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a b s t r a c t

In connection to the 5-flow conjecture, amodulo 5-orientation of a graphG is an orientation
of G such that the indegree is congruent to outdegree modulo 5 at each vertex. Jaeger con-
jectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose
truthwould imply Tutte’s 5-flow conjecture. In this paper, we study the problem ofmodulo
5-orientation for given multigraphic degree sequences. We prove that a multigraphic
degree sequence d = (d1, . . . , dn) has a realization G with a modulo 5-orientation if
and only if di ̸= 1, 3 for each i. In addition, we show that every multigraphic sequence
d = (d1, . . . , dn) with min1≤i≤n di ≥ 9 has a 9-edge-connected realization which admits
a modulo 5-orientation for every possible boundary function. This supports the above
mentioned conjecture of Jaeger.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite and loopless. As in [2], a graph is simple if it does not contain parallel edges or
loops. For a graph which may contain parallel edges, we call it a multigraph. For a positive integer k, let [k] = {1, 2, . . . , k}
and Zk be the set of all integers modulo k, as well as the (additive) cyclic group of order k. Following [2], κ ′(G) denotes the
edge-connectivity of a graph G. Denote a cycle with n vertices by Cn. For vertex subsets U,W ⊂ V (G), let [U,W ]G = {uw ∈

E(G)|u ∈ U and w ∈ W }. When U = {u} or W = {w}, we use [u,W ]G or [U, w]G for [U,W ]G, respectively. The subscript
G may be omitted when G is understood from the context. For a graph G and integer k > 0, kG denotes the graph obtained
from G by replacing each edge with k parallel edges joining the same pair of vertices.

Let D = D(G) denote an orientation of G. For each v ∈ V (G), let E+

D (v) (E−

D (v), resp.) be the set of all arcs directed out
from (into, resp.) v. As in [2], d+

D (v) = |E+

D (v)| and d−

D (v) = |E−

D (v)| denote the out-degree and the in-degree of v under the
orientation D, respectively. If a graph G has an orientation D such that d+

D (v) ≡ d−

D (v) (mod k) for every vertex v ∈ V (G), then
we say that G admits a modulo k-orientation. Let Mk denote the family of all graphs with a modulo k-orientation. Note that,
for even k, a graph admits a modulo k-orientation if and only if every vertex has even degree.

Let Γ be an Abelian group, let D be an orientation of G and f : E(G) → Γ . The pair (D, f ) is a Γ -flow in G if the net in-flow
equals the net out-flow at every vertex. That is, for any vertex v ∈ V (G),∑

e∈E+

D (v)

f (e) =

∑
e∈E−

D (v)

f (e).

A flow (D, f ) is nowhere-zero if f (e) ̸= 0 for every e ∈ E(G). If Γ = Z and −k < f (e) < k then (D, f ) is called a k-flow. Tutte’s
flow conjectures are perhaps some of the most fascinating conjectures in graph theory. Tutte’s 3-flow conjecture states that
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every 4-edge-connected graph admits a nowhere-zero 3-flow, which is equivalent to saying that every 4-edge-connected
graph admits amodulo 3-orientation (see [2]). The celebrated 5-flow conjecture [15] states that every bridgeless graph admits
a nowhere-zero 5-flow. It iswell known that the 5-flow conjecture is equivalent to the statement every 3-edge-connected graph
G admits a nowhere-zero Z5-flow. It was observed by Jaeger [6] that if the graph 3G has amodulo 5-orientation, then G admits
a nowhere-zero Z5-flow. Specifically, let D be a modulo 5-orientation of 3G and f = 1 be a constant mapping from E(3G)
to 1. Then the sum of this flow (D, f ) of 3G would give a nowhere-zero Z5-flow of G, and this led Jaeger [6] to propose the
following stronger conjecture, whose truth implies Tutte’s 5-flow conjecture.

Conjecture 1.1 ([6]). Every 9-edge-connected multigraph admits a modulo 5-orientation.

Jaeger [6] also proposed a more general Circular Flow Conjecture that every 4p-edge-connected multigraph admits a
modulo (2p + 1)-orientation, however it was disproved for all p ≥ 3 in [5].

The concept of strongly Z5-connectedness is introduced in [10] serving as contractible configurations for modulo 5-
orientations (see also [9]). For a graph G, let Z(G,Z5) = {b : V (G) → Z5 |

∑
v∈V (G) b(v) ≡ 0 (mod 5)}. A graph G is strongly

Z5-connected if, for every b ∈ Z(G,Z5), there is an orientation D such that d+

D (v) − d−

D (v) ≡ b(v) (mod 5) for every vertex
v ∈ V (G). Let ⟨SZ5⟩ denote the family of all strongly Z5-connected graphs. Conjecture 1.1 is further strengthened to the
following conjecture in [9].

Conjecture 1.2 ([9]). Every 9-edge-connected multigraph is strongly Z5-connected.

Conjectures 1.1 and 1.2 are confirmed for 12-edge-connected multigraphs by Lov́asz, Thomassen, Wu and Zhang [12].
We also note that, by a result in [11], the truth of Conjecture 1.2 would imply another conjecture of Jaeger et al. [7] which
states that every 3-edge-connected graph is Z5-connected. A graph is called Z5-connected if for any b ∈ Z(G,Z5), there is an
orientation D and a mapping f : E(G) ↦→ {1, 2, 3, 4} such that for every vertex v ∈ V (G),∑

e∈E+

D (v)

f (e) −

∑
e∈E−

D (v)

f (e) ≡ b(v) (mod 5).

Denote ⟨Z5⟩ to be the family of all Z5-connected graphs.
An integral degree sequence d = (d1, d2, . . . , dn) is called graphic (multigraphic, resp.) if there is a simple graph (multi-

graph, resp.) G so that the degree sequence of G equals d; such a graph G is called a realization of d. Graphic andmultigraphic
sequenceswith certain flow and group connectivity properties have been extensively studied [3,11,13,14,16,17]. Specifically,
all graphic sequences with nowhere-zero 3-flow or 4-flow realization are characterized by Luo et al. [13,14], respectively.
The problem of characterizing all degree sequenceswithZ3-connected properties is proposed and studied by Yang et al. [17],
and solved by Dai and Ying [3]. In general, the Zk-connected realization problem is characterized for k = 4 byWu et al. [16],
and it is eventually resolved in [11] for every k.

