Modulo 5-orientations and degree sequences

Miaomiao Han ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$, Jian-Bing Liu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ College of Mathematical Science, Tianjin Normal University, Tianjin, 300387, People's Republic of China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history:

Received 9 August 2018
Received in revised form 16 January 2019
Accepted 17 January 2019
Available online 16 February 2019

Keywords:

Nowhere-zero flows
Modulo orientations
Strongly group connectivity
Group connectivity
Graphic sequences
Degree sequence realizations

Abstract

In connection to the 5 -flow conjecture, a modulo 5 -orientation of a graph G is an orientation of G such that the indegree is congruent to outdegree modulo 5 at each vertex. Jaeger conjectured that every 9 -edge-connected multigraph admits a modulo 5 -orientation, whose truth would imply Tutte's 5 -flow conjecture. In this paper, we study the problem of modulo 5 -orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ has a realization G with a modulo 5 -orientation if and only if $d_{i} \neq 1,3$ for each i. In addition, we show that every multigraphic sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ with $\min _{1 \leq i \leq n} d_{i} \geq 9$ has a 9 -edge-connected realization which admits a modulo 5 -orientation for every possible boundary function. This supports the above mentioned conjecture of Jaeger.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. As in [2], a graph is simple if it does not contain parallel edges or loops. For a graph which may contain parallel edges, we call it a multigraph. For a positive integer k, let $[k]=\{1,2, \ldots, k\}$ and \mathbb{Z}_{k} be the set of all integers modulo k, as well as the (additive) cyclic group of order k. Following [2], $\kappa^{\prime}(G)$ denotes the edge-connectivity of a graph G. Denote a cycle with n vertices by C_{n}. For vertex subsets $U, W \subset V(G)$, let $[U, W]_{G}=\{u w \in$ $E(G) \mid u \in U$ and $w \in W\}$. When $U=\{u\}$ or $W=\{w\}$, we use $[u, W]_{G}$ or $[U, w]_{G}$ for $[U, W]_{G}$, respectively. The subscript G may be omitted when G is understood from the context. For a graph G and integer $k>0, k G$ denotes the graph obtained from G by replacing each edge with k parallel edges joining the same pair of vertices.

Let $D=D(G)$ denote an orientation of G. For each $v \in V(G)$, let $E_{D}^{+}(v)\left(E_{D}^{-}(v)\right.$, resp.) be the set of all arcs directed out from (into, resp.) v. As in [2], $d_{D}^{+}(v)=\left|E_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)=\left|E_{D}^{-}(v)\right|$ denote the out-degree and the in-degree of v under the orientation D, respectively. If a graph G has an orientation D such that $d_{D}^{+}(v) \equiv d_{D}^{-}(v)(\bmod k)$ for every vertex $v \in V(G)$, then we say that G admits a modulo k-orientation. Let \mathcal{M}_{k} denote the family of all graphs with a modulo k-orientation. Note that, for even k, a graph admits a modulo k-orientation if and only if every vertex has even degree.

Let Γ be an Abelian group, let D be an orientation of G and $f: E(G) \rightarrow \Gamma$. The pair (D, f) is a Γ-flow in G if the net in-flow equals the net out-flow at every vertex. That is, for any vertex $v \in V(G)$,

$$
\sum_{e \in E_{D}^{+}(v)} f(e)=\sum_{e \in E_{D}^{-}(v)} f(e)
$$

A flow (D, f) is nowhere-zero if $f(e) \neq 0$ for every $e \in E(G)$. If $\Gamma=\mathbb{Z}$ and $-k<f(e)<k$ then (D, f) is called a k-flow. Tutte's flow conjectures are perhaps some of the most fascinating conjectures in graph theory. Tutte's 3-flow conjecture states that

[^0]every 4-edge-connected graph admits a nowhere-zero 3-flow, which is equivalent to saying that every 4-edge-connected graph admits a modulo 3-orientation (see [2]). The celebrated 5-flow conjecture [15] states that every bridgeless graph admits a nowhere-zero 5-flow. It is well known that the 5-flow conjecture is equivalent to the statement every 3-edge-connected graph G admits a nowhere-zero \mathbb{Z}_{5}-flow. It was observed by Jaeger [6] that if the graph $3 G$ has a modulo 5-orientation, then G admits a nowhere-zero \mathbb{Z}_{5}-flow. Specifically, let D be a modulo 5 -orientation of $3 G$ and $f=1$ be a constant mapping from $E(3 G)$ to 1 . Then the sum of this flow (D, f) of $3 G$ would give a nowhere-zero \mathbb{Z}_{5}-flow of G, and this led Jaeger [6] to propose the following stronger conjecture, whose truth implies Tutte's 5-flow conjecture.

Conjecture 1.1 ([6]). Every 9-edge-connected multigraph admits a modulo 5-orientation.
Jaeger [6] also proposed a more general Circular Flow Conjecture that every $4 p$-edge-connected multigraph admits a modulo ($2 p+1$)-orientation, however it was disproved for all $p \geq 3$ in [5].

The concept of strongly \mathbb{Z}_{5}-connectedness is introduced in [10] serving as contractible configurations for modulo 5orientations (see also [9]). For a graph G, let $Z\left(G, \mathbb{Z}_{5}\right)=\left\{b: V(G) \rightarrow \mathbb{Z}_{5} \mid \sum_{v \in V(G)} b(v) \equiv 0(\bmod 5)\right\}$. A graph G is strongly \mathbb{Z}_{5}-connected if, for every $b \in Z\left(G, \mathbb{Z}_{5}\right)$, there is an orientation D such that $d_{D}^{+}(v)-d_{D}^{-}(v) \equiv b(v)(\bmod 5)$ for every vertex $v \in V(G)$. Let $\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ denote the family of all strongly \mathbb{Z}_{5}-connected graphs. Conjecture 1.1 is further strengthened to the following conjecture in [9].

Conjecture 1.2 ([9]). Every 9-edge-connected multigraph is strongly \mathbb{Z}_{5}-connected.
Conjectures 1.1 and 1.2 are confirmed for 12-edge-connected multigraphs by Lov́asz, Thomassen, Wu and Zhang [12]. We also note that, by a result in [11], the truth of Conjecture 1.2 would imply another conjecture of Jaeger et al. [7] which states that every 3-edge-connected graph is \mathbb{Z}_{5}-connected. A graph is called \mathbb{Z}_{5}-connected if for any $b \in Z\left(G, \mathbb{Z}_{5}\right)$, there is an orientation D and a mapping $f: E(G) \mapsto\{1,2,3,4\}$ such that for every vertex $v \in V(G)$,

$$
\sum_{e \in E_{D}^{+}(v)} f(e)-\sum_{e \in E_{D}^{-}(v)} f(e) \equiv b(v) \quad(\bmod 5)
$$

Denote $\left\langle\mathbb{Z}_{5}\right\rangle$ to be the family of all \mathbb{Z}_{5}-connected graphs.
An integral degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is called graphic (multigraphic, resp.) if there is a simple graph (multigraph, resp.) G so that the degree sequence of G equals d; such a graph G is called a realization of d. Graphic and multigraphic sequences with certain flow and group connectivity properties have been extensively studied [3,11,13,14,16,17]. Specifically, all graphic sequences with nowhere-zero 3-flow or 4-flow realization are characterized by Luo et al. [13,14], respectively. The problem of characterizing all degree sequences with \mathbb{Z}_{3}-connected properties is proposed and studied by Yang et al. [17], and solved by Dai and Ying [3]. In general, the \mathbb{Z}_{k}-connected realization problem is characterized for $k=4$ by Wu et al. [16], and it is eventually resolved in [11] for every k.

In this paper, we study the degree sequences with realizations that are strongly \mathbb{Z}_{5}-connected or have modulo 5 -orientation properties. Our main results are the following characterizations.

Theorem 1.3. For any multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right), d$ has a modulo 5 -orientation realization if and only if $d_{i} \notin\{1,3\}$ for every $1 \leq i \leq n$.

Theorem 1.4. For any multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right), d$ has a strongly \mathbb{Z}_{5}-connected realization if and only if $\sum_{i=1}^{n} d_{i} \geq 8 n-8$ and $\min _{i \in[n]} d_{i} \geq 4$.

