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a b s t r a c t

Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, graphs that
have spanning eulerian subgraphs. Catlin in 1988 sharpened Jaeger’s result by showing that
every 4-edge-connected graph is collapsible, graphs that are contractible configurations of
supereulerian graphs. To further study collapsible subgraphs of a 4-edge-connected graph,
in Catlin et al. (2009), it is shown that every 4-edge-connected graph remains collapsible
after removing any two edges. We prove the following.

(i) Every 4-edge-connected G contains two vertices x, y such that one of x and y has
minimum degree in G and both G − x and G − y are collapsible.

(ii) Let G be a 4-edge-connected graph and let X ⊂ E(G) be an edge subset with |X | ≤ 3.
Then G − X is collapsible if and only if X is not contained in a 4-edge-cut of G.

(iii) Let G be a 4-edge-connected graph and let X ⊂ E(G) be an edge subset with |X | ≤ 4.
Then G − X is collapsible if and only if G − X is not contractible to a member in
{K c

2 , K2, K2,2, K2,3, K2,4}.

These extend former results of Jaeger (1979) and Catlin (1988).
© 2019 Elsevier B.V. All rights reserved.

1. The problem

We follow [2] for terminology and notation not defined here, and consider loopless finite graphs in which multiple edges
are allowed. In particular, κ ′(G) and δ(G) denote the edge-connectivity and the minimum degree of a graph G, respectively.
We define O(G) to be the set of odd degree vertices of G and τ (G) to be themaximum number of edge-disjoint spanning tress
of G. As in [2], a graph G is eulerian if G is connected with O(G) = ∅. A graph G is supereulerian if G contains a spanning
eulerian subgraph.

Boesch, Suffel and Tindell [1] proposed the problem to characterize supereulerian graphs. It is indicated in [1] that this
problem would be difficult. Pulleyblank [16] proved that determining whether a graph is supereulerian, even within planar
graphs, is NP-complete. Since then, there have been lots of researches on this topic. Catlin [4] presented the first survey on
supereulerian graphs. Later Chen et al. [7] gave an update in 1995, specifically on the reduction method associated with the
supereulerian problem. A recent survey on supereulerian graphs can be found in [10].
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Catlin introduced collapsible graphs as a tool to study supereulerian graphs. A graph H is collapsible if for any subset
R ⊆ V (H) with |R| ≡ 0 (mod 2), H has a spanning connected subgraph ΓR with O(ΓR) = R. As R = ∅ is possible, it follows
that collapsible graphs are supereulerian. Furthermore, in [3], Catlin proved that if H is a collapsible subgraph of a graph
G, then G is supereulerian if and only if G/H , the graph obtained from G by contracting the edges of H , is supereulerian.
This is known as Catlin’s reduction method. As revealed by the theorems and examples in [7,10], successful applications of
Catlin’s reduction method often depend on the knowledge of collapsible graphs and the so called reduced graphs, graphs
that do not contain nontrivial collapsible subgraph. Thus determining which graphs are collapsible becomes an interesting
and important problem in this area. The following two classical results are well known.

Theorem 1.1 (Jaeger [9]). Every graph G with κ ′(G) ≥ 4 is supereulerian.

Theorem 1.2 (Catlin [3]). Every graph G with κ ′(G) ≥ 4 is collapsible.

Catlin in [3] showed that every graphGwith τ (G) ≥ 2 is collapsible, and every graphwith a spanning collapsible subgraph
is collapsible. Both Theorems 1.1 and 1.2 utilized the well known theorem of Nash-Williams [18] and Tutte [19] on spanning
tree packing of graphs, showing that every 4-edge-connected graph contains 2 edge-disjoint spanning trees. As identifying
collapsible graphs is of particular interest and importance in the studies of supereulerian graphs, or more generally, the
studies of eulerian subgraphs, there have been lots of efforts to find collapsible subgraphs of a 4-edge-connected graph, or of
a graphwith 2-edge-disjoint spanning trees, as presented in Section 2.2 of [10]. Following the notation in [5], we define F (G)
to be the minimum number of additional edges that must be added to G to result in a graph with 2-edge-disjoint spanning
trees. Theorem 1.3 presents some of the former efforts to identify collapsible subgraphs of a 4-edge-connected graph, and
extends Theorems 1.1 and 1.2.

