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a b s t r a c t

For integers k, r > 0, a (k, r)-coloring of a graph G is a proper coloring on the vertices
of G with k colors such that every vertex v of degree d(v) is adjacent to vertices with at
least min{d(v), r} different colors. The r-hued chromatic number, denoted by χr (G), is
the smallest integer k for which a graph G has a (k, r)-coloring. We prove the following:
(i) If G is a P4-free graph, then χr (G) ≤ χ (G)+ 2(r − 1), and this bound is best possible.
(ii) If G is a P5-free bipartite graph, then χr (G) ≤ rχ (G), and this bound is best possible.
(iii) If G is a P5-free graph, then χ2(G) ≤ 2χ (G), and this bound is best possible.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, for an integer k > 0, define [k] = {1, 2, . . . , k}. We study finite and simple graphs, and follow [7]
for undefined notations and terms. Thus δ(G), ∆(G) and χ (G) denote the minimum degree, the maximum degree and the
chromatic number of a graph G respectively. If c : V (G) ↦→ [k] is a mapping, then define c(S) = {c(u) : u ∈ S}. Define the
neighborhood of a vertex v in G to be NG(v) = {w : w ∈ V , vw ∈ E}, and let dG(v) = |NG(v)| and NG[v] = NG(v) ∪ {v}. If
S ⊆ V or S ⊆ E, then G[S] is the subgraph of G induced by S. Let G − S = G[V (G) \ S] (if S ⊆ V (G)) or G − S = G[E(G) \ S]
(if S ⊆ E(G)). If S ⊆ V (G), then let NS(v) = S ∩ NG(v). If E(G[S]) = ∅, then S is a stable set (or an independent set) of G.
Following [7], we define a clique of a graph G to be a set of mutually adjacent vertices of G. A clique K of a graph G is
maximal if K is not properly contained in another clique of G. The clique number of G, denoted by ω(G), is the maximum
size of a clique of G.

Definition 1.1. Let k and r be positive integers. A (k, r)-coloring of a graph G is a mapping c : V (G) ↦→ [k] satisfying
both the following:

(C1) c(u) ̸= c(v), for every edge uv ∈ E(G);
(C2) |c(NG(v))| ≥ min{dG(v), r}, for every v ∈ V (G).

For a fixed integer r > 0, the r-hued chromatic number of G, denoted by χr (G), is the smallest k such that G has a
(k, r)-coloring. The concept was first introduced in [18,22], where χ2(G) is called the dynamic chromatic number of G.
By the definition of χr (G), it follows immediately that χ (G) = χ1(G), and so the r-hued coloring is a generalization of
the classical graph coloring. For any integers i > j > 0, any (k, i)-coloring of G is also a (k, j)-coloring of G, and so if
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1 ≤ j < i ≤ ∆ ≤ h, then χ (G) ≤ χj(G) ≤ χi(G) ≤ χ∆(G) = χh(G), where ∆ = ∆(G). The study of r-hued colorings has
drawn lots of attention, as seen in [2–4,8,10,11,13–22,24–26], among others.

In [18,22], it has been indicated that χ2(G)−χ (G) can be arbitrarily large. It is of interest to understand, for an integer
r ≥ 2, the relationship between χr (G) and χ (G) in different families of graphs. Let H be a graph. A graph G is H-free if
G does not have an induced subgraph isomorphic to H . In particular, a K1,3-free graph is also called a claw-free graph.
Throughout this paper, for an integer n ≥ 3, let Cn denote a cycle on n vertices and Pn denote a path on n vertices. There
have been investigations on the relationship between χ2(G) and χ (G) in different families of graphs. Among them are the
following.

Theorem 1.2 ([17]). Let G be a claw-free graph. Each of the following holds.
(i) χ2(G) ≤ χ (G) + 2 .
(ii) If G is connected, then χ2(G) = χ (G) + 2 if and only if G is a cycle of length 5 or an even cycle of length not a multiple

of 3.

Theorem 1.3 ([19]). Let G be a claw-free graph. Then χ3(G) ≤ max{χ (G) + 3, 7}. This bound is best possible.

Theorem 1.4 ([5]). Let k ≥ 35 be an integer, and let G be a k-regular C4-free graph. Then χ2(G) ≤ χ (G) + 2⌈4 ln(k) + 1⌉.

Theorem 1.5 ([1]). If G is a P4-free graph, then χ2(G) ≤ χ (G) + 2.

These results motivate our current study. In this paper, we study the dependency of χr (G) and χ (G) among P4-free
graphs and P5-free graphs, for any integer r ≥ 2. The main results are the following.

Theorem 1.6. Let G be a connected P4-free graph. Each of the following holds.
(i) χr (G) ≤ χ (G) + 2(r − 1), and
(ii) χr (G) = χ (G) + 2(r − 1) if and only if G = Ks,t for some integers s ≥ r and t ≥ r.

Theorem 1.7. Let r ≥ 2 be an integer and G be a connected P5-free bipartite graph. Then χr (G) ≤ rχ (G).

