Spectral results on Hamiltonian problem

Muhuo Liu ${ }^{\text {a,b }}$, Hong-Jian Lai ${ }^{\text {c }}$, Kinkar Ch. Das ${ }^{\text {d,* }}$
${ }^{\text {a }}$ Department of Mathematics, South China Agricultural University, Guangzhou, 510642, China
${ }^{\mathrm{b}}$ College of Mathematics and Statistics, Shenzhen University, Shenzhen, 518060, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV, USA
${ }^{\text {d }}$ Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

ARTICLE INFO

Article history:

Received 24 May 2018
Received in revised form 1 November 2018
Accepted 20 February 2019
Available online xxxx

Keywords:

Hamiltonian graphs
Traceable graphs
Hamilton-connected graphs
(Signless Laplacian) spectral radius

Abstract

Let α be a non-negative real number, and let $\Theta(G, \alpha)$ be the largest eigenvalue of $A(G)+\alpha D(G)$. Specially, $\Theta(G, 0)$ and $\Theta(G, 1)$ are called the spectral radius and signless Laplacian spectral radius of G, respectively. A graph G is said to be Hamiltonian (traceable) if it contains a Hamiltonian cycle (path), and a graph G is called Hamiltonconnected if any two vertices are connected by a Hamiltonian path in G. The number of edges of G is denoted by $e(G)$. Recently, the (signless Laplacian) spectral property of Hamiltonian (traceable, Hamilton-connected) graphs received much attention. In this paper, we shall give a general result for all these existed results. To do this, we first generalize the concept of Hamiltonian, traceable, and Hamilton-connected to s-suitable, and we secondly present a lower bound for $e(G)$ to confirm the existence of s-suitable graphs. Thirdly, when $0 \leq \alpha \leq 1$, we obtain a lower bound for $\Theta(G, \alpha)$ to confirm the existence of s-suitable graphs. Consequently, our results generalize and improve all these existed results in this field, including the main results of Chen et al. (2018), Feng et al. (2017), Füredi et al. (2017), Ge et al. (2016), Li et al. (2016), Nikiforov et al. (2016), Wei et al. (2019) and Yu et al. $(2013,2014)$.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we only consider simple connected undirected graph, and $G=(V, E)$ is a connected graph with n vertices and $e(G)$ edges. Let $N_{G}(u)$ and $d_{G}(u)$ be the neighbor set and the degree of vertex u, respectively. Let $\delta(G)$ and $\Delta(G)$ be the minimum degree and maximum degree of G, respectively. If there is no rise of confusion, we always simplify $N_{G}(u)$ and $d_{G}(u)$ as $N(u)$ and $d(u)$, respectively. As usual, K_{n}, C_{n}, P_{n} and $K_{1, n-1}$ denote the complete graph, cycle, path and star graph with n vertices, respectively, and $G_{1} \vee G_{2}$ denotes the join graph of two vertex disjoint graphs G_{1} and G_{2}. In other words, $G_{1} \vee G_{2}$ is the graph having vertex set $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{u v$: $\left.u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. When t is a positive integer, then $t K_{1}$ denotes the set of t isolated vertices.

When n, s and k are three integers such that $\max \{0, s\} \leq k \leq \frac{1}{2}(n+s-2)$, we define the graphs $M_{n}^{k, s}$ and $N_{n}^{k, s}$ with n vertices and minimum degree k as follows:

$$
\begin{aligned}
& N_{n}^{k, s} \cong K_{k} \vee\left(K_{n+s-2 k-1} \cup(k+1-s) K_{1}\right), \quad \text { and } \\
& M_{n}^{k, s} \cong \begin{cases}K_{s} \vee\left(K_{n-k-1} \cup K_{k+1-s}\right) & \text { for } s>0 \\
K_{n-k-1} \cup K_{k+1} & \text { for } s=0\end{cases}
\end{aligned}
$$

[^0]If $A(G)$ and $D(G)$, respectively, define the adjacency matrix and the diagonal matrix of G, then the signless Laplacian matrix of G is defined as $Q(G)=D(G)+A(G)$. Hereafter, let $\rho(G)$ and $\mu(G)$ be the largest eigenvalues of $A(G)$ and $Q(G)$, respectively, and we call $\rho(G)$ and $\mu(G)$ the spectral radius and signless Laplacian spectral radius of G, respectively. Throughout this paper, α defines a non-negative real number and let $\Theta(G, \alpha)$ be the largest eigenvalue of $A(G)+\alpha D(G)$. From the definition, it is easy to see that $\Theta(G, 0)=\rho(G)$, and $\Theta(G, 1)=\mu(G)$.

A cycle (path) of a graph G that contains every vertex of G is called a Hamiltonian cycle (path) of G. A graph G is said to be Hamiltonian (traceable) if it contains a Hamiltonian cycle (path), and a graph G is called Hamilton-connected if any two vertices are connected by a Hamiltonian path in G.

Recently, the (signless Laplacian) spectral properties of traceable graph, Hamiltonian graph and Hamilton-connected received more and more attention. For the spectral properties of traceable graph, Fiedler et al. [7] firstly proved that: For a graph G with n vertices, if $\rho(G) \geq n-2$, then G is traceable unless $G \cong M^{0,0}$. In 2016, Li et al. [11] generalized Fiedler's result to: For a graph G with $n \geq \max \left\{6 k+10, \frac{1}{2}\left(k^{2}+7 k+8\right)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 0$, if $\rho(G) \geq \rho\left(N_{n}^{k, 0}\right)$, then G is traceable unless $G \cong N_{n}^{k, 0}$. Soon later, Nikiforov [14] improved Li's result to:

Theorem 1.1 ([14]). Let G be a graph with $n \geq k^{3}+k^{2}+2 k+5$ vertices and minimum degree $\delta(G) \geq k \geq 1$. If $\rho(G) \geq n-k-2$, then G is traceable unless $G \in\left\{N_{n}^{k, 0}, M_{n}^{k, 0}\right\}$.

For the spectral properties of Hamiltonian graphs, Fiedler et al. [7] firstly proved that: For a graph G with n vertices, if $\rho(G)>n-2$, then G is Hamiltonian unless $G \cong M_{n}^{1,1}$. In 2016, Li et al. [11] generalized Fiedler's result to: For a graph G with $n \geq \max \left\{6 k+5, \frac{1}{2}\left(k^{2}+6 k+4\right)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 1$, if $\rho(G) \geq \rho\left(N_{n}^{k, 1}\right)$, then G is Hamiltonian unless $G \cong N_{n}^{k, 1}$. Soon later, Nikiforov [14] improved Li's result to:

Theorem 1.2 ([14]). Let G be a graph with $n \geq k^{3}+k+4$ vertices and minimum degree $\delta(G) \geq k \geq 1$. If $\rho(G) \geq n-k-1$, then G is Hamiltonian unless $G \in\left\{N_{n}^{k, 1}, M_{n}^{k, 1}\right\}$.

Very recently, Ge et al. [9] improved Nikiforov's result to $n \geq \max \left\{\frac{1}{2}\left(k^{3}+2 k+5\right), 6 k+5\right\}$. Researchers also concerned with the (signless Laplacian) spectral properties of Hamilton-connected graphs. In this line, Yu et al. [17] proved that: For a graph G with n vertices, if either $\rho(G)>\frac{1}{2}\left(\sqrt{4 n^{2}-12 n+17}-1\right)$ or $\mu(G)>2 n-4+\frac{2}{n-1}$, then G is Hamiltonconnected unless $G \cong M_{n}^{2,2}$. In 2017, Zhou et al. [20] proved that: For a graph G with minimum degree $\delta(G) \geq 3$ and $n \geq 9$ vertices, if either $\rho(G) \geq \sqrt{n^{2}-6 n+19}$ or $\mu(G) \geq 2 n-6+\frac{14}{n-1}$, then G is Hamilton-connected. Later, Yu et al. [18] generalized the spectral radius version of Zhou's results to: For a graph G with $n \geq 2 k^{2}+1$ vertices and minimum degree $\delta(G) \geq k \geq 2$, if $\rho(G) \geq n-k$, then G is Hamilton-connected unless $G \cong M_{n}^{k, 2}$. Recently, Chen et al. [3] and Yu et al. [19], independently, improved Yu's result of [18] by showing that: For a graph G with $n \geq \max \left\{6 k^{2}-8 k+5, \frac{1}{2}\left(k^{3}-k^{2}+4 k-1\right)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 2$, if $\rho(G) \geq n-k$, then G is Hamilton-connected unless $G \in\left\{N_{n}^{k, 2}, M_{n}^{k, 2}\right\}$. Soon later, Wei et al. [16] improved Chen's result to $n \geq \max \left\{\frac{1}{2}\left(k^{3}-k^{2}+2 k+8\right), 6 k\right\}$, that is,

Theorem 1.3 ([16]). Let G be a graph with $n \geq \max \left\{\frac{1}{2}\left(k^{3}-k^{2}+2 k+8\right), 6 k\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 3$. If $\rho(G) \geq n-k$, then G is Hamilton-connected unless $G \in\left\{N_{n}^{k, 2}, M_{n}^{k, 2}\right\}$.

For the signless Laplacian spectral properties of traceable graphs, Yu et al. [17] firstly proved that: For a graph G with n vertices, if $\mu(G) \geq 2(n-2)$, then G is traceable unless $G \cong N_{n}^{0,0}$. In 2016, Li et al. [11] generalized Yu's result to:

Theorem 1.4 ([11]). Let G be a graph with $n \geq \max \left\{6 k+10, \frac{1}{2}\left(3 k^{2}+9 k+8\right)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 0$. If $\mu(G) \geq \mu\left(N_{n}^{k, 0}\right)$, then G is traceable unless $G \cong N_{n}^{k, 0}$.

For the signless Laplacian spectral properties of Hamiltonian graphs, Yu et al. [17] proved that: For a graph G with n vertices, if $\mu(G)>2(n-2)$, then G is Hamiltonian unless $G \cong N_{n}^{1,1}$. In 2016, Li et al. [11] generalized Yu's result to:

Theorem 1.5 ([11]). Let G be a graph with $n \geq \max \left\{6 k+5, \frac{1}{2}\left(3 k^{2}+5 k+4\right)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq 1$. If $\mu(G) \geq \mu\left(N_{n}^{k, 1}\right)$, then G is Hamiltonian unless $G \cong N_{n}^{k, 1}$.