Theorem 1.3. Let G be a connected graph and k ≥ 1 be an integer. Each of the following holds.
(i) (Theorem 7 of [3]) Suppose that F (G) ≤ 1. Then G is collapsible if and only if κ ′(G) ≥ 2.
(ii) (Theorem 1.3 of [5]) Suppose that F (G) ≤ 2. Then G is collapsible if and only if G cannot be contracted to {K2}∪{K1,t : t ≥ 1}.
(iii) (Theorems 1.1 and 1.3 of [6]) κ ′(G) ≥ 2k if and only if ∀X ⊆ E(G) with |X | ≤ k, τ (G − X) ≥ k.
(iv) (Theorems 1.1 and 1.3 of [6]) κ ′(G) ≥ 2k + 1 if and only if ∀X ⊆ E(G) with |X | ≤ k + 1, τ (G − X) ≥ k.

The current research is motivated by the results above. Our main results are the following.

Theorem 1.4. Every 4-edge-connected graph G contains two distinct vertices x, y ∈ V (G) such that both G − x and G − y are
collapsible.

The vertices x and y in Theorem 1.4 cannot be chosen arbitrarily, as seen in the following example. LetQ be a 3-connected
cubic non-hamiltonian graph (for example, a snark), and let G be obtained from Q by adding a new vertex x and joining x
to every vertex of Q . Then G is 4-edge-connected but G − x is not collapsible. Since δ(G) ≥ κ ′(G), for the vertex x (or y) in
Theorem1.4,G/(G−x) is a graphwith 2 vertices and at least 4 edges, and soG itselfmust also be collapsible. Thus Theorem1.4
extends Theorems 1.1 and 1.2. The next result extends Theorem 1.3 (iii) when k = 2. An edge cut of size k is also called a
k-edge-cut of G.

Theorem 1.5. Let G be a 4-edge-connected graph and let X ⊂ E(G) be an edge subset with |X | ≤ 3. Then G − X is collapsible if
and only if X is not contained in a 4-edge-cut of G.

Theorem 1.6. Let K c
2 be the edgeless graph on 2 vertices, G be a 4-edge-connected graph and X ⊂ E(G) be an edge subset with

|X | ≤ 4. Then G − X is collapsible if and only if G − X is not contractible to a member in {K c
2 , K2, K2,2, K2,3, K2,4}.

Weorganize the paper as follows. In Section 2, the neededmechanismwhichwill be used in the proof of themain results.
The proofs of the main results are in the sections following Section 2.

2. Tools

We start with some notation and terminologies to be used in the arguments. Let K l
n denote the graph with n vertices

in which there are exactly l edges connecting any two vertices. For a vertex v ∈ V (G) and a subgraph K of G, define
NK (v) = {u ∈ V (K ) : uv ∈ E(G)}, EK (v) = {e ∈ E(K ) : e is incident with v}, and dK (v) = |EK (v)|.

For an integer i > 0, define Di(G) = {v ∈ V (G) : dG(v) = i}. Let Dδ(G) = {v ∈ V (G) : dG(v) = δ(G)} and K (G) be the set of
all cut vertices of G. For argument convenience, throughout this paper, we define κ ′(K1) = ∞, as K1 is connected and has no
edge-cut of finite size; and τ (K1) = ∞, in accordance to Theorem 1.3.

For a vertex u ∈ D4(G) with NG(u) = {v1, v2, v3, v4}, let π = ⟨{vi1 , vi2}, {vi3 , vi4}⟩ be a 2-partition of NG(u) into a pair of
2-subsets. Define Gπ = (G − u) + {vi1vi2 , vi3vi4}.

