.

Proof of Theorem 1.12. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V − (S ∪X). By Lemma 2.3 and 1 ≤ κ ≤ k − 1, we obtain

|X| · |Y | ≥ (δ − κ + 1)(n− δ − 1) ≥ (δ − k + 2)(n− δ − 1).

Combining this with n − |X| − |Y | = κ ≤ k − 1, by Lemma 2.6,

(µ1 − µn−1)2
4µ1µn−1

≥ |X||Y |
n(n− |X|− |Y |) ≥ (δ − k + 2)(n− δ − 1)

n(k − 1) . (3.10)

Set t = µ1
µn−1

and r = 2(δ−k+2)(n−δ−1)
n(k−1) + 1. Substituting t and r in (3.10), we obtain 

t + t−1 ≥ 2r. Since t ≥ 1 and r ≥ 1, t ≥ r+
√
r2 − 1 is necessary. This contradicts to the 

hypothesis. Therefore, κ(G) ≥ k. ✷

Example 3.3. Let G be the graph in Fig. 1, where n = |V (G)| = 7, ∆(G) = 6, δ(G) =
3, κ(G) = 2 and µn−1(G) = 2. We present a table to show the lower bounds on µn−1(G)
of Theorems 1.3,1.9,1.10 and the upper bound on µ1(G)

µn−1(G) of Theorem 1.12.

Graph µn−1(G) Theorem 1.3 Theorem 1.9 Theorem 1.10 µ1(G)
µn−1(G) Theorem 1.12

G 2 1.75 1 1 3.5 7

Example 3.4. Let H be the 4-regular graph in Fig. 1, where n = |V (H)| = 12, ∆(H) =
δ(H) = κ(H) = 4 and µn−1(H) = 2. We present a table to show the lower bounds on 
µn−1(H) of Theorems 1.4,1.9,1.10 and the upper bound on µ1(H)

µn−1(H) of Theorem 1.12.

Graph µn−1(H) Theorem 1.4 Theorem 1.9 Theorem 1.10 µ1(H)
µn−1(H) Theorem 1.12

H 2 3.6 1.9286 1.7349 3 3.2476

4. Vertex-connectivity and Laplacian eigenvalues in triangle-free graphs

In this section, we present the proofs of Theorem 1.13, Theorem 1.14 and Theo-
rem 1.15.
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Proof of Theorem 1.13. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
a minimum vertex-cut of G and X be the vertex set of a minimum component of G −S, 
and Y = V − (S ∪X). Then |X| ≤ |Y | and |X| + |Y | = n − κ.

Since κ ≤ k − 1 < δ, by Lemma 2.4 we obtain

|X| · |Y | ≥ (2δ − κ)(n− 2δ) ≥ (2δ − k + 1)(n− 2δ). (4.1)

Since each edge in E−(E(G[X]) ∪E(G[Y ])) is incident with at least one of the n −|X| −|Y |
vertices of the set S,

|E|− |E(G[X])|− |E(G[Y ])| ≤ (n− |X|− |Y |)∆ = κ∆. (4.2)

As 1 ≤ κ ≤ k − 1 ≤ n
2 , we have

(n− κ)κ ≤ (k − 1)(n− k + 1). (4.3)

Since each vertex of X has distance at least 2 to each vertex of Y , by Lemma 2.1

µn−1(G) ≤ |X| + |Y |
4|X||Y | (|E|− |E(G[X])|− |E(G[Y ])|). (4.4)

Substituting (4.1) and (4.2) in (4.4), by (4.3) we have

µn−1(G) ≤ (|X| + |Y |)κ∆
4(2δ − k + 1)(n− 2δ)

= (n− κ)κ∆
4(2δ − k + 1)(n− 2δ)

≤ (k − 1)(n− k + 1)∆
4(2δ − k + 1)(n− 2δ) ,

which is a contradiction to the hypothesis. Thus κ(G) ≥ k. ✷

Remark 4.1. The lower bound on µn−1(G) of Theorem 1.13 is better than the one of 
Theorem 1.5 in the following cases. If ∆ ≥ 2δ−k+1 and n ≥ 2δ+k−1, then n > 2k−2
and 2(n − 2δ) ≥ n − 2δ + k − 1, and so

(k − 1)(n− k + 1)∆
4(2δ − k + 1)(n− 2δ) <

(k − 1)n∆
2(2δ − k + 1)(n− 2δ + k − 1) .