By comparing these results of Theorems $1.1-1.5$, it is rather interesting for us to consider the following problem:
Problem 1.1. How can we generalize these results of Theorems 1.1-1.5?
To this aim, we need to introduce the concepts of q-traceable and q-Hamiltonian. For any non-negative integer q, a graph G with $n \geq 3$ vertices is called q-traceable if any removal of at most q vertices to G results in a traceable graph, while a graph G with $n \geq 3$ vertices is called q-Hamiltonian if any removal of at most q vertices to G results in a Hamiltonian
graph. From the definitions, a q-Hamiltonian graph must be a ($q+1$)-traceable graph. However, a $(q+1)$-traceable graph is not necessarily a q-Hamiltonian graph. For instance, the Petersen graph is 1 -traceable, but it is not 0 -Hamiltonian.

Hereafter, we use $G[X]$ to denote the subgraph of G induced by X. It is easy to see that a traceable graph is also a 0 -traceable graph, and a Hamiltonian graph is both a 0 -Hamiltonian and a 1-traceable graph. If G is Hamilton-connected, then for any two vertices $\{u, v\}$ of G, there is a Hamiltonian path connecting u and v. Thus, $G[V(G) \backslash\{u, v\}]$ contains a Hamiltonian path and $G[V(G) \backslash\{u\}]$ also contains a Hamiltonian path, and hence G is 2-traceable.

A graph G is q-edge-Hamiltonian if any collection of vertex-disjoint paths with at most q edges altogether belongs to a Hamiltonian cycle in G. A connected graph G is said to be q-connected if it has more than q vertices and remains connected whenever fewer than q vertices are deleted. Similarly, G is q-edge-connected if it has at least two vertices and remains connected whenever fewer than q edges are deleted. A graph G is q-path-coverable if $V(G)$ can be covered by q or fewer vertex-disjoint paths.

Recently, Feng et al. [6] obtained the generalized result for spectral property of q-Hamiltonian (respectively, q-edgeHamiltonian) graphs, that is

Theorem 1.6 ([6]). For a graph G with $n \geq q+6 \geq 7$ vertices and minimum degree at least one, if $\rho(G) \geq \sqrt{(n-2)^{2}+2 q+1}$, then G is q-edge-Hamiltonian and q-Hamiltonian.

Except for this, Feng et al. [6] also obtained the generalized result for spectral property of q-connected (respectively, q-edge-connected, q-path-coverable) graphs, that is

Theorem 1.7 ([6]). (i) For a graph G with $n \geq q+1 \geq 2$ vertices and minimum degree at least one, if $\rho(G) \geq$ $\sqrt{n(n-4)+2 q+1}$, then G is q-connected. (ii) For a graph \bar{G} with $n \geq q+1 \geq 3$ vertices and minimum degree at least one, if $\rho(G) \geq \sqrt{n(n-q-5)+2 q(q+1)+5}$, then G is q-edge-connected. (iii) For a graph G with $n \geq 5 q+6 \geq 16$ vertices and minimum degree at least one, if $\rho(G) \geq \sqrt{(n-q-2)^{2}+q+1}$, then G is q-path-coverable.

For a non-negative integer q, the q-closure, denoted by $C_{q}(G)$, of a graph G is the graph obtained from G by successively joining pairs of nonadjacent vertices whose degree sum is at least q until no such pair remains. It is easy to see that $G \subseteq C_{q}(G)$.

Let \mathbb{G}_{n} be the class of graphs with n vertices and q be a non-negative integer. If G has the property P if and only if $C_{q}(G)$ has property P for each $G \in \mathbb{G}_{n}$, then the property P is said to be q-stable (here, the definition of q-stable is a little different from that in [1]).

By an observation to Theorem 1.6, one can easily find that Feng et al. cannot solve Problem 1.1 completely, as Theorems 1.1-1.3 are not a special case of Theorem 1.6. Therefore, positive answer to Problem 1.1 is also valuable, and our main goal of this paper is to solve it. To do this, via analyzing all these referred former results, we find that the key tool to prove them relies on the following k-stable property:

Proposition 1.1 ([1]). The following stability results hold for graphs with n vertices:
(i) The property that " G is q-connected" is $(n+q-2)$-stable.
(ii) The property that " G is q-edge-connected" is $(n+q-2)$-stable.
(iii) The property that " G is q-Hamiltonian" is $(n+q)$-stable.
(iv) The property that " G is q-edge-Hamiltonian" is $(n+q)$-stable.
(v) The property that " G is q-path-coverable" is $(n-q)$-stable.

In what follows, we shall give the spectral property to $(n+s-1)$-stable property for graphs with n vertices, which will improve and generalize all these results in Theorems 1.1-1.7. To do this, we need more notations in the following:

Definition 1.1. Let n, s, p and k be four integers such that $\max \{0, s\} \leq p \leq k \leq \frac{1}{2}(n+s-2)$. If $p \geq \max \{s, 0\}+1$, then $\mathbb{G}_{n}(p, s, k)=\left\{G: G \cong K_{p} \vee\left(K_{n+s-k-1-p} \cup H_{0}\right)\right.$, where H_{0} is a $(k-p)$-regular graph with $k+1-s$ vertices $\}$. If $p=s \geq 0$, then $\mathbb{G}_{n}(p, s, k)=\left\{M_{n}^{k, s}\right\}$. If $p=0>s$, then $\mathbb{G}_{n}(p, s, k)=\left\{K_{n+s-k-1} \cup H_{0}\right.$, where H_{0} is a k-regular graph with $k+1-s$ vertices $\}$.

Here, we need to point out the fact that s being negative is also permitted in Definition 1.1 (see Remark 1.2). From Definition 1.1, it is easy to see that $\mathbb{G}_{n}(k, s, k)=\left\{N_{n}^{k, s}\right\}$ and $\mathbb{G}_{n}(p, s, k)$ are graphs with n vertices and minimum degree $k \geq 0$. Hereafter, if $G \in \mathbb{G}_{n}(p, s, k)$ and $\max \{s, 1\} \leq p \leq k$, we let $V_{1}(G), V_{2}(G)$ and $V_{3}(G)$ be the vertex sets corresponding to $K_{p}, K_{n+s-k-1-p}$ and H_{0} of G, respectively. Especially, when $k \geq 1$ and $n+s-2 k \geq 3$, we define $N_{n, 0}^{k, s}$ as the graph obtained from $N_{n}^{k, s}$ by deleting one edge with two end vertices in $V_{2}\left(N_{n}^{k, s}\right)$, namely, in $K_{n+s-k-1-p}$. In what follows, let

$$
\Theta_{0}=\alpha\left(\frac{2 \varepsilon_{0}}{n-1}+n-2\right)+\frac{1}{2}(1-\alpha)\left(k-1+\sqrt{(k+1)^{2}+8 \varepsilon_{0}-4 n k}\right),
$$

where

$$
\varepsilon_{0}=\binom{n-k-2+s}{2}+(k+1)(k+2-s)
$$

Now, we are ready to give the main results of this paper:

Theorem 1.8. Let s and k be two integers and let G be a graph with $n \geq 6 k+10-5 s$ vertices and minimum degree $\delta(G) \geq k \geq \max \{1, s\}$. If $\Theta(G, \alpha)>\Theta_{0}$ and $0 \leq \alpha \leq 1$, then either $C_{n+s-1}(G) \cong K_{n}$ or $C_{n+s-1}(G) \in \mathbb{G}_{n}(p, s, k)$ holds for some integer p, where $\max \{0, s\} \leq p \leq k$.

Theorem 1.9. Let s and k be two integers and let G be a graph with $n \geq \max \left\{6 k+10-5 s, \frac{1}{4}(4(k-s)(k+3)+10 k+\right.$ 25), $\left.\frac{1}{3}(2(k-s)(3 k-s+5)+8 k+15)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq \max \left\{1\right.$, s\}. If $\Theta(G, \alpha) \geq \Theta\left(N_{n, 0}^{k, s}, \alpha\right)$ and $0 \leq \alpha \leq 1$, then unless $G \cong N_{n, 0}^{k, s}$, either $C_{n+s-1}(G) \cong K_{n}$ or $G \in \mathbb{G}_{n}(p, s, k)$ holds for some integer p, where $\max \{0, s\} \leq p \leq k$.

Now, one can easily see that our Theorems 1.8 and 1.9 give the spectral property to ($n+s-1$)-stable property for graphs with n vertices. In [1,2], many q-stable properties had been given. Thus, we can apply Theorem 1.8 or Theorem 1.9 to give a new spectral property to these q-stable properties.

By comparing Theorems 1.8 and 1.9 , it is an interesting question that: How large is $\Theta\left(N_{n, 0}^{k, s}, \alpha\right)$ or Θ_{0}. Actually, it is easy to see that $\Theta\left(N_{n, 0}^{k, s}, \alpha\right)>\Theta_{0}$ (see (4.8) in the proof of Theorem 1.9). Furthermore, for $\Theta\left(N_{n, 0}^{k, s}, \alpha\right)$, we have

Proposition 1.2. Let k, s and n be three integers such that $\max \{1, s\} \leq k \leq \frac{1}{6}(n+5 s-10)$. If $n \geq \max \left\{\frac{1}{2}\left(\left(k^{2}+4\right)(k+1-\right.\right.$ $\left.s)+2), \frac{1}{2}\left(k^{2}(k+1)+6\right)\right\}$, then $\rho\left(N_{n, 0}^{k, s}\right)<n+s-k-2$ and

$$
\begin{equation*}
\mu\left(N_{n, 0}^{k, s}\right)<\frac{2 n^{2}-2(k+3-s) n+(k-s+1)(3 k-s+2)}{n-1} . \tag{1.1}
\end{equation*}
$$

Remark 1.1. Note that K_{n} is both q-connected and q-edge-connected, $\sqrt{n(n-4)+2 q+1} \geq n+q-\delta(G)-3$ and $\sqrt{n(n-q-5)+2 q(q+1)+5} \geq n+q-\delta(G)-3$ hold for large n and $3 q \leq 2 \delta(G)$. Thus, by Propositions 1.2 and 1.1 (i) and (ii), it is easy to see that Theorem 1.9 improves Theorem 1.7 (i) and (ii) for large n and $3 q \leq 2 \delta(G)$ by setting $s=q-1$.

Remark 1.2. Note that K_{n} is q-path-coverable. Thus, by Propositions 1.2 and $1.1(v)$, it is easy to see that Theorem 1.9 improves Theorem 1.7 (iii) for large n and $\delta(G) \geq 2$ by setting $s=1-q$ (here, $s=1-q$ may be negative).