Theorem 2.1 (Fleischer [8], Mader [14] and [15]). If u ∈ D4(G) with |NG(u)| = 4, then for some 2-partition π of NG(u),
κ ′(Gπ ) = κ ′(G).
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By Theorem 1.3, every graph with two edge-disjoint spanning trees is collapsible. Our arguments will make use of this
property and examine graphs with more than one edge-disjoint spanning trees.

Theorem 2.2 (Brualdi, Theorem 2 of [17]). Let T1 and T2 be any two spanning trees of G. For any edge e1 ∈ T1 − T2, there exists
an edge e2 ∈ T2 − T1 such that both T1 − x + y and T2 − y + x are two spanning trees of G.

Lemma 2.3. Let G be a graph and v be a vertex of degree 4. If κ ′(G) ≥ 4, then τ (G − v) ≥ 2.

Proof. Let EG(v) = {e1, e2, e3, e4}. By Theorem 1.3(iii) with k = 2, G−{e3, e4} has two edge-disjoint spanning trees, denoted
by T ′

1 and T ′

2. As there are only two edges e1 and e2 incident with v in G − {e3, e4}, e1 and e2 cannot be in the same spanning
tree. We may assume that ei ∈ T ′

i for i = 1, 2. Then T1 = T ′

1 − e1 and T2 = T ′

2 − e2 are two edge-disjoint spanning trees of
G − v, and so τ (G − v) ≥ 2. ■

Lemma 2.4 (Li et al. [11–13]). Let k > 0 be an integer and Tk be the graph family consisting of graphs with at least k edge-disjoint
spanning trees. Then each of the following holds.

(C1) K1 ∈ Tk.
(C2) If G ∈ Tk and if e ∈ E(G), then G/e ∈ Tk.
(C3) Suppose that H is a subgraph of G. If H ∈ Tk and G/H ∈ Tk, then G ∈ Tk.

Lemma 2.5. Let G be a graph with v0 ∈ D4(G) and NG(v0) = {v1, v2, v3, v4}, and let G′
= G − v + {v1v2, v3v4}. If for some

u ∈ V (G′), τ (G′
− u) ≥ 2, then τ (G − u) ≥ 2.

Proof. For each i ∈ {1, 2, 3, 4}, let ei = v0vi. Let e′

1 = v1v2, e′

3 = v3v4. By assumption, τ (G′
− u) ≥ 2. Without loss of

generality, we assume u /∈ {v1, v2, v3}. Choose two edge-disjoint spanning trees T ′

1 and T ′

2 of G′
− u so that

(|{e′

1, e
′

3} ∩ E(T ′

1)| + 1)2 + (|{e′

1, e
′

3} ∩ E(T ′

2)| + 1)2 is minimized. (1)

Suppose that e′

1, e
′

3 ∈ E(T ′

2). Then e′

1 /∈ E(T ′

1) and so by Theorem 2.2, there exists an edge e′′
∈ T ′

1 such that both
T ′′

1 = T ′

1 − e′′
+ e′

1 and T ′′

2 = T ′

2 + e′′
− e′

1 are spanning trees of G′
− u. Since T ′

1 and T ′

2 are edge-disjoint, it follows that
T ′′

1 and T ′′

2 are also edge-disjoint. Direct computation yields that the existence of T ′′

1 and T ′′

2 violates (1). Therefore and by
symmetry, we conclude that

|{e′

1, e
′

3} ∩ E(T ′

1)| ≤ 1 and |{e′

1, e
′

3} ∩ E(T ′

2)| ≤ 1. (2)

To show that τ (G − u) ≥ 2, we are to construct two edge-disjoint spanning trees of G − u from T ′