In addition, we obtain the following theorem, which provides partial evidences for Conjectures 1.1 and 1.2.
Theorem 1.5. For any multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $\min _{i \in[n]} d_{i} \geq 9$, d has a 9-edge-connected strongly \mathbb{Z}_{5}-connected realization.

Theorem 1.5 also leads to the following corollary.
Corollary 1.6. For any multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $\min _{i \in[n]} d_{i} \geq 8$, d has a 8 -edge-connected modulo 5-orientation realization.

The rest of the paper is organized as follows. In section 2, we present some necessary preliminaries. Our main results are proved in section 3.

2. Preliminaries

For an edge set $X \subseteq E(G)$, the contraction G / X is the graph obtained from G by identifying the two ends of each edge in X, and then deleting the resulting loops. If H is a subgraph of G, then we use G / H for $G / E(H)$. As K_{1} is strongly \mathbb{Z}_{5}-connected, for any graph G, every vertex lies in a maximal strongly \mathbb{Z}_{5}-connected subgraph. Let $H_{1}, H_{2}, \ldots, H_{c}$ denote the collection of all maximal subgraphs in the graph G. Then $G^{\prime}=G /\left(\cup_{i=1}^{c} E\left(H_{i}\right)\right)$ is called the $\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$-reduction of G. If G is strongly \mathbb{Z}_{5}-connected, then its $\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$-reduction is K_{1}, a singleton.

The following lemma is a summary of some basic properties stated in [8,9] and [10].

Fig. 1. The graphs in Lemma 2.7.

Lemma 2.1 ([8-10]). Each of the following holds.
(i) If $H \in\left\langle\mathbb{Z}_{5}\right\rangle$ and $G / H \in\left\langle\mathbb{Z}_{5}\right\rangle$, then $G \in\left\langle\mathbb{Z}_{5}\right\rangle$.
(ii) A cycle of length n is in $\left\langle\mathbb{Z}_{5}\right\rangle$ if and only if $n \leq 4$.
(iii) Let $m K_{2}$ denote the loopless graph with two vertices and m parallel edges. Then $m K_{2}$ is strongly \mathbb{Z}_{5}-connected if and only if $m \geq 4$.
(iv) $G \in \mathcal{M}_{5}$ if and only if its $\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$-reduction $G^{\prime} \in \mathcal{M}_{5}$.
(v) $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ if and only if its $\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$-reduction $G^{\prime}=K_{1}$.

The following theorem is a special case of the results stated in [11].
Theorem 2.2 ([11]). Let G be a graph. Then each of the following holds.
(i) $G \in\left\langle\mathbb{Z}_{5}\right\rangle$ if and only if $3 G \in\left\langle S \mathbb{Z}_{5}\right\rangle$.
(ii) If $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, then G contains four edge-disjoint spanning trees, and in particular, $|E(G)| \geq 4|V(G)|-4$.

For a realization G of a multigraphic degree sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, if G is a realization of d with $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$, then v_{i} is called the d_{i}-vertex for each $i \in[n]$. As a rearrangement of a degree sequence does not change its realizations, we will just focus on nonincreasing multigraphic sequence in the rest of the paper for convenience.

Theorem 2.3 (Hakimi [4]). Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing integral sequence with $n \geq 2$ and $d_{n} \geq 0$. Then d is a multigraphic sequence if and only if $\sum_{i=1}^{n} d_{i}$ is even and $d_{1} \leq d_{2}+\cdots+d_{n}$.

Theorem 2.4 (Boesch and Harary [1]). Let $d=\left(d_{1}, \ldots, d_{n}\right.$ be a nonincreasing integral sequence with $n \geq 2$ and $d_{n} \geq 0$. Let j be an integer with $2 \leq j \leq n$ such that $d_{j} \geq 1$. Then the sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is multigraphic if and only if the sequence $\left(d_{1}-1, d_{2}, \ldots, d_{j-1}, d_{j}-1, d_{j+1}, \ldots, d_{n}\right)$ is multigraphic.

Let G be a graph with $u v \in E(G)$ and let w be a vertex different from u and v, where w may or may not be in $V(G)$. Define $G^{(w, u v)}$ to be the graph containing w obtained from $G-u v$ by adding new edges $w u$ and $w v$. We also say that $G^{(w, u v)}$ is obtained from G by inserting the edge $u v$ to w in this paper. The following observation is straightforward, which indicates the inserting operation would preserve the edge connectivity.

Lemma 2.5. Let G be a connected graph.
(i) Let $w \in V(G) \backslash\{u, v\}$ and $G^{\prime}=G^{(w, u v)}$. Then $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G)$.
(ii) Let $w \notin V(G)$ be a new vertex and $e_{1}, \ldots, e_{t} \in E(G)$. Then the graph G^{\prime} obtained from G by inserting the edges e_{1}, \ldots, e_{t} to w satisfies $\kappa^{\prime}\left(G^{\prime}\right) \geq \min \left\{\kappa^{\prime}(G), 2 t\right\}$.

Proof. (i) Let $\left[X, X^{c}\right]_{G^{\prime}}$ be an edge cut of G^{\prime}. Observe that either $\left|\left[X, X^{c}\right]_{G^{\prime}}\right|=\left|\left[X, X^{c}\right]_{G}\right|$ or $\left|\left[X, X^{c}\right]_{G^{\prime}}\right|=\left|\left[X, X^{c}\right]_{G}\right|+2$ depending on the position of u, v, w in X or X^{c}. So $\left|\left[X, X^{c}\right]_{G^{\prime}}\right| \geq\left|\left[X, X^{c}\right]_{G}\right| \geq \kappa^{\prime}(G)$, and thus $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G)$.
(ii) The proof of (ii) is similar to (i).

Let $x_{1} x_{2}, x_{2} x_{3} \in E(G)$. We use $G_{\left[x_{2}, x_{1} x_{3}\right]}$ to denote the graph obtained from $G-\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$ by adding a new edge $x_{1} x_{3}$. The operation to get $G_{\left[x_{2}, x_{1} x_{3}\right]}$ from G is referred as to lift the edges $x_{1} x_{2}, x_{2} x_{3}$ in G. The next lemma follows from the definition of strongly \mathbb{Z}_{5}-connectedness.

Lemma 2.6. Let x_{1}, x_{2}, x_{3} and $G_{\left[x_{2}, x_{1} x_{3}\right]}$ be the same notation as defined above. If $G_{\left[x_{2}, x_{1} x_{3}\right]} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, then $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$.
The next lemma shows that the small graphs depicted in Fig. 1 could play a crucial role in the inductive arguments of our proofs.