In this paper, we study the degree sequences with realizations that are strongly Z5-connected or have modulo
5-orientation properties. Our main results are the following characterizations.

Theorem 1.3. For any multigraphic sequence d = (d1, d2, . . . , dn), d has a modulo 5-orientation realization if and only if
di /∈ {1, 3} for every 1 ≤ i ≤ n.

Theorem 1.4. For any multigraphic sequence d = (d1, d2, . . . , dn), d has a strongly Z5-connected realization if and only if∑n
i=1 di ≥ 8n − 8 andmini∈[n] di ≥ 4.

In addition, we obtain the following theorem, which provides partial evidences for Conjectures 1.1 and 1.2.

Theorem 1.5. For any multigraphic sequence d = (d1, d2, . . . , dn) with mini∈[n] di ≥ 9, d has a 9-edge-connected strongly
Z5-connected realization.

Theorem 1.5 also leads to the following corollary.

Corollary 1.6. For any multigraphic sequence d = (d1, d2, . . . , dn) with mini∈[n] di ≥ 8, d has a 8-edge-connected modulo
5-orientation realization.

The rest of the paper is organized as follows. In section 2, we present some necessary preliminaries. Our main results are
proved in section 3.

2. Preliminaries

For an edge set X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X ,
and then deleting the resulting loops. If H is a subgraph of G, then we use G/H for G/E(H). As K1 is strongly Z5-connected, for
any graph G, every vertex lies in a maximal strongly Z5-connected subgraph. Let H1,H2, . . . ,Hc denote the collection of all
maximal subgraphs in the graph G. Then G′

= G/(∪c
i=1E(Hi)) is called the ⟨SZ5⟩-reduction of G. If G is strongly Z5-connected,

then its ⟨SZ5⟩-reduction is K1, a singleton.
The following lemma is a summary of some basic properties stated in [8,9] and [10].
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Fig. 1. The graphs in Lemma 2.7.

Lemma 2.1 ([8–10]). Each of the following holds.
(i) If H ∈ ⟨Z5⟩ and G/H ∈ ⟨Z5⟩, then G ∈ ⟨Z5⟩.
(ii) A cycle of length n is in ⟨Z5⟩ if and only if n ≤ 4.
(iii) Let mK2 denote the loopless graph with two vertices and m parallel edges. Then mK2 is strongly Z5-connected if and only

if m ≥ 4.
(iv) G ∈ M5 if and only if its ⟨SZ5⟩-reduction G′

∈ M5.
(v) G ∈ ⟨SZ5⟩ if and only if its ⟨SZ5⟩-reduction G′

= K1.

The following theorem is a special case of the results stated in [11].

Theorem 2.2 ([11]). Let G be a graph. Then each of the following holds.
(i) G ∈ ⟨Z5⟩ if and only if 3G ∈ ⟨SZ5⟩.
(ii) If G ∈ ⟨SZ5⟩, then G contains four edge-disjoint spanning trees, and in particular, |E(G)| ≥ 4|V (G)| − 4.

For a realizationG of amultigraphic degree sequence d = (d1, d2, . . . , dn), ifG is a realization of dwithV (G) = {v1, . . . , vn}

such that dG(vi) = di, then vi is called the di-vertex for each i ∈ [n]. As a rearrangement of a degree sequence does not change
its realizations, we will just focus on nonincreasing multigraphic sequence in the rest of the paper for convenience.

Theorem 2.3 (Hakimi [4]). Let d = (d1, d2, . . . , dn) be a nonincreasing integral sequence with n ≥ 2 and dn ≥ 0. Then d is a
multigraphic sequence if and only if

∑n
i=1 di is even and d1 ≤ d2 + · · · + dn.

Theorem 2.4 (Boesch and Harary [1]). Let d = (d1, . . . , dn be a nonincreasing integral sequence with n ≥ 2 and dn ≥ 0. Let
j be an integer with 2 ≤ j ≤ n such that dj ≥ 1. Then the sequence (d1, d2, . . . , dn) is multigraphic if and only if the sequence
(d1 − 1, d2, . . . , dj−1, dj − 1, dj+1, . . . , dn) is multigraphic.

Let G be a graph with uv ∈ E(G) and let w be a vertex different from u and v, where w may or may not be in V (G). Define
G(w,uv) to be the graph containing w obtained from G − uv by adding new edges wu and wv. We also say that G(w,uv) is
obtained from G by inserting the edge uv tow in this paper. The following observation is straightforward, which indicates the
inserting operation would preserve the edge connectivity.

Lemma 2.5. Let G be a connected graph.
(i) Let w ∈ V (G) \ {u, v} and G′

= G(w,uv). Then κ ′(G′) ≥ κ ′(G).
(ii) Let w /∈ V (G) be a new vertex and e1, . . . , et ∈ E(G). Then the graph G′ obtained from G by inserting the edges e1, . . . , et

to w satisfies κ ′(G′) ≥ min{κ ′(G), 2t}.

Proof. (i) Let [X, X c
]G′ be an edge cut of G′. Observe that either |[X, X c

]G′ | = |[X, X c
]G| or |[X, X c

]G′ | = |[X, X c
]G| + 2

depending on the position of u, v, w in X or X c . So |[X, X c
]G′ | ≥ |[X, X c

]G| ≥ κ ′(G), and thus κ ′(G′) ≥ κ ′(G).
(ii) The proof of (ii) is similar to (i). ■

Let x1x2, x2x3 ∈ E(G). We use G[x2,x1x3] to denote the graph obtained from G− {x1x2, x2x3} by adding a new edge x1x3. The
operation to get G[x2,x1x3] from G is referred as to lift the edges x1x2, x2x3 in G. The next lemma follows from the definition of
strongly Z5-connectedness.

Lemma 2.6. Let x1, x2, x3 and G[x2,x1x3] be the same notation as defined above. If G[x2,x1x3] ∈ ⟨SZ5⟩, then G ∈ ⟨SZ5⟩.