Theorem 1.8. Let G be a connected P5-free graph. Then χ2(G) ≤ 2χ (G).

Theorems 1.7 and 1.8 are best possible in the sense that there exist infinitely many P5-free bipartite graphs reaching
the bounds. In fact, For any integers m ≥ n ≥ r ≥ 2, the complete bipartite graph Km,n is P5-free and by Theorem 2.3
of [17] (see Lemma 2.3 in Section 2), χr (Km,n) = rχ (Km,n). Theorem 1.6 will be proved in Section 2, and Theorems 1.7 and
1.8 will be justified in the last section.

2. r-hued colorings of P4-free graphs

We start with a few more notations and terms to be used in this section. If G is a simple graph, then G denote the
complement of G. Let A and B be disjoint nonempty vertex sets. We use K (A, B) to denote a complete bipartite graph
with vertex bipartition A and B. Thus K (A, B) is isomorphic to K|A|,|B|. Now we assume that A, B are two disjoint vertex
subsets of a graph G. Following [7], we define E[A, B] = {uv ∈ E(G)|u ∈ A and v ∈ B}. If |E[A, B]| = |A||B|, we say that A
is complete to B; if E[A, B] = ∅, we say that A is anti-complete to B.

A graph G is perfect if for any induced subgraph H of G, χ (H) = ω(H). The famous Strong Perfect Graph Theorem
characterizes all perfect graphs.

Theorem 2.1 ([9]). A graph is perfect if and only if it contains no Ck nor Ck as an induced subgraph, for any odd integer k ≥ 5.

To proceed our proof, we display some properties of P4-free graphs. As when k ≥ 5 is an odd integer, every Ck and
every Ck contains an induced P4. It follows from the Strong Perfect Graph Theorem that

every P4-free graph must be perfect. (1)

While determining whether a graph is 3-colorable or not is an NP-complete problem, it is known that k-coloring problem
of P4-free graphs can be solved in polynomial time since a P4-free graph has a special structural property, as stated below.

Theorem 2.2 ([23]). If G is a P4-free graph, then V (G) can be divided into two disjoint subsets A and B, such that either A is
complete to B or A is anti-complete to B.

By Theorem 2.2, it follows that if G is a connected P4-free graph, then V (G) can be divided into two disjoint subsets A
and B such that A is complete to B. Hence we have

χ (G) = χ (G[A]) + χ (G[B]). (2)

By (1), χ (G) = ω(G). However, if G = K (A, B), then for any r ≥ 2, we have χr (G[A]) = χr (G[B]) = 1. This special case was
formerly studied in [17].



1906 H.-J. Lai, X. Lv and M. Xu / Discrete Mathematics 342 (2019) 1904–1911

Lemma 2.3 ([17]). For any integer r ≥ 1, we have χr (Ks,t ) = min{2r, s + t, r + s, r + t}.

Thus when r ≥ 2, the above-mentioned relationship in (2) is not applicable as χr (G) and χr (G[A]) + χr (G[B]) may be
different.

Corollary 2.4. Let G be a connected P4-free graph. Then χ2(G) ≤ χ (G) + 2, where the equality holds if and only if G = Ks,t
for some integers s ≥ r and t ≥ r.

Proof. By Theorem 2.2, V (G) can be divided into two disjoint subsets A and B such that A is complete to B. Let G1 = G[A],
G2 = G[B], and for i ∈ {1, 2}, let ωi = ω(Gi). By symmetry, we assume that ω1 ≥ ω2. By (2)p4-perfect, χ (G) = ω1 + ω2.
If ω2 ≥ 2, then any proper k-coloring of G is also a (k, 2)-coloring of G, implying that χ2(G) = χ (G) in this case. Suppose
that ω1 ≥ 2 and ω2 = 1. Let c1 be an (ω1, 1)-coloring of G1, and extend c1 to c by coloring all the vertices of B with
min{2, |B|} new colors. If |B| = 1, then for any vertex v ∈ A with dG(v) = 1, |c(NG(v))| = 1; for any vertex u ∈ A with
dG(u) ≥ 2, |c(NG(u))| = |c1(NG(u))| + 1 when |c1(NG(u))| = 1 and |c(NG(u))| ≥ |c1(NG(u))| when |c1(NG(u))| ≥ 2. Since A is
complete to B and ω(G) = ω1 +1, it follows by Definition 1.1 that c is a (χ (G), 2)-coloring of G. If |B| ≥ 2, as A is complete
to B and ω(G) = ω1 + 1, then it follows by Definition 1.1 that c is a (χ (G) + 1, 2)-coloring of G. Finally, if ω1 = ω2 = 1,
then G is a complete bipartite graph, and the corollary follows from Lemma 2.3 immediately. ■

Proof of Theorem 1.6. We argue by contradiction and assume that

there exists a counterexample to Theorem 1.6 with r being minimized. (3)