Lemma 2.7. Each of the graphs $J_{1}, J_{2}, J_{3}, J_{4}$ in Fig. 1 is strongly \mathbb{Z}_{5}-connected.
Proof. (i) Let $b \in Z\left(J_{1}, \mathbb{Z}_{5}\right)$. If $b\left(x_{1}\right) \neq 0$, we lift two edges $x_{3} x_{1}, x_{1} x_{2}$ in J_{1} to obtain the graph $J_{1\left[x_{1}, x_{2} x_{3}\right]}$, say H. Since $\left|\left[x_{1},\left\{x_{2}, x_{3}\right\}\right]_{H}\right|=3$ and $b\left(x_{1}\right) \neq 0$, we can modify the boundary $b\left(x_{1}\right)$ with the three edges in $\left[x_{1},\left\{x_{2}, x_{3}\right\}\right]_{H}$. Specifically,
orient $2,0,3,1$ edges toward x_{1} when $b\left(x_{1}\right)=4,3,2$, 1 , respectively. By Lemma 2.1 (iii) and $\left|\left[x_{2}, x_{3}\right]_{H}\right|=4$, we can also modify the boundaries $b\left(x_{2}\right), b\left(x_{3}\right)$ with four parallel edges $x_{2} x_{3}$. By symmetry, we assume that $b\left(x_{1}\right)=b\left(x_{2}\right)=0$, then $b\left(x_{3}\right)=0$ since $b \in Z\left(J_{1}, \mathbb{Z}_{5}\right)$. Orient all the edges in $\left[x_{1},\left\{x_{2}, x_{3}\right\}\right]_{J_{1}}$ toward x_{1} and orient all the edges in $\left[x_{2},\left\{x_{1}, x_{3}\right\}\right]_{J_{1}}$ from x_{2} to obtain an orientation of J_{1}, which agrees with the boundary $b\left(x_{1}\right)=b\left(x_{2}\right)=b\left(x_{3}\right)=0$. Therefore J_{1} is strongly \mathbb{Z}_{5}-connected by definition.
(ii) Let $b \in Z\left(J_{2}, \mathbb{Z}_{5}\right)$. If $b\left(x_{0}\right)=0$, we lift three pairs of edges $\left\{x_{2} x_{0}, x_{0} x_{3}\right\},\left\{x_{2} x_{0}, x_{0} x_{1}\right\}$ and $\left\{x_{3} x_{0}, x_{0} x_{1}\right\}$ from J_{2} to obtain the graph $3 K_{3}$. By Lemma $2.1(\mathrm{v})$ and since $J_{1} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ is a spanning subgraph of $3 K_{3}$, we have $3 K_{3} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, which implies that the boundary b at each vertex can be modified in J_{2}. If $b\left(x_{0}\right)=2$ or 3 , we lift the edges pair $\left\{x_{2} x_{0}, x_{0} x_{3}\right\}$ twice to obtain the graph G_{1} and then orient the parallel edges from x_{0} to x_{1} or from x_{1} to x_{0} in G_{1}, respectively. By Lemma 2.1(iii), we could modify the boundary $b\left(x_{1}\right)$ by two pairs of parallel edges $x_{1} x_{2}, x_{1} x_{3}$ and then modify the boundaries $b\left(x_{2}\right)$ and $b\left(x_{3}\right)$ by the four parallel edges between x_{2} and x_{3}. Thus the obtained orientation agrees with the boundary b. So we have $b\left(x_{i}\right) \in\{1,4\}$ for each i, and by symmetry, we may assume that $b\left(x_{0}\right)=b\left(x_{2}\right)=1$ and $b\left(x_{1}\right)=b\left(x_{3}\right)=4$. To agree with the boundary b in this case, we orient two pairs of parallel edges $x_{1} x_{0}, x_{3} x_{0}$ toward x_{0}, two pairs of parallel edges $x_{1} x_{2}, x_{3} x_{2}$ toward x_{2}, two parallel edges $x_{0} x_{2}$ with opposite directions and two parallel edges $x_{1} x_{3}$ with opposite directions. Therefore, all possible boundaries b are examined, and so J_{2} is strongly \mathbb{Z}_{5}-connected by definition.
(iii) Let $b \in Z\left(J_{3}, \mathbb{Z}_{5}\right)$. If $b\left(x_{0}\right) \neq 0$, lift two edges $x_{2} x_{0}, x_{0} x_{3}$ to obtain $J_{3\left[x_{0}, x_{2} x_{3}\right]}$, say L. Since $b\left(x_{0}\right) \neq 0$ and $\left|\left[x_{0},\left\{x_{1}, x_{3}\right\}\right]_{L}\right|=3$, we can modify the boundary $b\left(x_{0}\right)$ with the three edges in $\left[x_{0},\left\{x_{1}, x_{3}\right\}\right]_{L}$. As $\left|\left[x_{1},\left\{x_{2}, x_{3}\right\}\right]_{L}\right|=4$ and by Lemma 2.1(iii), we can modify the boundary $b\left(x_{1}\right)$. Furthermore, as $\left|\left[x_{2}, x_{3}\right]_{L}\right|=4$ and by Lemma 2.1(iii), we can modify the boundaries $b\left(x_{2}\right)$ and $b\left(x_{3}\right)$. Thus we assume that $b\left(x_{0}\right)=0$. We lift the two edges $x_{2} x_{1}, x_{1} x_{3}$ to obtain L. Orient the five edges incident with x_{0} out from x_{0} in L. If $b\left(x_{1}\right)=0,1,3$ in L we orient two edges from x_{1} toward x_{2}, x_{3}, two edges from x_{2}, x_{3} toward x_{1}, one edge from x_{1} to x_{2} and one edge from x_{3} to x_{1}, respectively. If $b\left(x_{1}\right)=4,2$, reverse the above obtained orientation in L corresponding to $b\left(x_{0}\right)=1,3$, respectively. Then modify the boundaries $b\left(x_{2}\right)$ and $b\left(x_{3}\right)$, by Lemma 2.1(iii) and $\left|\left[x_{2}, x_{3}\right]_{L}\right|=4$. Thus J_{3} is strongly \mathbb{Z}_{5}-connected.
(iv) Since J_{4} contains J_{1} as a subgraph, $J_{4} / J_{1}=4 K_{2}$ and $J_{1} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, we conclude that J_{4} is strongly \mathbb{Z}_{5}-connected by Lemma 2.1(iii)(v).

3. Proofs of main results

We shall present the proof of Theorem 1.4 first, which will be used in the proof of Theorem 1.3.

3.1. Proof of Theorem 1.4

Define $\mathcal{F}_{n}=\left\{\left(d_{1}, \ldots, d_{n}\right): \sum_{i=1}^{n} d_{i}=8 n-8\right.$ and $\left.\min _{i \in[n]}\left\{d_{i}\right\} \geq 4\right\}$.
Lemma 3.1. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in \mathcal{F}_{n}$ be a nonincreasing sequence. Then d is multigraphic. Moreover, each of the following holds.
(i) If $n \geq 4$ and $\left(d_{n-1}, d_{n}\right) \in\{(5,5),(6,5)\}$, then there exist $\left(d_{1}^{\prime}, \ldots, d_{n-2}^{\prime}\right) \in \mathcal{F}_{n-2}$ and nonnegative integer c_{j} such that for each $1 \leq j \leq n-2, d_{j}=d_{j}^{\prime}+c_{j}$ and

$$
\sum_{j=1}^{n-2} c_{j}= \begin{cases}6, & \text { if }\left(d_{n-1}, d_{n}\right)=(5,5) \tag{1}\\ 5, & \text { if }\left(d_{n-1}, d_{n}\right)=(6,5)\end{cases}
$$

(ii) If $n \geq 5$ and $\left(d_{n-2}, d_{n-1}, d_{n}\right) \in\{(7,7,5),(6,6,6),(7,6,6),(7,7,6)\}$, then there exist $\left(d_{1}^{\prime}, \ldots, d_{n-3}^{\prime}\right) \in \mathcal{F}_{n-3}$ and nonnegative integer c_{j} such that for each $1 \leq j \leq n-3, d_{j}=d_{j}^{\prime}+c_{j}$ and

$$
\sum_{j=1}^{n-3} c_{j}= \begin{cases}5, & \text { if }\left(d_{n-2}, d_{n-1}, d_{n}\right)=(7,7,5) \tag{2}\\ 6, & i f\left(d_{n-2}, d_{n-1}, d_{n}\right)=(6,6,6) \\ 5, & \text { if }\left(d_{n-2}, d_{n-1}, d_{n}\right)=(7,6,6) \\ 4, & i f\left(d_{n-2}, d_{n-1}, d_{n}\right)=(7,7,6)\end{cases}
$$

Proof. Since $d_{n} \geq 4$, we have $\sum_{i=2}^{n} d_{i} \geq 4 n-4$. Then $d_{1} \leq \sum_{i=1}^{n} d_{i}-(4 n-4)=4 n-4 \leq \sum_{i=2}^{n} d_{i}$. By Theorem 2.3, d is multigraphic.
(i) Denote $k=16-d_{n-1}-d_{n}$. If $n \geq 4$, then by $\sum_{i=1}^{n} d_{i}=8 n-8$, we have

$$
\sum_{i=1}^{n} d_{i}=8 n-8 \geq 4(n-2)+16=4(n-2)+\left(d_{n}+d_{n-1}\right)+k
$$

Thus there exists a minimal integer $i_{0} \in[n-2]$ such that $\sum_{j=1}^{i_{0}} d_{j} \geq 4 i_{0}+k$. Let $c_{j}=d_{j}-4$ for $1 \leq j \leq i_{0}-1, c_{i_{0}}=k-\sum_{j=1}^{i_{0}-1} d_{j}$ and $c_{j}=0$ if $i_{0}+1 \leq j \leq n-2$. Let $d_{j}^{\prime}=d_{j}-c_{j}$ for each $1 \leq j \leq n-2$. Then the degree sequence $\left(d_{1}^{\prime}, \ldots, d_{n-2}^{\prime}\right) \in \mathcal{F}_{n-2}$