The next lemma shows that the small graphs depicted in Fig. 1 could play a crucial role in the inductive arguments of our
proofs.

Lemma 2.7. Each of the graphs J1, J2, J3, J4 in Fig. 1 is strongly Z5-connected.

Proof. (i) Let b ∈ Z(J1,Z5). If b(x1) ̸= 0, we lift two edges x3x1, x1x2 in J1 to obtain the graph J1[x1,x2x3], say H . Since
|[x1, {x2, x3}]H | = 3 and b(x1) ̸= 0, we can modify the boundary b(x1) with the three edges in [x1, {x2, x3}]H . Specifically,
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orient 2, 0, 3, 1 edges toward x1 when b(x1) = 4, 3, 2, 1, respectively. By Lemma 2.1(iii) and |[x2, x3]H | = 4, we can also
modify the boundaries b(x2), b(x3) with four parallel edges x2x3. By symmetry, we assume that b(x1) = b(x2) = 0, then
b(x3) = 0 since b ∈ Z(J1,Z5). Orient all the edges in [x1, {x2, x3}]J1 toward x1 and orient all the edges in [x2, {x1, x3}]J1
from x2 to obtain an orientation of J1, which agrees with the boundary b(x1) = b(x2) = b(x3) = 0. Therefore J1 is strongly
Z5-connected by definition.

(ii) Let b ∈ Z(J2,Z5). If b(x0) = 0, we lift three pairs of edges {x2x0, x0x3}, {x2x0, x0x1} and {x3x0, x0x1} from J2 to obtain the
graph 3K3. By Lemma 2.1(v) and since J1 ∈ ⟨SZ5⟩ is a spanning subgraph of 3K3, we have 3K3 ∈ ⟨SZ5⟩, which implies that the
boundary b at each vertex can be modified in J2. If b(x0) = 2 or 3, we lift the edges pair {x2x0, x0x3} twice to obtain the graph
G1 and then orient the parallel edges from x0 to x1 or from x1 to x0 in G1, respectively. By Lemma 2.1(iii), we couldmodify the
boundary b(x1) by two pairs of parallel edges x1x2, x1x3 and then modify the boundaries b(x2) and b(x3) by the four parallel
edges between x2 and x3. Thus the obtained orientation agrees with the boundary b. So we have b(xi) ∈ {1, 4} for each i, and
by symmetry, we may assume that b(x0) = b(x2) = 1 and b(x1) = b(x3) = 4. To agree with the boundary b in this case, we
orient two pairs of parallel edges x1x0, x3x0 toward x0, two pairs of parallel edges x1x2, x3x2 toward x2, two parallel edges
x0x2 with opposite directions and two parallel edges x1x3 with opposite directions. Therefore, all possible boundaries b are
examined, and so J2 is strongly Z5-connected by definition.

(iii) Let b ∈ Z(J3,Z5). If b(x0) ̸= 0, lift two edges x2x0, x0x3 to obtain J3[x0,x2x3], say L. Since b(x0) ̸= 0 and |[x0, {x1, x3}]L| = 3,
we canmodify the boundary b(x0) with the three edges in [x0, {x1, x3}]L. As |[x1, {x2, x3}]L| = 4 and by Lemma 2.1(iii), we can
modify the boundary b(x1). Furthermore, as |[x2, x3]L| = 4 and by Lemma 2.1(iii), we can modify the boundaries b(x2) and
b(x3). Thus we assume that b(x0) = 0. We lift the two edges x2x1, x1x3 to obtain L. Orient the five edges incident with x0 out
from x0 in L. If b(x1) = 0, 1, 3 in Lwe orient two edges from x1 toward x2, x3, two edges from x2, x3 toward x1, one edge from
x1 to x2 and one edge from x3 to x1, respectively. If b(x1) = 4, 2, reverse the above obtained orientation in L corresponding
to b(x0) = 1, 3, respectively. Then modify the boundaries b(x2) and b(x3), by Lemma 2.1(iii) and |[x2, x3]L| = 4 . Thus J3 is
strongly Z5-connected.

(iv) Since J4 contains J1 as a subgraph, J4/J1 = 4K2 and J1 ∈ ⟨SZ5⟩, we conclude that J4 is strongly Z5-connected by
Lemma 2.1(iii)(v). ■

3. Proofs of main results

We shall present the proof of Theorem 1.4 first, which will be used in the proof of Theorem 1.3.

3.1. Proof of Theorem 1.4

Define Fn = {(d1, . . . , dn) :
∑n

i=1 di = 8n − 8 and mini∈[n]{di} ≥ 4}.

Lemma 3.1. Let d = (d1, d2, . . . , dn) ∈ Fn be a nonincreasing sequence. Then d is multigraphic. Moreover, each of the following
holds.

(i) If n ≥ 4 and (dn−1, dn) ∈ {(5, 5), (6, 5)}, then there exist (d′

1, . . . , d
′

n−2) ∈ Fn−2 and nonnegative integer cj such that for
each 1 ≤ j ≤ n − 2, dj = d′

j + cj and

n−2∑
j=1

cj =

{
6, if (dn−1, dn) = (5, 5);
5, if (dn−1, dn) = (6, 5). (1)

(ii) If n ≥ 5 and (dn−2, dn−1, dn) ∈ {(7, 7, 5), (6, 6, 6), (7, 6, 6), (7, 7, 6)}, then there exist (d′

1, . . . , d
′

n−3) ∈ Fn−3 and
nonnegative integer cj such that for each 1 ≤ j ≤ n − 3, dj = d′

j + cj and

n−3∑
j=1

cj =

⎧⎪⎨⎪⎩
5, if (dn−2, dn−1, dn) = (7, 7, 5);
6, if (dn−2, dn−1, dn) = (6, 6, 6);
5, if (dn−2, dn−1, dn) = (7, 6, 6);
4, if (dn−2, dn−1, dn) = (7, 7, 6).

(2)

Proof. Since dn ≥ 4, we have
∑n

i=2 di ≥ 4n − 4. Then d1 ≤
∑n

i=1 di − (4n − 4) = 4n − 4 ≤
∑n

i=2 di. By Theorem 2.3, d is
multigraphic.