For this value of r , we choose a connected P4-free graph G such that G is a counterexample to Theorem 1.6.
Let k = χ (G). By Theorem 2.2, V (G) can be partitioned into two subsets A and B such that A is complete to B. Let

G1 = G[A], G2 = G[B], ω1 = ω(G1) and ω2 = ω(G2). Since G is P4-free, both G[A] and G[B] are P4-free graphs. By symmetry,
we assume that |A| ≥ |B|. Let c : V (G) → [k] be a proper coloring of G. By (1), we have χ (G1) = ω1 and χ (G2) = ω2. By
(2),

χ (G) = χ (G1) + χ (G2) = ω1 + ω2, |c(A)| = ω1 and |c(B)| = ω2. (4)

Claim 1. Each of the following holds.
(i) r ≥ 3.
(ii) max{ω1, ω2} ≥ 2.
(iii) min{ω1, ω2} < r.
(iv) |A| ≥ r.

Proof. By Corollary 2.4, and by the fact that G is a counterexample to Theorem 1.6, we conclude that (i) must hold.
If max{ω1, ω2} = 1, then G is a complete bipartite graph. By Lemma 2.3, we have χr (Ks,t ) ≤ 2r = χ (G) + 2(r − 1),

where equality holds if and only if min{s, t} ≥ r . Hence (ii) follows.
Assume that min{ω1, ω2} ≥ r . By (1) and (2), we have χ (G) = ω1 + ω2. Let c be a (k, 1)-coloring of G. Then as A is

complete to B in G and as min{ω1, ω2} ≥ r , every vertex v is adjacent to a clique of size at least r in G. It follows by
Definition 1.1 that c is a (k, r)-coloring of G, contrary to the assumption that G is a counterexample.

If |A| ≤ r − 1, then |B| ≤ |A| ≤ r − 1, then we use |V (G)| = |A| + |B| ≤ 2(r − 1) colors so that distinct vertices will be
colored differently. Hence this is an (n, r)-coloring of G with n ≤ 2(r − 1). This justifies (iv), and completes the proof of
the claim. ■

Claim 2. If |B| ≥ r, then χr (G) ≤ χ (G) + max{(r − ω1), 0} + max{(r − ω2), 0}.

Proof. Let h1 = r−ω1 and h2 = r−ω2. If both h1 ≤ 0 and h2 ≤ 0, then as A is complete to B, it follows from Definition 1.1
that any proper k-coloring c is also a (k, r)-coloring of G. Hence in this case, we have χr (G) = χ (G).
Case 1. Both h1 > 0 and h2 > 0.

Let a1, a2, . . . , aω1 ∈ A such that c({a1, a2, . . . , aω1}) = c(A), and choose h1 vertices

aω1+1, aω1+2, . . . , aω1+h1

from A − {a1, a2, . . . , aω1}; and let b1, b2, . . . , bω2 ∈ B such that c({b1, b2, . . . , bω2}) = c(B), and choose h2 vertices
bω2+1, . . . , bω2+h2 from B − {b1, b2, . . . , bω2}. Define c ′

: V (G) ↦→ [k + h1 + h2] by

c ′(x) =

{ c(x) if x ∈ (A − {aω1+1, . . . , aω1+h1}) ∪ (B − {bω2+1, . . . , bω2+h2})
k + i if x = aω1+i, where 1 ≤ i ≤ h1
k + h1 + j if x = bω2+j, where 1 ≤ j ≤ h2

.

Since c is a proper k-coloring, c ′ is also a proper (k + h1 + h2)-coloring. If x ∈ A, then |c ′(N(x))| ≥ |c ′(B)| = ω2 + h2 = r .
If y ∈ B, then |c ′(N(y))| ≥ |c ′(A)| = ω1 + h1 = r . Hence in this case, c ′ is a proper (k + h1 + h2, r)-coloring of G. Thus
χr (G) ≤ k + h1 + h2 = χ (G) + (r − ω1) + (r − ω2). This proves that Claim 2 holds in this case.
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Case 2. Either h1 ≤ 0 or h2 ≤ 0.
If h1 > 0 and h2 ≤ 0, similarly as in Case 1, we may choose and recolor h1 vertices in A by h1 new colors

{k + 1, k + 2, . . . , k + h1}. And we do not need to recolor vertices in B. Define c ′′
: V (G) ↦→ [k + h1] by

c ′′(x) =

{
c(x) if x ∈ (A − {aω1+1, . . . , aω1+h1}) ∪ B
k + j if x = aω1+j, where 1 ≤ j ≤ h1

.

Since c is a proper k-coloring, c ′′ is also a proper (k + h1)-coloring. As A is complete to B, for each y ∈ B, A ⊂ N(y) and
so |c ′′(N(y))| ≥ |c ′′(A)| = ω1 + h1 = r . If x ∈ A, then as ω2 ≥ r , |c ′′(N(x))| ≥ |c(B)| ≥ r . Thus by definition, c ′′ is a proper
(k + h1, r)-coloring of G, and so χr (G) ≤ k + h1 = χ (G) + (r − ω1). If h1 ≤ 0 and h2 > 0, the proof is similar. This proves
that Claim 2 holds in this case as well, and completes the proof of Claim 2. ■

Claim 3. If |B| < r, then χr (G) ≤ χ (G) + 2r − 3.

