
Linear Algebra and its Applications 578 (2019) 411–424
Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Spanning tree packing number and eigenvalues of 
graphs with given girth

Ruifang Liu a, Hong-Jian Lai b,∗, Yingzhi Tian c

a School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 
450001, China
b Department of Mathematics, West Virginia University, Morgantown, WV 26506, 
USA
c College of Mathematics and System Sciences, Xinjiang University, Urumqi, 
Xinjiang 830046, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 February 2019
Accepted 19 May 2019
Available online 27 May 2019
Submitted by S.M. Cioaba

MSC:
05C50
05C40

Keywords:
Girth
Edge-disjoint spanning trees
Spanning tree packing number
Edge-connectivity
Eigenvalue
Quotient matrix

Let τ(G) and κ′(G) denote the spanning tree packing number 
and the edge-connectivity of a graph G, respectively. Cioabă 
and Wong (2012) in [5] conjectured an explicit relationship 
between τ(G) and the second largest adjacency eigenvalue 
λ2(G) of a regular graph. Gu et al. (2016) in [12] presented a 
more general conjecture on a simple graph G. This conjecture 
was proved by Liu et al. (2014) in [21] by showing that for 
any simple graph G with minimum degree δ ≥ 2k ≥ 4, if 
λ2(G) < δ− 2k−1

δ+1 , then τ(G) ≥ k. Similar results involving the 
algebraic connectivity μn−1(G) and the second largest signless 
Laplacian eigenvalue q2(G) of a graph G were also obtained. In 
this paper, we determine a Moore function f(δ, g) for a graph 
G with minimum degree δ and girth g, and prove that if G is 
a simple graph of order n with minimum degree δ ≥ 2k ≥ 4
and girth g, then
(i) If λ2(G) < δ − 2k−1

f(δ,g) , then τ(G) ≥ k.
(ii) If μn−1(G) > 2k−1

f(δ,g) , then τ(G) ≥ k.
(iii) If q2(G) < 2δ − 2k−1

f(δ,g) , then τ(G) ≥ k.
The edge-connectivity analogue results are also obtained. 
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Former results in Gu et al. (2016) [12], Li et al. (2013) [18], 
Liu et al. (2014) [20] and Liu et al. (2014) [21] are extended.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Spanning tree packing number and edge-connectivity of a network have been used 
as measures of reliability, strength and survivability in case of attack or edge failure 
in networks modeled as a graph, as seen [7,11,14,22,25], among others. In particular, 
determining the spanning tree packing number in a graph is closely related to the design 
of efficient and robust communication protocols, as seen in a seminal article by Itai and 
Rodeh [15]. Linear algebra techniques, including eigenvalues and eigenvectors methods 
and matrix decompositions, have been applied as useful tools in network investigations, 
as seen [6,8,25]. Recently, the study of the relationship between spanning tree packing 
number, edge-connectivity and eigenvalues of a graph has been drawing the attention of 
quite a few researchers.

In this paper, we consider finite and simple graphs. In particular, Δ(G), δ(G) and 
κ′(G) denote the maximum degree, the minimum degree and the edge-connectivity of a 
graph G, respectively. The girth of a graph G, is defined as

g(G) =
{

min{|E(C)| : C is a cycle of G} if G is not acyclic,
∞ if G is acyclic.

Let d(G) be the average degree of G, and τ(G) be the maximum number of edge-disjoint 
spanning trees contained in G, which is also called spanning tree packing number. A lit-
erature review on τ(G) can be found in [24]. As in [1], for a vertex subset S ⊆ V (G), 
G[S] is the subgraph of G induced by S. We follow [1] for undefined terms and notation.

Let G be a simple graph with vertex set {v1, . . . , vn}. The adjacency matrix of G
is an n × n matrix A(G) = (aij), where aij is the number of edges joining vi and 
vj in G. As G is simple, A(G) is symmetric (0, 1)-matrix. Eigenvalues of G are the 
eigenvalues of A(G). We use λi(G) to denote the ith largest eigenvalues of G, and so 
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). Let D(G) be the diagonal degree matrix of G. The 
matrices L(G) = D(G) −A(G) and Q(G) = D(G) +A(G) are the Laplacian matrix and 
the signless Laplacian matrix of G, respectively. We use μi(G) and qi(G) to denote the 
ith largest eigenvalue of L(G) and Q(G), respectively. The value μn−1(G) is known as 
the algebraic connectivity of G.