1 and T ′

2 as follows.
(A) Suppose that |{e′

1, e
′

3} ∩ (E(T ′

1) ∪ E(T ′

2))| = 0. Then let T1 = T ′

1 + e1 and T2 = T ′

2 + e3.
(B) Suppose that |{e′

1, e
′

3} ∩ (E(T ′

1) ∪ E(T ′

2))| = 1. Without loss of generality, we assume that e′

1 ∈ E(T ′

1) and e′

3 /∈

E(T ′

1) ∪ E(T ′

2). Let T1 = T ′

1 + e1 + e2 − e′

1 and T2 = T ′

2 + e3.
(C) Suppose that |{e′

1, e
′

3} ∩ (E(T ′

1) ∪ E(T ′

2))| = 2. By (2), we may assume that e′

1 ∈ E(T ′

1) and e′

3 ∈ E(T ′

2). Let T1 =

T ′

1 + e1 + e2 − e′

1 and T2 = T ′

2 + e3 + e4 − e′

2.
It is routine to show that in each case, (A), (B) or (C) defines two edge disjoint spanning trees T1 and T2 of G − u, and so

the lemma follows. ■

Following [2], an edge cut X of G is essential if each side of G − X contains an edge and we use ess′(G) to denote the
essential edge connectivity of G.

Lemma 2.6. Let G be a graph with κ ′(G) ≥ 4 and δ(G) ≥ 5. If ess′(G) ≥ 5, then for any vertex u ∈ V (G), there exists an edge
e ∈ EG(u) such that κ ′(G − e) ≥ 4.

Proof. By contradiction, there exists a vertex u ∈ V (G) such that for any e ∈ EG(u), κ ′(G − e) ≤ 3. Pick an edge subset
X ⊆ E(G − e) with |X | ≤ 3 such that X is a minimum edge cut of G − e. Thus X ∪ e is an edge-cut of G. Since δ(G) ≥ 5, X ∪ e
must be an essential edge-cut of G, contrary to ess′(G) ≥ 5. ■

Lemma 2.7. Let G be a graph with κ ′(G) ≥ 4 and δ(G) ≥ 6. Then for any x ∈ V (G), there exists an edge e ∈ EG(x) such that
κ ′(G − e) ≥ 4.

Proof. By Lemma 2.6, G must have an essential 4-edge-cut. Let X be a minimum essential 4-edge-cut of G with G1 and G2
being the two components of G − X such that x ∈ V (G1) and such that the choice of X minimizes |V (G1)|.

Let e ∈ EG1 (x). If κ ′(G − e) ≥ 4, then done. Assume that κ ′(G − e) ≤ 3 and Y ⊆ E(G − e) is an edge cut of G − e with
|Y | ≤ 3. Then Y ∪ {e} is also a 4-edge-cut of G. Let H1 and H2 be the two components of G − (Y ∪ {e}). Define

V1 = V (G1) ∩ V (H1), V2 = V (G1) ∩ V (H2), V3 = V (G2) ∩ V (H1), V4 = V (G2) ∩ V (H2).
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Without loss of generality, we assume that x ∈ V1. Let αij be the number of edges in G joining Vi and Vj. Then we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

α12 + α14 + α23 + α34 = |Y ∪ {e}| = 4,
α13 + α14 + α23 + α24 = |X | = 4,
α12 + α13 + α14 ≥ κ ′(G) ≥ 4,
α12 + α23 + α24 ≥ κ ′(G) ≥ 4,
α13 + α23 + α34 ≥ κ ′(G) ≥ 4,
α14 + α24 + α34 ≥ κ ′(G) ≥ 4.

It follows from the last 4 inequalities above that α12 + α13 + α24 + α34 ≥ 8, and so either α12 + α34 ≥ 4 or α13 + α24 ≥ 4,
forcing α14 = α23 = 0. As κ ′(G) ≥ 4, this implies that α12 = α13 = α24 = α34 = 2, and so the α12 + α13 = 4 edges with
exactly one end in V1 is also an essential 4-edge-cut of G, violating the choice of X . This contradiction shows that for any
e ∈ EG1 (x), κ

′(G − e) ≥ 4. ■

3. Proof of Theorem 1.4

We introduce a fewmore terms. If X ⊆ E(G), then G[X] is the subgraph of G induced by the edge subset X . For two vertices
u ̸= v, E(u, v) is the set of edges joining u and v. For an edge subset X ⊂ E(G), a contraction of G, denoted by G/X , is the
graph obtained first from G by identifying the two ends of each edge in X , and then deleting all the resulting loops. If H is a
subgraph of G, then we also use G/H for G/E(H).