(i) Denote k = 16 − dn−1 − dn. If n ≥ 4, then by
∑n

i=1 di = 8n − 8, we have
n∑

i=1

di = 8n − 8 ≥ 4(n − 2) + 16 = 4(n − 2) + (dn + dn−1) + k.

Thus there exists aminimal integer i0 ∈ [n−2] such that
∑i0

j=1 dj ≥ 4i0+k. Let cj = dj−4 for 1 ≤ j ≤ i0−1, ci0 = k−
∑i0−1

j=1 dj
and cj = 0 if i0 + 1 ≤ j ≤ n − 2. Let d′

j = dj − cj for each 1 ≤ j ≤ n − 2. Then the degree sequence (d′

1, . . . , d
′

n−2) ∈ Fn−2
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Fig. 2. The graphs in Lemma 3.2.

since
n−2∑
j=1

d′

j =

n−2∑
j=1

dj −
n−2∑
j=1

cj =

n−2∑
j=1

dj − k =

n∑
j=1

dj − 16 = 8(n − 2),

and d′

j ≥ 4 for each 1 ≤ j ≤ n − 2. Moreover, Eq. (1) is satisfied as well.
(ii) The proof is similar to (i). Denote t = 24 − dn−2 − dn−1 − dn. If n ≥ 5, then by

∑n
i=1 di = 8n − 8, we obtain

n∑
i=1

di = 8n − 8 ≥ 4(n − 3) + 24 = 4(n − 3) + (dn + dn−1 + dn−2) + t.

Thus there exists aminimal integer i0 ∈ [n−3] such that
∑i0

j=1 dj ≥ 4i0+t . Let cj = dj−4 for 1 ≤ j ≤ i0−1, ci0 = t−
∑i0−1

j=1 dj
and cj = 0 if i0 + 1 ≤ j ≤ n − 3. Let d′

j = dj − cj for 1 ≤ j ≤ n − 3. Then (d′

1, . . . , d
′

n−3) ∈ Fn−3 as

n−3∑
j=1

d′

j =

n−3∑
j=1

dj −
n−3∑
j=1

cj =

n−3∑
j=1

dj − t =

n∑
j=1

dj − 24 = 8(n − 3),

and d′

j ≥ 4 for each 1 ≤ j ≤ n − 3. Furthermore, Eq. (2) holds as well. ■

To prove Theorem 1.4, we verify the following key Lemma first.

Lemma 3.2. For any nonincreasing multigraphic sequence d = (d1, d2, . . . , dn) with
∑n

i=1 di = 8n − 8 and dn ≥ 4, d has a
strongly Z5-connected realization.

Proof. We apply induction on n. If 2 ≤ n ≤ 3, then all the degree sequences satisfying the assumption
∑n

i=1 di = 8n − 8
and dn ≥ 4 are depicted below in Fig. 2.

It follows from Lemma 2.1(iii)(v) and Lemma 2.7 that each graph above is stronglyZ5-connected, and so Lemma 3.2 holds
if 2 ≤ n ≤ 3. Thus we assume that n ≥ 4 and Lemma 3.2 holds for integers smaller than n. Notice that 4 ≤ dn ≤ 7, since∑n

i=1 di = 8n − 8.

Case 1: dn = 4.
Since

∑n−1
i=1 di = 8n − 12 ≥ 4(n − 1) + 4, similar to the proof of Lemma 3.1, there exist a sequence d′

= (d′

1, . . . , d
′

n−1)
and nonnegative integer ci for each i ∈ [n − 1] such that

∑n−1
i=1 ci = 4, di = d′

i + ci and d′

i ≥ 4. Then
∑n−1

i=1 d′

i =

8(n − 1) − dn −
∑n−1

i=1 ci = 8(n − 2). By Lemma 3.1, d′ is multigraphic and d′ has a strongly Z5-connected realization G′

by induction on n. Let G be the graph obtained from G′ by adding one new vertex vn and ci edges joining the vertex vn with
d′

i-vertex for each 1 ≤ i ≤ n − 1. As G/G′
= 4K2 ∈ ⟨SZ5⟩ and G′

∈ ⟨SZ5⟩, G is a strongly Z5-connected realization of d by
Lemma 2.1(iii)(v).

Case 2: dn = 5 or dn = 6.
In this case, we shall divide our discussion according to (dn−1, dn) or (dn−2, dn−1, dn).
If (dn−1, dn) ∈ {(5, 5), (6, 5)}, by Lemma 3.1(i), there exists d′

= (d′

1, d
′

2, . . . , d
′

n−2) ∈ Fn−2 such that di = d′

i + ci where∑n−2
i=1 ci = 6 if (dn−1, dn) = (5, 5) and

∑n−2
i=1 ci = 5 if (dn−1, dn) = (6, 5). By Lemma 3.1, d′ is multigraphic. By induction

on n, d′ has a strongly Z5-connected realization G′. Construct the graph G from G′ by adding two new vertices vn−1, vn with

⌈
16−

∑n−2
i=1 ci

5 ⌉ parallel edges vnvn−1 and for each i ∈ [n − 2], joining ci edges from the d′

i-vertex to {vn−1, vn} to obtain a new
graph G as a d-realization. Since G/G′

= J1 (see Fig. 1), G′
∈ ⟨SZ5⟩ and J1 ∈ ⟨SZ5⟩ by Lemma 2.7, we conclude that G is a

strongly Z5-connected realization of d by Lemma 2.1(v).
If n ≥ 5 and (dn−2, dn−1, dn) ∈ {(7, 7, 5), (6, 6, 6), (7, 6, 6), (7, 7, 6)}, by Lemma3.1(ii), there exists d′

= (d′

1, d
′

2, . . . , d
′

n−3)
∈ Fn−3 satisfying di = d′

i+ci and Eq. (2). Since
∑n−3

i=1 d′

i = 8(n−4) andmini∈[n−3] d′

i ≥ 4 and by Lemma 3.1, d′ ismultigraphic.
Then d′ has a strongly Z5-connected realization G′, by induction on n.