Remark 1.3. Note that K_{n} is both q-edge-Hamiltonian and q-Hamiltonian, and $\delta(G) \geq q+2$ holds for any q-Hamiltonian graph G. Thus, by Proposition 1.2 and Proposition 1.1 (iii) and (iv), it is easy to see that Theorem 1.9 improves Theorem 1.6 for large n and $\delta(G) \geq q+2$ by setting $s=q+1$.

As referred before, a traceable graph is also a 0-traceable graph, a Hamiltonian graph is both a 0-Hamiltonian graph and a 1-traceable graph, and a Hamilton-connected graph is also a 2-traceable graph. For any graph G with n vertices, it is well-known that [15]: G is traceable if and only if $C_{n-1}(G)$ is traceable. For the general case of q-traceable, we have

Proposition 1.3. If $q \geq 0$ and G is a graph with n vertices, then G is q-traceable if and only if $C_{n+q-1}(G)$ is q-traceable.
Note that K_{n} is traceable, Hamiltonian and Hamilton-connected. By setting $s=0,1,2$ in Theorem 1.9 and Proposition 1.2, we have: If n is large enough and $\rho(G) \geq n+s-k-2$, then G is traceable (respectively, Hamiltonian Hamilton-connected) unless $G \in \mathbb{G}_{n}(p, s, k)$ for some integer p, where $s \leq p \leq k$. However, this is somewhat different from that in Theorems 1.1-1.3. Actually, in [3,11,16], the authors had shown that:

Proposition 1.4 ([3,11,16]). For $s=0$ (respectively, $s=1,2$), if $G \in \mathbb{G}_{n}(p, s, k)$ for some integer p, where $s \leq p \leq k \leq \frac{n+s-2}{2}$, then G is traceable (respectively, Hamiltonian, Hamilton-connected) if and only if $p \in\{s+1, s+2, \ldots, k-1\}$.

Therefore, to generalize the corresponding results of Theorems $1.1-1.5$, we need to generalize Proposition 1.4 to
Proposition 1.5. Suppose that $q \geq 0$. (i) If $q \leq p \leq k \leq \frac{1}{2}(n+q-2)$ and $G \in \mathbb{G}_{n}(p, q, k)$, then G is q-traceable if and only if $p \in\{q+1, q+2, \ldots, k-1\}$. (ii) If $q+1 \leq p \leq k \leq \frac{1}{2}(n+q-1)$ and $G \in \mathbb{G}_{n}(p, q+1, k)$, then G is q-Hamiltonian if and only if $p \in\{q+2, q+3, \ldots, k-1\}$.

By combining Propositions 1.1 (iii) and 1.3, the property that " G is q-Hamiltonian (respectively, q-traceable)" is $(n+q)$-stable (respectively, $(n+q-1)$-stable). However, Proposition 1.5 and Theorem 1.9 show that: for q-Hamiltonian (respectively, q-traceable) graphs, except for $(n+q)$-stable (respectively, $(n+q-1)$-stable) property, they require more conditions. Now, motivated from Propositions 1.3-1.5, we put forward the concept of s-suitable graph as follows:

Definition 1.2. A graph G with n vertices and minimum degree $\delta(G) \geq k$ is called an s-suitable graph if G satisfies the following conditions: (i) K_{n} is s-suitable, (ii) G is s-suitable if and only if $C_{n+s-1}(G)$ is s-suitable, and (iii) If $s_{0} \leq p \leq k \leq$ $\frac{1}{2}(n+s-2)$ and $G \in \mathbb{G}(p, s, k)$, then G is s-suitable if and only if $p \in\left\{s_{0}+1, s_{0}+2, \ldots, k-1\right\}$, where $s_{0}=\max \{0, s\}$.

For any non-negative integer q, since K_{n} is both q-traceable and q-Hamiltonian, by Propositions 1.1 (iii), 1.3, 1.5 and Definition 1.2, a q-traceable graph is q-suitable, and a q-Hamiltonian graph is ($q+1$)-suitable. Consequently, a traceable, Hamiltonian, and Hamilton-connected graph is a 0 -suitable, 1-suitable and 2-suitable graph, respectively.

Since K_{n} is s-suitable, by Theorem 1.8, it easily follows that
Corollary 1.1. Let s and k be two non-negative integers and let G be a graph with $n \geq 6 k+10-5 s$ vertices and minimum degree $\delta(G) \geq k \geq \max \{1, s\}$. If $\Theta(G, \alpha)>\Theta_{0}$ and $0 \leq \alpha \leq 1$, then G is s-suitable unless $C_{n+s-1}(G) \in\left\{N_{n}^{k, s}, M_{n}^{k, s}\right\}$.

Note that a Hamilton-connected graph is a 2-suitable graph. Thus, by Corollary 1.1, we have the following remark.
Remark 1.4. In [3], it is shown that: For any graph with $n \geq 6 k^{2}-8 k+5$ vertices and minimum degree $\delta(G) \geq k \geq 2$, if either $\rho(G)>\frac{1}{2}(k-1)+\frac{1}{2} \sqrt{4 n^{2}-4(3 k-1) n+k^{2}+10 k-15}$ or $\mu(G)>2 n-2 k-\frac{2}{n-1}$, then G is Hamilton-connected unless $C_{n+1}(G) \in\left\{N_{n}^{k, 2}, M_{n}^{k, 2}\right\}$. It is easy to see that Corollary 1.1 improves this result for large n by setting $s=2$.

From the definition of s-suitable and Theorem 1.9, we have
Corollary 1.2. Let s and k be two non-negative integers and let G be a graph with $n \geq \max \left\{6 k+10-5 s, \frac{1}{4}(4(k-s)(k+3)+\right.$ $\left.10 k+25), \frac{1}{3}(2(k-s)(3 k-s+5)+8 k+15)\right\}$ vertices and minimum degree $\delta(G) \geq k \geq \max \{1, s\}$. If $\Theta(G, \alpha) \geq \Theta\left(N_{n, 0}^{k, s}, \alpha\right)$ and $0 \leq \alpha \leq 1$, then G is s-suitable unless $G \in\left\{N_{n}^{k, s}, M_{n}^{k, s}, N_{n, 0}^{k, s}\right\}$.

Remark 1.5. Recall that a traceable, Hamiltonian, and Hamilton-connected graph is a 0-suitable, 1-suitable and 2-suitable graph, respectively. By Proposition 1.2, it is easy to see that Corollary 1.2 improves and generalizes these results of Theorems 1.11.5 for large n by setting $s=0,1$ and 2, respectively.

As the definition of s-suitable is an extension to the concepts of traceable, Hamiltonian and Hamilton-connected, it is easy to see that the graph with more edges has higher chance to be s-suitable. For a graph with n vertices and minimum degree $\delta(G) \geq k \geq 1$, it is natural and interesting for us to consider the following problem:

Problem 1.2. How large for $e(G)$ can confirm that the s-suitability of a graph G ?
The corresponding Problem 1.2 of traceable, Hamiltonian, and Hamilton-connected graph had been, respectively, studied in $[3,8,11,16]$. Now, we will give partial answer to Problem 1.2 , which generalizes the above referred results:

Theorem 1.10. Let s and k be two integers and let G be a graph with $n \geq 6 k+10-5 s$ vertices, minimum degree $\delta(G) \geq k \geq \max \{1, s\}$ and $e(G)>\varepsilon_{0}$ edges. If $C_{n+s-1}(G) \not \equiv K_{n}$, then $C_{n+s-1}(G) \in \mathbb{G}_{n}(p, s, k)$ holds for some integer p, where $\max \{s, 0\} \leq p \leq k$.

2. The Proofs of Propositions 1.3 and 1.5

The following result generalizes the corresponding result of traceable graph due to Ore [15].
Lemma 2.1. Let G be a graph with n vertices and q be a non-negative integer. If $d_{G}\left(w_{1}\right)+d_{G}\left(w_{2}\right) \geq n+q-1$ whenever $w_{1} w_{2} \notin E(G)$, then G is q-traceable if and only if $G^{\prime}=G+w_{1} w_{2}$ is q-traceable.

Proof. It suffices to show the necessity. Let S be any set of at most q vertices such that $S \subseteq V(G)$ and $|S|=t$. Since G^{\prime} is q-traceable, $G^{\prime}[V(G) \backslash S]$ contains a Hamiltonian path, say P, where $V(P)=V(G) \backslash S$.

If $w_{1} w_{2} \notin E(P)$, then P is also a path of $G[V(G) \backslash S]$ and hence we are done. Otherwise, $w_{1} w_{2} \in E(P)$ and $w_{1} w_{2} \notin E(G)$. Let $G_{1}=G[V(G) \backslash S]$ and let $P=u_{1} u_{2} \cdots u_{n-t}$ be the corresponding Hamiltonian path of $G^{\prime}[V(G) \backslash S]$, where $w_{1}=u_{i}$ and $w_{2}=u_{i+1}$. Recall that $d_{G}\left(u_{i}\right)+d_{G}\left(u_{i+1}\right) \geq n+q-1$. Thus, $d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{i+1}\right) \geq n+q-2 t-1 \geq n-t-1$ as $t \leq q$. Furthermore, $u_{1} u_{i+1} \notin E\left(G_{1}\right)$ and $u_{i} u_{n-t} \notin E\left(G_{1}\right)$ (otherwise, $G[V(G) \backslash S]$ also contains a Hamiltonian path, and the result already holds).

We firstly prove the following claim:
Claim 1: There is an index j with either $i+2 \leq j \leq n-t-1$ or $1 \leq j \leq i-2$ such that $u_{i} u_{j} \in E\left(G_{1}\right)$ and $u_{i+1} u_{j+1} \in E\left(G_{1}\right)$.
Proof of Claim 1: We suppose that $N_{G_{1}}\left(u_{i+1}\right)=\left\{u_{p_{1}}, u_{p_{2}}, \ldots, u_{p_{q}}, u_{i+2}\right\}$, where $\{1, i\} \cap\left\{p_{1}, p_{2}, \ldots, p_{q}\right\}=\emptyset$. If Claim 1 does not hold, then $N_{G_{1}}\left(u_{i}\right) \subseteq\left\{u_{1}, u_{2}, \ldots, u_{i-1}, u_{i+2}, u_{i+3}, \ldots, u_{n-t-1}\right\} \backslash\left\{u_{p_{1}-1}, u_{p_{2}-1}, \ldots, u_{p_{q-1}}\right\}$. Thus, $d_{G_{1}}\left(u_{i}\right) \leq$ $n-t-3-q$ and hence $d_{G_{1}}\left(u_{i}\right)+d_{G_{1}}\left(u_{i+1}\right) \leq(n-t-3-q)+(q+1)=n-t-2$, a contradiction. This completes the proof of Claim 1.