By Theorem 1.3(i), every graph G with τ (G) ≥ 2 is collapsible. To prove Theorem 1.4, we shall show a slightly stronger
result, as stated below.

Theorem 3.1. If G is a graph with κ ′(G) ≥ 4 and |V (G)| ≥ 3, then for any x ∈ D4(G) ∪ D5(G) if δ(G) ≤ 5 or x ∈ Dδ(G) − K (G) if
δ(G) ≥ 6, there exists a vertex y ∈ V (G) − {x} such that

(i) both τ (G − x) ≥ 2 and τ (G − y) ≥ 2, and
(ii) {x, y} ∩ Dδ(G) ̸= ∅.

Proof.We argue by induction on |V (G)|+ |E(G)|. Assume first that |V (G)| = 3. Since κ ′(G) ≥ 4, we have |E(G)| ≥ 6. It follows
that G is spanned by a path of length at most 2. If for any pair of distinct vertices u, v ∈ V (G), |E(u, v)| ≥ 2, then for any
distinct x ∈ V (G), G − x is a K ℓ

2 with ℓ ≥ 2, and so τ (G − x) ≥ 2. Therefore the theorem holds in this case. Assume that
there exists a pair of distinct vertices u, v ∈ V (G) such that |E(u, v)| ≤ 1. Let w ∈ V (G) − {u, v}. Then as κ ′(G) ≥ 4, we have
Dδ(G) ⊆ {u, v} and both |E(u, w)| ≥ 3 and |E(v, w)| ≥ 3. Hence Theorem 3.1 holds with {x, y} = {u, v}.

Therefore, we assume that |V (G)| ≥ 4, and Theorem 3.1 holds for graphs with smaller values of |V (G)| + |E(G)|. Let
x ∈ V (G) be a vertex such that either δ(G) ≤ 5 and x ∈ D4(G)∪D5(G)− K (G), or δ(G) ≥ 6 and x ∈ Dδ(G)− K (G). We have the
following claims.

Claim 1. Either Theorem 3.1 holds or δ(G) ≥ 5.

Pick a vertex v0 ∈ V (G) with d = dG(v0) = δ(G) and let EG(v) = {e1, e2, . . . , ed}. By contradiction, we assume that
Theorem 3.1 does not hold and d = 4. By Lemma 2.3, τ (G − v0) ≥ 2.

(1A) If x = v0, then we need to show that there exists a vertex u ∈ V (G) − {v0} such that τ (G − u) ≥ 2.
If G[EG(v0)] = K 4

2 , then |NG(v0)| = 1. Let v′

0 be the only neighbor of v0 in G. Then as |V (G)| ≥ 4, v′

0 is a cut vertex of G and
so κ ′(G − v0) ≥ 4. If follows by induction that G − v0 has a vertex y ∈ V (G) − {v0, v

′

0} such that τ (G − {v0, y}) ≥ 2. Since
G[EG(v0)] = K 4

2 , G − v0 = G/EG(v0), and so by Lemma 2.4(C3), τ (G − y) ≥ 2 as well. Hence the theorem holds in this case.
Therefore we assume that G[EG(v0)] ̸= K 4

2 . It follows that NG(v0) contains at least two vertices. Let NG(v0) = {v1, v2, . . .}

be so labeled that |E(v0, v1)| = max{|E(v0, v)| : v ∈ NG(v0)}. As d = 4 and as G[EG(v0)] ̸= K 4
2 , we have |E(v0, v1)| ≤ 3.

Suppose first that |E(v0, v1)| ≥ 2. Define G′
= G/E(v0, v1) and let v∗ denote the vertex in G′ onto which the edges in

E(v0, v1) are contracted. Since κ ′(G′) ≥ κ ′(G) ≥ 4 and |V (G′)|< |V (G)|, by induction, there exists a vertex u ∈ V (G′) − v∗

such that τ (G′
− u) ≥ 2. By Lemma 2.4, and as τ (G[E(v0, v1))] ≥ 2, we have τ (G − u) ≥ 2. Hence Theorem 3.1 holds.

