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a b s t r a c t

Let α be a non-negative real number, and let Θ(G, α) be the largest eigenvalue of
A(G) + αD(G). Specially, Θ(G, 0) and Θ(G, 1) are called the spectral radius and signless
Laplacian spectral radius of G, respectively. A graph G is said to be Hamiltonian
(traceable) if it contains a Hamiltonian cycle (path), and a graph G is called Hamilton-
connected if any two vertices are connected by a Hamiltonian path in G. The number
of edges of G is denoted by e(G). Recently, the (signless Laplacian) spectral property
of Hamiltonian (traceable, Hamilton-connected) graphs received much attention. In this
paper, we shall give a general result for all these existed results. To do this, we first
generalize the concept of Hamiltonian, traceable, and Hamilton-connected to s-suitable,
and we secondly present a lower bound for e(G) to confirm the existence of s-suitable
graphs. Thirdly, when 0 ≤ α ≤ 1, we obtain a lower bound for Θ(G, α) to confirm
the existence of s-suitable graphs. Consequently, our results generalize and improve all
these existed results in this field, including the main results of Chen et al. (2018), Feng
et al. (2017), Füredi et al. (2017), Ge et al. (2016), Li et al. (2016), Nikiforov et al. (2016),
Wei et al. (2019) and Yu et al. (2013, 2014).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider simple connected undirected graph, and G = (V , E) is a connected graph with n vertices
and e(G) edges. Let NG(u) and dG(u) be the neighbor set and the degree of vertex u, respectively. Let δ(G) and ∆(G) be the
minimum degree and maximum degree of G, respectively. If there is no rise of confusion, we always simplify NG(u) and
dG(u) as N(u) and d(u), respectively. As usual, Kn, Cn, Pn and K1,n−1 denote the complete graph, cycle, path and star graph
with n vertices, respectively, and G1 ∨ G2 denotes the join graph of two vertex disjoint graphs G1 and G2. In other words,
G1 ∨ G2 is the graph having vertex set V

(
G1 ∨ G2

)
= V

(
G1

)
∪ V

(
G2

)
and edge set E

(
G1 ∨ G2

)
= E

(
G1

)
∪ E

(
G2

)
∪

{
uv :

u ∈ V
(
G1

)
, v ∈ V

(
G2

)}
. When t is a positive integer, then tK1 denotes the set of t isolated vertices.

When n, s and k are three integers such that max{0, s} ≤ k ≤
1
2 (n + s − 2), we define the graphs Mk,s

n and Nk,s
n with n

vertices and minimum degree k as follows:

Nk,s
n

∼= Kk ∨

(
Kn+s−2k−1 ∪ (k + 1 − s)K1

)
, and

Mk,s
n

∼=

{
Ks ∨

(
Kn−k−1 ∪ Kk+1−s

)
for s > 0,

Kn−k−1 ∪ Kk+1 for s = 0.
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If A(G) and D(G), respectively, define the adjacency matrix and the diagonal matrix of G, then the signless Laplacian
matrix of G is defined as Q (G) = D(G) + A(G). Hereafter, let ρ(G) and µ(G) be the largest eigenvalues of A(G) and
Q (G), respectively, and we call ρ(G) and µ(G) the spectral radius and signless Laplacian spectral radius of G, respectively.
Throughout this paper, α defines a non-negative real number and let Θ(G, α) be the largest eigenvalue of A(G) + αD(G).
From the definition, it is easy to see that Θ(G, 0) = ρ(G), and Θ(G, 1) = µ(G).

A cycle (path) of a graph G that contains every vertex of G is called a Hamiltonian cycle (path) of G. A graph G is said
to be Hamiltonian (traceable) if it contains a Hamiltonian cycle (path), and a graph G is called Hamilton-connected if any
two vertices are connected by a Hamiltonian path in G.

Recently, the (signless Laplacian) spectral properties of traceable graph, Hamiltonian graph and Hamilton-connected
received more and more attention. For the spectral properties of traceable graph, Fiedler et al. [7] firstly proved that:
For a graph G with n vertices, if ρ(G) ≥ n − 2, then G is traceable unless G ∼= M0,0. In 2016, Li et al. [11] generalized
Fiedler’s result to: For a graph G with n ≥ max

{
6k + 10, 1

2 (k
2
+ 7k + 8)

}
vertices and minimum degree δ(G) ≥ k ≥ 0, if

ρ(G) ≥ ρ
(
Nk,0

n

)
, then G is traceable unless G ∼= Nk,0

n . Soon later, Nikiforov [14] improved Li’s result to:

Theorem 1.1 ([14]). Let G be a graph with n ≥ k3+k2+2k+5 vertices and minimum degree δ(G) ≥ k ≥ 1. If ρ(G) ≥ n−k−2,
then G is traceable unless G ∈

{
Nk,0

n , Mk,0
n

}
.

For the spectral properties of Hamiltonian graphs, Fiedler et al. [7] firstly proved that: For a graph G with n vertices,
if ρ(G) > n − 2, then G is Hamiltonian unless G ∼= M1,1

n . In 2016, Li et al. [11] generalized Fiedler’s result to: For a graph
G with n ≥ max

{
6k + 5, 1

2

(
k2 + 6k + 4

)}
vertices and minimum degree δ(G) ≥ k ≥ 1, if ρ(G) ≥ ρ

(
Nk,1

n

)
, then G is

Hamiltonian unless G ∼= Nk,1
n . Soon later, Nikiforov [14] improved Li’s result to:

Theorem 1.2 ([14]). Let G be a graph with n ≥ k3 + k + 4 vertices and minimum degree δ(G) ≥ k ≥ 1. If ρ(G) ≥ n − k − 1,
then G is Hamiltonian unless G ∈

{
Nk,1

n , Mk,1
n

}
.

Very recently, Ge et al. [9] improved Nikiforov’s result to n ≥ max
{ 1
2

(
k3 + 2k + 5

)
, 6k + 5

}
. Researchers also

concerned with the (signless Laplacian) spectral properties of Hamilton-connected graphs. In this line, Yu et al. [17] proved
that: For a graph G with n vertices, if either ρ(G) > 1

2

(√
4n2 − 12n + 17 − 1

)
or µ(G) > 2n−4+

2
n−1 , then G is Hamilton-

connected unless G ∼= M2,2
n . In 2017, Zhou et al. [20] proved that: For a graph G with minimum degree δ(G) ≥ 3 and

n ≥ 9 vertices, if either ρ(G) ≥
√
n2 − 6n + 19 or µ(G) ≥ 2n−6+

14
n−1 , then G is Hamilton-connected. Later, Yu et al. [18]

generalized the spectral radius version of Zhou’s results to: For a graph G with n ≥ 2k2 +1 vertices and minimum degree
δ(G) ≥ k ≥ 2, if ρ(G) ≥ n − k, then G is Hamilton-connected unless G ∼= Mk,2

n . Recently, Chen et al. [3] and Yu et al. [19],
independently, improved Yu’s result of [18] by showing that: For a graph G with n ≥ max

{
6k2−8k+5, 1

2

(
k3−k2+4k−1

)}
vertices and minimum degree δ(G) ≥ k ≥ 2, if ρ(G) ≥ n− k, then G is Hamilton-connected unless G ∈

{
Nk,2

n , Mk,2
n

}
. Soon

later, Wei et al. [16] improved Chen’s result to n ≥ max
{

1
2

(
k3 − k2 + 2k + 8

)
, 6k

}
, that is,

Theorem 1.3 ([16]). Let G be a graph with n ≥ max
{

1
2

(
k3 − k2 + 2k + 8

)
, 6k

}
vertices and minimum degree δ(G) ≥ k ≥ 3.

If ρ(G) ≥ n − k, then G is Hamilton-connected unless G ∈
{
Nk,2

n , Mk,2
n

}
.

For the signless Laplacian spectral properties of traceable graphs, Yu et al. [17] firstly proved that: For a graph G with
n vertices, if µ(G) ≥ 2(n − 2), then G is traceable unless G ∼= N0,0

n . In 2016, Li et al. [11] generalized Yu’s result to:

Theorem 1.4 ([11]). Let G be a graph with n ≥ max
{
6k+ 10, 1

2

(
3k2 + 9k+ 8

)}
vertices and minimum degree δ(G) ≥ k ≥ 0.

If µ(G) ≥ µ
(
Nk,0

n

)
, then G is traceable unless G ∼= Nk,0

n .