If (dn−2, dn−1, dn) = (7, 7, 5), let A = {v ∈ V (G′) : v is a d′

i -vertex with ci > 0 and i ∈ [n − 3]}. We construct a
graph G from G′ by adding three new vertices vn−2, vn−1, vn and 12 edges such that |[vn, vn−1]G| = 3, |[vn−2, vn−1]G| = 4,
|[vn, A]G| = 2, |[vn−2, A]G| = 3 to obtain a newgraphG so thatG is a d-realization. By Lemmas 2.1 and 2.7(iii)(v), asG′

∈ ⟨SZ5⟩
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and G/G′/[vn−1, vn−2]G = J1 ∈ ⟨SZ5⟩, we have G ∈ ⟨SZ5⟩, which provides a stronglyZ5-connected realization of d. Similarly,
if (dn−2, dn−1, dn) ∈ {(6, 6, 6), (7, 6, 6), (7, 7, 6)}, we accordingly construct a graphG such thatG/G′

∈ {J2, J3, J4} respectively,
and x0 ∈ V (J) with J ∈ {J2, J3, J4} (see Fig. 1) is the vertex onto which G′ is contracted in G/G′. Thus d has a realization G. By
Lemma 2.1(v) and Lemma 2.7, G is a strongly Z5-connected realization of d.

The remaining case is n = 4 and
∑4

i=1 di = 24, and then (d1, d2, d3, d4) = (6, 6, 6, 6). By Lemma 2.7, the graph J2 (see
Fig. 1) is the desired graph.

Case 3: dn = 7.
If dn = 7, by

∑n
i=1 di = 8n − 8, then dn = dn−1 = · · · = dn−6 = 7, which implies that n ≥ 7. Thus

n−4∑
i=1

di = 8n − 8 − 28 ≥ 4(n − 4) + 4.

By a similar argument as in Lemma 3.1, there exist a degree sequence d′
= (d′

1, · · · , d
′

n−4) and nonnegative integer ci such
that di = d′

i + ci and d′

i ≥ 4 for 1 ≤ i ≤ n − 4, where
∑n−4

i=1 ci = 4. Thus

n−4∑
i=1

d′

i =

n∑
i=1

di −
n∑

i=n−3

di −
n−4∑
i=1

ci = 8(n − 1) − 28 − 4 = 8(n − 5).

By Lemma 3.1, d′ is multigraphic. By induction on n, d′ has a strongly Z5-connected realization G′. We construct the graph G
from G′ and 3C4 by adding ci edges between d′

i-vertex and vertices of 3C4 such that dG(x) = 7 for any x ∈ V (3C4) so that G is
a d-realization. By Lemma 2.1(ii) and Theorem 2.2(i), 3C4 ∈ ⟨SZ5⟩. By Lemma 2.1(iii) (v) and (G/G′)/3C4 = 4K2 ∈ ⟨SZ5⟩, G is
a strongly Z5-connected d-realization. This completes the proof. ■

Now we are ready to prove Theorem 1.4.

Theorem 1.4. For any nonincreasing multigraphic sequence d = (d1, d2, . . . , dn), d has a strongly Z5-connected realization if
and only if

∑n
i=1 di ≥ 8n − 8 and dn ≥ 4.

Proof. To prove the necessarity, by Theorem 2.2(ii) and Lemma 2.1(iii), if G ∈ ⟨SZ5⟩ with degree sequence (d1, d2, . . . , dn),
then

∑n
i=1 di ≥ 8n − 8 and dn ≥ 4.

For sufficiency, suppose the contrary that the nonincreasing multigraphic sequence (d1, d2, . . . , dn) is a counterexample
with

∑n
i=1 di minimized. By Lemma 3.2,

∑n
i=1 di > 8n − 8 and dn ≥ 4. If d2 = 4, then by Theorem 2.3, we have

∑n
i=1 di ≤

2
∑n

i=2 di = 8n−8, a contradiction. Thus we assume that d2 ≥ 5 and let (d′

1, d
′

2, d
′

3 · · · , d′
n) = (d1 −1, d2 −1, d3, . . . , dn). By

Theorem 2.4, (d′

1, . . . , d
′
n) is multigraphic, and so by theminimality of d, (d′

1, . . . , d
′
n) has a strongly Z5-connected realization

G′. Then we obtain the graph G as a d-realization from G′ by adding one edge between the d′

1-vertex and the d′

2-vertex. Since
G′

∈ ⟨SZ5⟩, it follows from Lemma 2.1(v) that G ∈ ⟨SZ5⟩, a contradiction. ■

3.2. Proof of Theorem 1.3

Theorem 1.3. For any nonincreasing multigraphic sequence d = (d1, d2, . . . , dn), d has a modulo 5-orientation realization if and
only if di /∈ {1, 3} for every 1 ≤ i ≤ n.

Proof. To prove the necessarity, let (d1, . . . , dn) be any multigraphic sequence, by the definition of modulo 5-orientation,
we achieve di /∈ {1, 3} for every 1 ≤ i ≤ n.

For sufficiency, suppose the contrary that the nonincreasingmultigraphic sequence d = (d1, . . . , dn) is a counterexample
with m =

∑n
i=1 di minimized. By Theorem 2.3, d1 ≤

∑n
i=2 di.

Claim A. d1 ≤
∑n

i=2 di − 4.
By contradiction, we assume that d1 ∈ {

∑n
i=2 di − 2,

∑n
i=2 di}.