Fig. 2. The graphs in Lemma 3.2.
since

$$
\sum_{j=1}^{n-2} d_{j}^{\prime}=\sum_{j=1}^{n-2} d_{j}-\sum_{j=1}^{n-2} c_{j}=\sum_{j=1}^{n-2} d_{j}-k=\sum_{j=1}^{n} d_{j}-16=8(n-2),
$$

and $d_{j}^{\prime} \geq 4$ for each $1 \leq j \leq n-2$. Moreover, Eq. (1) is satisfied as well.
(ii) The proof is similar to (i). Denote $t=24-d_{n-2}-d_{n-1}-d_{n}$. If $n \geq 5$, then by $\sum_{i=1}^{n} d_{i}=8 n-8$, we obtain

$$
\sum_{i=1}^{n} d_{i}=8 n-8 \geq 4(n-3)+24=4(n-3)+\left(d_{n}+d_{n-1}+d_{n-2}\right)+t
$$

Thus there exists a minimal integer $i_{0} \in[n-3]$ such that $\sum_{j=1}^{i_{0}} d_{j} \geq 4 i_{0}+t$. Let $c_{j}=d_{j}-4$ for $1 \leq j \leq i_{0}-1, c_{i_{0}}=t-\sum_{j=1}^{i_{0}-1} d_{j}$ and $c_{j}=0$ if $i_{0}+1 \leq j \leq n-3$. Let $d_{j}^{\prime}=d_{j}-c_{j}$ for $1 \leq j \leq n-3$. Then $\left(d_{1}^{\prime}, \ldots, d_{n-3}^{\prime}\right) \in \mathcal{F}_{n-3}$ as

$$
\sum_{j=1}^{n-3} d_{j}^{\prime}=\sum_{j=1}^{n-3} d_{j}-\sum_{j=1}^{n-3} c_{j}=\sum_{j=1}^{n-3} d_{j}-t=\sum_{j=1}^{n} d_{j}-24=8(n-3),
$$

and $d_{j}^{\prime} \geq 4$ for each $1 \leq j \leq n-3$. Furthermore, Eq. (2) holds as well.
To prove Theorem 1.4, we verify the following key Lemma first.
Lemma 3.2. For any nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $\sum_{i=1}^{n} d_{i}=8 n-8$ and $d_{n} \geq 4, d$ has a strongly \mathbb{Z}_{5}-connected realization.

Proof. We apply induction on n. If $2 \leq n \leq 3$, then all the degree sequences satisfying the assumption $\sum_{i=1}^{n} d_{i}=8 n-8$ and $d_{n} \geq 4$ are depicted below in Fig. 2.

It follows from Lemma 2.1(iii)(v) and Lemma 2.7 that each graph above is strongly \mathbb{Z}_{5}-connected, and so Lemma 3.2 holds if $2 \leq n \leq 3$. Thus we assume that $n \geq 4$ and Lemma 3.2 holds for integers smaller than n. Notice that $4 \leq d_{n} \leq 7$, since $\sum_{i=1}^{n} d_{i}=8 n-8$.
Case 1: $d_{n}=4$.
Since $\sum_{i=1}^{n-1} d_{i}=8 n-12 \geq 4(n-1)+4$, similar to the proof of Lemma 3.1, there exist a sequence $d^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ and nonnegative integer c_{i} for each $i \in[n-1]$ such that $\sum_{i=1}^{n-1} c_{i}=4, d_{i}=d_{i}^{\prime}+c_{i}$ and $d_{i}^{\prime} \geq 4$. Then $\sum_{i=1}^{n-1} d_{i}^{\prime}=$ $8(n-1)-d_{n}-\sum_{i=1}^{n-1} c_{i}=8(n-2)$. By Lemma 3.1, d^{\prime} is multigraphic and d^{\prime} has a strongly \mathbb{Z}_{5}-connected realization G^{\prime} by induction on n. Let G be the graph obtained from G^{\prime} by adding one new vertex v_{n} and c_{i} edges joining the vertex v_{n} with d_{i}^{\prime}-vertex for each $1 \leq i \leq n-1$. As $G / G^{\prime}=4 K_{2} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ and $G^{\prime} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle, G$ is a strongly \mathbb{Z}_{5}-connected realization of d by Lemma 2.1(iii)(v).
Case 2: $d_{n}=5$ or $d_{n}=6$.
In this case, we shall divide our discussion according to $\left(d_{n-1}, d_{n}\right)$ or $\left(d_{n-2}, d_{n-1}, d_{n}\right)$.
If $\left(d_{n-1}, d_{n}\right) \in\{(5,5),(6,5)\}$, by Lemma 3.1(i), there exists $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-2}^{\prime}\right) \in \mathcal{F}_{n-2}$ such that $d_{i}=d_{i}^{\prime}+c_{i}$ where $\sum_{i=1}^{n-2} c_{i}=6$ if $\left(d_{n-1}, d_{n}\right)=(5,5)$ and $\sum_{i=1}^{n-2} c_{i}=5$ if $\left(d_{n-1}, d_{n}\right)=(6,5)$. By Lemma 3.1, d^{\prime} is multigraphic. By induction on n, d^{\prime} has a strongly Z_{5}-connected realization G^{\prime}. Construct the graph G from G^{\prime} by adding two new vertices v_{n-1}, v_{n} with $\left\lceil\frac{16-\sum_{i=1}^{n-2} c_{i}}{5}\right\rceil$ parallel edges $v_{n} v_{n-1}$ and for each $i \in[n-2]$, joining c_{i} edges from the d_{i}^{\prime}-vertex to $\left\{v_{n-1}, v_{n}\right\}$ to obtain a new graph G as a d-realization. Since $G / G^{\prime}=J_{1}$ (see Fig. 1), $G^{\prime} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ and $J_{1} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ by Lemma 2.7, we conclude that G is a strongly \mathbb{Z}_{5}-connected realization of d by Lemma 2.1(v).

If $n \geq 5$ and $\left(d_{n-2}, d_{n-1}, d_{n}\right) \in\{(7,7,5),(6,6,6),(7,6,6),(7,7,6)\}$, by Lemma 3.1(ii), there exists $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-3}^{\prime}\right)$ $\in \mathcal{F}_{n-3}$ satisfying $d_{i}=d_{i}^{\prime}+c_{i}$ and Eq. (2). Since $\sum_{i=1}^{n-3} d_{i}^{\prime}=8(n-4)$ and $\min _{i \in[n-3]} d_{i}^{\prime} \geq 4$ and by Lemma 3.1, d^{\prime} is multigraphic. Then d^{\prime} has a strongly \mathbb{Z}_{5}-connected realization G^{\prime}, by induction on n.

If $\left(d_{n-2}, d_{n-1}, d_{n}\right)=(7,7,5)$, let $A=\left\{v \in V\left(G^{\prime}\right): v\right.$ is a d_{i}^{\prime}-vertex with $c_{i}>0$ and $\left.i \in[n-3]\right\}$. We construct a graph G from G^{\prime} by adding three new vertices v_{n-2}, v_{n-1}, v_{n} and 12 edges such that $\left|\left[v_{n}, v_{n-1}\right]_{G}\right|=3,\left|\left[v_{n-2}, v_{n-1}\right]_{G}\right|=4$, $\left|\left[v_{n}, A\right]_{G}\right|=2,\left|\left[v_{n-2}, A\right]_{G}\right|=3$ to obtain a new graph G so that G is a d-realization. By Lemmas 2.1 and 2.7 (iii)(v), as $G^{\prime} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$
and $G / G^{\prime} /\left[v_{n-1}, v_{n-2}\right]_{G}=J_{1} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, we have $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, which provides a strongly \mathbb{Z}_{5}-connected realization of d. Similarly, if $\left(d_{n-2}, d_{n-1}, d_{n}\right) \in\{(6,6,6),(7,6,6),(7,7,6)\}$, we accordingly construct a graph G such that $G / G^{\prime} \in\left\{J_{2}, J_{3}, J_{4}\right\}$ respectively, and $x_{0} \in V(J)$ with $J \in\left\{J_{2}, J_{3}, J_{4}\right\}$ (see Fig. 1) is the vertex onto which G^{\prime} is contracted in G / G^{\prime}. Thus d has a realization G. By Lemma 2.1(v) and Lemma 2.7, G is a strongly \mathbb{Z}_{5}-connected realization of d.