Proof. Let b = |B|. Then |A| ≥ r and 1 ≤ b ≤ r−1. Define r ′
= r−b. Then r ′ < r . By (3), we have χr ′ (G1) ≤ ω1 +2(r ′

−1).
Let k′

= max{ω1+2(r ′
−1), r} and c2 be a (k′, r ′)-coloring of G1. Denote B = {z1, z2, . . . , zb} and define c ′

2 : V (G) → [k′
+b]

as follows:

c ′

2(x) =

{
c2(x) if x ∈ A
k′

+ i if x = zi, where 1 ≤ i ≤ b .

Since k′
≥ r and A is complete to B, for any vertex v ∈ B, |c ′

2(NG(v))| ≥ k′
≥ r; for any vertex u ∈ A, |c ′

2(NG(u))| =

|c2(NG(u))| + b ≥ r . It follows by Definition 1.1 that c ′

2 is a (k′
+ b, r)-coloring of G. As

k′
+ b ≤ max{χ (G1) + 2(r − b) − 2, r} + b

≤ max{χ (G) + 2r − 2 − b, r + b} ≤ χ (G) + 2r − 3,

this justifies Claim 3. ■

By Claim 1, ω1 + ω2 ≥ 3. It follows by Claims 2 and 3 that if G is a P4-free graph and if ω1 + ω2 ≥ 3, then
χr (G) < χ (G) + 2(r − 1). This, together with Lemma 2.3, implies Theorem 1.6. ■

3. r-hued colorings of P5-free graphs

In this section, we investigate the relationship between χr (G) and χ (G) for a P5-free graph G. We start with an example.

Example 3.1. Let k ≥ 2 and r ≥ 1 be integers. There exists a family F of connected P5-free graphs, such that every graph
G ∈ F satisfies χr (G) = rχ (G).

For convenience, in this example, we often use [k] for Zk, the additive group of integers modulo k. For positive integers
n1, n2, . . . , nk, (ni ≥ r, i = 1, 2, . . . , k), let K = Kn1,n2,...,nk denote a complete k-partite graph such that the k partite vertex
sets are V1, V2, . . . , Vk with |Vi| = ni, 1 ≤ i ≤ k. Let U = {u1, u2, . . . , uk} be a set of vertices with U ∩ V (K ) = ∅; and
let n =

∑k
i=1 ni + k. Obtain a graph G = G(n, k, r) from K and U by joining ui to every vertex in Vi but not to any other

vertices, for each i with 1 ≤ i ≤ k. Thus n = |V (K )|+ |U | = |V (G)|. Let F be the collection of all graphs G(n, k, r) for some
values n, k, r with n ≥ k ≥ r ≥ 1. Proposition 3.2 indicates that every graph G ∈ F satisfies χr (G) = rχ (G).

Proposition 3.2. For any graph G ∈ F , each of the following holds.
(i) χ (G) = ω(G) = k.
(ii) χr (G) = rk.
(iii) G is P5-free.

Proof. Let G ∈ F . Then for some integers n and k, we have G = G(n, k, r). We shall use the same notations above. For
each i with 1 ≤ i ≤ k, fix a vertex wi ∈ Vi; and let W = {w1, w2, . . . , wk}. Since K is a complete k-partite graph, G[W ] is
isomorphic to Kk.

(i) By definition of G, G[W ] is a k-clique of G and so χ (G) ≥ ω(G) = k. Let c : V (G) ↦→ [k] be so defined that c(Vi) = i
and c(ui) = i + 1 (mod k). Since K is a k-partite graph, each Vi is a stable set; since NG(ui) = Vi, it follows that c is a
proper k-coloring of G. This proves (i).

(ii) Suppose that ℓ = χr (G) and let c : V (G) ↦→ [ℓ] be a (k, r)-coloring of G. Since G[W ] is isomorphic to Kk, we may
assume that for each i with 1 ≤ i ≤ k, c(wi) = i.

Fix an i with 1 ≤ i ≤ k. Since ni ≥ r and NG(ui) = Vi, there must be a vertex subset Zi ⊆ Vi such that |c(Zi)| = |Zi| = r .
Randomly pick a vertex zi ∈ Zi, and let Z = {z1, z2, . . . , zk}. As K is a complete k-partite graph, G[Z] is isomorphic to Kk
and so |c(Z)| = k. It follows that ℓ ≥ |c(∪k

i=1Zi)| = rk.
To justify (ii), it suffices to present a (rk, r)-coloring of G. Construct a mapping c : V (G) ↦→ [rk] as follows. For 1 ≤ i ≤ k,

define c(Vi) = {(i − 1)r + 1, (i − 1)r + 2, . . . , (i − 1)r + r} and c(ui) = (i − 1)r + r + 1. As K is a complete k-partite graph
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with k ≥ r , the restriction of c to V (K ) is a (rk, r)-coloring. Since NG(ui) = Vi, and since |c(Vi)| = r , it follows that c is
indeed a (rk, r)-coloring. This proves that ℓ = χr (G) ≤ rk, and so completes the proof of (ii).