For the signless Laplacian spectral properties of Hamiltonian graphs, Yu et al. [17] proved that: For a graph G with n
vertices, if µ(G) > 2(n − 2), then G is Hamiltonian unless G ∼= N1,1

n . In 2016, Li et al. [11] generalized Yu’s result to:

Theorem 1.5 ([11]). Let G be a graph with n ≥ max
{
6k + 5, 1

2

(
3k2 + 5k + 4

)}
vertices and minimum degree δ(G) ≥ k ≥ 1.

If µ(G) ≥ µ
(
Nk,1

n

)
, then G is Hamiltonian unless G ∼= Nk,1

n .

By comparing these results of Theorems 1.1–1.5, it is rather interesting for us to consider the following problem:

Problem 1.1. How can we generalize these results of Theorems 1.1–1.5?

To this aim, we need to introduce the concepts of q-traceable and q-Hamiltonian. For any non-negative integer q, a graph
G with n ≥ 3 vertices is called q-traceable if any removal of at most q vertices to G results in a traceable graph, while
a graph G with n ≥ 3 vertices is called q-Hamiltonian if any removal of at most q vertices to G results in a Hamiltonian
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graph. From the definitions, a q-Hamiltonian graph must be a (q+ 1)-traceable graph. However, a (q+ 1)-traceable graph
is not necessarily a q-Hamiltonian graph. For instance, the Petersen graph is 1-traceable, but it is not 0-Hamiltonian.

Hereafter, we use G[X] to denote the subgraph of G induced by X . It is easy to see that a traceable graph is also a
0-traceable graph, and a Hamiltonian graph is both a 0-Hamiltonian and a 1-traceable graph. If G is Hamilton-connected,
then for any two vertices {u, v} of G, there is a Hamiltonian path connecting u and v. Thus, G

[
V (G)\{u, v}

]
contains a

Hamiltonian path and G
[
V (G)\{u}

]
also contains a Hamiltonian path, and hence G is 2-traceable.

A graph G is q-edge-Hamiltonian if any collection of vertex-disjoint paths with at most q edges altogether belongs to a
Hamiltonian cycle in G. A connected graph G is said to be q-connected if it has more than q vertices and remains connected
whenever fewer than q vertices are deleted. Similarly, G is q-edge-connected if it has at least two vertices and remains
connected whenever fewer than q edges are deleted. A graph G is q-path-coverable if V (G) can be covered by q or fewer
vertex-disjoint paths.

Recently, Feng et al. [6] obtained the generalized result for spectral property of q-Hamiltonian (respectively, q-edge-
Hamiltonian) graphs, that is

Theorem 1.6 ([6]). For a graph G with n ≥ q+6 ≥ 7 vertices and minimum degree at least one, if ρ(G) ≥

√
(n − 2)2 + 2q + 1,

then G is q-edge-Hamiltonian and q-Hamiltonian.

Except for this, Feng et al. [6] also obtained the generalized result for spectral property of q-connected (respectively,
q-edge-connected, q-path-coverable) graphs, that is

Theorem 1.7 ([6]). (i) For a graph G with n ≥ q + 1 ≥ 2 vertices and minimum degree at least one, if ρ(G) ≥√
n(n − 4) + 2q + 1, then G is q-connected. (ii) For a graph G with n ≥ q + 1 ≥ 3 vertices and minimum degree at least

one, if ρ(G) ≥
√
n(n − q − 5) + 2q(q + 1) + 5, then G is q-edge-connected. (iii) For a graph G with n ≥ 5q + 6 ≥ 16 vertices

and minimum degree at least one, if ρ(G) ≥

√
(n − q − 2)2 + q + 1, then G is q-path-coverable.

For a non-negative integer q, the q-closure, denoted by Cq(G), of a graph G is the graph obtained from G by successively
joining pairs of nonadjacent vertices whose degree sum is at least q until no such pair remains. It is easy to see that
G ⊆ Cq(G).

Let Gn be the class of graphs with n vertices and q be a non-negative integer. If G has the property P if and only if
Cq(G) has property P for each G ∈ Gn, then the property P is said to be q-stable (here, the definition of q-stable is a little
different from that in [1]).

By an observation to Theorem 1.6, one can easily find that Feng et al. cannot solve Problem 1.1 completely, as
Theorems 1.1–1.3 are not a special case of Theorem 1.6. Therefore, positive answer to Problem 1.1 is also valuable, and
our main goal of this paper is to solve it. To do this, via analyzing all these referred former results, we find that the key
tool to prove them relies on the following k-stable property:

Proposition 1.1 ([1]). The following stability results hold for graphs with n vertices:
(i) The property that ‘‘G is q-connected" is (n + q − 2)-stable.
(ii) The property that ‘‘G is q-edge-connected" is (n + q − 2)-stable.
(iii) The property that ‘‘G is q-Hamiltonian" is (n + q)-stable.
(iv) The property that ‘‘G is q-edge-Hamiltonian" is (n + q)-stable.
(v) The property that ‘‘G is q-path-coverable" is (n − q)-stable.

In what follows, we shall give the spectral property to (n + s − 1)-stable property for graphs with n vertices, which
will improve and generalize all these results in Theorems 1.1–1.7. To do this, we need more notations in the following:

Definition 1.1. Let n, s, p and k be four integers such that max{0, s} ≤ p ≤ k ≤
1
2 (n + s − 2). If p ≥ max

{
s, 0

}
+ 1, then

Gn(p, s, k) =

{
G : G ∼= Kp∨

(
Kn+s−k−1−p∪H0

)
, where H0 is a (k−p)-regular graph with k+1−s vertices

}
. If p = s ≥ 0, then

Gn(p, s, k) =
{
Mk,s

n

}
. If p = 0 > s, then Gn(p, s, k) =

{
Kn+s−k−1∪H0, whereH0 is a k-regular graph with k+1−s vertices

}
.

Here, we need to point out the fact that s being negative is also permitted in Definition 1.1 (see Remark 1.2). From
Definition 1.1, it is easy to see that Gn(k, s, k) =

{
Nk,s

n

}
and Gn(p, s, k) are graphs with n vertices and minimum degree

k ≥ 0. Hereafter, if G ∈ Gn(p, s, k) and max{s, 1} ≤ p ≤ k, we let V1(G), V2(G) and V3(G) be the vertex sets corresponding
to Kp, Kn+s−k−1−p and H0 of G, respectively. Especially, when k ≥ 1 and n+s−2k ≥ 3, we define Nk,s

n,0 as the graph obtained
from Nk,s

n by deleting one edge with two end vertices in V2
(
Nk,s

n

)
, namely, in Kn+s−k−1−p. In what follows, let

Θ0 = α

(
2ε0
n − 1

+ n − 2
)

+
1
2
(1 − α)

(
k − 1 +

√
(k + 1)2 + 8ε0 − 4nk

)
,

where

ε0 =

(
n − k − 2 + s

2

)
+ (k + 1)(k + 2 − s).

Now, we are ready to give the main results of this paper:
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Theorem 1.8. Let s and k be two integers and let G be a graph with n ≥ 6k + 10 − 5s vertices and minimum degree
δ(G) ≥ k ≥ max {1, s}. If Θ(G, α) > Θ0 and 0 ≤ α ≤ 1, then either Cn+s−1(G) ∼= Kn or Cn+s−1(G) ∈ Gn(p, s, k) holds for some
integer p, where max {0, s} ≤ p ≤ k.

Theorem 1.9. Let s and k be two integers and let G be a graph with n ≥ max
{
6k + 10 − 5s, 1

4

(
4(k − s)(k + 3) + 10k +

25
)
, 1

3

(
2(k− s)(3k− s+ 5)+ 8k+ 15

)}
vertices and minimum degree δ(G) ≥ k ≥ max {1, s}. If Θ(G, α) ≥ Θ

(
Nk,s

n,0, α

)
and

0 ≤ α ≤ 1, then unless G ∼= Nk,s
n,0, either Cn+s−1(G) ∼= Kn or G ∈ Gn(p, s, k) holds for some integer p, where max {0, s} ≤ p ≤ k.

Now, one can easily see that our Theorems 1.8 and 1.9 give the spectral property to (n + s − 1)-stable property for
graphs with n vertices. In [1,2], many q-stable properties had been given. Thus, we can apply Theorem 1.8 or Theorem 1.9
to give a new spectral property to these q-stable properties.