The remaining case is $n=4$ and $\sum_{i=1}^{4} d_{i}=24$, and then $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=(6,6,6,6)$. By Lemma 2.7, the graph J_{2} (see Fig. 1) is the desired graph.
Case 3: $d_{n}=7$.
If $d_{n}=7$, by $\sum_{i=1}^{n} d_{i}=8 n-8$, then $d_{n}=d_{n-1}=\cdots=d_{n-6}=7$, which implies that $n \geq 7$. Thus

$$
\sum_{i=1}^{n-4} d_{i}=8 n-8-28 \geq 4(n-4)+4
$$

By a similar argument as in Lemma 3.1, there exist a degree sequence $d^{\prime}=\left(d_{1}^{\prime}, \cdots, d_{n-4}^{\prime}\right)$ and nonnegative integer c_{i} such that $d_{i}=d_{i}^{\prime}+c_{i}$ and $d_{i}^{\prime} \geq 4$ for $1 \leq i \leq n-4$, where $\sum_{i=1}^{n-4} c_{i}=4$. Thus

$$
\sum_{i=1}^{n-4} d_{i}^{\prime}=\sum_{i=1}^{n} d_{i}-\sum_{i=n-3}^{n} d_{i}-\sum_{i=1}^{n-4} c_{i}=8(n-1)-28-4=8(n-5)
$$

By Lemma 3.1, d^{\prime} is multigraphic. By induction on n, d^{\prime} has a strongly \mathbb{Z}_{5}-connected realization G^{\prime}. We construct the graph G from G^{\prime} and $3 C_{4}$ by adding c_{i} edges between d_{i}^{\prime}-vertex and vertices of $3 C_{4}$ such that $d_{G}(x)=7$ for any $x \in V\left(3 C_{4}\right)$ so that G is a d-realization. By Lemma 2.1(ii) and Theorem 2.2(i), $3 C_{4} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$. By Lemma 2.1(iii) (v) and (G / G^{\prime})/ $3 C_{4}=4 K_{2} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle, G$ is a strongly \mathbb{Z}_{5}-connected d-realization. This completes the proof.

Now we are ready to prove Theorem 1.4.
Theorem 1.4. For any nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, d has a strongly \mathbb{Z}_{5}-connected realization if and only if $\sum_{i=1}^{n} d_{i} \geq 8 n-8$ and $d_{n} \geq 4$.

Proof. To prove the necessarity, by Theorem 2.2 (ii) and Lemma 2.1(iii), if $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ with degree sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, then $\sum_{i=1}^{n} d_{i} \geq 8 n-8$ and $d_{n} \geq 4$.

For sufficiency, suppose the contrary that the nonincreasing multigraphic sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is a counterexample with $\sum_{i=1}^{n} d_{i}$ minimized. By Lemma 3.2, $\sum_{i=1}^{n} d_{i}>8 n-8$ and $d_{n} \geq 4$. If $d_{2}=4$, then by Theorem 2.3 , we have $\sum_{i=1}^{n} d_{i} \leq$ $2 \sum_{i=2}^{n} d_{i}=8 n-8$, a contradiction. Thus we assume that $d_{2} \geq 5$ and let $\left(d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime} \cdots, d_{n}^{\prime}\right)=\left(d_{1}-1, d_{2}-1, d_{3}, \ldots, d_{n}\right)$. By Theorem 2.4, $\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ is multigraphic, and so by the minimality of $d,\left(d_{1}^{\prime}, \ldots, d_{n}^{\prime}\right)$ has a strongly \mathbb{Z}_{5}-connected realization G^{\prime}. Then we obtain the graph G as a d-realization from G^{\prime} by adding one edge between the d_{1}^{\prime}-vertex and the d_{2}^{\prime}-vertex. Since $G^{\prime} \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, it follows from Lemma 2.1(v) that $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$, a contradiction.

3.2. Proof of Theorem 1.3

Theorem 1.3. For any nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right), d$ has a modulo 5-orientation realization if and only if $d_{i} \notin\{1,3\}$ for every $1 \leq i \leq n$.

Proof. To prove the necessarity, let $\left(d_{1}, \ldots, d_{n}\right)$ be any multigraphic sequence, by the definition of modulo 5-orientation, we achieve $d_{i} \notin\{1,3\}$ for every $1 \leq i \leq n$.

For sufficiency, suppose the contrary that the nonincreasing multigraphic sequence $d=\left(d_{1}, \ldots, d_{n}\right)$ is a counterexample with $m=\sum_{i=1}^{n} d_{i}$ minimized. By Theorem 2.3, $d_{1} \leq \sum_{i=2}^{n} d_{i}$.

Claim A. $d_{1} \leq \sum_{i=2}^{n} d_{i}-4$.
By contradiction, we assume that $d_{1} \in\left\{\sum_{i=2}^{n} d_{i}-2, \sum_{i=2}^{n} d_{i}\right\}$.
If $d_{1}=\sum_{i=2}^{n} d_{i}$, then d has a unique realization G by setting v_{1} as the center vertex adjacent to the vertices v_{2}, \ldots, v_{n} with d_{2}, \ldots, d_{n} multiple edges, respectively. Now we are to prove that G has a modulo 5-orientation D. For each $2 \leq i \leq n-1$, if d_{i} is even, then we orient one half of the edges from v_{i} toward v_{1} and orient rest edges from v_{1} to v_{i}. If d_{i} is odd, we assign $\frac{d_{i}+5}{2}$ edges with the orientation from v_{i} into vertex v_{1} and $\frac{d_{i}-5}{2}$ edges with opposite direction. Thus G is a modulo 5-orientation realization of d, a contradiction.

Assume that $d_{1}=\sum_{i=2}^{n} d_{i}-2$. From the above oriented graph G with degree sequence ($\sum_{i=2}^{n} d_{i}, d_{2}, \ldots, d_{n}$), we pick up one directed edge oriented into the vertex v_{1}, denoted by e_{1}, and another edge oriented out from v_{1}, denoted by e_{2}, where $e_{1} \cap e_{2}=\left\{v_{1}\right\}$. Let G^{\prime} be the graph obtained from G by lifting two edges e_{1}, e_{2} to become a new edge. It is easy to see that G^{\prime} preserves the modulo 5 -orientation and that G^{\prime} has degree sequence $d=\left(\sum_{i=2}^{n} d_{i}-2, d_{2}, \ldots, d_{n}\right)$. This contradicts to the assumption that d is a counterexample.

Claim B. $d_{n} \notin\{2,4\}$ and $n \geq 4$.
By contradiction, assume that $d_{n}=2 t$ for some $t \in\{1,2\}$. Let $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$. Since $d_{1} \leq \sum_{i=2}^{n} d_{i}-4$ by Claim A, we have $d_{1}^{\prime} \leq \sum_{i=2}^{n-1} d_{i}^{\prime}$. By Theorem 2.3, d^{\prime} is multigraphic. Since $\sum_{i=1}^{n-1} d_{i}^{\prime}<m$ and by the minimality of m, d^{\prime} has a modulo 5-orientation realization G^{\prime}. We pick up tirected edges e_{1}, \ldots, e_{t} in the modulo 5-orientation of G^{\prime}. Let G be the graph obtained from G^{\prime} by inserting the edges e_{1}, \ldots, e_{t} to a new vertex v_{n}. This would extend the modulo 5 -orientation of G^{\prime} to the graph G. However, it is clear that G is a d-realization, a contradiction.

The case of $n=2$ is obvious. Let $n=3$. Since $d_{3} \geq 5$, we have $d_{1}+d_{2}+d_{3} \geq 15$, and so $d_{1}+d_{2}+d_{3} \geq 16$ by parity. By Theorem 1.4 and since $16=8(n-1)$, d has a strongly Z_{5}-connected realization, and therefore a modulo 5-orientation realization, a contradiction.