(iii) Let P = x1x2x3...xt be a longest induced path in G. Since K is a complete k-partite graph, and since P is induced, we
must have |V (P) ∩ V (K )| ≤ 3 and |V (P) ∩ V (K )| = 3 if and only if V (P) ∩ V (K ) = {xi−1, xi, xi+1} for some i with 1 < i < 5
such that xi−1 and xi+1 are in the same partite set of K . If xi−1 and xi+1 are both in a Vj, then we must have t = 3 and
P = xi−1xixi+1 since N(uj) = Vj. If |V (P) ∩ V (K )| = 2, then as P is a longest induced path, V (P)∩V (K ) = {xi−1, xi}. We may
assume, without lot of generality, that xi−1 ∈ V1 and xi ∈ V2. It follows that P = u1xi−1xiu2. Hence in any case, |V (P)| = 4
and so G must be P5-free. ■

Proposition 3.2 leads to the following problem.

Problem 3.3. For integers k > 0, r ≥ 2 and t ≥ 4, determine a best possible function f (k, r, t) such that for every
connected Pt-free graph G with χ (G) = k, we have χr (G) ≤ f (k, r, t). More specifically, is there a best possible value
c = c(r, t) such that for every connected Pt-free graph G, we have χr (G) ≤ c(r, t)χ (G)? In particular, can c(r, 5) = r?

Theorem 1.6 indicates that f (k, r, 4) = k+ 2(r − 1), answering the problem when t = 4 for any r and k. In this section
we will prove Theorems 1.7 and 1.8. Theorem 1.8 suggests c(2, 5) = 2, providing evidences for c(r, 5) = r .

A subgraph H of G is dominating if every vertex of G is either in V (H) or is adjacent to a vertex in H . A subset V ′
⊆ V (G)

is dominating if G[V ′
] is dominating. Bacso and Tuza [6] proved the following result about P5-free graphs.

Theorem 3.4 ([6]). If G is a connected P5-free graph, then G has a dominating clique or a dominating P3.

Using Theorem 3.4, Hoang et al. in [12] indicated that for P5-free graphs, the k-coloring problem can be solved in
polynomial time. We will also apply this structural property of P5-free graphs to investigate the relationship between
χr (G) and χ (G) for a P5-free graph G.

Lemma 3.5. Let r and s be integers with r ≥ 2 and s ≥ 3, G be a connected graph with a dominating clique K with |V (K )| = s.
Let k = χr−1(G − V (K )) + s. Then G has a (k, 1)-coloring c : V (G) ↦→ [k] such that for any vertex v ∈ V (G) − V (K ),

|c(NG(v))| ≥ min{dG(v), r}. (5)

Proof. Let k1 = χr−1(G − V (K )) and k = k1 + s. We first let c1 : V (G − V (K )) ↦→ [k1] be a (k1, r − 1)-coloring of G − V (K ).
Extend c1 to c : V (G) ↦→ [k] by coloring V (K ) with s = |V (K )| new colors in {k1 + 1, k1 + 2, . . . , k1 + s}.

For each vertex v ∈ V (G) − V (K ), since c1 is a (k1, r − 1)-coloring of G − V (K ),

|c1(NG−V (K )(v))| ≥ min{r − 1, dG−V (K )(v)}.

As |c(NG(v) ∩ V (K ))| = |NG(v) ∩ V (K )| and K is a dominating clique of G, it follows that (5) must hold. This proves the
lemma. ■

Corollary 3.6. Let r and s be integers with r ≥ 2 and s ≥ 3, G be a connected graph with a dominating clique K with
|V (K )| = s. If r ≤ s and if χr−1(G − V (K )) ≤ (r − 1)χ (G), then χr (G) ≤ rχ (G).

Proof. By Lemma 3.5, G has a (k, 1)-coloring c : V (G) ↦→ [k] such that for any vertex v ∈ V (G) − V (K ), (5) holds. Since K
is a complete graph on s ≥ r vertices, we have χ (G) ≥ |V (K )| = s, and every vertex v ∈ V (K ) also satisfies (5). Hence c
is a (k, r)-coloring of G, and so χr (G) ≤ χr−1(G − V (K )) + s ≤ (r − 1)χ (G) + χ (G) = rχ (G). ■

3.1. r-hued colorings of P5-free bipartite graphs

For a subset S ⊆ V (G), define NG(S) = ∪v∈SNG(v). Recall that K (A, B) denote the complete bipartite graph with vertex
bipartition (A, B). We start with a few definitions and lemmas.