By comparing Theorems 1.8 and 1.9, it is an interesting question that: How large is Θ
(
Nk,s

n,0, α

)
or Θ0. Actually, it is

easy to see that Θ
(
Nk,s

n,0, α

)
> Θ0 (see (4.8) in the proof of Theorem 1.9). Furthermore, for Θ

(
Nk,s

n,0, α

)
, we have

Proposition 1.2. Let k, s and n be three integers such that max {1, s} ≤ k ≤
1
6 (n+ 5s− 10). If n ≥ max

{
1
2

(
(k2 + 4)(k+ 1−

s) + 2
)
, 1

2

(
k2(k + 1) + 6

)}
, then ρ

(
Nk,s

n,0

)
< n + s − k − 2 and

µ

(
Nk,s

n,0

)
<

2n2
− 2(k + 3 − s)n + (k − s + 1)(3k − s + 2)

n − 1
. (1.1)

Remark 1.1. Note that Kn is both q-connected and q-edge-connected,
√
n(n − 4) + 2q + 1 ≥ n + q − δ(G) − 3 and

√
n(n − q − 5) + 2q(q + 1) + 5 ≥ n + q − δ(G) − 3 hold for large n and 3q ≤ 2δ(G). Thus, by Propositions 1.2 and 1.1 (i)

and (ii), it is easy to see that Theorem 1.9 improves Theorem 1.7 (i) and (ii) for large n and 3q ≤ 2δ(G) by setting s = q−1.

Remark 1.2. Note that Kn is q-path-coverable. Thus, by Propositions 1.2 and 1.1 (v), it is easy to see that Theorem 1.9
improves Theorem 1.7 (iii) for large n and δ(G) ≥ 2 by setting s = 1 − q (here, s = 1 − q may be negative).

Remark 1.3. Note that Kn is both q-edge-Hamiltonian and q-Hamiltonian, and δ(G) ≥ q + 2 holds for any q-Hamiltonian
graph G. Thus, by Proposition 1.2 and Proposition 1.1 (iii) and (iv), it is easy to see that Theorem 1.9 improves Theorem 1.6
for large n and δ(G) ≥ q + 2 by setting s = q + 1.

As referred before, a traceable graph is also a 0-traceable graph, a Hamiltonian graph is both a 0-Hamiltonian graph
and a 1-traceable graph, and a Hamilton-connected graph is also a 2-traceable graph. For any graph G with n vertices, it
is well-known that [15]: G is traceable if and only if Cn−1(G) is traceable. For the general case of q-traceable, we have

Proposition 1.3. If q ≥ 0 and G is a graph with n vertices, then G is q-traceable if and only if Cn+q−1(G) is q-traceable.

Note that Kn is traceable, Hamiltonian and Hamilton-connected. By setting s = 0, 1, 2 in Theorem 1.9 and
Proposition 1.2, we have: If n is large enough and ρ(G) ≥ n + s − k − 2, then G is traceable (respectively, Hamiltonian
Hamilton-connected) unless G ∈ Gn(p, s, k) for some integer p, where s ≤ p ≤ k. However, this is somewhat different
from that in Theorems 1.1–1.3. Actually, in [3,11,16], the authors had shown that:

Proposition 1.4 ([3,11,16]). For s = 0 (respectively, s = 1, 2), if G ∈ Gn(p, s, k) for some integer p, where s ≤ p ≤ k ≤
n+s−2

2 ,
then G is traceable (respectively, Hamiltonian, Hamilton-connected) if and only if p ∈

{
s + 1, s + 2, . . . , k − 1

}
.

Therefore, to generalize the corresponding results of Theorems 1.1–1.5, we need to generalize Proposition 1.4 to

Proposition 1.5. Suppose that q ≥ 0. (i) If q ≤ p ≤ k ≤
1
2 (n + q − 2) and G ∈ Gn(p, q, k), then G is q-traceable if and only

if p ∈ {q + 1, q + 2, . . . , k − 1}. (ii) If q + 1 ≤ p ≤ k ≤
1
2 (n + q − 1) and G ∈ Gn(p, q + 1, k), then G is q-Hamiltonian if and

only if p ∈ {q + 2, q + 3, . . . , k − 1}.

By combining Propositions 1.1 (iii) and 1.3, the property that ‘‘G is q-Hamiltonian (respectively, q-traceable)" is
(n + q)-stable (respectively, (n + q − 1)-stable). However, Proposition 1.5 and Theorem 1.9 show that: for q-Hamiltonian
(respectively, q-traceable) graphs, except for (n + q)-stable (respectively, (n + q − 1)-stable) property, they require more
conditions. Now, motivated from Propositions 1.3–1.5, we put forward the concept of s-suitable graph as follows:

Definition 1.2. A graph G with n vertices and minimum degree δ(G) ≥ k is called an s-suitable graph if G satisfies the
following conditions: (i) Kn is s-suitable, (ii) G is s-suitable if and only if Cn+s−1(G) is s-suitable, and (iii) If s0 ≤ p ≤ k ≤
1
2 (n + s − 2) and G ∈ G(p, s, k), then G is s-suitable if and only if p ∈ {s0 + 1, s0 + 2, . . . , k − 1}, where s0 = max{0, s}.
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For any non-negative integer q, since Kn is both q-traceable and q-Hamiltonian, by Propositions 1.1 (iii), 1.3, 1.5 and
Definition 1.2, a q-traceable graph is q-suitable, and a q-Hamiltonian graph is (q + 1)-suitable. Consequently, a traceable,
Hamiltonian, and Hamilton-connected graph is a 0-suitable, 1-suitable and 2-suitable graph, respectively.

Since Kn is s-suitable, by Theorem 1.8, it easily follows that

Corollary 1.1. Let s and k be two non-negative integers and let G be a graph with n ≥ 6k + 10 − 5s vertices and minimum
degree δ(G) ≥ k ≥ max {1, s}. If Θ(G, α) > Θ0 and 0 ≤ α ≤ 1, then G is s-suitable unless Cn+s−1(G) ∈

{
Nk,s

n ,M
k,s
n

}
.

Note that a Hamilton-connected graph is a 2-suitable graph. Thus, by Corollary 1.1, we have the following remark.

Remark 1.4. In [3], it is shown that: For any graph with n ≥ 6k2 − 8k + 5 vertices and minimum degree δ(G) ≥ k ≥ 2, if
either ρ(G) > 1

2 (k − 1) +
1
2

√
4n2 − 4(3k − 1)n + k2 + 10k − 15 or µ(G) > 2n − 2k −

2
n−1 , then G is Hamilton-connected

unless Cn+1(G) ∈
{
Nk,2
n ,Mk,2

n

}
. It is easy to see that Corollary 1.1 improves this result for large n by setting s = 2.

From the definition of s-suitable and Theorem 1.9, we have

Corollary 1.2. Let s and k be two non-negative integers and let G be a graph with n ≥ max
{
6k+10−5s, 1

4

(
4(k−s)(k+3)+

10k+25
)
, 1

3

(
2(k− s)(3k− s+5)+8k+15

)}
vertices and minimum degree δ(G) ≥ k ≥ max {1, s}. If Θ(G, α) ≥ Θ

(
Nk,s

n,0, α

)
and 0 ≤ α ≤ 1, then G is s-suitable unless G ∈

{
Nk,s

n , M
k,s
n , N

k,s
n,0

}
.

Remark 1.5. Recall that a traceable, Hamiltonian, and Hamilton-connected graph is a 0-suitable, 1-suitable and 2-suitable
graph, respectively. By Proposition 1.2, it is easy to see that Corollary 1.2 improves and generalizes these results of Theorems 1.1–
1.5 for large n by setting s = 0, 1 and 2, respectively.

As the definition of s-suitable is an extension to the concepts of traceable, Hamiltonian and Hamilton-connected, it is
easy to see that the graph with more edges has higher chance to be s-suitable. For a graph with n vertices and minimum
degree δ(G) ≥ k ≥ 1, it is natural and interesting for us to consider the following problem:

Problem 1.2. How large for e(G) can confirm that the s-suitability of a graph G?

The corresponding Problem 1.2 of traceable, Hamiltonian, and Hamilton-connected graph had been, respectively,
studied in [3,8,11,16]. Now, we will give partial answer to Problem 1.2, which generalizes the above referred results:

Theorem 1.10. Let s and k be two integers and let G be a graph with n ≥ 6k + 10 − 5s vertices, minimum degree
δ(G) ≥ k ≥ max {1, s} and e(G) > ε0 edges. If Cn+s−1(G) ̸∼= Kn, then Cn+s−1(G) ∈ Gn(p, s, k) holds for some integer p,
where max {s, 0} ≤ p ≤ k.