Fiedler [10] initiated the investigation between graph connectivity and graph eigen-
values. Motivated by Kirchhoff’s matrix tree theorem [16] and by a problem of Seymour 
(see Reference [19] of [5]), Cioabă and Wong [5] initially conjectured an explicit relation-
ship between τ(G) and λ2(G) of a regular graph. This conjecture was later extended to 
general graphs.
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Conjecture 1.1 (Gu et al. [12], Li and Shi [18] and Liu et al. [20]). Let k be an integer 
with k ≥ 2 and G be a simple graph with minimum degree δ ≥ 2k. If λ2(G) < δ − 2k−1

δ+1 , 
then τ(G) ≥ k.

Several studies made progresses towards Conjecture 1.1, as seen in [12,18,20,21]. The 
conjecture was finally settled in [21].

Theorem 1.2 (Liu et al. [21]). Let k ≥ 2 be an integer, and G be a graph with δ ≥ 2k ≥ 4. 
Each of the following holds.
(i) If λ2(G) < δ − 2k−1

δ+1 , then τ(G) ≥ k.
(ii) If μn−1(G) > 2k−1

δ+1 , then τ(G) ≥ k.
(iii) If q2(G) < 2δ − 2k−1

δ+1 , then τ(G) ≥ k.

For a subset X ⊆ V (G), d(X) denotes the number of edges with one end in X and the 
other in V (G) −V (X). A technical and important tool for proving Conjecture 1.1 and the 
main result in this paper is the fundamental theorem on spanning tree packing number 
of a graph G, which was obtained by Nash-Williams [23] and Tutte [27], respectively.

Theorem 1.3 (Nash-Williams [23] and Tutte [27]). Let G be a connected graph and let 
k > 0 be an integer. Then τ(G) ≥ k if and only if for any partition (V1, . . . , Vt) of V (G), ∑t

i=1 d(Vi) ≥ 2k(t − 1).

As consequences of Theorem 1.3, the relationship between τ(G) and κ′(G) has been 
investigated, as seen in [11] and [17], among others. A characterization was proved in [3].

Theorem 1.4 (Catlin et al. [3]). Let k ≥ 1 be an integer. Then κ′(G) ≥ 2k if and only if 
for any subset X ⊆ E(G) with |X| ≤ k, τ(G −X) ≥ k.

Based on the relationship between τ(G) and κ′(G) in Theorem 1.4, researchers ini-
tially attempted to prove Conjecture 1.1 by building the relationship between κ′(G) and 
eigenvalues. Cioabă in [4] initiated the investigation on the relationship between κ′(G)
and adjacency eigenvalues of regular graphs. From then on, a number of results have 
been obtained.

Theorem 1.5. Let d and k be integers with d ≥ k ≥ 2, and let G be a simple graph on n
vertices with δ ≥ k.
(i) (Cioabă [4]) If G is d-regular and λ2(G) ≤ d − (k−1)n

(d+1)(n−d−1) , then κ′(G) ≥ k.
(ii) (Cioabă [4]) If G is d-regular and λ2(G) < d − 2(k−1)

d+1 , then κ′(G) ≥ k.
(iii) (Gu et al. [12]) If λ2(G) < δ − 2(k−1)

δ+1 , then κ′(G) ≥ k.
(iv) (Li and Shi [18], Liu et al. [20]) If λ2(G) ≤ δ − (k−1)n

(δ+1)(n−δ−1) , then κ′(G) ≥ k.
(v) (Liu, Lu and Tian [19]) If μn−1(G) ≥ (k−1)n

(δ+1)(n−δ−1) , then κ′(G) ≥ k.
(vi) (Liu, Lu and Tian, [19]) If q2(G) ≤ 2δ − (k−1)n , then κ′(G) ≥ k.
(δ+1)(n−δ−1)
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These results motivate the current research. Known results in the literature focused 
on regular graphs and simple graphs, and hence it is natural to ask whether we will 
have a different range of the eigenvalues to predict the values of τ(G) or κ′(G), when we 
are restricted to certain graph families such as bipartite graphs or triangle free graphs. 
Therefore, we introduce the parameter girth to investigate directly other general graph 
families. The approach of using girth in the study of eigenvalues and edge-connectivity 
was earlier taken by Liu, Lu and Tian in [19].

The main goal of this study is to investigate, when the girth of a graph G is known, the 
relationship between the eigenvalues of G and τ(G). As a byproduct, similar investigation 
for the relationship between eigenvalues of G and κ′(G) is also conducted. Motivated by 
the methods deployed in [21], for any graph G with the adjacency matrix A and the 
diagonal degree matrix D, we define λi(G, a) to be the ith largest eigenvalue of aD+A, 
where a ≥ −1 is a real number. For given integers δ and g with δ > 0 and g ≥ 3, let 
t = � g−1

2 �, and define the Moore function as follows.

f(δ, g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2t + 1 if δ = 2 and g = 2t + 1,
1 + δ +

∑t
i=2(δ − 1)i if δ ≥ 3 and g = 2t + 1,

2t + 2 if δ = 2 and g = 2t + 2,
2 + 2(δ − 1)t +

∑t−1
i=1(δ − 1)i if δ ≥ 3 and g = 2t + 2.