By Claim 1, either for some j with $i+2 \leq j \leq n-t-1$, both $u_{i} u_{j} \in E\left(G_{1}\right)$ and $u_{i+1} u_{j+1} \in E\left(G_{1}\right)$, whence $u_{1} u_{2} \ldots u_{i} u_{j} u_{j-1} \ldots u_{i+1} u_{j+1} u_{j+2} \cdots u_{n-t}$ is a Hamiltonian path of $G[V(G) \backslash S]$; or for some j with $1 \leq j \leq i-2$, both
$u_{i} u_{j} \in E\left(G_{1}\right)$ and $u_{i+1} u_{j+1} \in E\left(G_{1}\right)$, whence $u_{1} u_{2} \ldots u_{j} u_{i} u_{i-1} \ldots u_{j+1} u_{i+1} u_{i+2} \ldots u_{n-t}$ is a Hamiltonian path of $G[V(G) \backslash S]$. This proves the lemma.

The Proof of Proposition 1.3. By Lemma 2.1, it is easy to see that Proposition 1.3 holds.
Lemma 2.2. Let q be a non-negative integer. Then G is q-traceable if and only if $K_{1} \vee G$ is $(q+1)$-traceable, and G is q-Hamiltonian if and only if $K_{1} \vee G$ is $(q+1)$-Hamiltonian.

Proof. Let $V\left(K_{1}\right)=\{u\}$ and also let $G^{\prime}=K_{1} \vee G$. We firstly suppose that $K_{1} \vee G$ is $(q+1)$-traceable (respectively, $(q+1)$ Hamiltonian). Let S be any vertex set of G with t vertices, where $0 \leq t \leq q$. Then, $S_{1}=S \cup\{u\}$ is a vertex set of $K_{1} \vee G$ with $t+1$ vertices. In this case, since $t \leq q$ and since $K_{1} \vee G$ is ($q+1$)-traceable (respectively, ($q+1$)-Hamiltonian), $G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{1}\right]$ contains a Hamiltonian path (respectively, Hamiltonian cycle). Note that $G[V(G) \backslash S] \cong G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{1}\right]$. Thus, G is q-traceable (respectively, q-Hamiltonian).

Now, we suppose that G is q-traceable (respectively, q-Hamiltonian) and suppose that S_{2} is any vertex set of G^{\prime} with $t+1$ vertices, where $0 \leq t \leq q$ (Actually, since G is traceable, it is easy to see that G^{\prime} is Hamiltonian, and hence we may suppose that $\left.\left|S_{2}\right| \geq 1\right)$. If $u \in S_{2}$, then let $S_{3}=S_{2} \backslash\{u\}$. In this case, $G\left[V(G) \backslash S_{3}\right]$ contains a Hamiltonian path (respectively, Hamiltonian cycle). Since $G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{2}\right] \cong G\left[V(G) \backslash S_{3}\right], G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{2}\right]$ also contains a Hamiltonian path (respectively, Hamiltonian cycle). Thus, we assume that $u \notin S_{2}$.

Since $\left|S_{2}\right| \geq 1$, we choose $v \in S_{2}$ and let $S_{4}=S_{2} \backslash\{v\}$. It is easy to see that $G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{4}\right] \cong K_{1} \vee G\left[V(G) \backslash S_{4}\right]$. Combining this with $G\left[V(G) \backslash S_{4}\right]$ containing a Hamiltonian path (respectively, Hamiltonian cycle), we can conclude that $G^{\prime}\left[V\left(G^{\prime}\right) \backslash S_{2}\right]$ contains a Hamiltonian path (respectively, Hamiltonian cycle).

The Proof of Proposition 1.5. We prove Proposition 1.5 by induction on q. By Proposition 1.4, the results hold for $q=0$. Thus, we assume that $q \geq 1$ and Proposition 1.5 holds for smaller values of q.
(i) $G \in \mathbb{G}_{n}(p, q, k)$ with $1 \leq q \leq p \leq k \leq \frac{1}{2}(n+q-2)$.

As $p \geq q \geq 1$, by Definition 1.1, there exists a graph G_{1} such that $G=K_{1} \vee G_{1}$. By Lemma 2.2, G is q-traceable if and only if G_{1} is $(q-1)$-traceable. In this case, $G \cong K_{p} \vee\left(K_{n+q-k-1-p} \cup H_{0}\right)$ and $G_{1} \cong K_{p-1} \vee\left(K_{n+q-k-1-p} \cup H_{0}\right)$, where H_{0} is a ($k-p$)-regular graph with $k+1-q$ vertices.

Recall that $1 \leq q \leq p \leq k \leq \frac{1}{2}(n+q-2)$. Thus, $0 \leq q-1 \leq p-1 \leq k-1 \leq \frac{1}{2}(n+q-4)$ and hence $\delta\left(G_{1}\right)=k-1$. Therefore, $G_{1} \in \mathbb{G}_{n-1}(p-1, q-1, k-1)$. By the induction hypothesis, G_{1} is $(q-1)$-traceable if and only if $p-1 \in\{q, q+1, \ldots, k-2\}$. Thus, G is q-traceable if and only if $p \in\{q+1, q+2, \ldots, k-1\}$.
(ii) $G \in \mathbb{G}_{n}(p, q+1, k)$ with $2 \leq q+1 \leq p \leq k \leq \frac{1}{2}(n+q-1)$.

As $p \geq q+1 \geq 2$, we may suppose that $G=K_{1} \vee G_{1}$ by Definition 1.1. By Lemma 2.2, G is q-Hamiltonian if and only if G_{1} is $(q-1)$-Hamiltonian. In this case, $G \cong K_{p} \vee\left(K_{n+q-k-p} \cup H_{0}\right)$ and $G_{1} \cong K_{p-1} \vee\left(K_{n+q-k-p} \cup H_{0}\right)$, where H_{0} is a $(k-p)$-regular graph with $k-q$ vertices.

Recall that $2 \leq q+1 \leq p \leq k \leq \frac{1}{2}(n+q-1)$. Thus, $1 \leq q \leq p-1 \leq k-1 \leq \frac{1}{2}(n+q-3)$ and hence $\delta\left(G_{1}\right)=k-1$. Therefore, $G_{1} \in \mathbb{G}_{n-1}(p-1, q, k-1)$. By the induction hypothesis, G_{1} is $(q-1)$-Hamiltonian if and only if $p-1 \in\{q+1, q+2, \ldots, k-2\}$. Thus, G is q-Hamiltonian if and only if $p \in\{q+2, q+3, \ldots, k-1\}$.

3. The Proofs of Theorems 1.8 and 1.10

For $A, B \subseteq V(G)$ and $A \cap B=\emptyset$, let $e(A, B)$ be the number of edges connecting A and B. Especially, $e(v, B)$ is the number of edges that connect v and B.

Lemma 3.1. Let s and k be two integers and let G be a graph with $n \geq 6 k+10-5 s$ vertices, minimum degree $\delta(G) \geq k \geq \max \{1, s\}$ and $e(G)>\varepsilon_{0}$ edges. If $C_{n+s-1}(G) \not \equiv K_{n}$, then $\omega\left(C_{n+s-1}(G)\right) \geq n+s-k-1$, where $\omega\left(C_{n+s-1}(G)\right)$ is the clique number of $C_{n+s-1}(G)$.

Proof. In the proof of this result, we rewrite $C_{n+s-1}(G)$ as G^{\prime}. From the definition, it follows that $\delta\left(G^{\prime}\right) \geq \delta(G) \geq k$, $e\left(G^{\prime}\right) \geq e(G)$ and $d_{G^{\prime}}(u)+d_{G^{\prime}}(v) \leq n+s-2$ holds for any pair of nonadjacent vertices $\{u, v\} \subseteq V\left(G^{\prime}\right)$. Let K be the subset of $V\left(G^{\prime}\right)$ containing all vertices which have degree at least $\frac{1}{2}(n+s-1)$. By the definition of G^{\prime}, any two vertices in K are adjacent in G^{\prime}. Let C be a maximum clique of G^{\prime} containing all vertices in K and suppose that $|C|=t$. Let $H=G^{\prime}-C$. Since $G^{\prime} \not \equiv K_{n}$, we can conclude that $H \neq \emptyset$ and $k \leq d_{G^{\prime}}(v) \leq \frac{1}{2}(n+s-2)$ holds for each $v \in V(H)$. We consider the following two cases:
Case 1. $0 \leq t<\frac{1}{2}(n+s)$.
For every $v \in V(H)$, we have $e(v, C) \leq t-1$ and $k \leq d_{G^{\prime}}(v) \leq \frac{1}{2}(n+s-2)$, and hence

$$
e(H)+e(V(H), V(C))=\frac{1}{2}\left(\sum_{v \in V(H)} d_{G^{\prime}}(v)+\sum_{v \in V(H)} e(v, C)\right) \leq \frac{1}{4}(n-t)(2 t+n+s-4)
$$

Combining this with $e\left(G^{\prime}\right)=e(C)+e(H)+e(V(H), V(C))$, it follows that

$$
\begin{align*}
\varepsilon_{0}<e\left(G^{\prime}\right) & =e(C)+e(H)+e(V(H), V(C)) \\
& \leq\binom{ t}{2}+\frac{1}{4}(2 t+n+s-4)(n-t)=\frac{1}{4}((n-s+2) t+n(n+s-4)) \\
& <\frac{1}{8}(3 n-s)(n+s-2) . \tag{3.1}
\end{align*}
$$

Since $n \geq 6 k+10-5 s>2 k-s+4,8 \varepsilon_{0}-(3 n-s)(n+s-2)=(n-6 k+5 s-10)(n+s-4-2 k) \geq 0$, contrary to (3.1). Case 2. $\frac{1}{2}(n+s) \leq t \leq n+s-k-2$.