If d1 =
∑n

i=2 di, then d has a unique realization G by setting v1 as the center vertex adjacent to the vertices v2, . . . , vn with
d2, . . . , dn multiple edges, respectively. Now we are to prove that G has a modulo 5-orientation D. For each 2 ≤ i ≤ n − 1, if di is
even, then we orient one half of the edges from vi toward v1 and orient rest edges from v1 to vi. If di is odd, we assign di+5

2 edges
with the orientation from vi into vertex v1 and

di−5
2 edges with opposite direction. Thus G is a modulo 5-orientation realization of

d, a contradiction.
Assume that d1 =

∑n
i=2 di − 2. From the above oriented graph G with degree sequence (

∑n
i=2 di, d2, . . . , dn), we pick up one

directed edge oriented into the vertex v1, denoted by e1, and another edge oriented out from v1, denoted by e2, where e1∩e2 = {v1}.
Let G′ be the graph obtained from G by lifting two edges e1, e2 to become a new edge. It is easy to see that G′ preserves the modulo
5-orientation and that G′ has degree sequence d = (

∑n
i=2 di − 2, d2, . . . , dn). This contradicts to the assumption that d is a

counterexample.
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Claim B. dn /∈ {2, 4} and n ≥ 4.
By contradiction, assume that dn = 2t for some t ∈ {1, 2}. Let d′

= (d′

1, d
′

2, . . . , d
′

n−1) = (d1, d2, . . . , dn−1). Since
d1 ≤

∑n
i=2 di − 4 by Claim A, we have d′

1 ≤
∑n−1

i=2 d′

i . By Theorem 2.3, d′ is multigraphic. Since
∑n−1

i=1 d′

i < m and by the
minimality of m, d′ has a modulo 5-orientation realization G′. We pick up t directed edges e1, . . . , et in the modulo 5-orientation
of G′. Let G be the graph obtained from G′ by inserting the edges e1, . . . , et to a new vertex vn. This would extend the modulo
5-orientation of G′ to the graph G. However, it is clear that G is a d-realization, a contradiction.

The case of n = 2 is obvious. Let n = 3. Since d3 ≥ 5, we have d1 + d2 + d3 ≥ 15, and so d1 + d2 + d3 ≥ 16 by parity. By
Theorem 1.4 and since 16 = 8(n−1), d has a strongly Z5-connected realization, and therefore a modulo 5-orientation realization,
a contradiction.

Claim C. d1 ≤
∑n

i=2 di − 6 and dn ̸= 6.
Suppose to the contrary that d1 =

∑n
i=2 di − 4 (by Claim A). Similar to the proof of Claim A, let G be a (

∑n
i=2 di, d2, . . . , dn)-

realization with center vertex v1 adjacent to the vertices v2, . . . , vn with d2, . . . , dn multiple edges, respectively. Since dn−1 ≥

dn ≥ 5 by Claim B, we lift the edges pair {v1vn−1, v1vn} twice to obtain a graph G′. Then G′
[{v1, vn−1, vn}] contains the graph

J1 (see Fig. 1), and therefore has a modulo 5-orientation by Lemma 2.7. Since |[v1, vi]G′ | ≥ 5 for each 2 ≤ i ≤ n − 2, we can
extend the modulo 5-orientation of G′

[{v1, vn−1, vn}] to the entire graph G′ by Lemma 2.1(iii). This shows that G′ is a modulo
5-orientation d-realization, a contradiction.

Using a similar argument as employed in the proof of Claim B, we obtain dn ̸= 6. Since (d1, d2, . . . , dn−1) is multigraphic
provided that dn = 6 and d1 ≤

∑n
i=2 di − 6. That is, we can insert three edges in G′ to a new vertex vn to form the desired graph

G.

Now, as dn ≥ 5 and by Theorem 1.4, we have
n∑

i=1

di ≤ 8n − 10. (3)

Claim D. dn ̸= 5.
If n = 4 and d4 = 5, then by

∑4
i=1 di ≤ 22, d = (d1, d2, d3, d4) ∈ {(5, 5, 5, 5), (7, 5, 5, 5), (6, 6, 5, 5)}. If (d1, d2, d3, d4) ∈

{(5, 5, 5, 5), (6, 6, 5, 5)}, we obtain the desired graph G from J1 in Fig. 1 by replacing the vertex x3 with 2 or 3 parallel edges,
separately. If (d1, d2, d3, d4) = (7, 5, 5, 5), then we have the graph G from J1 by inserting the parallel edges x1x2 to a new vertex
x4 and adding one new edge x3x4. In any case, it is easy to check that G is a modulo 5-orientation d-realization, a contradiction.

If n ≥ 5 and dn = dn−1 = 5, then let d′
= (d′

1, d
′

2, . . . , d
′

n−2) = (d1, d2, . . . , dn−2). Since

d1 + 5(n − 1) ≤ d1 +

n∑
i=2

di ≤ 8n − 10,

we obtain d1 ≤ 3n − 5. Since n ≥ 5, d′

1 ≤ 3n − 5 ≤ 5(n − 3) ≤
∑n−2

i=2 d′

i . By Theorem 2.3, d′ is multigraphic. By induction,
d′ has a modulo 5-orientation realization G′. Pick up a directed edge uv in the graph G′. Construct the graph G from G′ by adding
distinct vertices vn−1, vn, deleting oriented edge uv and adding oriented edges uvn−1, vnv and 4 parallel edges vnvn−1. Thus G is
the desired graph by Lemma 2.1(iii), a contradiction.

Otherwise, since dn = 5 and
∑n

i=1 di is even, there exists an odd di ≥ 7 for some 1 ≤ i ≤ n − 1. Let d′
=

(d′

1, . . . , d
′

i, . . . , d
′

n−1) = (d1, . . . , di − 5, . . . , dn−1). Since n ≥ 5, we have d′

1 = d1 ≤ 3n − 5 ≤ 5(n − 3) + 2 ≤
∑n−1

i=2 d′

i . By
Theorem 2.3 and induction, let G′ be amodulo 5-orientation realization of d′. Construct the graph G fromG′ by adding a new vertex
vn such that vn is adjacent to the d′

i-vertex with 5 parallel edges. By Lemma 2.1(iii), G is a modulo 5-orientation d-realization, a
contradiction.