(1)

Theorems 1.6 and 1.7 are our main results. When a = 0, −1 and 1, respectively, 
Theorem 1.6 yields the relationship between κ′(G) and the second largest adjacency 
eigenvalue λ2(G), the algebraic connectivity μn−1(G) and the second largest signless 
Laplacian eigenvalue q2(G), respectively.

Theorem 1.6. Let g and k be integers with g ≥ 3 and k ≥ 2, a ≥ −1 be a real number, 
and G be a simple graph of order n with minimum degree δ ≥ k ≥ 2 and girth g. Each 
of the following holds.

(i) If λ2(G, a) ≤ (a + 1)δ − (k − 1)n
f(δ, g)(n− f(δ, g)) , then κ′(G) ≥ k.

(ii) If λ2(G, a) < (a + 1)δ − 2(k − 1)
f(δ, g) , then κ′(G) ≥ k.

As f(δ, 3) = δ + 1 and when a = 0, −1 and 1, respectively, Theorem 1.6 extends 
Theorem 1.5. We present other applications of Theorem 1.6 in Section 3.

Theorem 1.7. Let g and k be integers with g ≥ 3 and k ≥ 2, a ≥ −1 be a real number, 
and G be a simple graph of order n with minimum degree δ ≥ 2k ≥ 4 and girth g. If 
λ2(G, a) < (a + 1)δ − 2k − 1

f(δ, g) , then τ(G) ≥ k.

Likewise, when a = 0, −1 and 1, respectively, Theorem 1.7 reveals the relationship be-
tween τ(G) and λ2(G), μn−1(G) and q2(G), respectively. As f(δ, 3) = δ+1, Corollary 1.8
extends Theorem 1.2.
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Corollary 1.8. Let g and k be integers with g ≥ 3 and k ≥ 2, and G be a simple graph of 
order n with minimum degree δ ≥ 2k ≥ 4 and girth g. Each of the following holds.
(i) If λ2(G) < δ − 2k−1

f(δ,g) , then τ(G) ≥ k.
(ii) If μn−1(G) > 2k−1

f(δ,g) , then τ(G) ≥ k.
(iii) If q2(G) < 2δ − 2k−1

f(δ,g) , then τ(G) ≥ k.

The arguments adopted in this paper are refinements and improvements of those 
presented in [19–21]. In the next section, we display the interlacing technique, a common 
tool in spectral theory of matrices. The proofs of the main results are in the subsequent 
sections.

2. Preliminaries

The main tool in our paper is the eigenvalue interlacing technique described below.
Given two non-increasing real sequences θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηm

with n > m, the second sequence is said to interlace the first one if θi ≥ ηi ≥ θn−m+i for 
i = 1, 2, . . . , m. The interlacing is tight if exists an integer k ∈ [0, m] such that θi = ηi
for 1 ≤ i ≤ k and θn−m+i = ηi for k + 1 ≤ i ≤ m.

Lemma 2.1 (Cauchy interlacing [2]). Let A be a real symmetric matrix and B be a 
principal submatrix of A. Then the eigenvalues of B interlace the eigenvalues of A.

Consider an n × n real symmetric matrix

M =

⎛
⎜⎜⎜⎜⎝

M1,1 M1,2 · · · M1,m
M2,1 M2,2 · · · M2,m

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,m

⎞
⎟⎟⎟⎟⎠ ,

whose rows and columns are partitioned according to the partition X1, X2, . . . , Xm of 
{1, 2, . . . , n}. The quotient matrix R(M) of the matrix M is the m × m matrix whose 
entries are the average row sums of the blocks Mi,j of M . The partition is equitable if 
each block Mi,j of M has constant row (and column) sum.

Lemma 2.2 (Brouwer and Haemers [2,13]). Let M be a real symmetric matrix. Then the 
eigenvalues of any quotient matrix of M interlace the ones of M . Furthermore, if the 
interlacing is tight, then the partition is equitable.

3. Proof of Theorem 1.6

Following [1], for disjoint subsets X and Y of V (G), let E(X, Y ) be the set of edges 
with one end in X and the other end in Y . Define
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e(X,Y ) = |E(X,Y )| and d(X) = e(X,V (G) −X).

Tutte [26] initiated the cage problem, which seeks, for any given integers d and g with 
d ≥ 2 and g ≥ 3, the smallest possible number of vertices n(d, g) such that there exists 
a d-regular simple graph with girth g. A tight lower bound (often referred as the Moore 
bound) on n(d, g) can be found in [9].