Since C is a maximum clique of G^{\prime} and hence every vertex of C has degree at least $t-1$, and since each pair of vertices with sum of degrees at least $n+s-1$ must be adjacent in G^{\prime} (Recall that $C_{n+s-1}(G)=G^{\prime}$), we conclude that $d_{G^{\prime}}(v) \leq n+s-t-1$ holds for every $v \in V(H)$. Thus,

$$
e(H)+e(V(H), V(C))=\sum_{v \in V(H)} d_{G^{\prime}}(v)-e(H) \leq(n-t)(n+s-t-1)
$$

and hence

$$
\begin{align*}
e\left(G^{\prime}\right) & =e(C)+e(H)+e(V(H), V(C)) \\
& \leq\binom{ t}{2}+(n-t)(n+s-t-1) \\
& =\frac{1}{2}\left(3 t^{2}-(4 n+2 s-1) t+2 n(n+s-1)\right) \tag{3.2}
\end{align*}
$$

Since $\frac{1}{2}(n+s) \leq t \leq n+s-k-2$, by (3.2) and $n \geq 6 k+10-5 s$, we have

$$
\begin{aligned}
e\left(G^{\prime}\right) & \leq \frac{1}{2}\left(3 t^{2}-(4 n+2 s-1) t+2 n(n+s-1)\right) \\
& \leq \max \left\{\frac{1}{2}\left(n^{2}-(2 k+5-2 s) n+(k-s+2)(3 k-s+5)\right), \frac{1}{8}(3 n-s)(n+s-2)\right\} \\
& \leq \varepsilon_{0}<e\left(G^{\prime}\right),
\end{aligned}
$$

which is a contradiction.
The Proof of Theorem 1.10. In the proof of this result, we rewrite $C_{n+s-1}(G)$ as G^{\prime}. From the definition, it follows that $\delta\left(G^{\prime}\right) \geq \delta(G) \geq k, e\left(G^{\prime}\right) \geq e(G)$ and $d_{G^{\prime}}(u)+d_{G^{\prime}}(v) \leq n+s-2$ holds for any pair of nonadjacent vertices $\{u, v\} \subseteq V\left(G^{\prime}\right)$. Let C be a maximum clique of G^{\prime}, and let $H=G^{\prime}-C$. Note that $G^{\prime} \neq K_{n}$. Thus, $H \neq \emptyset$. By Lemma 3.1, we have $|C| \geq n+s-k-1$.

If $|C| \geq n+s-k$ and $v \in V(H)$, then since $d_{G^{\prime}}(v) \geq k$ and since $d_{G^{\prime}}(u)+d_{G^{\prime}}(v) \leq n+s-2$ holds for any pair of nonadjacent vertices $\{u, v\} \subseteq V\left(G^{\prime}\right)$, we can conclude that v will be adjacent with every vertex of C, contrary to the maximality of C. Otherwise, $|C|=n+s-k-1$ and hence $|V(H)|=k+1-s$.

Since $|C|=n+s-k-1$, each vertex of C has degree at least $n+s-k-2$. We call a vertex in C as a frontier vertex if it has degree at least $n+s-k-1$ in G^{\prime}, i.e., it has at least one neighbor in H. By the maximality of C, we can see that every vertex in H has degree exactly k in G^{\prime}. Let $F=\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ be the set of frontier vertices.

If $p \geq 1$, then every vertex in H is adjacent to every frontier vertex in G^{\prime}, as $C_{n+s-1}(G)=G^{\prime}$. Thus, $G[V(H)] \cong H_{0}$ is a $(k-p)$-regular graph. Since $0 \leq k-p \leq k-s=|V(H)|-1$, we have $s \leq p \leq k$. Now, we can conclude that $G^{\prime} \in \mathbb{G}_{n}(p, s, k)$, where $\max \{s, 1\} \leq p \leq k$.

Otherwise, $p=0$. In this case, since $C_{n+s-1}(G)=G^{\prime}$ and $\delta\left(G^{\prime}\right) \geq k, G[V(H)] \cong H_{0}$ is a k-regular graph, and hence $G \cong H_{0} \cup K_{n+s-k-1} \in \mathbb{G}_{n}(0, s, k)$ (here, since $\left|V\left(H_{0}\right)\right|=k+1-s$ and H_{0} is k-regular, we have $s \leq 0$).

Lemma 3.2 ([5]). If G is a graph with n vertices and $e(G)$ edges, then

$$
\mu(G) \leq \frac{2 e(G)}{n-1}+n-2
$$

where the equality holds if and only if $G \cong K_{1, n-1}$ or $G \cong K_{n}$.
Lemma 3.3 ([10,13]). Let G be a graph with n vertices, $e(G)$ edges and minimum degree $\delta(G)$. If $\delta(G) \geq k \geq 1$, then

$$
\rho(G) \leq \frac{1}{2}\left(k-1+\sqrt{(k+1)^{2}+8 e(G)-4 n k}\right)
$$

Theorem 3.1. Let α be a real number such that $0 \leq \alpha \leq 1$ and let s and k be two integers. For any graph G with n vertices and minimum degree $\delta(G) \geq k \geq \max \{1, s\}$, if $\Theta(G, \alpha)>\Theta_{0}$, then $e(G)>\varepsilon_{0}$.

Proof. By contradiction, we assume that $e(G) \leq \varepsilon_{0}$. Since $0 \leq \alpha \leq 1$, we have $A(G)+\alpha D(G)=\alpha Q(G)+(1-\alpha) A(G)$. Combining this with Lemmas 3.2-3.3, it follows that

$$
\begin{aligned}
& \Theta_{0}<\Theta(G, \alpha) \leq \alpha \mu(G)+(1-\alpha) \rho(G) \\
& \leq \alpha\left(\frac{2 e(G)}{n-1}+n-2\right)+\frac{1}{2}(1-\alpha)\left(k-1+\sqrt{(k+1)^{2}+8 e(G)-4 n k}\right) \leq \Theta_{0}
\end{aligned}
$$

a contradiction.
The Proof of Theorem 1.8. We may suppose that $C_{n+s-1}(G) \not \equiv K_{n}$. In this case, since $\Theta(G, \alpha)>\Theta_{0}$, Theorems 1.10 and 3.1 imply that $C_{n+s-1}(G) \in \mathbb{G}_{n}(p, s, k)$ holds for some integer p, where $\max \{s, 0\} \leq p \leq k$.

4. The Proof of Theorem 1.9

In what follows, we always suppose that $\alpha \geq 0$. By Rayleigh's theorem, we have
Lemma 4.1 (see [12]). Let G be a connected graph with n vertices and let $\psi=\left(\psi\left(v_{1}\right), \psi\left(v_{2}\right), \ldots, \psi\left(v_{n}\right)\right)^{T}$ be any non-zero vector defined on $V(G)$. If $H \subset G$, then $\Theta(H, \alpha)<\Theta(G, \alpha) \leq(1+\alpha) \Delta(G)$. Furthermore,

$$
\begin{equation*}
\Theta(G, \alpha) \psi^{T} \psi \geq \psi^{T}(A(G)+\alpha D(G)) \psi=2 \sum_{u v \in E(G)} f(u) f(v)+\alpha \sum_{i=1}^{n} d_{G}\left(v_{i}\right) f^{2}\left(v_{i}\right) \tag{4.1}
\end{equation*}
$$

where the equality holds if and only if ψ is an eigenvector of $\Theta(G, \alpha)$.
If G is connected, since $A(G)+\alpha D(G)$ is non-negative irreducible matrix, there is a unique positive unit eigenvector $f=\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)^{T}$ corresponding to $\Theta(G, \alpha)$. In the sequel, we call f a Perron vector of G.

Lemma 4.2 ([12]). Let u, v be two vertices of the connected graph G, and $w_{1}, w_{2}, \ldots, w_{k}\left(1 \leq k \leq d_{G}(v)\right)$ be some vertices of $N(v) \backslash(N(u) \cup\{u\})$. Let $G^{\prime}=G+w_{1} u+w_{2} u+\cdots+w_{k} u-w_{1} v-w_{2} v-\cdots-w_{k} v$. If f is the Perron vector of G with $f(u) \geq f(v)$, then $\Theta\left(G^{\prime}, \alpha\right)>\Theta(G, \alpha)$.

Given two distinct vertices u, v in a graph G such that $N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right) \neq \emptyset \neq N_{G}(u) \backslash\left(N_{G}(v) \cup\{v\}\right)$, we construct a new graph $G^{\prime}=G^{\prime}(u, v)$ via replacing all edges $v w$ by $u w$ for each $w \in N_{G}(v) \backslash\left(N_{G}(u) \cup\{u\}\right)$. This operation is called the Kelmans transformation from v to u (see [4]).

Corollary 4.1. Let G be a connected graph. If G^{\prime} is a graph obtained from G by some Kelmans transformation, then $\Theta\left(G^{\prime}, \alpha\right)>\Theta(G, \alpha)$.

Proof. We use the idea as that in [4] and we suppose that G^{\prime} is obtained from G by a Kelmans transformation from the vertex v to vertex u. Let f be the Perron vector of G. The key observation is that up to isomorphism G^{\prime} is independent of u or v being the beneficiary if we apply the transformation from v to u. Indeed, in G^{\prime} one of u or v will be adjacent to $N_{G}(u) \cup N_{G}(v)$, the other will be adjacent to $N_{G}(u) \cap N_{G}(v)$ (and if the two vertices are adjacent in G then they will remain adjacent also). Now, we may assume that $f(u) \geq f(v)$. Then, the result follows from Lemma 4.2.

Corollary 4.2. Let $G \in \mathbb{G}_{n}(p, s, k)$ and let G_{0} be the graph obtained from G by deleting one edge with two end vertices in $V_{2}(G)$ such that $\delta\left(G_{0}\right) \geq k \geq p \geq \max \{s, 1\}$ and $n \geq p+k+3-s$. If G^{\prime} is a graph obtained from G by deleting one edge and $\delta\left(G^{\prime}\right) \geq k$, then $\Theta\left(G^{\prime}, \alpha\right) \leq \Theta\left(G_{0}, \alpha\right)$, where the equality holds if and only if $G^{\prime} \cong G_{0}$.

Proof. Suppose that G^{\prime} is a graph obtained from G by deleting one edge (say $e=w_{0} z_{0}$). Since $\delta(G) \geq k$ and $d_{G}(w)=k$ holds for each vertex $w \in V_{3}(G)$, we only need to consider the following three cases by symmetry:
(1) $\left\{w_{0}, z_{0}\right\} \subseteq V_{1}(G)$, (2) $z_{0} \in V_{1}(G)$ and $w_{0} \in V_{2}(G)$, (3) $\left\{w_{0}, z_{0}\right\} \subseteq V_{2}(G)$.

Let $G_{1}=G-w_{0} z_{0}$ for $\left\{w_{0}, z_{0}\right\} \subseteq V_{1}(G)$, let $G_{2}=G-w_{0} z_{0}$ for $z_{0} \in V_{1}(G)$ and $w_{0} \in V_{2}(G)$, and let $G_{0}=G-w_{0} z_{0}$ for $\left\{w_{0}, z_{0}\right\} \subseteq V_{2}(G)$. To complete the proof of this result, it suffices to show that $\Theta\left(G_{1}, \alpha\right)<\Theta\left(G_{2}, \alpha\right)<\Theta\left(G_{0}, \alpha\right)$. Since $k \geq \max \{s, 1\}$, we get $\left|V_{3}(G)\right|=k+1-s \geq 1$. We choose $w \in V_{3}(G)$.