Claim C. $d_{1} \leq \sum_{i=2}^{n} d_{i}-6$ and $d_{n} \neq 6$.
Suppose to the contrary that $d_{1}=\sum_{i=2}^{n} d_{i}-4$ (by Claim A). Similar to the proof of Claim A, let G be $a\left(\sum_{i=2}^{n} d_{i}, d_{2}, \ldots, d_{n}\right)$ realization with center vertex v_{1} adjacent to the vertices v_{2}, \ldots, v_{n} with d_{2}, \ldots, d_{n} multiple edges, respectively. Since $d_{n-1} \geq$ $d_{n} \geq 5$ by Claim B, we lift the edges pair $\left\{v_{1} v_{n-1}, v_{1} v_{n}\right\}$ twice to obtain a graph G^{\prime}. Then $G^{\prime}\left[\left\{v_{1}, v_{n-1}, v_{n}\right\}\right]$ contains the graph J_{1} (see Fig. 1), and therefore has a modulo 5-orientation by Lemma 2.7. Since $\left|\left[v_{1}, v_{i}\right]_{G^{\prime}}\right| \geq 5$ for each $2 \leq i \leq n-2$, we can extend the modulo 5-orientation of $G^{\prime}\left[\left\{v_{1}, v_{n-1}, v_{n}\right\}\right]$ to the entire graph G^{\prime} by Lemma 2.1(iii). This shows that G^{\prime} is a modulo 5-orientation d-realization, a contradiction.

Using a similar argument as employed in the proof of Claim B, we obtain $d_{n} \neq 6$. Since $\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$ is multigraphic provided that $d_{n}=6$ and $d_{1} \leq \sum_{i=2}^{n} d_{i}-6$. That is, we can insert three edges in G^{\prime} to a new vertex v_{n} to form the desired graph G.

Now, as $d_{n} \geq 5$ and by Theorem 1.4, we have

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i} \leq 8 n-10 \tag{3}
\end{equation*}
$$

Claim D. $d_{n} \neq 5$.
If $n=4$ and $d_{4}=5$, then by $\sum_{i=1}^{4} d_{i} \leq 22, d=\left(d_{1}, d_{2}, d_{3}, d_{4}\right) \in\{(5,5,5,5),(7,5,5,5),(6,6,5,5)\}$. If $\left(d_{1}, d_{2}, d_{3}, d_{4}\right) \in$ $\{(5,5,5,5),(6,6,5,5)\}$, we obtain the desired graph G from J_{1} in Fig. 1 by replacing the vertex x_{3} with 2 or 3 parallel edges, separately. If $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=(7,5,5,5)$, then we have the graph G from J_{1} by inserting the parallel edges $x_{1} x_{2}$ to a new vertex x_{4} and adding one new edge $x_{3} x_{4}$. In any case, it is easy to check that G is a modulo 5-orientation d-realization, a contradiction.

If $n \geq 5$ and $d_{n}=d_{n-1}=5$, then let $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-2}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{n-2}\right)$. Since

$$
d_{1}+5(n-1) \leq d_{1}+\sum_{i=2}^{n} d_{i} \leq 8 n-10
$$

we obtain $d_{1} \leq 3 n-5$. Since $n \geq 5, d_{1}^{\prime} \leq 3 n-5 \leq 5(n-3) \leq \sum_{i=2}^{n-2} d_{i}^{\prime}$. By Theorem 2.3, d^{\prime} is multigraphic. By induction, d^{\prime} has a modulo 5-orientation realization G^{\prime}. Pick up a directed edge uv in the graph G^{\prime}. Construct the graph G from G^{\prime} by adding distinct vertices v_{n-1}, v_{n}, deleting oriented edge $u v$ and adding oriented edges $u v_{n-1}, v_{n} v$ and 4 parallel edges $v_{n} v_{n-1}$. Thus G is the desired graph by Lemma 2.1(iii), a contradiction.

Otherwise, since $d_{n}=5$ and $\sum_{i=1}^{n} d_{i}$ is even, there exists an odd $d_{i} \geq 7$ for some $1 \leq i \leq n-1$. Let $d^{\prime}=$ $\left(d_{1}^{\prime}, \ldots, d_{i}^{\prime}, \ldots, d_{n-1}^{\prime}\right)=\left(d_{1}, \ldots, d_{i}-5, \ldots, d_{n-1}\right)$. Since $n \geq 5$, we have $d_{1}^{\prime}=d_{1} \leq 3 n-5 \leq 5(n-3)+2 \leq \sum_{i=2}^{n-1} d_{i}^{\prime}$. By Theorem 2.3 and induction, let G^{\prime} be a modulo 5-orientation realization of d^{\prime}. Construct the graph G from G^{\prime} by adding a new vertex v_{n} such that v_{n} is adjacent to the d_{i}^{\prime}-vertex with 5 parallel edges. By Lemma 2.1(iii), G is a modulo 5-orientation d-realization, a contradiction.

Claim E. $d_{n} \neq 7$.
If $d_{n}=7$, then $d_{n}=d_{n-1}=\cdots=d_{n-6}=7$ by Eq. (3), which implies that $n \geq 7$. Let $d^{\prime}=\left(d_{1}^{\prime}, \ldots, d_{n-4}^{\prime}\right)=\left(d_{1}, \ldots, d_{n-4}\right)$. Since $d_{1}+7(n-1) \leq \sum_{i=1}^{n} d_{i} \leq 8 n-10$, we obtain $d_{1}^{\prime} \leq n-3 \leq 7(n-5) \leq \sum_{i=2}^{n-4} d_{i}^{\prime}$. By Theorem 2.3 and induction, d^{\prime} has a modulo 5-orientation realization G^{\prime}. Let $u_{1} v_{1}, u_{2} v_{2}$ be two directed distinct edges in G^{\prime}. We construct the graph G from G^{\prime} and $3 C_{4}$ with vertices $v_{j}, n-3 \leq j \leq n$, by deleting $u_{1} v_{1}, u_{2} v_{2}$ and adding oriented edges $u_{1} v_{n-3}, v_{n-2} v_{1}, u_{2} v_{n-1}, v_{n} v_{2}$. By Lemma 2.1(ii) and (i), $3 C_{4}$ is strongly \mathbb{Z}_{5}-connected. Thus the modulo 5-orientation of G^{\prime} is easily extended to the graph G as a d-realization, a contradiction.

Therefore, it follows from Claims A-E that $d_{n} \geq 8$, and so $\sum_{i=1}^{n} d_{i} \geq 8 n$, a contradiction to Eq. (3). The proof is completed.

3.3. Proof of Theorem 1.5

A graph is called cubic if it is 3-regular. For a cubic graph G, a $Y-\Delta$ operation on a vertex v is to replace the vertex v with a triangle, where each edge incident with v in G becomes an edge incident to a vertex of the triangle. It is clear that applying
$Y-\Delta$ operation on a cubic graph still results a cubic graph, and it follows from Lemma 2.1(i)(ii) that any graph obtained from K_{4} by $Y-\Delta$ operation is \mathbb{Z}_{5}-connected. We will use this observation (and in fact a stronger property) in the proof of Theorem 1.5. Before presenting the proof, we shall handle some special cases first. If a sequence d consists of the terms d_{1}, \ldots, d_{t} having multiplicities m_{1}, \ldots, m_{t}, we may write $d=\left(d_{1}^{m_{1}}, \ldots, d_{t}^{m_{t}}\right)$ for convenience.

Lemma 3.3. Each of the integral multigraphic sequences $\left(17,9^{3}\right),\left(14,9^{4}\right),\left(16,9^{4}\right),\left(16,9^{6}\right)$ has a 9-edge-connected strongly \mathbb{Z}_{5}-connected realization.

Proof. For $d=\left(17,9^{3}\right)$, we construct a graph G as d-realization from J_{1} in Fig. 1 by adding a new vertex x_{4} with 2 parallel edges $x_{1} x_{4}$ and 7 multiple edges $x_{2} x_{4}$, respectively, then adding 3,2 multiple edges $x_{3} x_{2}, x_{1} x_{2}$, respectively. It is routine to check that G is 9 -edge-connected, i.e. for any $S \subset V(G)$ with $|S|=1$ or 2 , we have $\left|[S, V(G) \backslash S]_{G}\right| \geq 9$. By Lemmas 2.7 and 2.1(iii)(v), G is a strongly \mathbb{Z}_{5}-connected d-realization.