Definition 3.7. Let P3 = w1w2w3 be a dominating path of a connected graph G. For i = 1, 2, 3, define Vi = {v ∈ V (G) :

vwi ∈ E(G)}.

With the notation in Definition 3.7, we have the following observation, which follows from Definition 3.7 and from
the fact that a bipartite graph contains no cycles of odd length.

Observation 3.8. Suppose G is bipartite and P5-free with w1w2w3 being a dominating path. Each of the following holds.
(i) Either V1 ⊆ V3 or V3 ⊆ V1.
(ii) E(G[V1 ∪ V3]) = ∅, and E(G[V2]) = ∅.
(iii) For any v ∈ V1 ∪ V3, NG(v) ⊆ V2.
(iv) For any v ∈ V2, NG(v) ⊆ V1 ∪ V3.
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Lemma 3.9. Let G be a connected P5-free graph with a dominating path P3 = w1w2w3. If G is bipartite, then either
V2 = {w1, w3}, or |V2| ≥ 3 and for any v ∈ V2 − {w1, w3}, one of the following holds.

(i) NG(v) = {w2}.
(ii) For any u ∈ V1 − V3, if uv ∈ E(G), then V3 ⊆ NG(v).
(iii) For any u ∈ V3 − V1, if uv ∈ E(G), then V1 ⊆ NG(v).

Proof. As w1, w3 ∈ V2, we have |V2| ≥ 2. Assume that |V2| ≥ 3 and (i) does not hold, we are to show that one of (ii) and
(iii) must hold. By symmetry, it suffices to justify (ii).

Suppose that there exists a vertex u ∈ V1 − V3 with uv ∈ E(G). For any u′
∈ V3 − {w2}, P = uvw2w3u′ is a path on 5

vertices in G. Since G is bipartite, then uw2, w2u′, vw3, uu′ /∈ E(G). Also uw3 /∈ E(G) and since G is P5-free, we must have
u′v ∈ E(G). This implies that V3 ⊆ NG(v). ■

Lemma 3.10. Let G be a connected P5-free bipartite graph on n = |V (G)| vertices with a dominating path P3 = w1w2w3
such that |V2| ≥ 3. Adopting the notation in Definition 3.7 and defining V21 = {v ∈ V2 : NG(v) ∩ (V1 − V3) ̸= ∅}, each of the
following holds.

(i) If V1 = V3, then for any u, u′
∈ V3, if dG(u′) ≤ dG(u), then NG(u′) ⊆ NG(u); and for any v, v′

∈ V2, if dG(v′) ≤ dG(v),
then NG(v′) ⊆ NG(v).

(ii) If V3 ⊂ V1 and V1 − V3 ̸= ∅, then each of the following holds.
(ii-1) G[V21 ∪ V3] = K (V21, V3) is a complete bipartite graph.
(ii-2) For any u, u′

∈ V1, if dG(u′) ≤ dG(u), then NG(u′) ⊆ NG(u); for any v, v′
∈ V2, if dG(v′) ≤ dG(v), then NG(v′) ⊆ NG(v).

Proof. (i). By Observation 3.8 (iii), for any vertex u ∈ V3−{w2}, d(w2) ≥ d(u) and NG(u) ⊆ NG(w2). And by Observation 3.8
(iv), if V1 = V3, then d(w1) = d(w3) ≥ d(v) and NG(v) ⊆ NG(w1) = NG(w3) = V3 for any vertex v ∈ V2 \ {w1, w3}.

Suppose that u, u′
∈ V3 \ {w2} with dG(u) ≥ dG(u′). By contradiction, we assume that NG(u′) − NG(u) ̸= ∅. Since

dG(u) ≥ dG(u′) and NG(u′) − NG(u) ̸= ∅, we also have NG(u) − NG(u′) ̸= ∅. Pick a vertex v′
∈ NG(u′) − NG(u) and a

vertex v ∈ NG(u) − NG(u′), where v, v′
∈ V2 \ {w1, w3}. Then P = uvw2v

′u′ is a path on 5 vertices in G. Since G is
bipartite, uw2, uu′, w2u′ /∈ E(G). Since G is P5-free, one of uv′, u′v must be in E(G), contrary to the assumptions that
v′

∈ NG(u′) − NG(u) and v ∈ NG(u) − NG(u′). Hence we must have NG(u′) ⊆ NG(u).
Similarly, assume that there exist vertices v, v′

∈ V2 \ {w1, w3} with dG(v) ≥ dG(v′) and NG(v′) − NG(v) ̸= ∅, then we
also have NG(v) − NG(v′) ̸= ∅. Pick a vertex u′

∈ NG(v′) − NG(v) and a vertex u ∈ NG(v) − NG(v′), where u, u′
∈ V3. Thus

Q = uvw2v
′u′ is a path on 5 vertices in G. Since G is bipartite, uw2, vv′, w2u′ /∈ E(G). Since G is P5-free, one of uv′, u′v

must be in E(G), contrary to the assumptions that u ∈ NG(v) − NG(v′) and u′
∈ NG(v′) − NG(v). This completes the proof

of (i).
(ii). Suppose that V3 ⊂ V1 and V1 −V3 ̸= ∅. By Lemma 3.9(ii), for any v ∈ V21, V3 ⊆ NG(v). Hence G[V21 ∪V3] = K (V21, V3),
and so (ii-1) follows.