Lemma 3.1 (Exoo and Jajcay [9]). For given integers d ≥ 2 and g ≥ 3, let t = � g−1
2 �. 

Then

n(d, g) ≥ N(d, g) =
{

1 + d
∑t−1

i=0(d− 1)i g = 2t + 1,
2
∑t

i=0(d− 1)i g = 2t + 2.

We start our arguments with a technical lemma. For a subset X ⊆ V (G), define 
|X| = |V (G[X])|, X = V (G) −X and NG(X) = {u ∈ X : ∃ v ∈ X such that uv ∈ E(G)}. 
If X = {v}, then we use NG(v) for NG({v}). When G is understood from the context, 
we often omit the subscript G. Recall that the Moore function f(δ, g) is defined as in (1).

Lemma 3.2. Let G be a simple graph with minimum degree δ = δ(G) ≥ 2 and girth 
g = g(G) ≥ 3, and X be a vertex subset of G. If d(X) < δ, then |X| ≥ f(δ, g).

Proof. For notational convenience, we use X to denote both a vertex subset of G as well 
as G[X], the subgraph induced by the vertices of X.

Claim 3.3. X contains at least a cycle.

By contradiction, assume that X is acyclic. Then |E(X)| ≤ |X| − 1, and so

δ · |X| ≤
∑
v∈X

dG(v) = 2|E(X)| + d(X) ≤ 2(|X| − 1) + δ − 1,

leading to a contradiction |X| ≤ δ−3
δ−2 < 1. This proves Claim 3.3.

By Claim 3.3, X must contain a cycle with length at least g. We shall justify the 
lemma by making a sequence of claims.

Claim 3.4. Each of the following holds.
(i) If g ≥ 3, then there exists a vertex u0 ∈ X such that N(u0) ∩X = ∅.
(ii) If g ≥ 3, then X contains a path P = u0u1u2 · · ·ug−3 such that for any i ∈
{0, 1, 2, ..., g − 3}, N(ui) ∩ X = ∅, i.e., the neighborhood of each vertex is contained 
in X.

If (i) does not hold, then for every vertex v ∈ X, we always have N(v) ∩X �= ∅. Fix 
a vertex v0 ∈ X. Then
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d(X) = |N(v0) ∩X| + |e(X − {v0}, X)| ≥ |N(v0) ∩X| + |X − {v0}|

≥ |N(v0) ∩X| + |N(v0) ∩X| = d(v0) ≥ δ,

contrary to the fact d(X) < δ. Hence (i) follows.
We shall prove (ii) by induction on g. By (i), (ii) holds if g = 3. Assume that g ≥ 4 and 

(ii) holds for smaller values of g. Thus X contains a path P ′ = u0u1 · · ·ug−4 such that 
for any i ∈ {0, 1, 2, ..., g − 4}, N(ui) ∩X = ∅. Let N ′ = {u′ ∈ N(u0) : N(u′) ∩X �= ∅}
and N ′′ = {u′′ ∈ N(ug−4) : N(u′′) ∩ X �= ∅}. Since g(G) = g, for any w ∈ N(u0), 
N(w) ∩V (P ′) = {u0}, and for any w ∈ N(ug−4), N(w) ∩V (P ′) = {ug−4}. As ug−4 ∈ X

and |N(ug−4) − V (P ′)| ≥ δ − 1 ≥ d(X) ≥ |N ′′|, we have either |N(ug−4) − V (P ′)| >
|N ′′| or |N(ug−4) − V (P ′)| = |N ′′|. If |N(ug−4) − V (P ′)| > |N ′′|, then there must 
exist a vertex ug−3 ∈ N(ug−4) − (V (P ′) ∪ N ′′), and hence a path P = u0u1u2 · · ·ug−3

satisfying (ii) is found, and so (ii) holds by induction in this case. Next we assume that 
|N(ug−4) − V (P ′)| = d(X) = |N ′′|. By the definition of N ′, for any u′ ∈ N ′, there must 
exist a vertex w′ ∈ X such that u′w′ ∈ E(G). Hence we conclude that N ′ = ∅. Note that 
|N(u0) − V (P ′)| ≥ δ − 1 ≥ 1, and so there must exist a vertex u−1 ∈ N(u0) − V (P ′)
such that N(u−1) ∩ X = ∅. This implies that, letting vi = ui−1 for 0 ≤ i ≤ g − 3, we 
obtain a path P = v0v1 · · · vg−3 such that for any i ∈ {0, 1, 2, ..., g − 3}, N(vi) ∩X = ∅. 
Hence (ii) is also proved by induction in this case. This justifies the claim.