For $d=\left(16,9^{6}\right)$, we construct the graph G_{0} from two disjoint copies of $3 K_{4}$ with labeled vertices $v^{\prime}, v^{\prime \prime}$ respectively, by identifying vertices $v^{\prime}, v^{\prime \prime}$ to a new vertex and lifting the two edges e_{1}, e_{2}, where e_{1}, e_{2} are adjacent to $v^{\prime}, v^{\prime \prime}$ in each $3 K_{4}$. It is easy to check that G_{0} is 9 -edge-connected. Since G_{0} contains J_{2} (see Fig. 1) as a subgraph and by Lemmas 2.7 and $2.1(\mathrm{v}), G_{0}$ is a strongly \mathbb{Z}_{5}-connected d-realization.

For $d=\left(16,9^{4}\right)$, we obtain the desired graph G_{1} gained from J_{1} in Fig. 1 by adding two new vertices x_{4}, x_{5} with edges $x_{1} x_{4}, x_{2} x_{4}$ and 3, 3, 3, 7 parallel edges $x_{3} x_{5}, x_{1} x_{5}, x_{2} x_{5}, x_{4} x_{5}$, respectively. For any $S \subset V\left(G_{1}\right)$, it is easy to check that $\left|\left[S, V\left(G_{1}\right) \backslash S\right]\right| \geq 9$. Thus G_{1} is a 9-edge-connected strongly \mathbb{Z}_{5}-connected d-realization by Lemma 2.7 and Lemma 2.1(iii)(v).

For $d=\left(14,9^{4}\right)$, we have the desired graph G_{2} obtained from above G_{1} by lifting the two edges $x_{3} x_{5}$ and $x_{4} x_{5}$. Let $S \subset V\left(G_{2}\right)$. It is routine to verify that $\left|\left[S, V\left(G_{2}\right) \backslash S\right]_{G_{2}}\right| \geq 9$ for any $S \subset V\left(G_{2}\right)$. Therefore G_{2} is a 9-edge-connected strongly \mathbb{Z}_{5}-connected d-realization by Lemmas 2.7 and 2.1(iii)(v).

Theorem 1.5. For any nonincreasing multigraphic sequence $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $\min _{i \in[n]} d_{i} \geq 9, d$ has a 9-edge-connected strongly \mathbb{Z}_{5}-connected realization.

Proof. Let $d=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing multigraphic sequence with $d_{n} \geq 9$. By Theorem 2.3 , we have $d_{1} \leq \sum_{i=2}^{n} d_{i}$. If $n=2$, then $d_{1}=d_{2}$ and it is obvious to verify this statement by Lemma 2.1(iii). We argue by induction on $m=\sum_{i=1}^{n} d_{i}$ and assume that $n \geq 3$ and that Theorem 1.5 holds for smaller value of m. We are to construct a 9-edgeconnected strongly \mathbb{Z}_{5}-connected d-realization.
Case 1: $d_{1}=9$.
Since $d_{n} \geq 9$, we have $\left(d_{1}, d_{2}, \ldots, d_{n}\right)=(9,9, \ldots, 9)$. Since $\sum_{i=1}^{n} d_{i}$ is even and $n \geq 3$, this implies that n is even and $n \geq 4$. We obtain a graph G^{\prime} by applying $Y-\Delta$ operation on the complete graph K_{4} several times until the cubic graph processes n vertices. By Lemma 2.1(i)(ii), $G^{\prime} \in\left\langle\mathbb{Z}_{5}\right\rangle$. Let $G=3 G^{\prime}$. Then $G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$ by Theorem 2.2(i). Since G^{\prime} is 3-edge-connected, G is a 9-edge-connected strongly \mathbb{Z}_{5}-connected d-realization.
Case 2: $d_{2} \geq 10$.
In this case, $d_{1} \geq d_{2} \geq 10$, and we let $d^{\prime}=\left(d_{1}-1, d_{2}-1, d_{3}, \ldots, d_{n}\right)$. By Theorem 2.4, d^{\prime} is multigraphic. By induction on m, d^{\prime} has a 9 -edge-connected strongly \mathbb{Z}_{5}-connected realization G^{\prime}. Construct the graph G from G^{\prime} by adding one edge joining $\left(d_{1}-1\right)$-vertex and $\left(d_{2}-1\right)$-vertex in graph G^{\prime}. By Lemma $2.1(\mathrm{v}), G$ is also a 9 -edge-connected strongly \mathbb{Z}_{5}-connected realization of d.

Now, we consider the remaining case.
Case 3: $d_{1} \geq 10$ and $d_{2}=\cdots=d_{n}=9$.
If $d_{1} \geq 18$, we let $d^{\prime}=\left(d_{1}-9, d_{2}, \ldots, d_{n-1}\right)$. Then d^{\prime} is multigraphic as $d_{1}-9 \leq \sum_{i=2}^{n-1} d_{i}$ and by Theorem 2.3. By induction on m, there exists a 9-edge-connected strongly \mathbb{Z}_{5}-connected graph G^{\prime} as d^{\prime}-realization. Construct the graph G by adding one new vertex v_{n} and 9 parallel edges joining v_{n} and ($d_{1}-9$)-vertex in G^{\prime}. By Lemma 2.1(iii)(v), G is the desired graph. Combining Case 1 , we assume that $10 \leq d_{1} \leq 17$ below.
Case 3.1: d_{1} is odd.
Since $\sum_{i=1}^{n} d_{i}$ is even, n is even and $n \geq 4$. If $n=4$ and $11 \leq d_{1} \leq 15$, we let $d_{1}-9=2 q$, where $1 \leq q \leq 3$. Let v be an arbitrary vertex in $3 K_{4}$ and let e_{1}, \ldots, e_{q} be non-parallel edges not adjacent to v in $3 K_{4}$. We obtain the graph G as d-realization from $3 K_{4}$ by inserting the edges e_{1}, \ldots, e_{q} to the vertex v. By Lemma 2.5(i), G is 9 -edge connected. Since G contains J_{2} as a spanning subgraph, by Lemmas 2.7 and $2.1(\mathrm{v}), G \in\left\langle\mathcal{S} \mathbb{Z}_{5}\right\rangle$. Otherwise, $\left(d_{1}, d_{2}, d_{3}, d_{4}\right)=(17,9,9,9)$, which has already been handled in Lemma 3.3.

If $n \geq 6$, we obtain a graph G^{\prime} by applying $Y-\Delta$ operation on K_{4} repeatedly until the cubic graph processes n vertices. Denote the last obtained vertex by v_{1} in G^{\prime}, which is in the last generated triangle. Let $d_{1}-9=2 q$, where $1 \leq q \leq 4$. We select q edges e_{1}, \ldots, e_{q} that are coming from the edges of the basic graph K_{4}, which are not adjacent to v_{1} in the graph G^{\prime}. Obtain the graph G from $3 G^{\prime}$ by inserting the edges e_{1}, \ldots, e_{q} to v_{1}. By Lemma 2.5(i), G is 9 -edge-connected. To verify that G is strongly \mathbb{Z}_{5}-connected, we first observe that the graph induced by the vertices of the last generated triangle is strongly \mathbb{Z}_{5}-connected as it contains J_{1} as a spanning subgraph. Then we can contract the last generated triangle and consecutively
contract all the generated triangles, the remaining graph is strongly \mathbb{Z}_{5}-connected as it contains a J_{2} as a spanning subgraph. By Lemma 2.1(v), G is a strongly \mathbb{Z}_{5}-connected d-realization.

Case 3.2: d_{1} is even.
Since $\sum_{i=1}^{n} d_{i}$ is even, n is odd and $n \geq 3$. When $n=3$, we have $d=\left(d_{1}, d_{2}, d_{3}\right)=\left(d_{1}, 9^{2}\right)$ and it is straightforward to obtain a 9-edge connected d-realization G containing the graph J_{1}. If $n=5$ and $d_{1}=14$ or $d_{1}=16$ or $n=7$ and $d_{1}=16$, then the multigraphic sequences are $\left(14,9^{4}\right),\left(16,9^{4}\right),\left(16,9^{6}\right)$, which are all verified by Lemma 3.3.