2. The Proofs of Propositions 1.3 and 1.5

The following result generalizes the corresponding result of traceable graph due to Ore [15].

Lemma 2.1. Let G be a graph with n vertices and q be a non-negative integer. If dG(w1) + dG(w2) ≥ n + q − 1 whenever
w1w2 ̸∈ E(G), then G is q-traceable if and only if G′

= G + w1w2 is q-traceable.

Proof. It suffices to show the necessity. Let S be any set of at most q vertices such that S ⊆ V (G) and |S| = t . Since G′ is
q-traceable, G′

[
V (G) \ S

]
contains a Hamiltonian path, say P , where V (P) = V (G) \ S.

If w1w2 ̸∈ E(P), then P is also a path of G
[
V (G) \ S

]
and hence we are done. Otherwise, w1w2 ∈ E(P) and w1w2 ̸∈ E(G).

Let G1 = G
[
V (G) \ S

]
and let P = u1u2 · · · un−t be the corresponding Hamiltonian path of G′

[
V (G) \ S

]
, where w1 = ui and

w2 = ui+1. Recall that dG(ui) + dG(ui+1) ≥ n + q − 1. Thus, dG1 (ui) + dG1 (ui+1) ≥ n + q − 2t − 1 ≥ n − t − 1 as t ≤ q.
Furthermore, u1ui+1 ̸∈ E(G1) and uiun−t ̸∈ E(G1) (otherwise, G

[
V (G) \ S

]
also contains a Hamiltonian path, and the result

already holds).
We firstly prove the following claim:

Claim 1: There is an index j with either i+ 2 ≤ j ≤ n− t − 1 or 1 ≤ j ≤ i− 2 such that uiuj ∈ E(G1) and ui+1uj+1 ∈ E(G1).

Proof of Claim 1: We suppose that NG1 (ui+1) =
{
up1 , up2 , . . . , upq , ui+2

}
, where {1, i} ∩ {p1, p2, . . . , pq} = Ø. If Claim

1 does not hold, then NG1 (ui) ⊆
{
u1, u2, . . . , ui−1, ui+2, ui+3, . . ., un−t−1

}
\

{
up1−1, up2−1, . . . , upq−1

}
. Thus, dG1 (ui) ≤

n − t − 3 − q and hence dG1 (ui) + dG1 (ui+1) ≤ (n − t − 3 − q) + (q + 1) = n − t − 2, a contradiction. This completes the
proof of Claim 1.

By Claim 1, either for some j with i + 2 ≤ j ≤ n − t − 1, both uiuj ∈ E(G1) and ui+1uj+1 ∈ E(G1), whence
u1u2 . . . uiujuj−1 . . . ui+1uj+1uj+2 · · · un−t is a Hamiltonian path of G[V (G) \ S]; or for some j with 1 ≤ j ≤ i − 2, both
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uiuj ∈ E(G1) and ui+1uj+1 ∈ E(G1), whence u1u2 . . . ujuiui−1 . . . uj+1ui+1ui+2 . . . un−t is a Hamiltonian path of G[V (G) \ S].
This proves the lemma. ■

The Proof of Proposition 1.3. By Lemma 2.1, it is easy to see that Proposition 1.3 holds. ■

Lemma 2.2. Let q be a non-negative integer. Then G is q-traceable if and only if K1 ∨ G is (q + 1)-traceable, and G is
q-Hamiltonian if and only if K1 ∨ G is (q + 1)-Hamiltonian.

Proof. Let V (K1) = {u} and also let G′
= K1 ∨ G. We firstly suppose that K1 ∨ G is (q + 1)-traceable (respectively, (q + 1)-

Hamiltonian). Let S be any vertex set of G with t vertices, where 0 ≤ t ≤ q. Then, S1 = S ∪ {u} is a vertex set of K1 ∨ G
with t + 1 vertices. In this case, since t ≤ q and since K1 ∨ G is (q + 1)-traceable (respectively, (q + 1)-Hamiltonian),
G′

[
V (G′) \ S1

]
contains a Hamiltonian path (respectively, Hamiltonian cycle). Note that G

[
V (G) \ S

]
∼= G′

[
V (G′) \ S1

]
. Thus,

G is q-traceable (respectively, q-Hamiltonian).
Now, we suppose that G is q-traceable (respectively, q-Hamiltonian) and suppose that S2 is any vertex set of G′ with

t + 1 vertices, where 0 ≤ t ≤ q (Actually, since G is traceable, it is easy to see that G′ is Hamiltonian, and hence we may
suppose that |S2| ≥ 1). If u ∈ S2, then let S3 = S2 \ {u}. In this case, G

[
V (G)\ S3

]
contains a Hamiltonian path (respectively,

Hamiltonian cycle). Since G′
[
V (G′) \ S2

]
∼= G

[
V (G) \ S3

]
, G′

[
V (G′) \ S2

]
also contains a Hamiltonian path (respectively,

Hamiltonian cycle). Thus, we assume that u ̸∈ S2.
Since |S2| ≥ 1, we choose v ∈ S2 and let S4 = S2 \ {v}. It is easy to see that G′

[
V (G′)\S4

]
∼= K1 ∨G

[
V (G)\S4

]
. Combining

this with G
[
V (G)\S4

]
containing a Hamiltonian path (respectively, Hamiltonian cycle), we can conclude that G′

[
V (G′)\S2

]
contains a Hamiltonian path (respectively, Hamiltonian cycle). ■

The Proof of Proposition 1.5. We prove Proposition 1.5 by induction on q. By Proposition 1.4, the results hold for q = 0.
Thus, we assume that q ≥ 1 and Proposition 1.5 holds for smaller values of q.

(i) G ∈ Gn(p, q, k) with 1 ≤ q ≤ p ≤ k ≤
1
2 (n + q − 2).

As p ≥ q ≥ 1, by Definition 1.1, there exists a graph G1 such that G = K1 ∨ G1. By Lemma 2.2, G is q-traceable if and
only if G1 is (q− 1)-traceable. In this case, G ∼= Kp ∨

(
Kn+q−k−1−p ∪ H0

)
and G1 ∼= Kp−1 ∨

(
Kn+q−k−1−p ∪ H0

)
, where H0 is a

(k − p)-regular graph with k + 1 − q vertices.
Recall that 1 ≤ q ≤ p ≤ k ≤

1
2 (n + q − 2). Thus, 0 ≤ q − 1 ≤ p − 1 ≤ k − 1 ≤

1
2 (n + q − 4) and hence

δ(G1) = k − 1. Therefore, G1 ∈ Gn−1(p − 1, q − 1, k − 1). By the induction hypothesis, G1 is (q − 1)-traceable if and only
if p − 1 ∈

{
q, q + 1, . . . , k − 2

}
. Thus, G is q-traceable if and only if p ∈

{
q + 1, q + 2, . . . , k − 1

}
.

(ii) G ∈ Gn(p, q + 1, k) with 2 ≤ q + 1 ≤ p ≤ k ≤
1
2 (n + q − 1).

As p ≥ q + 1 ≥ 2, we may suppose that G = K1 ∨ G1 by Definition 1.1. By Lemma 2.2, G is q-Hamiltonian if and only
if G1 is (q − 1)-Hamiltonian. In this case, G ∼= Kp ∨

(
Kn+q−k−p ∪ H0

)
and G1 ∼= Kp−1 ∨

(
Kn+q−k−p ∪ H0

)
, where H0 is a

(k − p)-regular graph with k − q vertices.
Recall that 2 ≤ q + 1 ≤ p ≤ k ≤

1
2 (n + q − 1). Thus, 1 ≤ q ≤ p − 1 ≤ k − 1 ≤

1
2 (n + q − 3) and hence

δ(G1) = k − 1. Therefore, G1 ∈ Gn−1(p − 1, q, k − 1). By the induction hypothesis, G1 is (q − 1)-Hamiltonian if and only if
p − 1 ∈

{
q + 1, q + 2, . . . , k − 2

}
. Thus, G is q-Hamiltonian if and only if p ∈

{
q + 2, q + 3, . . . , k − 1

}
. ■

3. The Proofs of Theorems 1.8 and 1.10

For A, B ⊆ V (G) and A∩ B = Ø, let e(A, B) be the number of edges connecting A and B. Especially, e(v, B) is the number
of edges that connect v and B.