Let t = � g−1
2 �. Assume that g = 2t + 1 is odd, by Lemma 3.1 and by Claim 3.4(ii), if 

δ ≥ 3, then 1 ≤ d(X) ≤ δ − 1, and so

|X| ≥ 1 + δ

t−1∑
i=0

(δ − 1)i − d(X) − d(X)(δ − 1) − · · · − d(X)(δ − 1)t−2

≥ 1 + δ

t−1∑
i=0

(δ − 1)i −
t−1∑
i=1

(δ − 1)i = 1 + δ +
t∑

i=2
(δ − 1)i = f(δ, g). (2)

If δ = 2, then by Claim 3.4(ii), |X| ≥ g = 2t + 1.
By the same reason, assume that g = 2t + 2 is even. If δ ≥ 3, then 1 ≤ d(X) ≤ δ − 1, 

and hence we have

|X| ≥ 2
t∑

i=0
(δ − 1)i − d(X) − d(X)(δ − 1) − · · · − d(X)(δ − 1)t−2

≥ 2
t∑

i=0
(δ − 1)i −

t−1∑
i=1

(δ − 1)i = 2 + 2(δ − 1)t +
t−1∑
i=1

(δ − 1)i = f(δ, g). (3)

If δ = 2, then by Claim 3.4(ii), |X| ≥ g = 2t + 2.
This completes the proof of the lemma. �
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3.1. Proof of Theorem 1.6(i)

Let k be an integer with k ≥ 2. By contradiction, we assume that κ′(G) = r ≤ k − 1. 
Then there exists a partition (X, Y ) with Y = V (G) − X such that e(X, Y ) = r ≤
k − 1 ≤ δ − 1 < δ. Let |X| = n1 and |Y | = n2. By Lemma 3.2 and as n1 + n2 = n, then 
f(δ, g) ≤ min{n1, n2} ≤ n

2 ≤ n − f(δ, g). Hence we have

n1n2 = n1(n− n1) ≥ f(δ, g)(n− f(δ, g)). (4)

Let d̄1 = 1
n1

∑
v∈X d(v), d̄2 = 1

n2

∑
v∈Y d(v). Then d̄1, d̄2 ≥ δ. Accordingly, the quo-

tient matrix R(aD + A) of aD + A on the partition (X, Y ) becomes:

R(aD + A) =
(

(a + 1)d̄1 − r
n1

r
n1

r
n2

(a + 1)d̄2 − r
n2

)
.

As the characteristic polynomial of R(aD + A) is

λ2 − [(a + 1)d̄1 −
r

n1
+ (a + 1)d̄2 −

r

n2
]λ + [(a + 1)d̄1 −

r

n1
][(a + 1)d̄2 −

r

n2
] − r2

n1n2
,

we have, by a direct computation,

λ2(R(aD + A))

= 1
2{[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
] (5)

−

√
[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
]2 − 4[(a + 1)d̄1 −

r

n1
][(a + 1)d̄2 −

r

n2
] + 4r2

n1n2
}

≥ min{(a + 1)d̄1, (a + 1)d̄2} −
rn

n1n2

≥ (a + 1)δ − (k − 1)n
f(δ, g)(n− f(δ, g)) .

By Lemma 2.2, λ2(G, a) ≥ λ2(R(aD + A)) ≥ (a + 1)δ − (k−1)n
f(δ,g)(n−f(δ,g)) . By assumption, 

λ2(G, a) ≤ (a + 1)δ − (k−1)n
f(δ,g)(n−f(δ,g)) , and so we have λ2(G, a) = λ2(R(aD + A)) =

(a + 1)δ − (k−1)n
f(δ,g)(n−f(δ,g)) . It follows that all the inequalities in (5) must be equalities. 

Hence r = k − 1 and d̄1 = d̄2 = δ, implying that G must be a δ-regular graph, and so 
λ1(G, a) = (a + 1)δ. By algebraic manipulations,
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λ1(R(aD + A))

=1
2
{[(a + 1)δ − r

n1
+ (a + 1)δ − r

n2
]

+

√
[(a + 1)δ − r

n1
+ (a + 1)δ − r

n2
]2 − 4[(a + 1)δ − r

n1
][(a + 1)δ − r

n2
] + 4r2

n1n2
}

=1
2{[2(a + 1)δ − r

n1
− r

n2
] +

√
[(a + 1)δ − r

n1
− ((a + 1)δ − r

n2
)]2 + 4r2

n1n2
}

=1
2{[2(a + 1)δ − r

n1
− r

n2
] +

√
( r

n1
− r

n2
)2 + 4r2

n1n2
}

=1
2{[2(a + 1)δ − r

n1
− r

n2
] + ( r

n1
+ r

n2
)}

=(a + 1)δ.