Claim E. dn ̸= 7.
If dn = 7, then dn = dn−1 = · · · = dn−6 = 7 by Eq. (3), which implies that n ≥ 7. Let d′

= (d′

1, . . . , d
′

n−4) = (d1, . . . , dn−4).
Since d1 + 7(n− 1) ≤

∑n
i=1 di ≤ 8n− 10, we obtain d′

1 ≤ n− 3 ≤ 7(n− 5) ≤
∑n−4

i=2 d′

i . By Theorem 2.3 and induction, d′ has a
modulo 5-orientation realization G′. Let u1v1, u2v2 be two directed distinct edges in G′. We construct the graph G from G′ and 3C4
with vertices vj, n− 3 ≤ j ≤ n, by deleting u1v1, u2v2 and adding oriented edges u1vn−3, vn−2v1, u2vn−1, vnv2. By Lemma 2.1(ii)
and (i), 3C4 is strongly Z5-connected. Thus the modulo 5-orientation of G′ is easily extended to the graph G as a d-realization, a
contradiction.

Therefore, it follows from Claims A–E that dn ≥ 8, and so
∑n

i=1 di ≥ 8n, a contradiction to Eq. (3). The proof is completed.
■

3.3. Proof of Theorem 1.5

A graph is called cubic if it is 3-regular. For a cubic graph G, a Y−∆ operation on a vertex v is to replace the vertex v with
a triangle, where each edge incident with v in G becomes an edge incident to a vertex of the triangle. It is clear that applying
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Y − ∆ operation on a cubic graph still results a cubic graph, and it follows from Lemma 2.1(i)(ii) that any graph obtained
from K4 by Y − ∆ operation is Z5-connected. We will use this observation (and in fact a stronger property) in the proof
of Theorem 1.5. Before presenting the proof, we shall handle some special cases first. If a sequence d consists of the terms
d1, . . . , dt having multiplicitiesm1, . . . ,mt , we may write d = (dm1

1 , . . . , dmt
t ) for convenience.

Lemma 3.3. Each of the integral multigraphic sequences (17, 93), (14, 94), (16, 94), (16, 96) has a 9-edge-connected strongly
Z5-connected realization.

Proof. For d = (17, 93), we construct a graph G as d-realization from J1 in Fig. 1 by adding a new vertex x4 with 2 parallel
edges x1x4 and 7 multiple edges x2x4, respectively, then adding 3, 2 multiple edges x3x2, x1x2, respectively. It is routine to
check that G is 9-edge-connected, i.e. for any S ⊂ V (G) with |S| = 1 or 2, we have |[S, V (G) \ S]G| ≥ 9. By Lemmas 2.7 and
2.1(iii)(v), G is a strongly Z5-connected d-realization.

For d = (16, 96), we construct the graph G0 from two disjoint copies of 3K4 with labeled vertices v′, v′′ respectively, by
identifying vertices v′, v′′ to a new vertex and lifting the two edges e1, e2, where e1, e2 are adjacent to v′, v′′ in each 3K4. It is
easy to check that G0 is 9-edge-connected. Since G0 contains J2 (see Fig. 1) as a subgraph and by Lemmas 2.7 and 2.1(v), G0
is a strongly Z5-connected d-realization.

For d = (16, 94), we obtain the desired graph G1 gained from J1 in Fig. 1 by adding two new vertices x4, x5 with
edges x1x4, x2x4 and 3, 3, 3, 7 parallel edges x3x5, x1x5, x2x5, x4x5, respectively. For any S ⊂ V (G1), it is easy to check that
|[S, V (G1) \ S]| ≥ 9. Thus G1 is a 9-edge-connected stronglyZ5-connected d-realization by Lemma 2.7 and Lemma 2.1(iii)(v).

For d = (14, 94), we have the desired graph G2 obtained from above G1 by lifting the two edges x3x5 and x4x5. Let
S ⊂ V (G2). It is routine to verify that |[S, V (G2) \ S]G2 | ≥ 9 for any S ⊂ V (G2). Therefore G2 is a 9-edge-connected strongly
Z5-connected d-realization by Lemmas 2.7 and 2.1(iii)(v). ■

Theorem 1.5. For any nonincreasing multigraphic sequence d = (d1, d2, . . . , dn)withmini∈[n] di ≥ 9, d has a 9-edge-connected
strongly Z5-connected realization.

Proof. Let d = (d1, d2, . . . , dn) be a nonincreasing multigraphic sequence with dn ≥ 9. By Theorem 2.3, we have
d1 ≤

∑n
i=2 di. If n = 2, then d1 = d2 and it is obvious to verify this statement by Lemma 2.1(iii). We argue by induction

on m =
∑n

i=1 di and assume that n ≥ 3 and that Theorem 1.5 holds for smaller value of m. We are to construct a 9-edge-
connected strongly Z5-connected d-realization.

Case 1: d1 = 9.
Since dn ≥ 9, we have (d1, d2, . . . , dn) = (9, 9, . . . , 9). Since

∑n
i=1 di is even and n ≥ 3, this implies that n is even

and n ≥ 4. We obtain a graph G′ by applying Y − ∆ operation on the complete graph K4 several times until the cubic
graph processes n vertices. By Lemma 2.1(i)(ii), G′

∈ ⟨Z5⟩. Let G = 3G′. Then G ∈ ⟨SZ5⟩ by Theorem 2.2(i). Since G′ is
3-edge-connected, G is a 9-edge-connected strongly Z5-connected d-realization.

Case 2: d2 ≥ 10.
In this case, d1 ≥ d2 ≥ 10, and we let d′

= (d1 − 1, d2 − 1, d3, . . . , dn). By Theorem 2.4, d′ is multigraphic. By induction
on m, d′ has a 9-edge-connected strongly Z5-connected realization G′. Construct the graph G from G′ by adding one edge
joining (d1 −1)-vertex and (d2 −1)-vertex in graph G′. By Lemma 2.1(v), G is also a 9-edge-connected strongly Z5-connected
realization of d.

Now, we consider the remaining case.

Case 3: d1 ≥ 10 and d2 = · · · = dn = 9.
If d1 ≥ 18, we let d′

= (d1 − 9, d2, . . . , dn−1). Then d′ is multigraphic as d1 − 9 ≤
∑n−1

i=2 di and by Theorem 2.3. By
induction on m, there exists a 9-edge-connected strongly Z5-connected graph G′ as d′-realization. Construct the graph G by
adding one new vertex vn and 9 parallel edges joining vn and (d1 − 9)-vertex in G′. By Lemma 2.1(iii)(v), G is the desired
graph. Combining Case 1, we assume that 10 ≤ d1 ≤ 17 below.