For G_{1}, we choose $v \in V_{2}\left(G_{1}\right)$ and $w \in V_{3}(H)$, and we rewrite z_{0} as u. In this case, $\left\{w_{0}\right\}=N_{G_{1}}(v) \backslash\left(N_{G_{1}}(u) \cup\{u\}\right)$ and $w \in N_{G_{1}}(u) \backslash\left(N_{G_{1}}(v) \cup\{v\}\right)$. It is easy to see that G_{2} is isomorphic to the graph obtained from G_{1} by a Kelmans transformation from v to u. By Corollary 4.1, $\Theta\left(G_{1}, \alpha\right)<\Theta\left(G_{2}, \alpha\right)$.

For G_{2}, we choose $v \in V_{2}\left(G_{2}\right) \backslash\left\{w_{0}\right\}$, and we rewrite z_{0} as u. In this case, $\left\{w_{0}\right\}=N_{G_{2}}(v) \backslash\left(N_{G_{2}}(u) \cup\{u\}\right)$ and $w \in N_{G_{1}}(u) \backslash\left(N_{G_{1}}(v) \cup\{v\}\right)$. It is easy to see that G_{0} is isomorphic to the graph obtained from G_{2} by a Kelmans transformation from v to u. By Corollary 4.1, $\Theta\left(G_{2}, \alpha\right)<\Theta\left(G_{0}, \alpha\right)$.

Lemma 4.3. Let s and k be two integers and let G be a proper subgraph of $\mathbb{G}_{n}(p, s, k)$ such that G contains $n \geq 6 k+10-5 s$ vertices and minimum degree $\delta(G) \geq k \geq \max \{1, s\}$. If $\max \{0, s\} \leq p \leq k$, then $\Theta(G, \alpha) \leq \Theta\left(N_{n, 0}^{k, s}, \alpha\right)$, with equality holding if and only if $G \cong N_{n, 0}^{k, s}$.

Proof. By Corollary 4.2 and Lemma 4.1, the result already holds for $p=k$. Thus, we may suppose that $0 \leq p \leq k-1$ in what follows. We consider the following two cases:
Case 1. $p=0$.
In this case, $s \leq 0$ and hence $G \subset K_{n+s-k-1} \cup H_{0}$, where H_{0} is a k-regular graph with $k+1-s$ vertices. Recall that $\delta(G) \geq k$. Thus, G is obtained from $K_{n+s-k-1} \cup H_{0}$ by deleting some edges from $K_{n+s-k-1}$. Since $n \geq 6 k+10-5 s$, and $K_{n+s-k-2} \subset K_{n+s-k-1}-e \subset N_{n, 0}^{k, s}$, Lemma 4.1 implies that

$$
\Theta\left(H_{0}, \alpha\right) \leq(1+\alpha) k<(1+\alpha)(n+s-k-3)=\Theta\left(K_{n+s-k-2}, \alpha\right)<\Theta\left(K_{n+s-k-1}-e, \alpha\right)<\Theta\left(N_{n, 0}^{k, s}, \alpha\right)
$$

Thus,

$$
\Theta(G, \alpha) \leq \Theta\left(K_{n+s-k-1}-e, \alpha\right)<\Theta\left(N_{n, 0}^{k, s}, \alpha\right)
$$

and hence this result holds.
Case 2. $1 \leq p \leq k-1$.
In this case, since $p \geq \max \{0, s\} \geq s$ and since $n \geq 6 k+10-5 s$, we have $\max \{1, s\} \leq p \leq k-1$ and $n>p+k+9-s$. Suppose that $G_{1} \in \mathbb{G}_{n}(p, s, k)$ and $G_{2} \in \mathbb{G}_{n}(p+1, s, k)$. Let G and G^{\prime} be the graphs obtained from G_{1} and G_{2} by deleting one edge from $V_{2}\left(G_{1}\right)$ and $V_{2}\left(G_{2}\right)$, respectively. By Corollary 4.2 and Lemma 4.1, it suffices to show that

$$
\begin{equation*}
\Theta(G, \alpha)<\Theta\left(G^{\prime}, \alpha\right) \tag{4.2}
\end{equation*}
$$

For convenience, we may suppose that G is obtained from G_{1} by deleting the edge $w_{0} z_{0}$ with $\left\{w_{0}, z_{0}\right\} \subseteq V_{2}\left(G_{1}\right)$, and we rewrite $\Theta(G, \alpha)$ as Θ. Let f be the Perron vector of G. We firstly prove the following claim:
Claim 1. For any pairs of vertices $\{u, v\} \subseteq V_{3}(G)$, we have $f(u)=f(v)$.
Proof of Claim 1. By contradiction, we assume that Claim 1 does not hold. Let $\left\{w_{1}, w_{2}\right\} \subseteq V_{3}(G)$ such that $f\left(w_{1}\right)=$ $\max \left\{f(w): w \in V_{3}(G)\right\}$ and $f\left(w_{2}\right)=\min \left\{f(w): w \in V_{3}(G)\right\}$. Then, $f\left(w_{1}\right)>f\left(w_{2}\right)$. Note that $H_{0} \cong G\left[V_{3}(G)\right]$. Thus,

$$
\begin{aligned}
\Theta\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) & =\alpha k\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right)+\sum_{w \in N_{H_{0}}\left(w_{1}\right)} f(w)-\sum_{z \in N_{H_{0}}\left(w_{2}\right)} f(z) \\
& \leq \alpha k\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right)+(k-p)\left(f\left(w_{1}\right)-f\left(w_{2}\right)\right) .
\end{aligned}
$$

Recall that $f\left(w_{1}\right)-f\left(w_{2}\right)>0$. Thus, $\Theta-\alpha k-(k-p) \leq 0$.
On the other hand, Lemma 4.1 implies that $\Theta>\Theta\left(K_{n+s-k-2}, \alpha\right)=(1+\alpha)(n+s-k-3)$. Combining this with $n \geq 6 k-5 s+10$, we have $\Theta-\alpha k-(k-p) \geq(1+\alpha)(n+s-k-3)-\alpha k-(k-p)=\alpha(n+s-3-2 k)+n+s+p-3-2 k \geq$ $\alpha(4 k-4 s+7)+4 k-4 s+7+p>0$, a contradiction.

Now, we can conclude that $f\left(w_{1}\right)=f\left(w_{2}\right)$. This completes the proof of Claim 1.
With the similar reason with Claim 1 , we can set $x_{1}=f(w)$ for $w \in V_{1}(G)$, set $x_{2}=f(w)$ for $w \in V_{2}(G) \backslash\left\{w_{0}, z_{0}\right\}$, set $x_{3}=f\left(w_{0}\right)=f\left(z_{0}\right)$, and set $x_{4}=f(w)$ for $w \in V_{3}(G)$. Now, from $(A(G)+\alpha D(G)) f=\Theta f$, it follows that

$$
\left\{\begin{array}{l}
\Theta x_{1}=\alpha(n-1) x_{1}+(k+1-s) x_{4}+(p-1) x_{1}+(n+s-k-3-p) x_{2}+2 x_{3}, \tag{4.3}\\
\Theta x_{2}=\alpha(n+s-k-2) x_{2}+p x_{1}+(n+s-k-p-4) x_{2}+2 x_{3}, \\
\Theta x_{3}=\alpha(n+s-k-3) x_{3}+p x_{1}+(n+s-k-p-3) x_{2}, \\
\Theta x_{4}=\alpha k x_{4}+(k-p) x_{4}+p x_{1} .
\end{array}\right.
$$

By the second to fourth equations of (4.3), we have

$$
\left\{\begin{array}{l}
x_{2}=\frac{p(\Theta+2-\alpha(n+s-k-3))}{(\Theta+2+p-(\alpha+1)(n+s-k-2))(\Theta+2-\alpha(n+s-k-3))-2(\Theta+1-\alpha(n+s-k-2))} \chi_{1} \tag{4.4}\\
x_{3}=\frac{p(\Theta+1-\alpha(n+s-k-2))}{(\Theta+2+p-(\alpha+1)(n+s-k-2))(\Theta+2-\alpha(n+s-k-3))-2(\Theta+1-\alpha(n+s-k-2))} \chi_{1} \\
x_{4}=\frac{p x_{1}}{\Theta-(\alpha+1) k+p}
\end{array}\right.
$$

Now, from Lemma 4.1 we can deduce that

$$
\begin{align*}
\Theta\left(G^{\prime}, \alpha\right)-\Theta(G, \alpha) & \geq f^{T}\left(A\left(G^{\prime}\right)+\alpha D\left(G^{\prime}\right)\right) f-f^{T}(A(G)+\alpha D(G)) f \\
& =(k+1-s)\left(2 x_{2}-x_{4}\right) x_{4}+\alpha(k+1-s) x_{2}^{2} \tag{4.5}
\end{align*}
$$

By (4.5), to prove (4.2), it suffices to show that $2 x_{2}>x_{4}$, that is equivalent to

$$
\begin{equation*}
\Phi(\Theta)>0 \tag{4.6}
\end{equation*}
$$

where $\Phi(\Theta)=\Theta^{2}+(n+p+s+\alpha(1-2 k)-3 k) \Theta-\alpha(\alpha+1) n^{2}+(\alpha((\alpha+1)(4 k-2 s+5)+2-p)+2) n-((k-$ $s)(3 k-s+5)+6 k+6) \alpha^{2}-((k-s)(3 k-s+7-p)-3 p+10 k+12) \alpha-2(3 k-p-s+3)$.

Combining this with $n \geq 6 k-5 s+10$ and $\Theta>(1+\alpha)(n+s-k-3)$, we have $\Phi^{\prime}(\Theta)=2 \Theta+n+p+s+\alpha(1-2 k)-3 k>$ $2(1+\alpha)(n+s-k-3)+n+p+s+\alpha(1-2 k)-3 k=(2 n+2 s-4 k-5) \alpha+3 n+3 s+p-5 k-6 \geq 3 n+3 s+p-5 k-6 \geq$ $13 k+p-12 s+24>0$.