Lemma 3.1. Let s and k be two integers and let G be a graph with n ≥ 6k + 10 − 5s vertices, minimum degree
δ(G) ≥ k ≥ max {1, s} and e(G) > ε0 edges. If Cn+s−1(G) ̸∼= Kn, then ω(Cn+s−1(G)) ≥ n + s − k − 1, where ω(Cn+s−1(G))
is the clique number of Cn+s−1(G).

Proof. In the proof of this result, we rewrite Cn+s−1(G) as G′. From the definition, it follows that δ(G′) ≥ δ(G) ≥ k,
e(G′) ≥ e(G) and dG′ (u) + dG′ (v) ≤ n + s − 2 holds for any pair of nonadjacent vertices {u, v} ⊆ V (G′). Let K be the subset
of V (G′) containing all vertices which have degree at least 1

2 (n + s − 1). By the definition of G′, any two vertices in K are
adjacent in G′. Let C be a maximum clique of G′ containing all vertices in K and suppose that |C | = t . Let H = G′

− C .
Since G′

̸∼= Kn, we can conclude that H ̸= Ø and k ≤ dG′ (v) ≤
1
2 (n + s − 2) holds for each v ∈ V (H). We consider the

following two cases:

Case 1. 0 ≤ t < 1
2 (n + s).

For every v ∈ V (H), we have e(v, C) ≤ t − 1 and k ≤ dG′ (v) ≤
1
2 (n + s − 2), and hence

e(H) + e (V (H), V (C)) =
1
2

⎛⎝ ∑
v∈V (H)

dG′ (v) +

∑
v∈V (H)

e(v, C)

⎞⎠ ≤
1
4
(n − t) (2t + n + s − 4) .
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Combining this with e(G′) = e(C) + e(H) + e
(
V (H), V (C)

)
, it follows that

ε0 < e(G′) = e(C) + e(H) + e
(
V (H), V (C)

)
≤

(
t
2

)
+

1
4
(2t + n + s − 4)(n − t) =

1
4

(
(n − s + 2)t + n(n + s − 4)

)
<

1
8
(3n − s)(n + s − 2). (3.1)

Since n ≥ 6k+ 10− 5s > 2k− s+ 4, 8ε0 − (3n− s)(n+ s− 2) = (n− 6k+ 5s− 10)(n+ s− 4− 2k) ≥ 0, contrary to (3.1).

Case 2. 1
2 (n + s) ≤ t ≤ n + s − k − 2.

Since C is a maximum clique of G′ and hence every vertex of C has degree at least t − 1, and since each pair of
vertices with sum of degrees at least n + s − 1 must be adjacent in G′ (Recall that Cn+s−1(G) = G′), we conclude that
dG′ (v) ≤ n + s − t − 1 holds for every v ∈ V (H). Thus,

e(H) + e (V (H), V (C)) =

∑
v∈V (H)

dG′ (v) − e(H) ≤ (n − t)(n + s − t − 1),

and hence

e(G′) = e(C) + e(H) + e
(
V (H), V (C)

)
≤

(
t
2

)
+ (n − t)(n + s − t − 1)

=
1
2

(
3t2 − (4n + 2s − 1)t + 2n(n + s − 1)

)
. (3.2)

Since 1
2 (n + s) ≤ t ≤ n + s − k − 2, by (3.2) and n ≥ 6k + 10 − 5s, we have

e(G′) ≤
1
2

(
3t2 − (4n + 2s − 1)t + 2n(n + s − 1)

)
≤ max

{
1
2

(
n2

− (2k + 5 − 2s)n + (k − s + 2)(3k − s + 5)
)
,
1
8
(3n − s)(n + s − 2)

}
≤ ε0 < e(G′),

which is a contradiction. ■

The Proof of Theorem 1.10. In the proof of this result, we rewrite Cn+s−1(G) as G′. From the definition, it follows that
δ(G′) ≥ δ(G) ≥ k, e(G′) ≥ e(G) and dG′ (u)+dG′ (v) ≤ n+s−2 holds for any pair of nonadjacent vertices {u, v} ⊆ V

(
G′

)
. Let C

be a maximum clique of G′, and let H = G′
−C . Note that G′

̸∼= Kn. Thus, H ̸= Ø. By Lemma 3.1, we have |C | ≥ n+s−k−1.
If |C | ≥ n + s − k and v ∈ V (H), then since dG′ (v) ≥ k and since dG′ (u) + dG′ (v) ≤ n + s − 2 holds for any pair

of nonadjacent vertices {u, v} ⊆ V
(
G′

)
, we can conclude that v will be adjacent with every vertex of C , contrary to the

maximality of C . Otherwise, |C | = n + s − k − 1 and hence |V (H)| = k + 1 − s.
Since |C | = n + s − k − 1, each vertex of C has degree at least n + s − k − 2. We call a vertex in C as a frontier vertex

if it has degree at least n + s − k − 1 in G′, i.e., it has at least one neighbor in H . By the maximality of C , we can see that
every vertex in H has degree exactly k in G′. Let F =

{
u1, u2, . . . , up

}
be the set of frontier vertices.

If p ≥ 1, then every vertex in H is adjacent to every frontier vertex in G′, as Cn+s−1(G) = G′. Thus, G
[
V (H)

]
∼= H0 is a

(k−p)-regular graph. Since 0 ≤ k−p ≤ k− s = |V (H)|−1, we have s ≤ p ≤ k. Now, we can conclude that G′
∈ Gn(p, s, k),

where max {s, 1} ≤ p ≤ k.
Otherwise, p = 0. In this case, since Cn+s−1(G) = G′ and δ(G′) ≥ k, G

[
V (H)

]
∼= H0 is a k-regular graph, and hence

G ∼= H0 ∪ Kn+s−k−1 ∈ Gn(0, s, k) (here, since |V (H0)| = k + 1 − s and H0 is k-regular, we have s ≤ 0). ■

Lemma 3.2 ([5]). If G is a graph with n vertices and e(G) edges, then

µ(G) ≤
2e(G)
n − 1

+ n − 2,

where the equality holds if and only if G ∼= K1,n−1 or G ∼= Kn.

Lemma 3.3 ([10,13]). Let G be a graph with n vertices, e(G) edges and minimum degree δ(G). If δ(G) ≥ k ≥ 1, then

ρ(G) ≤
1
2

(
k − 1 +

√
(k + 1)2 + 8e(G) − 4nk

)
.

Theorem 3.1. Let α be a real number such that 0 ≤ α ≤ 1 and let s and k be two integers. For any graph G with n vertices
and minimum degree δ(G) ≥ k ≥ max {1, s}, if Θ(G, α) > Θ0, then e(G) > ε0.
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Proof. By contradiction, we assume that e(G) ≤ ε0. Since 0 ≤ α ≤ 1, we have A(G) + αD(G) = αQ (G) + (1 − α)A(G).
Combining this with Lemmas 3.2–3.3, it follows that

Θ0 < Θ(G, α) ≤ αµ(G) + (1 − α)ρ(G)

≤ α

(
2e(G)
n − 1

+ n − 2
)

+
1
2
(1 − α)

(
k − 1 +

√
(k + 1)2 + 8e(G) − 4nk

)
≤ Θ0,

a contradiction. ■

The Proof of Theorem 1.8. We may suppose that Cn+s−1(G) ̸∼= Kn. In this case, since Θ(G, α) > Θ0, Theorems 1.10 and
3.1 imply that Cn+s−1(G) ∈ Gn(p, s, k) holds for some integer p, where max {s, 0} ≤ p ≤ k. ■

4. The Proof of Theorem 1.9

In what follows, we always suppose that α ≥ 0. By Rayleigh’s theorem, we have

Lemma 4.1 (see [12]). Let G be a connected graph with n vertices and let ψ =
(
ψ(v1), ψ(v2), . . ., ψ(vn)

)T be any non-zero
vector defined on V (G). If H ⊂ G, then Θ(H, α) < Θ(G, α) ≤

(
1 + α

)
∆(G). Furthermore,

Θ(G, α)ψTψ ≥ ψT (A(G) + αD(G)) ψ = 2
∑

uv∈E(G)

f (u)f (v) + α

n∑
i=1

dG(vi)f 2(vi), (4.1)

where the equality holds if and only if ψ is an eigenvector of Θ(G, α).

If G is connected, since A(G) + αD(G) is non-negative irreducible matrix, there is a unique positive unit eigenvector
f =

(
f (v1), f (v2), . . . , f (vn)

)T corresponding to Θ(G, α). In the sequel, we call f a Perron vector of G.