Therefore, the interlacing is tight. By Lemma 2.2, the partition is equitable. This means 
that every vertex in X has the same number of neighbors in Y . However, by Claim 3.4(i) 
of Lemma 3.2, there exists at least one vertex in X without a neighbor in Y . This implies 
that r = e(X, Y ) = k − 1 = 0, contrary to the assumption that k ≥ 2. �
3.2. Corollaries of Theorem 1.6(i)

By contradiction, assume that κ′(G) ≤ k − 1. Since f(δ, g) ≤ min{n1, n2} ≤ n
2 ≤

n − f(δ, g), it follows from the proof of Theorem 1.6(i) that

λ2(G, a) ≥ (a + 1)δ − (k − 1)n
f(δ, g)(n− f(δ, g)) ≥ (a + 1)δ − 2(k − 1)

f(δ, g) , (6)

contrary to the assumption of Theorem 1.6(ii). Hence Theorem 1.6(ii) follows.
For real numbers a and b with ab ≥ −1, let λi(G, a, b) be the ith largest eigenvalue of 

the matrix aD + bA. Thus λi(G, a, 1) = λi(G, a).

Corollary 3.5. Let a and b be real numbers with b �= 0 and ab ≥ −1, k be an integer with 
k ≥ 2, and G be a simple graph with order n, girth g and minimum degree δ ≥ k. Each 
of the following holds.
(i) b > 0 and λ2(G, a, b) ≤ (a + b)δ − b(k−1)n

f(δ,g)(n−f(δ,g)) , then κ′(G) ≥ k.
(ii) b < 0 and λn−1(G, a, b) ≥ (a + b)δ − b(k−1)n

f(δ,g)(n−f(δ,g)) , then κ′(G) ≥ k.

Proof. As aD + bA = b(abD + A), it follows by definition that

{
if b > 0, then λi(G, a, b) = bλi(G, a

b ); and
if b < 0, then λn−i+1(G, a, b) = bλi(G, a ).

(7)

b
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Hence Corollary 3.5 follows from Theorem 1.6(i). �
Choosing a ∈ {0, −1, 1} and b = 1 in Corollary 3.5, we have the following special case.

Corollary 3.6. Let k be an integer with k ≥ 2, and G be a simple graph with order n, 
girth g and minimum degree δ ≥ k. Each of the following holds.
(i) If λ2(G) ≤ δ − (k−1)n

f(δ,g)(n−f(δ,g)) , then κ′(G) ≥ k.
(ii) If μn−1(G) ≥ (k−1)n

f(δ,g)(n−f(δ,g)) , then κ′(G) ≥ k.
(iii) If q2(G) ≤ 2δ − (k−1)n

f(δ,g)(n−f(δ,g)) , then κ′(G) ≥ k.

By the definition of N(d, g) in Lemma 3.1, we have N(δ, 2t + 1) = 1 + δ
∑t−1

i=0(δ− 1)i
for odd g = 2t +1, and N(δ, 2t +2) = 2 

∑t
i=0(δ−1)i for even g = 2t +2. In fact, the girth 

has also been used in [19] to study the edge connectivity and the (signless) Laplacian 
eigenvalues of graphs. Liu et al. [19] obtained the following result by using a different 
method.

Theorem 3.7 (Liu, Lu and Tian, [19]). Let δ ≥ k ≥ 2 be two integers, and G be a con-
nected graph of order n, girth g and minimum degree δ. Each of the following holds.
(i) If μn−1(G) ≥ (k−1)n

g(n−g) , then κ′(G) ≥ k. Moreover, if δ ≥ 3 and μn−1(G) ≥
(k−1)n

4
9N(δ,g)(n− 4

9N(δ,g)) , then κ′(G) ≥ k.

(ii) If q2(G) ≤ 2δ − (k−1)n
g(n−g) , then κ′(G) ≥ k. Moreover, if δ ≥ 3 and q2(G) ≤

2δ − (k−1)n
4
9N(δ,g)(n− 4

9N(δ,g)) , then κ′(G) ≥ k.