Let $\Phi_{1}(n)=2 n^{2}-(6 k+7-4 s) n+2(2 k-s)(k-s)+9 k-7 s+3$. Since $\Phi_{1}^{\prime}(n)=4 n-(6 k+7-4 s) \geq 18 k-16 s+33>0$ by $n \geq 6 k+10-5 s, \Phi_{1}(n) \geq \Phi_{1}(6 k+10-5 s)=8(k-s)(5 k-4 s)+(147 k-132 s)+133>0$. Combining with $\Phi^{\prime}(\Theta)>0$, $\Phi_{1}(n)>0$ and $n \geq 6 k-5 s+10$, it follows that

$$
\begin{aligned}
\Phi(\Theta)> & \Phi((1+\alpha)(n+s-k-3)) \\
= & \left(2 n^{2}-(6 k+7-4 s) n+2(2 k-s)(k-s)+9 k-7 s+3\right) \alpha \\
& \quad+(2 n-4 k+p+2 s-3)(n+s-k-3)+2(n+p+s-3 k-3) \\
\geq & (2 n-4 k+p+2 s-3)(n+s-k-3)+2(n+p+s-3 k-3) \\
= & 4 k^{2}-(6 n+6 s+p-9) k+(n+s)(2 n+2 s+p-7)+3-p=\Phi_{2}(k) .
\end{aligned}
$$

Since $n \geq 6 k+10-5 s$, we have

$$
\Phi_{2}^{\prime}(k)=8 k-(6 n+6 s+p-9) \leq \frac{4}{3}(n+5 s-10)-(6 n+6 s+p-9)=-\frac{1}{3}(14 n+3 p-2 s+13)<0
$$

which implies that

$$
\begin{aligned}
\Phi(\Theta) & >\Phi_{2}(k) \geq \Phi_{2}\left(\frac{1}{6}(n+5 s-10)\right) \\
& =\frac{1}{18}\left(20 n^{2}+(15 p-16 s+41) n+4(3 p-4)-s(11+4 s-3 p)\right)=\Phi_{3}(n) .
\end{aligned}
$$

If $s \geq 1$, since $n \geq 6 k+10-5 s \geq 10+s$, it follows that $18 \Phi_{3}^{\prime}(n)=40 n+15 p-16 s+41 \geq 24 s+15 p+441>0$, and hence

$$
\Phi(\Theta)>\Phi_{2}(k) \geq \Phi_{3}(n) \geq \Phi_{3}(s+10)=9 p+15 s+p s+133>0 .
$$

If $s \leq 0$, since $n \geq 6 k+10-5 s \geq 10-5 s$, it follows that $18 \Phi_{3}^{\prime}(n)=40 n+15 p-16 s+41>0$, and hence

$$
\Phi(\Theta)>\Phi_{2}(k) \geq \Phi_{3}(n) \geq \Phi_{3}(10-5 s)=32 s^{2}-(4 p+132) s+9 p+133>0
$$

Now, (4.6) holds and this completes the proof of this result.
Lemma 4.4. Let α and q be two real numbers such that $0 \leq \alpha \leq 1$ and $0 \leq q<1$. If $n \geq \max \left\{\frac{1}{2}(3 k+3+2 q-2 s)\right.$, $\frac{1}{2(1-q)}((k-$ $\left.q)(k+q-s)+(q-4)(s-3)-k(3 q-7)-4), \frac{1}{2-q}((k-s)(3 k-s+5)+4(k+2)-q)\right\}$, then $(1+\alpha)(n+s-k-2)-q \geq \Theta_{0}$.

Proof. Let $\Phi(\alpha)=(1+\alpha)(n+s-k-2)-q-\Theta_{0}$. Note that

$$
\Phi^{\prime}(\alpha)=s-k-\frac{2 \varepsilon_{0}}{n-1}+\frac{1}{2}\left(k-1+\sqrt{(k+1)^{2}+8 \varepsilon_{0}-4 n k}\right) .
$$

Thus, $\Phi(\alpha) \geq \min \{\Phi(0), \Phi(1)\}$. To complete the proof of this result, it suffices to show that

$$
\begin{equation*}
\min \{\Phi(0), \Phi(1)\} \geq 0 \tag{4.7}
\end{equation*}
$$

Since $2(1-q) n \geq(k-q)(k+q-s)+(q-4)(s-3)-k(3 q-7)-4$, we have

$$
\Phi(0)=n+s-\frac{3}{2} k-\frac{3}{2}-q-\sqrt{n^{2}-(3 k-2 s+5) n+\frac{(13 k-3 s)(k-s)+s(s-28)+46 k+41}{4}} \geq 0
$$

Furthermore, since $(2-q) n \geq(k-s)(3 k-s+5)+4(k+2)-q$, we have

$$
\begin{aligned}
\Phi(1) & =n+2 s-2 k-2-q-\frac{1}{n-1}((n-k-2+s)(n-k-3+s)+2(k+1)(k+2-s)) \\
& =\frac{1}{n-1}((2-q) n-(k-s)(3 k-s+5)-4(k+2)+q) \geq 0 .
\end{aligned}
$$

Now, we can conclude that (4.7) holds.

Lemma 4.5. Let $\alpha \geq 0$ and $q>0$ be two real numbers. If $n \geq \frac{1}{q}((1-q)(\alpha-q)+\alpha+2)$, then $\Theta\left(K_{n}-e, \alpha\right) \geq(1+\alpha)(n-1)-q$.
Proof. Throughout the proof of this result, we rewrite $K_{n}-e$ as G and simplify $\Theta(G, \alpha)$ as Θ, where $e=w_{0} z_{0}$. Let f be the Perron vector of Θ. For convenience, let $x_{1}=f(w)$ for $w \in V(G) \backslash\left\{w_{0}, z_{0}\right\}$ and let $x_{2}=f(w)$ for $w \in\left\{w_{0}, z_{0}\right\}$. Now, from $(A(G)+\alpha D(G)) f=\Theta(G, \alpha) f$, it follows that

$$
\left\{\begin{array}{l}
\Theta x_{1}=\alpha(n-1) x_{1}+(n-3) x_{1}+2 x_{2} \\
\Theta x_{2}=\alpha(n-2) x_{2}+(n-2) x_{1}
\end{array}\right.
$$

Thus, Θ satisfies

$$
\Phi(\Theta)=\Theta^{2}-(\alpha(2 n-3)+n-3) \Theta+(\alpha+1)(n-2)(\alpha(n-1)-2)
$$

which implies

$$
\Theta=\frac{1}{2}\left(\alpha(2 n-3)+n-3+\sqrt{n^{2}+2(\alpha+1) n+(\alpha+1)(\alpha-7)}\right)
$$

Note that $q n \geq(1-q)(\alpha-q)+\alpha+2$. Thus, $\Theta \geq(1+\alpha)(n-1)-q$.
The Proof of Theorem 1.9. When $q=\frac{1}{2}$, since $n \geq 6 k-5 s+10>\frac{1}{2}(3 k+4-2 s)=\frac{1}{2}(3 k+3+2 q-2 s)$ and $0 \leq \alpha \leq 1$, we have

$$
n+s-k-1 \geq 6 k-5 s+10+s-k-1>\frac{13}{2} \geq 3 \alpha+\frac{7}{2}=\frac{1}{q}((1-q)(\alpha-q)+\alpha+2)
$$

Combining this with $K_{n+s-k-1}-e \subset N_{n, 0}^{k, s}$ and $\alpha \geq 0$, by setting $q=\frac{1}{2}$ in Lemmas 4.4 and 4.5 it follows that

$$
\begin{equation*}
\Theta\left(N_{n, 0}^{k, s}, \alpha\right)>\Theta\left(K_{n+s-k-1}-e, \alpha\right) \geq \Theta_{0} \tag{4.8}
\end{equation*}
$$

If $C_{n+s-1}(G) \not \equiv K_{n}$, then $k \leq \frac{1}{2}(n+s-2)$ and Theorem 1.8 implies that $C_{n+s-1}(G) \in \mathbb{G}_{n}(p, s, k)$ for some integer p, where $\max \{0, s\} \leq p \leq k$. Hence, Theorem 1.9 follows from Lemma 4.3.

Remark 4.1. By an observation to the proof of Theorem 1.9, we can improve the lower bound for n of Theorem 1.9 by setting suitable q in Lemmas 4.4 and 4.5 , where $0<q<1$.

5. The proof of Proposition 1.2

This section dedicates to the proof of Proposition 1.2.
The Proof of Proposition 1.2. In the proof of this result, we rewrite $N_{n, 0}^{k, s}$ as G and we suppose that $N_{n, 0}^{k, s}=N_{n}^{k, s}-w_{0} z_{0}$. Note that $e(G)=\frac{1}{2}(n+s-k-1)(n+s-k-2)+k(k+1-s)-1$. Thus, (1.1) follows from Lemma 3.2. To complete the proof of this result, it suffices to show that $\rho(G)<n+s-k-2$.

Let f be the Perron vector of G, and let $\rho=\rho(G)$. For convenience, let $x_{1}=f(w)$ for $w \in V_{1}(G)$, let $x_{2}=f(w)$ for $w \in V_{2}(G) \backslash\left\{w_{0}, z_{0}\right\}$, let $x_{3}=f\left(w_{0}\right)=f\left(z_{0}\right)$, and let $x_{4}=f(w)$ for $w \in V_{3}(G)$. Now, from $(A(G)) f=\rho f$, it follows that

$$
\left\{\begin{array}{l}
\rho x_{1}=(k-1) x_{1}+(n-2 k-3+s) x_{2}+2 x_{3}+(k+1-s) x_{4} \tag{5.1}\\
\rho x_{2}=k x_{1}+(n+s-2 k-4) x_{2}+2 x_{3} \\
\rho x_{3}=k x_{1}+(n+s-2 k-3) x_{2} \\
\rho x_{4}=k x_{1}
\end{array}\right.
$$

From the second and third equations of (5.1), we have $(\rho+1) x_{2}=(\rho+2) x_{3}$. Now, from the second equation of (5.1), we have

$$
\begin{equation*}
x_{2}=\frac{k(\rho+2)}{(\rho+4+2 k-n-s)(\rho+2)-2(\rho+1)} x_{1} . \tag{5.2}
\end{equation*}
$$

Furthermore, combining with $(\rho+1) x_{2}=(\rho+2) x_{3}$, by the first and fourth equations of (5.1), we have

$$
\begin{equation*}
x_{2}=\frac{(\rho+2)((\rho-k)(\rho+1)-k(k-s))}{\rho((n-2 k-3+s)(\rho+2)+2(\rho+1))} x_{1} . \tag{5.3}
\end{equation*}
$$

By (5.2) and (5.3), ρ satisfies $0=\Phi(\rho)=\rho^{4}-(n-k+s-5) \rho^{3}-((k-2)(k-s)+3 n+s-10) \rho^{2}-(k(k-s)(2 k-n-$ $s+5)-(n-k-2) k+2(n+s-3)) \rho+2 k(k-s+1)(n+s-2 k-3)$.