By Observation 3.8 (iv), if V3 ⊂ V1, then d(w1) ≥ d(v) and NG(v) ⊆ NG(w1) = V1 for any v ∈ V2 \ {w1}. If v ∈ V21,
then by (ii-1), we have NG(w3) = V3 ⊂ NG(v). If v ∈ V2 \ V21, then NG(v) ⊂ V3 = NG(w3). Suppose v, v′

∈ V2 \ {w1, w3}

with dG(v) ≥ dG(v′), the proof for NG(v′) ⊆ NG(v) is similar to that for (i), so it will be omitted. As for any two vertices
u, u′

∈ V1 with dG(u) ≥ dG(u′), the proof for NG(u′) ⊆ NG(u) is also similar to that for (i). Thus (ii-2) is justified. ■

Lemma 3.11. Let G be a bipartite P5-free graph with the vertex bipartition (U, V ). If G has a dominating path P3, then G has
a (2r, r)-coloring c : V (G) ↦→ [2r] in such a way that c(U) ⊆ [r] and c(V ) ⊆ [2r] − [r]. In particular, χr (G) ≤ 2r.

Proof. It suffices to prove Lemma 3.11 for connected graphs. Hence we assume that G is a connected bipartite P5-free
graph with a dominating P3. Let V (P3) = {w1, w2, w3} and define Vi = {v ∈ V (G)|vwi ∈ E(G)}, for i = 1, 2, 3 as in
Definition 3.7. Set U = V1 ∪V3 and V = V2. By Observation 3.8 (ii) – (iv), G is a bipartite graph with (U, V ) being its vertex
bipartition. By Lemma 3.9, either V2 = {w1, w3}, or |V2| ≥ 3 and for any v ∈ V2 − {w1, w3}, one of Lemma 3.9(i), (ii) and
(iii) must hold.

Assume first that V2 = {w1, w3}. Then V (G) = {w1, w3} ∪ V1 ∪ V3. Without loss of generality, we may assume V3 ⊆ V1.
Then G is a bipartite graph with partite sets {w1, w3} and V1. Let c : V (G) ↦→ [r + 2] be a (r + 2, 1)-coloring of G so that
c(V1) ⊆ [r] with |c(Vi)| = min{|Vi|, r} for i ∈ {1, 3} and c(V2) = c({w1, w3}) = {r + 1, r + 2}. Thus Lemma 3.11 holds.

Next we assume that |V2| ≥ 3. In the rest of the proof, we shall adopt the notation in Definition 3.7 and in Lemma 3.10.
By Observation 3.8(i) and by symmetry, we may assume either V3 = V1 or V3 ⊂ V1.

Denote V1 = {u1, u2, . . . , uh} and V2 = {v1, v2, . . . , vℓ} such that

dG(u1) ≥ dG(u2) ≥ · · · ≥ dG(uh), and dG(v1) ≥ dG(v2) ≥ · · · ≥ dG(vℓ).

Then by Lemma 3.10(i) and (ii), we have

V1 ⊇ NG(v1) ⊇ NG(v2) ⊇ ... ⊇ NG(vℓ), and V2 ⊇ NG(u1) ⊇ NG(u2) ⊇ ... ⊇ NG(uh). (6)

By (6), it is possible to relabel V1 = {x1, x2, . . . , xh} so that for each i with 1 ≤ i ≤ ℓ, there exists a subscript ni ≤ h such
that NG(vi) = {x1, x2, . . . , xni}. Similarly, we can relabel V2 = {y1, y2, . . . , yℓ} so that for each j with 1 ≤ j ≤ h, there exists
a subscript kj ≤ ℓ such that NG(uj) = {y1, y2, . . . , ykj}. Define c : V (G) ↦→ [2r] to be a mapping satisfying the following.
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(A) For i = 1, 2, . . . , h, choose j = j(i) with 1 ≤ j ≤ r and i ≡ j (mod r), and define c(xi) = j. Thus c(V1) ⊆ [r] and
|c(V1)| ≥ min{|V1|, r}.

(B) For i = 1, 2, . . . , ℓ, choose j = j(i) with r+1 ≤ j ≤ 2r and i ≡ j (mod r), and define c(yi) = j. Thus c(V2) ⊆ [2r]−[r]
and |c(V2)| ≥ min{|V2|, r}.