If δ ≤ ∆ < 2δ − k + 1 and n ≥ 4δ, then 2δ − k + 1 < γ < 2δ≤ n
2 and so

(k − 1)(n− k + 1)∆
4(2δ − k + 1)(n− 2δ) <

(k − 1)n∆
2 · 2δ(n− 2δ) <

(k − 1)n∆
2γ(n− γ) .
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Proof of Theorem 1.14. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
a minimum vertex-cut of G and X be the vertex set of a minimum component of G −S, 
and Y = V − (S ∪X). Then |X| ≤ |Y | and |X| + |Y | = n − κ.

Since κ ≤ k − 1 < δ, by Lemma 2.4 we obtain

2δ − κ ≤ |X| ≤ |Y | ≤ n− 2δ, (4.5)
|X| · |Y | ≥ (2δ − κ)(n− 2δ). (4.6)

Let x = (x1, x2, . . . , xn)T be a real vector. If i ∈ X, then set xi = 1; if i ∈ Y , then 
set xi = −1; if i ∈ S, then set xi = 0. Using a similar argument as in the proof of 
Theorem 1.10, by Lemma 2.2 we have

µn−1(G) ≤
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

≤ (k − 1)n∆
(n− κ)κ + 4|X||Y | . (4.7)

By (4.6),

(n− κ)κ + 4|X||Y | ≥ (n− κ)κ + 4(2δ − κ)(n− 2δ)
= −κ(κ + (3n− 8δ)) + 8δ(n− 2δ).

Set f(κ) = −κ(κ +3n −8δ) +8δ(n −2δ). By (4.5), n ≥ 4δ−κ ≥ 4δ−k+1, which implies 
f(1) − f(k− 1) = (k− 2)(3n − 8δ + k) ≥ 0. Thus f(κ) ≥ min{f(1), f(k− 1)} = f(k− 1)
for 1 ≤ κ ≤ k − 1, and so

(n− κ)κ + 4|X||Y | ≥ f(k − 1) = (n− k + 1)(k − 1) + 4(2δ − k + 1)(n− 2δ). (4.8)

Substituting (4.8) in (4.7), we have

µn−1(G) ≤
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

≤ (k − 1)n∆
(n− k + 1)(k − 1) + 4(2δ − k + 1)(n− 2δ) ,

which is a contradiction to the hypothesis. Hence, κ(G) ≥ k. ✷

Remark 4.2. (i) The lower bound on µn−1(G) of Theorem 1.14 is better than the one of 
Theorem 1.13 when n ̸= 4δ − k + 1. In fact, as n − k + 1 = (n − 2δ) + (2δ − k + 1), it is 
also easy to find that

(k − 1)n∆
(n− k + 1)(k − 1) + 4(2δ − k + 1)(n− 2δ) <

(k − 1)(n− k + 1)∆
4(2δ − k + 1)(n− 2δ)

is equivalent to (n − 4δ + k − 1)2 > 0.
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(ii) The lower bound on µn−1(G) of Theorem 1.14 is better than the one of Theo-
rem 1.5 in the following cases. If ∆ ≥ 2δ − k + 1 and n ≥ 2δ + k−1

2 , then

(k − 1)n∆
(n− k + 1)(k − 1) + 4(2δ − k + 1)(n− 2δ) <

(k − 1)n∆
2(2δ − k + 1)(n− 2δ + k − 1)

is equivalent to (n − 2δ − k + 1)(2δ − k + 1) + 2δ(n − 2δ) > 0, that is

n >
8δ2 − (k − 1)2
4δ − (k − 1) = 2δ + (k − 1)(2δ − k + 1)

2(2δ − k + 1) + (k − 1) ,

which holds when n ≥ 2δ + k−1
2 . If δ ≤ ∆ < 2δ − k + 1 and n ≥ 4δ, then by Remark 4.2

(i) and Remark 4.1, H4(∆, δ, k) < H3(∆, δ, k) < ψ(δ, ∆, k).

Proof of Theorem 1.15. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be 
an arbitrary minimum vertex-cut and X be the vertex set of a minimum component of 
G − S, and Y = V − (S ∪X). By Lemma 2.4 and 1 ≤ κ ≤ k − 1, we obtain

|X| · |Y | ≥ (2δ − κ)(n− 2δ) ≥ (2δ − k + 1)(n− 2δ).