Let $\Phi(n+s-k-2)=2 n^{2}-\left(\left(k^{2}+4\right)(k-s)+k^{2}+6\right) n+(k-s+1)\left(k^{3}-s k^{2}-2 s+4\right)=\Phi_{1}(n)$.
Claim 1. $\Phi(n+s-k-2)=\Phi_{1}(n)>0$.
Proof of Claim 1. We consider the following two cases:
Case 1. $k \geq s+1$.
In this case, since $n \geq \frac{1}{2}\left(\left(k^{2}+4\right)(k+1-s)+2\right)$, we have

$$
\Phi_{1}^{\prime}(n) \geq \Phi_{1}^{\prime}\left(\frac{1}{2}\left(\left(k^{2}+4\right)(k+1-s)+2\right)\right)=4(k-s)+k^{2}(k-s+1)+6>0
$$

Combining this with $k \geq s+1$, we can conclude that

$$
\begin{aligned}
\Phi_{1}(n) & \geq \Phi_{1}\left(\frac{1}{2}\left(\left(k^{2}+4\right)(k+1-s)+2\right)\right) \\
& =(k-s+1)\left(k^{2}(k-s)-2 s+4\right) \geq 2\left(k^{2}-2 s+4\right)>0
\end{aligned}
$$

and hence Claim 1 holds.
Case 2. $k=s$.
In this case, $k=s \geq 1$. Since $n \geq \frac{1}{2}\left(k^{2}(k+1)+6\right)$ and $k=s$, we have

$$
\Phi_{1}^{\prime}(n) \geq \Phi_{1}^{\prime}\left(\frac{1}{2}\left(k^{2}(k+1)+6\right)\right)=2 s^{3}+s^{2}+6>0
$$

Now, we can conclude that

$$
\Phi_{1}(n) \geq \Phi_{1}\left(\frac{1}{2}\left(k^{2}(k+1)+6\right)\right)=\frac{1}{2}(s+2)\left(s^{4}(s-1)+2 s^{3}+2(s-1)^{2}+2\right)>0
$$

and hence Claim 1 holds. This completes the proof of Claim 1.
In what follows, let $\rho_{1} \geq \rho_{2} \geq \rho_{3} \geq \rho_{4}$ be the four roots of $\Phi(\rho)=0$. Then, $\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4}=n-k+s-5$. Now, $\Phi(\rho) \rightarrow+\infty$ as $\rho \rightarrow+\infty$ and $\Phi(n+s-k-2)>0$ by Claim 1 . Since the sum of four roots of $\Phi(\rho)=0$ is equal to $n+s-k-5$, either no roots are in $(n+s-k-2,+\infty)$ or exactly two roots are in $(n+s-k-2,+\infty)$.

If no roots are in $(n+s-k-2,+\infty)$, then $\rho(G)=\rho_{1}<n+s-k-2$ and we are done. Otherwise, we must have exactly two roots are in $(n+s-k-2,+\infty)$, that is, $\rho_{1} \geq \rho_{2}>n+s-k-2$ in what follows.

When $k(k+1-s) \geq 2$, then $\Phi(-2)=4-2 k(k+1-s) \leq 0$. Combining this with $\Phi(n+s-k-2)>0$ by Claim 1 , there is at least one root in $\left[-2, n+s-k-2\right.$), and hence $\rho_{3} \geq-2$. Since the absolute value of any eigenvalue of $A(G)$ is not greater than the spectral radius of G, namely, ρ_{1}, we have $\rho_{1}+\rho_{4} \geq 0$. Thus,

$$
n+s-k-5=\sum_{i=1}^{4} \rho_{i} \geq \rho_{2}+\rho_{3}>n+s-k-2-2>n+s-k-5, \quad \text { a contradiction. }
$$

When $k(k+1-s) \leq 1$, then $k=s=1$. In this case, we have

$$
\Phi(\rho)=\rho^{4}-(n-5) \rho^{3}-(3 n-9) \rho^{2}-(n-1) \rho+2 n-8
$$

Recall that $n \geq 6 k-5 s+10=11$. Thus, it is easy to see that $\Phi(0)=2(n-4)>0$ and $\Phi(n-3)=-n^{3}+8 n^{2}-21 n+16=$ $-n^{2}(n-8)-21 n+16<0$. Combining this with $\Phi(n-2)>0$ by Claim 1 , we have $0<\rho_{4}<n-3<\rho_{3}$. Since $\rho_{1}+\rho_{2}+\rho_{3}+\rho_{4}=n+s-k-5$ and $\rho_{1}>n+s-k-2$, we must have $\rho_{4}<0$, a contradiction.

6. Further discussion

Recently, Zhou et al. [21] showed that: If $\delta(G) \geq k \geq 2$ and $\mu(G) \geq 2(n-k)$, where $n \geq k^{4}+5 k^{3}+2 k^{2}+8 k+12$, then G is Hamilton-connected unless G is either obtained from $N_{n}^{k, 2}$ deleting at most $\frac{1}{4} k(k-1)$ edges or G is obtained from $M_{n}^{k, 2}$ by deleting at most $\frac{1}{2}(k-1)$ edges. This result strengthens that of Theorem 1.9 for $s=2$ and $\alpha=1$.

In Lemma 4.4, we have showed that $\Theta_{0} \leq(1+\alpha)(n+s-k-2)-q$ for $0 \leq \alpha \leq 1,0 \leq q<1$, and $n \geq \max \left\{\frac{1}{2}(3 k+3+2 q-2 s), \frac{1}{2(1-q)}((k-q)(k+q-s)+(q-4)(s-3)-k(3 q-7)-4), \frac{1}{2-q}((k-s)(3 k-s+5)+4(k+2)-q)\right\}$. Note that $\Theta_{0} \leq 2(n-k)-q \leq 2 n-2 k$ for $s=2,0 \leq q<1$ and $\alpha=1$. By Theorem 1.8 and Proposition 1.4, to improve Zhou's result, it suffices to give the characterization of those proper subgraphs G of $N_{n}^{k, 2}$ and $M_{n}^{k, 2}$ such that $\Theta(G, \alpha)>\Theta_{0}$.

As in Remark 4.1, we can improve the lower bounds for n in Theorem 1.9 such that

$$
\Theta_{0} \leq(1+\alpha)(n+s-k-2)-q \leq \Theta\left(K_{n+s-k-1}-e, \alpha\right)
$$

by setting suitable positive real number q.

Acknowledgments

The authors would like to thank the referees for their valuable comments which led to an improvement of the original manuscript. The first author is partially supported by NNSF of China (No. 11571123), the Training Program for Outstanding Young Teachers in University of Guangdong Province (No. YQ2015027) and Guangdong Province Ordinary University Characteristic Innovation Project (No. 2017KTSCX020), the second author is partially supported by NNSF of China (Nos. 11771039 and 11771443), and the third author is supported by the Sungkyun research fund, Sungkyunkwan University, 2017, and National Research Foundation of the Korean government with Grant No. 2017R1D1A1B03028642.

References

[1] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.
[2] H. Broersma, Z. Ryjá' cek, I. Schiermeyer, Closure concepts: a survey, Graphs Combin. 16 (2000) 17-48.
[3] M.-Z. Chen, X.-D. Zhang, The number of edges, spectral radius and hamilton-connectedness of graphs, J. Comb. Optim. 35 (2018) $1104-1127$.
[4] P. Csikvári, On a conjecture of V. Nikiforov, Discrete Math. 309 (2009) 4522-4526.
[5] L. Feng, G. Yu, On three conjectures involving the signless Laplacian spectral radius of graphs, Publ. Inst. Math. (Beograd) 85 (2009) 35-38.
[6] L. Feng, P. Zhang, H. Liu, W. Liu, M. Liu, Y. Hu, Spectral conditions for some graphical properties, Linear Algebra Appl. 524 (2017) 182-198.
[7] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl. 432 (2010) 2170-2173.
[8] Z. Füredi, A. Kostochka, R. Luo, A stability version for a theorem of Erdős on nonhamiltonian graphs, Discrete Math. 340 (2017) $2688-2690$.
[9] J. Ge, B. Ning, Spectral radius and Hamiltonicity of graphs and balanced bipartite graphs with large minimum degree, 2016, arXiv:1606.08530v3.
[10] Y. Hong, J. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177-183.
[11] B. Li, B. Ning, Spectral analogues of Erdős' and Moon-Moser's theorems on Hamilton cycles, Linear Multilinear Algebra 64 (2016) $2252-2269$.
[12] M. Liu, B. Liu, Extremal Theory of Graph Spectrum, University of Kragujevac and Faculty of Science Kragujevac, Kragujevac, 2018.
[13] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179-189.
[14] V. Nikiforov, Spectral radius and Hamiltonicity of graphs with large minimum degree, Czechoslovak Math. J. 66 (2016) 925-940.
[15] O. Ore, Arc coverings of graphs, Ann. Mat. Pura Appl. IV. Ser. 55 (1961) 315-321.
[16] J. Wei, Z. You, H.-J. Lai, Spectral analogues of Erdős' theorem on Hamilton-connected graphs, Appl. Math. Comput. 340 (2019) $242-250$.
[17] G.-D. Yu, Y.-Z. Fan, Spectral conditions for a graph to be Hamilton-connected, Appl. Mech. Mater. 336-338 (2013) $2329-2334$.
[18] G. Yu, Y. Fang, Y. Fan, G. Cai, Spectral radius and Hamiltonicity of graphs, Discuss. Math. Graph Theory, http://dx.doi.org.10.7151/dmgt.2119.
[19] G. Yu, M. Ye, G. Cai, J. Cao, Signless Laplacian spectral conditions for Hamiltonicity of graphs, J. Appl. Math. (2014) article ID 282053, http://www.hindawi.com/journals/jam/aip/282053/.
[20] Q. Zhou, L. Wang, Some sufficient spectral conditions on Hamilton-connected and traceable graphs, Linear Multilinear Algebra 65 (2017) 224-234.
[21] Q. Zhou, L. Wang, Y. Lu, Signless Laplacian spectral conditions for Hamilton-connected graphs with large minimum degree, arXiv:1711.11257v1.

[^0]: * Corresponding author.

 E-mail addresses: liumuhuo@163.com (M. Liu), hjlai@math.wvu.edu (H.-J. Lai), kinkardas2003@gmail.com (K.C. Das).