To see that c is a (2r, 1)-coloring of G, we take any edge xy ∈ E(G). Since G is a bipartite graph with vertex bipartition
(V1, V2), we may assume that x ∈ V1 and y ∈ V2. Then by (A) and (B), we have c(x) ̸= c(y) and so c is a (2r, 1)-coloring
of G. To see that c is indeed a (2r, r)-coloring of G, we pick an arbitrary vertex z ∈ V (G). If z ∈ V1, then z = xi for some
i with 1 ≤ i ≤ h. By (A), either ni ≤ r and |c(NG(xi))| = |NG(xi)|, or ni ≥ r and |c(NG(xi))| ≥ r . Similarly, if z ∈ V2, then
using (B), we also conclude that |c(NG(z))| ≥ min{|NG(z)|, r}. Thus c is a (2r, r)-coloring of G satisfying c(U) ⊆ [r] and
c(V ) ⊆ [2r] − [r]. This completes the proof of Lemma 3.11. ■

Lemma 3.12. Let G be a connected P5-free bipartite graph. If G has a dominating clique K2, then χr (G) ≤ 2r.

Proof. Throughout the proof of this lemma, let (U, V ) denote the vertex bipartition of G. We shall prove the lemma arguing
by induction on r . Since G is bipartite, Lemma 3.12 holds for r = 1. We assume that r > 1 and that Lemma 3.12 holds
for smaller values of r .

Since G has a dominating K2, there exists a pair of adjacent vertices u0, v0 such that V (G) = NG(u0) ∪ NG(v0) and such
that NG(u0) = V and NG(v0) = U . Define G′

= G − {u0, v0}. Then G′ is also a P5-free bipartite graph. Let H1,H2, . . . ,Ht
be the connected components of G′. Then each Hi is a connected P5-free bipartite graph. By Theorem 3.4 and since Hi is
bipartite, if |E(Hi)| > 0, then Hi has a dominating P2 or a dominating P3. Thus by induction and by Lemma 3.11, G′ has a
(2r − 2, r − 1)-coloring c ′

: V (G′) ↦→ [2r − 2] satisfying the following properties:
(A) For each i with 1 ≤ i ≤ t , if |E(Hi)| > 0, then c ′(U ∩ V (Hi)) ⊆ [r − 1] and c ′(V ∩ V (Hi)) ⊆ [2r − 2] − [r − 1].
(B) Both |c ′(U)| ≥ min{|U − {u0}|, r − 1} and |c ′(V )| ≥ min{|V − {v0}|, r − 1}.
We extend c ′ to c : V (G) ↦→ [2r] by coloring u0, v0 with two new colors {2r−1, 2r}. Since c ′ is a (2r−2, r−1)-coloring

of G′ satisfying (A) and (B), and since NG(u0) = V and NG(v0) = U , it follows by the definition of c that c is a (2r, r)-coloring
of G. ■

Theorem 3.13. If G is a bipartite P5-free graph. Then for any r ≥ 2,

χr (G) ≤ 2r.

Proof. By Theorem 3.4 and since G is bipartite, G has a dominating path Pt with t = 2 or 3. Therefore, Theorem 3.13
follows from Lemmas 3.11 and 3.12. ■

3.2. 2-hued colorings of P5-free graphs

In this section, we shall prove Theorem 1.8. It suffices to prove Theorem 1.8 for connected P5-free graphs. By
Theorem 3.4, G has a dominating clique Ks for some s ≥ 1 or a dominating path P3. Let J be a dominating maximal
clique Ks or a dominating P3 of G. By Theorem 3.13, we may assume that G is not bipartite. If J = K1, then E(G) = ∅ and
G = K1, and so nothing needs to be proved. If J = Ks for some s ≥ 3, then by Corollary 3.6, we have χ2(G) ≤ 2χ (G). Hence
we assume that J ∈ {K2, P3}.

Let k = χ (G) and let c1 : V (G) ↦→ [k] be a (k, 1)-coloring of G. We also use c1 : V (G) − V (J) ↦→ [k] be the restriction of
c1. Let |V (J)| = ℓ and V (J) = {w1, w2, . . . , wℓ}. Define c : V (G) ↦→ [k + ℓ] as follows.

c(v) =

{
c1(v) if v ∈ V (G) − V (J)
k + j if v = wj ∈ V (J), 1 ≤ j ≤ ℓ.

Since c1 is a (k, 1)-coloring of G, we conclude that c is also a (k, 1)-coloring of G. By the definition of a dominating subgraph,
if v ∈ V (G) − V (J), then either v is of degree one in G, or v is adjacent to at least one vertex in V (G) − V (J), or v is
adjacent to at least two vertices of V (J). In any case, |c(NG(v))| ≥ min{dG(v), 2}. Similarly, for any v ∈ V (J), we also have
|c(NG(v))| ≥ min{dG(v), 2}. It follows by Definition 1.1 that c is a (k + ℓ, 2)-coloring of G, and so χ2(G) ≤ χ (G) + ℓ. Since
G is not bipartite, we have χ (G) ≥ 3 ≥ ℓ, and so χ2(G) ≤ χ (G) + ℓ ≤ 2χ (G). ■
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