Combining this with n − |X| − |Y | = κ ≤ k − 1, by Lemma 2.6,

(µ1 − µn−1)2
4µ1µn−1

≥ |X||Y |
n(n− |X|− |Y |) ≥ (2δ − k + 1)(n− 2δ)

n(k − 1) . (4.9)

Set t = µ1
µn−1

and s = 2(2δ−k+1)(n−2δ)
n(k−1) + 1. Substituting t and s in (4.9), we obtain 

t + t−1 ≥ 2s. Since t ≥ 1 and s ≥ 1, t ≥ s +
√
s2 − 1 is necessary. This contradicts to the 

hypothesis. Therefore, κ(G) ≥ k. ✷

Example 4.3. Let G be the bipartite graph in Fig. 2, where n = |V (G)| = 14, ∆(G) =
5, δ(G) = κ(G) = 4 and µn−1(G) = 2. We present a table to show the lower bounds on 
µn−1(G) of Theorems 1.5, 1.13, 1.14, and the upper bound on µ1(G)

µn−1(G) of Theorem 1.15, 
as seen in the table below.

Graph µn−1(G) Theorem 1.5 Theorem 1.13 Theorem 1.14 µ1(G)
µn−1(G) Theorem 1.15

G 2 2.3333 1.3750 1.3725 4.3508 4.6417

5. Vertex-connectivity and eigenvalues of graphs with fixed girth

In this section, based on a result of Liu et al. in [16], we investigate the relationship 
between vertex-connectivity and algebraic connectivity of graphs with fixed girth, to be 
shown in Theorem 5.2.
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Fig. 2. The graph G in Example 4.3.

Lemma 5.1 (Liu et al. [16 ]). Let G be a simple connected graph with minimum degree 
δ = δ(G) ≥ 2 and girth g = g(G) ≥ 3. Let C be a vertex cut of G with |C| = c and A be 
a connected component of G −C. Define t = ⌈ g−1

2 ⌉ and

ν(δ, g, c) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + (δ − c)
t−1∑
i=0

(δ − 1)i, if g = 2t + 1 and c ≤ δ − 1;

2 + (2δ − 2 − c)
t−1∑
i=0

(δ − 1)i, if g = 2t + 2 and δ ≥ 3;

2t + 1, if g = 2t + 2 and δ = 2.

If c < δ, then |V (A)| ≥ ν(δ, g, c).

Theorem 5.2. Let k be an integer and G be a simple graph of order n with maximum degree 
∆, minimum degree δ ≥ k ≥ 2, girth g = g(G) ≥ 3. Define t = ⌈ g−1

2 ⌉, h =
∑t−1

i=0(δ−1)i, 
and

H(∆, δ, g, k) = (k − 1)n∆
(n− k + 1)(k − 1) + 4ν(δ, g, k − 1)(n− k + 1 − ν(δ, g, k − 1)) .

If one of the following conditions holds, then κ(G) ≥ k.

(i) µn−1(G) > (k−1)n∆
(n−1)+4ν(δ,g,k−1)(n−k+1−ν(δ,g,k−1)) ;

(ii) g = 2t +1, (4h −1)n ≥ 4(hδ+1)(2h −1) −k(2h −1)2 and µn−1(G) > H(∆, δ, g, k);
(iii) g = 2t +2, δ ≥ 3, (4h − 1)n ≥ 8(h(δ− 1) +1)(2h − 1) − k(2h − 1)2 and µn−1(G) >

H(∆, δ, g, k).

Proof. To the contrary, suppose that 1 ≤ κ = κ(G) ≤ k − 1. Let S be a minimum 
vertex-cut of G and X be the vertex set of a minimum component of G − S, and Y =
V − (S ∪X). Then |X| ≤ |Y | and |X| + |Y | = n −κ. Since κ ≤ k− 1 < δ, by Lemma 5.1
we obtain ν(δ, g, κ) ≤ |X| ≤ |Y | ≤ n − κ − ν(δ, g, κ), and so

|X| · |Y | ≥ ν(δ, g,κ)(n− κ− ν(δ, g,κ)) ≥ ν(δ, g, k − 1)(n− k + 1 − ν(δ, g, k − 1)). (5.1)
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Let x = (x1, x2, . . . , xn)T be a real vector. If i ∈ X, then set xi = 1; if i ∈ Y , then 
set xi = −1; if i ∈ S, then set xi = 0. Using a similar argument as in the proof of 
Theorem 1.10, by Lemma 2.2 we have

µn−1(G) ≤
n

∑
ij∈E

(xi − xj)2
∑

i,j∈V,i<j
(xi − xj)2

≤ (k − 1)n∆
(n− κ)κ + 4|X||Y | . (5.2)

(i) By (5.1) and (n − κ)κ ≥ min{n − 1, (n − k + 1)(k− 1)} = n − 1 for 1 ≤ κ ≤ k− 1,

(n− κ)κ + 4|X||Y | ≥ (n− 1) + 4ν(δ, g, k − 1)(n− k + 1 − ν(δ, g, k − 1)). (5.3)

Substituting (5.3) in (5.2), we obtain a contradiction to the hypothesis. Therefore, 
κ(G) ≥ k.