Lemma 4.2 ([12]). Let u, v be two vertices of the connected graph G, and w1, w2, . . . , wk
(
1 ≤ k ≤ dG(v)

)
be some vertices

of N(v) \
(
N(u) ∪ {u}

)
. Let G′

= G + w1u + w2u + · · · + wku − w1v − w2v − · · · − wkv. If f is the Perron vector of G with
f (u) ≥ f (v), then Θ(G′, α) > Θ(G, α).

Given two distinct vertices u, v in a graph G such that NG(v) \
(
NG(u)∪ {u}

)
̸= Ø ̸= NG(u) \

(
NG(v)∪ {v}

)
, we construct

a new graph G′
= G′(u, v) via replacing all edges vw by uw for each w ∈ NG(v) \

(
NG(u) ∪ {u}

)
. This operation is called

the Kelmans transformation from v to u (see [4]).

Corollary 4.1. Let G be a connected graph. If G′ is a graph obtained from G by some Kelmans transformation, then
Θ(G′, α) > Θ(G, α).

Proof. We use the idea as that in [4] and we suppose that G′ is obtained from G by a Kelmans transformation from the
vertex v to vertex u. Let f be the Perron vector of G. The key observation is that up to isomorphism G′ is independent of
u or v being the beneficiary if we apply the transformation from v to u. Indeed, in G′ one of u or v will be adjacent to
NG(u)∪NG(v), the other will be adjacent to NG(u)∩NG(v) (and if the two vertices are adjacent in G then they will remain
adjacent also). Now, we may assume that f (u) ≥ f (v). Then, the result follows from Lemma 4.2. ■

Corollary 4.2. Let G ∈ Gn(p, s, k) and let G0 be the graph obtained from G by deleting one edge with two end vertices in
V2(G) such that δ(G0) ≥ k ≥ p ≥ max{s, 1} and n ≥ p + k + 3 − s. If G′ is a graph obtained from G by deleting one edge and
δ(G′) ≥ k, then Θ(G′, α) ≤ Θ(G0, α), where the equality holds if and only if G′ ∼= G0.

Proof. Suppose that G′ is a graph obtained from G by deleting one edge (say e = w0z0). Since δ(G) ≥ k and dG(w) = k
holds for each vertex w ∈ V3(G), we only need to consider the following three cases by symmetry:

(1) {w0, z0} ⊆ V1(G), (2) z0 ∈ V1(G) and w0 ∈ V2(G), (3) {w0, z0} ⊆ V2(G).
Let G1 = G − w0z0 for {w0, z0} ⊆ V1(G), let G2 = G − w0z0 for z0 ∈ V1(G) and w0 ∈ V2(G), and let G0 = G − w0z0

for {w0, z0} ⊆ V2(G). To complete the proof of this result, it suffices to show that Θ(G1, α) < Θ(G2, α) < Θ(G0, α). Since
k ≥ max{s, 1}, we get |V3(G)| = k + 1 − s ≥ 1. We choose w ∈ V3(G).

For G1, we choose v ∈ V2(G1) and w ∈ V3(H), and we rewrite z0 as u. In this case, {w0} = NG1 (v) \ (NG1 (u) ∪ {u})
and w ∈ NG1 (u) \ (NG1 (v) ∪ {v}). It is easy to see that G2 is isomorphic to the graph obtained from G1 by a Kelmans
transformation from v to u. By Corollary 4.1, Θ(G1, α) < Θ(G2, α).

For G2, we choose v ∈ V2(G2) \ {w0}, and we rewrite z0 as u. In this case, {w0} = NG2 (v) \ (NG2 (u) ∪ {u}) and
w ∈ NG1 (u)\(NG1 (v)∪{v}). It is easy to see that G0 is isomorphic to the graph obtained from G2 by a Kelmans transformation
from v to u. By Corollary 4.1, Θ(G2, α) < Θ(G0, α). ■
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Lemma 4.3. Let s and k be two integers and let G be a proper subgraph of Gn(p, s, k) such that G contains n ≥ 6k+ 10− 5s
vertices and minimum degree δ(G) ≥ k ≥ max {1, s}. If max

{
0, s

}
≤ p ≤ k, then Θ

(
G, α

)
≤ Θ

(
Nk,s

n,0, α

)
, with equality

holding if and only if G ∼= Nk,s
n,0.

Proof. By Corollary 4.2 and Lemma 4.1, the result already holds for p = k. Thus, we may suppose that 0 ≤ p ≤ k − 1 in
what follows. We consider the following two cases:

Case 1. p = 0.
In this case, s ≤ 0 and hence G ⊂ Kn+s−k−1 ∪ H0, where H0 is a k-regular graph with k + 1 − s vertices. Recall that

δ(G) ≥ k. Thus, G is obtained from Kn+s−k−1 ∪ H0 by deleting some edges from Kn+s−k−1. Since n ≥ 6k + 10 − 5s, and
Kn+s−k−2 ⊂ Kn+s−k−1 − e ⊂ Nk,s

n,0, Lemma 4.1 implies that

Θ
(
H0, α

)
≤ (1 + α)k < (1 + α)(n + s − k − 3) = Θ

(
Kn+s−k−2, α

)
< Θ

(
Kn+s−k−1 − e, α

)
< Θ

(
Nk,s

n,0, α

)
.

Thus,

Θ
(
G, α

)
≤ Θ

(
Kn+s−k−1 − e, α

)
< Θ

(
Nk,s

n,0, α

)
,

and hence this result holds.

Case 2. 1 ≤ p ≤ k − 1.
In this case, since p ≥ max{0, s} ≥ s and since n ≥ 6k+ 10− 5s, we have max{1, s} ≤ p ≤ k− 1 and n > p+ k+ 9− s.

Suppose that G1 ∈ Gn(p, s, k) and G2 ∈ Gn(p + 1, s, k). Let G and G′ be the graphs obtained from G1 and G2 by deleting
one edge from V2(G1) and V2(G2), respectively. By Corollary 4.2 and Lemma 4.1, it suffices to show that

Θ
(
G, α

)
< Θ

(
G′, α

)
. (4.2)

For convenience, we may suppose that G is obtained from G1 by deleting the edge w0z0 with {w0, z0} ⊆ V2(G1), and
we rewrite Θ

(
G, α

)
as Θ . Let f be the Perron vector of G. We firstly prove the following claim:

Claim 1. For any pairs of vertices {u, v} ⊆ V3(G), we have f (u) = f (v).

Proof of Claim 1. By contradiction, we assume that Claim 1 does not hold. Let {w1, w2} ⊆ V3(G) such that f (w1) =

max
{
f (w) : w ∈ V3(G)

}
and f (w2) = min

{
f (w) : w ∈ V3(G)

}
. Then, f (w1) > f (w2). Note that H0 ∼= G

[
V3(G)

]
. Thus,

Θ
(
f (w1) − f (w2)

)
= αk

(
f (w1) − f (w2)

)
+

∑
w∈NH0 (w1)

f (w) −

∑
z∈NH0 (w2)

f (z)

≤ αk
(
f (w1) − f (w2)

)
+ (k − p)

(
f (w1) − f (w2)

)
.

Recall that f (w1) − f (w2) > 0. Thus, Θ − αk − (k − p) ≤ 0.
On the other hand, Lemma 4.1 implies that Θ > Θ

(
Kn+s−k−2, α

)
= (1 + α)(n + s − k − 3). Combining this with

n ≥ 6k−5s+10, we have Θ−αk− (k−p) ≥ (1+α)(n+ s−k−3)−αk− (k−p) = α(n+ s−3−2k)+n+ s+p−3−2k ≥

α(4k − 4s + 7) + 4k − 4s + 7 + p > 0, a contradiction.
Now, we can conclude that f (w1) = f (w2). This completes the proof of Claim 1.
With the similar reason with Claim 1, we can set x1 = f (w) for w ∈ V1(G), set x2 = f (w) for w ∈ V2(G)\{w0, z0}, set

x3 = f (w0) = f (z0), and set x4 = f (w) for w ∈ V3(G). Now, from
(
A(G) + αD(G)

)
f = Θf , it follows that⎧⎪⎨⎪⎩

Θ x1 = α(n − 1)x1 + (k + 1 − s)x4 + (p − 1)x1 + (n + s − k − 3 − p)x2 + 2x3,
Θ x2 = α(n + s − k − 2)x2 + px1 + (n + s − k − p − 4)x2 + 2x3,
Θ x3 = α(n + s − k − 3)x3 + px1 + (n + s − k − p − 3)x2,
Θ x4 = αkx4 + (k − p)x4 + px1.