Remark 3.8. The results in Corollary 3.6 and those in Theorem 3.7 address the relation-
ship between eigenvalues and edge-connectivity of a graph G. We are to compare these 
results. Let t ≥ 1 be an integer. The following are observed.
(i) Suppose that g = 2t + 1 is odd. If δ = 2, then f(δ, g) = 2t + 1 = g. If δ ≥ 3, then 
f(δ, g) = 1 + δ +

∑t
i=2(δ − 1)i > 2t + 2 > g, and f(δ, g) = 1 + δ +

∑t
i=2(δ − 1)i >

4
9 (1 + δ

∑t−1
i=0(δ − 1)i) = 4

9N(δ, g).
(ii) Suppose that g = 2t + 2 is even. If δ = 2, then f(δ, g) = 2t + 2 = g. If 
δ ≥ 3, then f(δ, g) = 2 + 2(δ − 1)t +

∑t−1
i=1(δ − 1)i > 2t + 4 > g, and f(δ, g) =

2 + 2(δ − 1)t +
∑t−1

i=1(δ − 1)i > 4
9 (2 

∑t
i=0(δ − 1)i) = 4

9N(δ, g).
As n1(n − n1) is an increasing function on the closed interval [1, n2 ], it follows that 

f(δ, g)(n − f(δ, g)) ≥ g(n − g) and f(δ, g)(n − f(δ, g)) > 4
9N(δ, g)(n − 4

9N(δ, g)). Con-
sequently, (k−1)n

f(δ,g)(n−f(δ,g)) ≤ (k−1)n
g(n−g) and (k−1)n

f(δ,g)(n−f(δ,g)) < (k−1)n
4
9N(δ,g)(n− 4

9N(δ,g)) . In the sense 
commented above, especially when δ is sufficiently large, results in Corollary 3.6 improve 
those of Theorem 3.7.

From Corollary 3.6, for simple graphs, we have g ≥ 3. By the definition of f(δ, g)
in (1), we have f(δ, g) ≥ f(δ, 3) = δ + 1. Suppose that κ′(G) ≤ k − 1. By (4), then 
n1(n − n1) ≥ f(δ, g)(n − f(δ, g)) ≥ (δ + 1)(n − δ− 1). By Corollary 3.6(i), then λ2(G) >
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δ − (k−1)n
f(δ,g)(n−f(δ,g)) ≥ δ − (k−1)n

(δ+1)(n−δ−1) ≥ δ − 2(k−1)
δ+1 , contrary to the assumption of 

Theorem 1.5(iii) and (iv). Hence Theorem 1.5 are consequences of Corollary 3.6.
By Corollary 3.6, for bipartite graphs, we have g ≥ 4. Note that f(δ, 4) = 2δ. By a 

similar analysis, Corollary 3.6 also implies the following result on bipartite graphs.

Corollary 3.9. Let G be a bipartite graph with order n and minimum degree δ ≥ k ≥ 2. 
Each of the following holds.
(i) If λ2(G) < δ − k−1

δ , then κ′(G) ≥ k.
(ii) If λ2(G) ≤ δ − (k−1)n

2δ(n−2δ) , then κ′(G) ≥ k.
(iii) If μn−1(G) ≥ (k−1)n

2δ(n−2δ) , then κ′(G) ≥ k.
(iv) If q2(G) ≤ 2δ − (k−1)n

2δ(n−2δ) , then κ′(G) ≥ k.

4. Proof of Theorem 1.7 and its Corollaries

Throughout this section, for given integers δ and g, we continue to define f(δ, g) as 
in (1). We utilize the arguments deployed in [21] to prove Theorem 1.7 by imposing the 
girth requirement. In particular, the following technical lemma will also be used, with an 
additional condition a ≥ −1 to justify the algebraic manipulation needed in the proof of 
the lemma.

Lemma 4.1 (Lemma 3.2 of [21]). Let a ≥ −1 be a real number and G be a simple graph 
with minimum degree δ. For any two disjoint nonempty vertex subsets X and Y , if 
λ2(G, a) ≤ (a + 1)δ − max{d(X)

|X| , 
d(Y )
|Y | }, then

[e(X,Y )]2 ≥ [(a + 1)δ − d(X)
|X| − λ2(G, a)][(a + 1)δ − d(Y )

|Y | − λ2(G, a)]|X||Y |.

Proof of Theorem 1.7. Let V1, . . . , Vt be an arbitrary partition of V (G). Without loss 
of generality, we assume that d(V1) ≤ d(V2) ≤ · · · ≤ d(Vt). By Theorem 1.3, it suffices 
to show that 

∑t
i=1 d(Vi) ≥ 2k(t − 1). The inequality holds trivially if t = 1. Hence we 

assume that t ≥ 2. If d(V1) ≥ 2k, then 
∑t

i=1 d(Vi) ≥ 2kt > 2k(t − 1). Thus we assume 
that d(V1) ≤ 2k − 1.