The remaining cases are as follows: $n \geq 9$, or $n=7$ and $10 \leq d_{1} \leq 14$, or $n=5$ and $10 \leq d_{1} \leq 12$. We construct a graph G^{\prime} by applying $Y-\Delta$ operation on K_{4} repeatedly until the cubic graph processes $n-1$ vertices. Let $E^{\prime} \subset E\left(G^{\prime}\right)$ consist the edges of the base graph K_{4} and one edge in each generated triangle in G^{\prime}. Thus $\left|E^{\prime}\right| \geq 8$ if $n \geq 9 ;\left|E^{\prime}\right|=7$ if $n=7 ;\left|E^{\prime}\right|=6$ if $n=5$. Let $d_{1}=2 q$. Note that $\left|E^{\prime}\right| \geq q$. We select the edges e_{1}, \ldots, e_{q} in E^{\prime} and obtain the graph G from $3 G^{\prime}$ by inserting the edges $e_{1}, \ldots, e_{q} \in E^{\prime}$ to a new vertex v_{1}. By Lemma 2.5(ii), G is 9-edge connected. Clearly, G is a d-realization. To see that G is strongly \mathbb{Z}_{5}-connected, we first recall that J_{1} and J_{2} are strongly \mathbb{Z}_{5}-connected by Lemma 2.7. By contracting J_{1} and $3 K_{3}$ in the generated triangles of G consecutively, the resulting graph consists of 5 vertices, namely v_{1} and the remaining 4 vertices induced a graph containing J_{2}. We then contract J_{2} and the resulting $2 q$ parallel edges to obtain K_{1}. This shows that G is a strongly \mathbb{Z}_{5}-connected by Lemma $2.1(\mathrm{v})$. The proof is completed.

Proof of Corollary 1.6. We assume that $d=\left(d_{1}, \ldots, d_{n}\right)$ is a nonincreasing multigraphic sequence with $d_{n} \geq 8$. By Theorem 2.3, $d_{1} \leq \sum_{i=2}^{n} d_{i}$. The case of $n=2$ is trivial. Assume that $n \geq 3$. Suppose to the contrary that $\left(d_{1}, \ldots, d_{n}\right)$ is a counterexample with $m=\sum_{i=1}^{n} d_{i}$ minimized.

If $d_{1} \geq 10$, let $d^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n}^{\prime}\right)=\left(d_{1}-2, d_{2}, \ldots, d_{n}\right)$. If $d_{1}-2=d_{1}^{\prime} \geq d_{2}^{\prime}=d_{2}$, then $d_{1}^{\prime} \leq d_{1} \leq \sum_{i=2}^{n} d_{i}=\sum_{i=2}^{n} d_{i}^{\prime}$. Otherwise, $d_{1}^{\prime}=d_{1}-2<d_{2}^{\prime}$, then $\max _{i \in[n]}\left\{d_{i}^{\prime}\right\}=d_{2} \leq d_{1} \leq d_{1}-2+\sum_{i=3}^{n^{2}} d_{i}=d_{1}^{\prime}+\sum_{i=3}^{n} d_{i}^{\prime}$, since $n \geq 3$. Hence d^{\prime} is multigraphic in any case by Theorem 2.3. Let G^{\prime} be a 8 -edge-connected modulo 5-orientation d^{\prime}-realization by the minimality. We obtain the desired graph G from G^{\prime} by inserting one edge to the ($d_{1}-2$)-vertex in G^{\prime}. By Lemma 2.5(i), G is also a 8-edge-connected modulo 5-orientation d-realization, a contradiction.

If $d_{1}=8$, then $d_{1}=\cdots=d_{n}=8$. Hence $G=4 C_{n}$ is a 8-edge-connected modulo 5 -orientation d-realization, a contradiction. Assume that $d_{1}=9$ in the following. As $\sum_{i=1}^{n} d_{i}$ is even, we have $d_{2}=9$. If $d_{n}=8$, we let $d^{\prime}=$ $\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)=\left(d_{1}, d_{2}, \ldots, d_{n-1}\right)$. Then $d_{1}^{\prime} \leq d_{2}^{\prime} \leq \sum_{i=2}^{n} d_{i}^{\prime}$, and so d^{\prime} is multigraphic by Theorem 2.3. Let G^{\prime} be a 8 -edge-connected modulo 5-orientation d^{\prime}-realization by the minimality. Let $e_{i} \in E\left(G^{\prime}\right), 1 \leq i \leq 4$. We obtain the desired graph G from G^{\prime} by inserting the edges e_{1}, \ldots, e_{4} to one new vertex v_{n}. By Lemma 2.5(ii), G is a 8-edge-connected modulo 5 -orientation realization of d, a contradiction. Therefore, we have $d_{n} \geq 9$, and it follows from Theorem 1.5 that there exists a 9-edge-connected strongly \mathbb{Z}_{5}-connected graph G as a d-realization, which admits a modulo 5 -orientation as well. This contradiction completes the proof of Corollary 1.6.

Acknowledgments

The authors would like to thank two anonymous referees for their careful reading of the manuscript and helpful comments. The research of Hong-Jian Lai is partially supported by Chinese National Natural Science Foundation grants CNNSF 11771039 and CNNSF 11771443.

References

[1] F. Boesch, F. Harary, Line removal algorithms for graphs and their degree lists, IEEE Trans. Circuits Syst. 23 (1976) 778-782.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[3] X. Dai, J. Yin, A complete characterization of graphic sequences with a Z_{3}-connected realization, European J. Combin. 51 (2016) $215-221$.
[4] S.L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl. Math. 10 (1962) 496-506.
[5] M. Han, J. Li, Y. Wu, C.-Q. Zhang, Counterexamples to Jaeger's circular flow conjecture, J. Combin. Theory Ser. B 131 (2018) 1-11.
[6] F. Jaeger, Nowhere-zero flow problems, in: L. Beineke, R. Wilson (Eds.), in: Selected Topics in Graph Theory, vol. 3, Academic Press, London, New York, 1988, pp. 91-95.
[7] F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs - a nonhomogeneous analogue of nowhere zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[8] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin. 16 (2000) 165-176.
[9] H.-J. Lai, Mod $(2 p+1)$-orientations and $K_{1,2 p+1}$-decompositions, SIAM J. Discrete Math. 21 (2007) 844-850.
[10] H.-J. Lai, Y. Liang, J. Liu, Z. Miao, J. Meng, Y. Shao, Z. Zhang, On strongly $\mathbb{Z}_{2 s+1}$-connected graphs, Discrete Appl. Math. 174 (2014) 73-80.
[11] J. Li, H.-J. Lai, R. Luo, Group connectivity strongly Z_{m}-connectivity and edge disjoint spanning trees, SIAM J. Discrete Math. 31 (2017) $1909-1922$.
[12] L.M. Lovász, C. Thomassen, Y. Wu, C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser. B 103 (2013) $587-598$.
[13] R. Luo, R. Xu, W. Zang, C.-Q. Zhang, Realizing degree sequences with graphs having nowhere-zero 3-flows, SIAM J. Discrete Math. 22 (2008) $500-519$.
[14] R. Luo, W. Zang, C.-Q. Zhang, Nowhere-zero 4-flows simultaneous edge-colorings and critical partial latin squares, Combinatorica 24 (2004) $641-657$.
[15] W.T. Tutte, A contribution to the theory of chromatical polynomials, Canad. J. Math. 6 (1954) 80-91.
[16] Y. Wu, R. Luo, D. Ye, C.-Q. Zhang, A note on an extremal problem for group connectivity, European J. Combin. 40 (2014) 137-141.
[17] F. Yang, X. Li, H.-J. Lai, Realizing degree sequences as \mathbb{Z}_{3}-connected graphs, Discrete Math. 333 (2014) 110-119.

[^0]: * Corresponding author.

 E-mail addresses: mmhan2018@hotmail.com (M. Han), hjlai@math.wvu.edu (H.-J. Lai), jl0068@mix.wvu.edu (J.-B. Liu).