Thus we may assume that NG(v0) = {v1, v2, v3, v4}. Denote ei = vvi for 1 ≤ i ≤ 4. By Theorem 2.1, we may assume that
G′

= G − v + {v1v2, v3v4} is 4-edge-connected. By induction, there exists a vertex u ∈ V (G′) such that τ (G′
− u) ≥ 2. It

follows from Lemma 2.5 that τ (G − u) ≥ 2.

(1B) Assume that x ̸= v0. We need to show that τ (G − x) ≥ 2. As in the arguments to show (1A), we may assume that
NG(v0) = {v1, v2, v3, v4}, and G′

= G − v + {v1v2, v3v4} is 4-edge-connected. Since x ̸= v0, by the definition of G′, we have
x ∈ V (G′) and dG′ (x) = dG(x). Hence by δ(G) = 4, wemust have x ∈ D4(G′)∪D5(G′). By induction, τ (G′

−x) ≥ 2. By Lemma 2.5,
τ (G − x) ≥ 2. This completes the proof for Claim 1.

By Claim 1, either x ∈ D5(G) or δ(G) ≥ 6 and x ∈ Dδ(G). If δ(G) ≥ 6, then by Lemma 2.7, there must be an edge e ∈ EG(x)
such that κ ′(G−e) ≥ 4. As e ∈ EG(x) and x ∈ Dδ(G), we also have x ∈ Dδ(G−e). By induction, theremust be a y ∈ V (G−e)−{x}
such that both τ (G − x) ≥ 2 and τ (G − y) ≥ 2. Hence we assume that x ∈ D5(G).

Claim 2. Either Theorem 3.1 holds or ess′(G) ≥ 5.
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Assume that Theorem 3.1 does not hold and ess′(G) ≤ 4. Since κ ′(G) ≥ 4, ess′(G) = 4. Suppose G has a minimum essential
edge-cut X with |X | = 4. LetG1 andG2 be the two components ofG−X . Without loss of generality, we assume that x ∈ V (G1).
For i ∈ {1, 2}, let Gi

= G/Gi, and vi be the vertex of Gi onto which Gi is contracted. By the definition of contraction, we have
κ ′(Gi) ≥ κ ′(G) ≥ 4. As x ∈ D5(G), we also have x ∈ D5(G2). By induction, there exists a vertex u1 ∈ V (G1

− v1) such that
τ (G1

− u1) ≥ 2, and τ (G2
− x) ≥ 2. Let u2 = x and fix i ∈ {1, 2}. Since ui ̸= vi, Gi

− ui = (G − ui)/Gi. As τ (Gi) ≥ 2 and
τ (G − ui)/Gi ≥ 2, it follows by Lemma 2.4 (C3) that τ (G − ui) ≥ 2. Hence the theorem holds, and so Claim 2 is justified.

By Claims 1 and 2, we may assume that δ(G) ≥ 5 and ess′(G) ≥ 5. By Lemma 2.6, there must be an edge e ∈ EG(x) such
that κ ′(G − e) ≥ 4. By induction, there exists a vertex y ∈ V (G − e) − {x} such that both τ (G − x) ≥ τ ((G − e) − x) ≥ 2 and
τ (G − y) ≥ τ ((G − e) − y) ≥ 2. This completes the proof of the theorem. ■

Theorem3.1 indicates that every 4-edge-connected graphG contains a vertex x ofminimumdegree such that τ (G−x) ≥ 2.
This property can be applied to show a slight extension of Theorem 1.3 (iii), as seen in Corollary 3.2.

Corollary 3.2. Let G be a graph with κ ′(G) ≥ 4. Then each of the following holds.
(i) For any vertex v ∈ V (G) with dG(v) = 4, τ (G − v) ≥ 2.
(ii) G has at most one vertex of degree 4 and there exists an edge subset X ⊆ E(G) with |X | = 3 such that τ (G − X) ≥ 2.