Let s be the largest integer such that d(Vs) ≤ 2k− 1. Then d(Vs) ≤ 2k− 1 < δ, where 
1 ≤ s ≤ t. And if s < t, then d(Vs+1) ≥ 2k. By Lemma 3.2, |Vi| ≥ f(δ, g) for 1 ≤ i ≤ s. 
It follows that for any i with 1 < i ≤ s,

λ2(G, a) < (a + 1)δ − 2k − 1
f(δ, g) ≤ (a + 1)δ − max{d(V1)

|V1|
,
d(Vi)
|Vi|

}. (8)

By (8) and Lemma 4.1, then
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[e(V1, Vi)]2 ≥[(a + 1)δ − d(V1)
|V1|

− λ2(G, a)][(a + 1)δ − d(Vi)
|Vi|

− λ2(G, a)]|V1| · |Vi|

>[ 2k − 1
f(δ, g) − d(V1)

|V1|
]|V1|[

2k − 1
f(δ, g) − d(Vi)

|Vi|
]|Vi|

≥[2k − 1 − d(V1)][2k − 1 − d(Vi)]

≥[2k − 1 − d(Vi)]2.

Then e(V1, Vi) > 2k − 1 − d(Vi), and thus e(V1, Vi) ≥ 2k − d(Vi). It follows that ∑s
i=2 e(V1, Vi) ≥

∑s
i=2(2k − d(Vi)), and so as d(Vj) ≥ 2k for all j ≥ s + 1, we have

t∑
i=1

d(Vi) = d(V1) +
s∑

i=2
d(Vi) +

t∑
i=s+1

d(Vi)

≥
s∑

i=2
e(V1, Vi) +

s∑
i=2

d(Vi) +
t∑

i=s+1
d(Vi)

≥ 2k(s− 1) −
s∑

i=2
d(Vi) +

s∑
i=2

d(Vi) +
t∑

i=s+1
d(Vi)

≥ 2k(s− 1) + 2k(t− s) = 2k(t− 1). (9)

Hence by Theorem 1.3, τ(G) ≥ k, as desired. This completes the proof of Theo-
rem 1.7. �

The following more general result can be derived from Theorem 1.7 by arguing simi-
larly as in [21] and using (7), within certain ranges of the real numbers a and b.

Corollary 4.2. Let a and b be real numbers satisfying b �= 0 and ab ≥ −1, k be an integer 
with k ≥ 2 and G be a graph with order n, girth g and minimum degree δ ≥ 2k. Each of 
the following holds.
(i) If b > 0 and λ2(G, a, b) < (a + b)δ − b(2k−1)

f(δ,g) , then τ(G) ≥ k.
(ii) If b < 0 and λn−1(G, a, b) > (a + b)δ − b(2k−1)

f(δ,g) , then τ(G) ≥ k.

Thus Corollary 1.8 now follows by letting a ∈ {0, 1, −1} and b = 1 in Corollary 4.2.
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Appendix A

The algebraic manipulations to derive (5).

λ2(R(aD + A))

= 1
2{[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
]

−

√
[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
]2 − 4[(a + 1)d̄1 −

r

n1
][(a + 1)d̄2 −

r

n2
] + 4r2

n1n2
}

= 1
2{[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
]−

√
[(a + 1)d̄1 − r

n1
− (a + 1)d̄2 + r

n2
]2 + 4r2

n1n2
}

= 1
2{[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
] −

√
[(a + 1)(d̄1 − d̄2) − ( r

n1
− r

n2
)]2 + 4r2

n1n2
}

= 1
2{[(a + 1)d̄1 −

r

n1
+ (a + 1)d̄2 −

r

n2
]

−

√
(a + 1)2(d̄1 − d̄2)2 + ( r

n1
− r

n2
)2 − 2(a + 1)(d̄1 − d̄2)(

r

n1
− r

n2
) + 4r2

n1n2
}

= 1
2{[(a + 1)(d̄1 + d̄2) −

r

n1
− r

n2
]

−
√

(a + 1)2(d̄1 − d̄2)2 + ( r

n1
+ r

n2
)2 + 2(a + 1)(d̄1 − d̄2)(

r

n2
− r

n1
)}

≥ 1
2{[(a + 1)(d̄1 + d̄2) −

r

n1
− r

n2
]

−
√

(a + 1)2(d̄1 − d̄2)2 + ( r

n1
+ r

n2
)2 + 2(a + 1)|d̄1 − d̄2|(

r

n1
+ r

n2
)}

= 1
2{[(a + 1)(d̄1 + d̄2) −

r

n1
− r

n2
] − [(a + 1)|d̄1 − d̄2| + ( r

n1
+ r

n2
)]}

= min{(a + 1)d̄1, (a + 1)d̄2} −
rn

n1n2

≥ (a + 1)δ − (k − 1)n
f(δ, g)(n− f(δ, g)) . (5)
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