(4.3)

By the second to fourth equations of (4.3), we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x2 =

p
(
Θ+2−α(n+s−k−3)

)
(
Θ+2+p−(α+1)(n+s−k−2)

)(
Θ+2−α(n+s−k−3)

)
−2

(
Θ+1−α(n+s−k−2)

)x1,
x3 =

p
(
Θ+1−α(n+s−k−2)

)
(
Θ+2+p−(α+1)(n+s−k−2)

)(
Θ+2−α(n+s−k−3)

)
−2

(
Θ+1−α(n+s−k−2)

)x1,
x4 =

px1
Θ−(α+1)k+p .

(4.4)

Now, from Lemma 4.1 we can deduce that

Θ
(
G′, α

)
−Θ

(
G, α

)
≥ f T

(
A(G′) + αD(G′)

)
f − f T

(
A(G) + αD(G)

)
f

= (k + 1 − s)(2x2 − x4)x4 + α(k + 1 − s)x22. (4.5)
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By (4.5), to prove (4.2), it suffices to show that 2x2 > x4, that is equivalent to

Φ(Θ) > 0, (4.6)

where Φ(Θ) = Θ2
+

(
n + p + s + α(1 − 2k) − 3k

)
Θ − α(α + 1)n2

+

(
α

(
(α + 1)(4k − 2s + 5) + 2 − p

)
+ 2

)
n −

(
(k −

s)(3k − s + 5) + 6k + 6
)
α2

−

(
(k − s)(3k − s + 7 − p) − 3p + 10k + 12

)
α − 2(3k − p − s + 3).

Combining this with n ≥ 6k−5s+10 and Θ > (1+α)(n+s−k−3), we have Φ ′(Θ) = 2Θ+n+p+s+α(1−2k)−3k >
2(1+α)(n+ s− k− 3)+ n+ p+ s+α(1− 2k)− 3k = (2n+ 2s− 4k− 5)α+ 3n+ 3s+ p− 5k− 6 ≥ 3n+ 3s+ p− 5k− 6 ≥

13k + p − 12s + 24 > 0.
Let Φ1(n) = 2n2

− (6k+7−4s)n+2(2k− s)(k− s)+9k−7s+3. Since Φ ′

1(n) = 4n− (6k+7−4s) ≥ 18k−16s+33 > 0
by n ≥ 6k+10−5s, Φ1(n) ≥ Φ1(6k+10−5s) = 8(k− s)(5k−4s)+ (147k−132s)+133 > 0. Combining with Φ ′(Θ) > 0,
Φ1(n) > 0 and n ≥ 6k − 5s + 10, it follows that

Φ(Θ) > Φ((1 + α)(n + s − k − 3))

=

(
2n2

− (6k + 7 − 4s)n + 2(2k − s)(k − s) + 9k − 7s + 3
)
α

+ (2n − 4k + p + 2s − 3)(n + s − k − 3) + 2(n + p + s − 3k − 3)
≥ (2n − 4k + p + 2s − 3)(n + s − k − 3) + 2(n + p + s − 3k − 3)

= 4k2 − (6n + 6s + p − 9)k + (n + s)(2n + 2s + p − 7) + 3 − p = Φ2(k).

Since n ≥ 6k + 10 − 5s, we have

Φ ′

2(k) = 8k − (6n + 6s + p − 9) ≤
4
3
(n + 5s − 10) − (6n + 6s + p − 9) = −

1
3
(14n + 3p − 2s + 13) < 0,

which implies that

Φ(Θ) > Φ2(k) ≥ Φ2

(
1
6
(n + 5s − 10)

)
=

1
18

(
20n2

+ (15p − 16s + 41)n + 4(3p − 4) − s(11 + 4s − 3p)
)

= Φ3(n).

If s ≥ 1, since n ≥ 6k + 10 − 5s ≥ 10 + s, it follows that 18Φ ′

3(n) = 40n + 15p − 16s + 41 ≥ 24s + 15p + 441 > 0,
and hence

Φ(Θ) > Φ2(k) ≥ Φ3(n) ≥ Φ3(s + 10) = 9p + 15s + ps + 133 > 0.

If s ≤ 0, since n ≥ 6k + 10 − 5s ≥ 10 − 5s, it follows that 18Φ ′

3(n) = 40n + 15p − 16s + 41 > 0, and hence

Φ(Θ) > Φ2(k) ≥ Φ3(n) ≥ Φ3(10 − 5s) = 32s2 − (4p + 132)s + 9p + 133 > 0.

Now, (4.6) holds and this completes the proof of this result. ■

Lemma 4.4. Let α and q be two real numbers such that 0 ≤ α ≤ 1 and 0 ≤ q < 1. If n ≥ max
{

1
2

(
3k+3+2q−2s

)
, 1

2(1−q)

(
(k−

q)(k+ q− s)+ (q−4)(s−3)− k(3q−7)−4
)
, 1

2−q

(
(k− s)(3k− s+5)+4(k+2)− q

)}
, then (1+α)(n+ s− k−2)− q ≥ Θ0.

Proof. Let Φ(α) = (1 + α)(n + s − k − 2) − q −Θ0. Note that

Φ ′(α) = s − k −
2ε0
n − 1

+
1
2

(
k − 1 +

√
(k + 1)2 + 8ε0 − 4nk

)
.

Thus, Φ(α) ≥ min
{
Φ(0),Φ(1)

}
. To complete the proof of this result, it suffices to show that

min
{
Φ(0), Φ(1)

}
≥ 0. (4.7)

Since 2(1 − q)n ≥ (k − q)(k + q − s) + (q − 4)(s − 3) − k(3q − 7) − 4, we have

Φ(0) = n + s −
3
2
k −

3
2

− q −

√
n2 − (3k − 2s + 5)n +

(13k − 3s)(k − s) + s(s − 28) + 46k + 41
4

≥ 0.

Furthermore, since (2 − q)n ≥ (k − s)(3k − s + 5) + 4(k + 2) − q, we have

Φ(1) = n + 2s − 2k − 2 − q −
1

n − 1

(
(n − k − 2 + s)(n − k − 3 + s) + 2(k + 1)(k + 2 − s)

)
=

1
n − 1

(
(2 − q)n − (k − s)(3k − s + 5) − 4(k + 2) + q

)
≥ 0.

Now, we can conclude that (4.7) holds. ■
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Lemma 4.5. Let α ≥ 0 and q > 0 be two real numbers. If n ≥
1
q

(
(1−q)(α−q)+α+2

)
, thenΘ

(
Kn−e, α

)
≥ (1+α)(n−1)−q.

Proof. Throughout the proof of this result, we rewrite Kn − e as G and simplify Θ(G, α) as Θ , where e = w0z0. Let f be
the Perron vector of Θ . For convenience, let x1 = f (w) for w ∈ V (G) \ {w0, z0} and let x2 = f (w) for w ∈ {w0, z0}. Now,
from

(
A(G) + αD(G)

)
f = Θ(G, α)f , it follows that{

Θ x1 = α(n − 1)x1 + (n − 3)x1 + 2x2,
Θ x2 = α(n − 2)x2 + (n − 2)x1.

Thus, Θ satisfies

Φ(Θ) = Θ2
−

(
α(2n − 3) + n − 3

)
Θ + (α + 1)(n − 2)

(
α(n − 1) − 2

)
,

which implies

Θ =
1
2

(
α(2n − 3) + n − 3 +

√
n2 + 2(α + 1)n + (α + 1)(α − 7)

)
.

Note that qn ≥ (1 − q)(α − q) + α + 2. Thus, Θ ≥ (1 + α)(n − 1) − q. ■

The Proof of Theorem 1.9. When q =
1
2 , since n ≥ 6k− 5s+ 10 > 1

2

(
3k+ 4− 2s

)
=

1
2

(
3k+ 3+ 2q− 2s

)
and 0 ≤ α ≤ 1,

we have

n + s − k − 1 ≥ 6k − 5s + 10 + s − k − 1 >
13
2

≥ 3α +
7
2

=
1
q

(
(1 − q)(α − q) + α + 2

)
.