Proof. If G has a vertex v of degree 4, then by Lemma 2.3, τ (G − v) ≥ 2 and so Corollary 3.2(i) holds. Now assume that
G has at most one vertex of degree 4. By Theorem 3.1, there exists a vertex u ∈ V (G) of degree at least 5 in G such that
τ (G − u) ≥ 2. Let EG(u) = {e1, e2, . . . , ed} with d = dG(u) ≥ 5, and let X = {e1, e2, e3}. Define G′

= (G − X)/(G − u). Then G′

has two vertices and d− 3 ≥ 2 edges. It follows that τ (G′) ≥ 2, and so by Lemma 2.4 and by τ (G− u) ≥ 2, we conclude that
τ (G − X) ≥ 2. ■

4. Proof of Theorems 1.5 and 1.6

We start with an observation that every collapsible graph, being supereulerian, must be 2-edge-connected. Throughout
this section, we assume that G is a graph with κ ′(G) ≥ 4. Let X ⊆ E(G) be an edge subset with |X | = 3. If X is a subset of
an edge 4-cut, then G − X has a cut edge, and so G − X cannot be collapsible. Therefore, to prove Theorem 1.5, it suffices to
prove the following.

Lemma 4.1. Let G be a graph with κ ′(G) ≥ 4 and let X ⊆ E(G) be an edge subset with |X | ≤ 3. Then G − X is collapsible if and
only if X is not lying in an edge-cut of size 4 in G.

Proof. Let X1 ⊆ X be such that |X1| ≤ 2 and |X − X1| ≤ 1. Then by Theorem 1.3(iii), τ (G − X1) ≥ 2. Let H = G − X . Since
|X − X1| ≤ 1 and since τ (G − X1) ≥ 2, it follows that F (H) ≤ 1. By Theorem 1.3(i), H is collapsible if and only if κ ′(H) ≥ 2.
Since H = G − X and κ ′(G) ≥ 4, it follows that κ ′(H) ≥ 2 if and only if X is not lying in a 4-edge-cut of G. ■

With an identical argument, we also have the following slightly strengthening proposition, whose proof is omitted.

Proposition 4.2. Let G be a graph with k = κ ′(G) ≥ 4 and let X ⊆ E(G) be an edge subset with |X | ≤ k − 1. Then G − X is
collapsible if and only if X is not lying in an edge-cut of size k in G.

To prove Theorem 1.6, we need one more result of Catlin.

Theorem 4.3 (Caltin, Lemma 3 of [3]). If G is collapsible, then any contraction of G is also collapsible.

Let K c
2 denote the edgeless graph on 2 vertices. We first make some observations. If G − X is contractible to a member

in {K c
2 , K2, K2,2, K2,3, K2,4}, then since it is known that none of the graphs in {K c

2 , K2, K2,2, K2,3, K2,4} is collapsible (see, for
example, [5]), it follows by Theorem 4.3 that G − X , being contractible to a member in that family, cannot be collapsible.
Therefore, to prove Theorem 1.6, it remains to prove the following lemma.

Lemma 4.4. Let G be a graph with κ ′(G) ≥ 4 and let X ⊆ E(G) be an edge subset with |X | ≤ 4. If G − X is not contractible to a
member in {K c

2 , K2, K2,2, K2,3, K2,4}, then G − X is collapsible.

Proof. Let X2 ⊆ X be such that |X2| ≤ 2 and |X − X2| ≤ 2. Then by Theorem 1.3(iii), τ (G − X2) ≥ 2. Let H = G − X .
Since |X − X2| ≤ 2 and since τ (G − X1) ≥ 2, it follows that F (H) ≤ 2. By Theorem 1.3(ii), H is collapsible if and only
if H is disconnected, or H is connected but not contractible to a member in {K2} ∪ {K2,t : t ≥ 1}. Since κ ′(G) ≥ 4 and
|X | ≤ 4, it follows that t ≤ 4 and so H is collapsible if and only if H is connected but not contractible to a member in
{K c

2 , K2, K2,2, K2,3, K2,4}. ■
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