Case 3.1: d1 is odd.
Since

∑n
i=1 di is even, n is even and n ≥ 4. If n = 4 and 11 ≤ d1 ≤ 15, we let d1 − 9 = 2q, where 1 ≤ q ≤ 3. Let

v be an arbitrary vertex in 3K4 and let e1, . . . , eq be non-parallel edges not adjacent to v in 3K4. We obtain the graph G as
d-realization from 3K4 by inserting the edges e1, . . . , eq to the vertex v. By Lemma 2.5(i), G is 9-edge connected. Since G
contains J2 as a spanning subgraph, by Lemmas 2.7 and 2.1(v), G ∈ ⟨SZ5⟩. Otherwise, (d1, d2, d3, d4) = (17, 9, 9, 9), which
has already been handled in Lemma 3.3.

If n ≥ 6, we obtain a graph G′ by applying Y − ∆ operation on K4 repeatedly until the cubic graph processes n vertices.
Denote the last obtained vertex by v1 in G′, which is in the last generated triangle. Let d1 − 9 = 2q, where 1 ≤ q ≤ 4. We
select q edges e1, . . . , eq that are coming from the edges of the basic graph K4, which are not adjacent to v1 in the graph G′.
Obtain the graph G from 3G′ by inserting the edges e1, . . . , eq to v1. By Lemma 2.5(i), G is 9-edge-connected. To verify that
G is strongly Z5-connected, we first observe that the graph induced by the vertices of the last generated triangle is strongly
Z5-connected as it contains J1 as a spanning subgraph. Then we can contract the last generated triangle and consecutively
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contract all the generated triangles, the remaining graph is strongly Z5-connected as it contains a J2 as a spanning subgraph.
By Lemma 2.1(v), G is a strongly Z5-connected d-realization.

Case 3.2: d1 is even.
Since

∑n
i=1 di is even, n is odd and n ≥ 3. When n = 3, we have d = (d1, d2, d3) = (d1, 92) and it is straightforward to

obtain a 9-edge connected d-realization G containing the graph J1. If n = 5 and d1 = 14 or d1 = 16 or n = 7 and d1 = 16,
then the multigraphic sequences are (14, 94), (16, 94), (16, 96), which are all verified by Lemma 3.3.

The remaining cases are as follows: n ≥ 9, or n = 7 and 10 ≤ d1 ≤ 14, or n = 5 and 10 ≤ d1 ≤ 12. We construct a graph
G′ by applying Y − ∆ operation on K4 repeatedly until the cubic graph processes n − 1 vertices. Let E ′

⊂ E(G′) consist the
edges of the base graph K4 and one edge in each generated triangle in G′. Thus |E ′

| ≥ 8 if n ≥ 9; |E ′
| = 7 if n = 7; |E ′

| = 6 if
n = 5. Let d1 = 2q. Note that |E ′

| ≥ q. We select the edges e1, . . . , eq in E ′ and obtain the graph G from 3G′ by inserting the
edges e1, . . . , eq ∈ E ′ to a new vertex v1. By Lemma 2.5(ii), G is 9-edge connected. Clearly, G is a d-realization. To see that G
is strongly Z5-connected, we first recall that J1 and J2 are strongly Z5-connected by Lemma 2.7. By contracting J1 and 3K3 in
the generated triangles of G consecutively, the resulting graph consists of 5 vertices, namely v1 and the remaining 4 vertices
induced a graph containing J2. We then contract J2 and the resulting 2q parallel edges to obtain K1. This shows that G is a
strongly Z5-connected by Lemma 2.1(v). The proof is completed. ■

Proof of Corollary 1.6. We assume that d = (d1, . . . , dn) is a nonincreasing multigraphic sequence with dn ≥ 8. By
Theorem 2.3, d1 ≤

∑n
i=2 di. The case of n = 2 is trivial. Assume that n ≥ 3. Suppose to the contrary that (d1, . . . , dn) is

a counterexample withm =
∑n

i=1 di minimized.
If d1 ≥ 10, let d′

= (d′

1, d
′

2, . . . , d
′
n) = (d1 − 2, d2, . . . , dn). If d1 − 2 = d′

1 ≥ d′

2 = d2, then d′

1 ≤ d1 ≤
∑n

i=2 di =
∑n

i=2 d
′

i .
Otherwise, d′

1 = d1 − 2 < d′

2, then maxi∈[n]{d′

i} = d2 ≤ d1 ≤ d1 − 2 +
∑n

i=3 di = d′

1 +
∑n

i=3 d
′

i , since n ≥ 3. Hence
d′ is multigraphic in any case by Theorem 2.3. Let G′ be a 8-edge-connected modulo 5-orientation d′-realization by the
minimality. We obtain the desired graph G from G′ by inserting one edge to the (d1 − 2)-vertex in G′. By Lemma 2.5(i), G is
also a 8-edge-connected modulo 5-orientation d-realization, a contradiction.

If d1 = 8, then d1 = · · · = dn = 8. Hence G = 4Cn is a 8-edge-connected modulo 5-orientation d-realization,
a contradiction. Assume that d1 = 9 in the following. As

∑n
i=1 di is even, we have d2 = 9. If dn = 8, we let d′

=

(d′

1, d
′

2, . . . , d
′

n−1) = (d1, d2, . . . , dn−1). Then d′

1 ≤ d′

2 ≤
∑n

i=2 d
′

i , and so d′ is multigraphic by Theorem 2.3. Let G′ be a
8-edge-connected modulo 5-orientation d′-realization by the minimality. Let ei ∈ E(G′), 1 ≤ i ≤ 4. We obtain the desired
graph G from G′ by inserting the edges e1, . . . , e4 to one new vertex vn. By Lemma 2.5(ii), G is a 8-edge-connected modulo
5-orientation realization of d, a contradiction. Therefore, we have dn ≥ 9, and it follows from Theorem 1.5 that there exists
a 9-edge-connected strongly Z5-connected graph G as a d-realization, which admits a modulo 5-orientation as well. This
contradiction completes the proof of Corollary 1.6. ■
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