Combining this with Kn+s−k−1 − e ⊂ Nk,s
n,0 and α ≥ 0, by setting q =

1
2 in Lemmas 4.4 and 4.5 it follows that

Θ

(
Nk,s

n,0, α

)
> Θ

(
Kn+s−k−1 − e, α

)
≥ Θ0. (4.8)

If Cn+s−1(G) ̸∼= Kn, then k ≤
1
2

(
n + s − 2

)
and Theorem 1.8 implies that Cn+s−1(G) ∈ Gn(p, s, k) for some integer p, where

max{0, s} ≤ p ≤ k. Hence, Theorem 1.9 follows from Lemma 4.3. ■

Remark 4.1. By an observation to the proof of Theorem 1.9, we can improve the lower bound for n of Theorem 1.9 by
setting suitable q in Lemmas 4.4 and 4.5, where 0 < q < 1.

5. The proof of Proposition 1.2

This section dedicates to the proof of Proposition 1.2.

The Proof of Proposition 1.2. In the proof of this result, we rewrite Nk,s
n,0 as G and we suppose that Nk,s

n,0 = Nk,s
n − w0z0.

Note that e(G) =
1
2 (n + s − k − 1)(n + s − k − 2) + k(k + 1 − s) − 1. Thus, (1.1) follows from Lemma 3.2. To complete the

proof of this result, it suffices to show that ρ(G) < n + s − k − 2.
Let f be the Perron vector of G, and let ρ = ρ(G). For convenience, let x1 = f (w) for w ∈ V1(G), let x2 = f (w) for

w ∈ V2(G)\{w0, z0}, let x3 = f (w0) = f (z0), and let x4 = f (w) for w ∈ V3(G). Now, from (A(G))f = ρf , it follows that⎧⎪⎨⎪⎩
ρ x1 = (k − 1)x1 + (n − 2k − 3 + s)x2 + 2x3 + (k + 1 − s)x4,
ρ x2 = kx1 + (n + s − 2k − 4)x2 + 2x3,
ρ x3 = kx1 + (n + s − 2k − 3)x2,
ρ x4 = kx1.

(5.1)

From the second and third equations of (5.1), we have (ρ+ 1)x2 = (ρ+ 2)x3. Now, from the second equation of (5.1), we
have

x2 =
k(ρ + 2)

(ρ + 4 + 2k − n − s)(ρ + 2) − 2(ρ + 1)
x1. (5.2)

Furthermore, combining with (ρ + 1)x2 = (ρ + 2)x3, by the first and fourth equations of (5.1), we have

x2 =
(ρ + 2)

(
(ρ − k)(ρ + 1) − k(k − s)

)
ρ
(
(n − 2k − 3 + s)(ρ + 2) + 2(ρ + 1)

)x1. (5.3)

By (5.2) and (5.3), ρ satisfies 0 = Φ(ρ) = ρ4
− (n− k+ s− 5)ρ3

−

(
(k− 2)(k− s)+ 3n+ s− 10

)
ρ2

−

(
k(k− s)(2k− n−

s + 5) − (n − k − 2)k + 2(n + s − 3)
)
ρ + 2k(k − s + 1)(n + s − 2k − 3).
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Let Φ
(
n + s − k − 2

)
= 2n2

−

((
k2 + 4

)
(k − s) + k2 + 6

)
n + (k − s + 1)(k3 − sk2 − 2s + 4) = Φ1(n).

Claim 1. Φ
(
n + s − k − 2

)
= Φ1(n) > 0.

Proof of Claim 1. We consider the following two cases:

Case 1. k ≥ s + 1.
In this case, since n ≥

1
2

(
(k2 + 4)(k + 1 − s) + 2

)
, we have

Φ ′

1(n) ≥ Φ ′

1

(
1
2

(
(k2 + 4)(k + 1 − s) + 2

))
= 4(k − s) + k2(k − s + 1) + 6 > 0.

Combining this with k ≥ s + 1, we can conclude that

Φ1(n) ≥ Φ1

(
1
2

(
(k2 + 4)(k + 1 − s) + 2

))
= (k − s + 1)

(
k2(k − s) − 2s + 4

)
≥ 2

(
k2 − 2s + 4

)
> 0,

and hence Claim 1 holds.

Case 2. k = s.
In this case, k = s ≥ 1. Since n ≥

1
2

(
k2(k + 1) + 6

)
and k = s, we have

Φ ′

1(n) ≥ Φ ′

1

(
1
2

(
k2(k + 1) + 6

))
= 2s3 + s2 + 6 > 0.

Now, we can conclude that

Φ1(n) ≥ Φ1

(
1
2

(
k2(k + 1) + 6

))
=

1
2
(s + 2)

(
s4(s − 1) + 2s3 + 2(s − 1)2 + 2

)
> 0,

and hence Claim 1 holds. This completes the proof of Claim 1.
In what follows, let ρ1 ≥ ρ2 ≥ ρ3 ≥ ρ4 be the four roots of Φ(ρ) = 0. Then, ρ1 + ρ2 + ρ3 + ρ4 = n − k + s − 5. Now,

Φ(ρ) → +∞ as ρ → +∞ and Φ
(
n + s − k − 2

)
> 0 by Claim 1. Since the sum of four roots of Φ(ρ) = 0 is equal to

n + s − k − 5, either no roots are in
(
n + s − k − 2,+∞

)
or exactly two roots are in

(
n + s − k − 2,+∞

)
.

If no roots are in
(
n + s − k − 2,+∞

)
, then ρ(G) = ρ1 < n + s − k − 2 and we are done. Otherwise, we must have

exactly two roots are in
(
n + s − k − 2,+∞

)
, that is, ρ1 ≥ ρ2 > n + s − k − 2 in what follows.

When k(k + 1 − s) ≥ 2, then Φ(−2) = 4 − 2k(k + 1 − s) ≤ 0. Combining this with Φ(n + s − k − 2) > 0 by Claim 1,
there is at least one root in [−2, n+ s− k− 2), and hence ρ3 ≥ −2. Since the absolute value of any eigenvalue of A(G) is
not greater than the spectral radius of G, namely, ρ1, we have ρ1 + ρ4 ≥ 0. Thus,

n + s − k − 5 =

4∑
i=1

ρi ≥ ρ2 + ρ3 > n + s − k − 2 − 2 > n + s − k − 5, a contradiction.

When k(k + 1 − s) ≤ 1, then k = s = 1. In this case, we have

Φ(ρ) = ρ4
− (n − 5)ρ3

− (3n − 9)ρ2
− (n − 1)ρ + 2n − 8.

Recall that n ≥ 6k−5s+10 = 11. Thus, it is easy to see that Φ(0) = 2(n−4) > 0 and Φ(n−3) = −n3
+8n2

−21n+16 =

−n2(n − 8) − 21n + 16 < 0. Combining this with Φ(n − 2) > 0 by Claim 1, we have 0 < ρ4 < n − 3 < ρ3. Since
ρ1 + ρ2 + ρ3 + ρ4 = n + s − k − 5 and ρ1 > n + s − k − 2, we must have ρ4 < 0, a contradiction. ■

6. Further discussion

Recently, Zhou et al. [21] showed that: If δ(G) ≥ k ≥ 2 and µ(G) ≥ 2(n−k), where n ≥ k4 +5k3 +2k2 +8k+12, then G
is Hamilton-connected unless G is either obtained from Nk,2

n deleting at most 1
4k(k − 1) edges or G is obtained from Mk,2

n
by deleting at most 1

2 (k − 1) edges. This result strengthens that of Theorem 1.9 for s = 2 and α = 1.
In Lemma 4.4, we have showed that Θ0 ≤ (1 + α)(n + s − k − 2) − q for 0 ≤ α ≤ 1, 0 ≤ q < 1, and

n ≥ max
{

1
2

(
3k+3+2q−2s

)
, 1

2(1−q)

(
(k−q)(k+q−s)+(q−4)(s−3)−k(3q−7)−4

)
, 1

2−q

(
(k−s)(3k−s+5)+4(k+2)−q

)}
.

Note that Θ0 ≤ 2(n − k) − q ≤ 2n − 2k for s = 2, 0 ≤ q < 1 and α = 1. By Theorem 1.8 and Proposition 1.4, to improve
Zhou’s result, it suffices to give the characterization of those proper subgraphs G of Nk,2

n and Mk,2
n such that Θ(G, α) > Θ0.

As in Remark 4.1, we can improve the lower bounds for n in Theorem 1.9 such that

Θ0 ≤ (1 + α)(n + s − k − 2) − q ≤ Θ (Kn+s−k−1 − e, α)

by setting suitable positive real number q.
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