(ii) If g = 2t + 1 and κ ≤ k − 1 < δ, then ν(δ, g, κ) = h(δ − κ) + 1. Combining this 
with (5.1),

(n− κ)κ + 4|X||Y | ≥(n− κ)κ + 4ν(δ, g,κ)(n− κ− ν(δ, g,κ))
=(n− κ)κ + 4(h(δ − κ) + 1)(n− κ− h(δ − κ) − 1)
= − (2h− 1)2κ2 − ((4h− 1)n− 4(hδ + 1)(2h− 1))κ

+ 4(hδ + 1)(n− hδ − 1) =: f1(κ).

Since h ≥ 1 and (4h − 1)n ≥ 4(hδ + 1)(2h − 1) − k(2h − 1)2,

f1(1) − f1(k − 1) = (k − 2)((4h− 1)n− 4(hδ + 1)(2h− 1) + k(2h− 1)2) ≥ 0,

which implies f1(κ) ≥ min{f1(1), f1(k − 1)} = f1(k − 1). Thus

(n− κ)κ + 4|X||Y | ≥ f1(k − 1)
= (n− k + 1)(k − 1) + 4ν(δ, g, k − 1)(n− k + 1 − ν(δ, g, k − 1)).

(5.4)

Substituting (5.4) in (5.2), we obtain µn−1(G) ≤ H(∆, δ, g, k), which is a contradiction 
to the hypothesis. Hence, κ(G) ≥ k.

(iii) If g = 2t + 2 and δ ≥ 3, then ν(δ, g, κ) = h(2δ − κ − 2) + 2. Combining this with 
(5.1),

(n− κ)κ + 4|X||Y | ≥(n− κ)κ + 4ν(δ, g,κ)(n− κ− ν(δ, g,κ))
=(n− κ)κ + 4(h(2δ − κ− 2) + 2)(n− κ− h(2δ − κ− 2) − 2)
= − (2h− 1)2κ2 − ((4h− 1)n− 4(h(2δ − 2) + 2)(2h− 1))κ

+ 4(h(2δ − 2) + 2)(n− h(2δ − 2) − 2) =: f2(κ).
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Since h ≥ 1 and (4h − 1)n ≥ 8(h(δ − 1) + 1)(2h − 1) − k(2h − 1)2,

f2(1) − f2(k − 1) = (k − 2)((4h− 1)n− 4(h(2δ − 2) + 2)(2h− 1) + k(2h− 1)2) ≥ 0,

which implies f2(κ) ≥ min{f2(1), f2(k − 1)} = f2(k − 1). Thus

(n− κ)κ + 4|X||Y | ≥ f2(k − 1)

= (n− k + 1)(k − 1) + 4ν(δ, g, k − 1)(n− k + 1 − ν(δ, g, k − 1)).
(5.5)

Substituting (5.5) in (5.2), we obtain µn−1(G) ≤ H(∆, δ, g, k), which is a contradiction 
to the hypothesis. Hence, κ(G) ≥ k. ✷

At the end of this paper, we investigate graphs with many vertices, instead of small 
graphs. When n is large enough, the lower bound on µn−1(G) is close to a constant 
c = c(∆, δ, k). To show this, we present a corollary of Theorem 1.10 as an example. For 
other results, the proof is similar.

Corollary 5.3. Let k be an integer and G be a simple graph of order n with maximum 
degree ∆ and minimum degree δ ≥ k ≥ 2. For any ϵ > 0, there exists an integer N such 
that for any n ≥ N , if

µn−1(G) > (k − 1)∆
4δ − 3k + 7 + ϵ,

then κ(G) ≥ k.

Proof. Since δ ≥ k ≥ 2 and

lim
n→∞

H2(∆, δ, k) = lim
n→∞

(k − 1)n∆
(n− k + 1)(k − 1) + 4(δ − k + 2)(n− δ − 1) = (k − 1)∆

4δ − 3k + 7 ,

for any ϵ > 0, there exists an integer N such that for any n ≥ N ,

H2(∆, δ, k) ≤ (k − 1)∆
4δ − 3k + 7 + ϵ.

Thus, µn−1(G) > H2(∆, δ, k). By Theorem 1.10, the result follows. ✷
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