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Abstract
A graph G is said to be pancyclic if G contains cycles of lengths from 3 to |V (G)|.
For a positive integer i , we use Zi to denote the graph obtained by identifying an
endpoint of the path Pi+1 with a vertex of a triangle. In this paper, we show that
every 4-connected claw-free Z8-free graph is either pancyclic or is the line graph of
the Petersen graph. This implies that every 4-connected claw-free Z6-free graph is
pancyclic, and every 5-connected claw-free Z8-free graph is pancyclic.

Keywords Claw-free · Pancyclic · Forbidden subgraphs

1 Introduction

We use [1] for terminology and notation not defined here, and consider finite simple
graphs only. Let G be a graph. If v ∈ V (G) and S ⊆ V (G), G[S] is the subgraph
induced by S in G, NG(v) is the neighborhood of v in G, and NG(S) = ⋃

v∈S NG(v).
Throughout this paper, we will assume that all cycles C have an inherent clockwise
orientation. For a vertex v ∈ V (C) we will denote the first, second, and i-th successor
of v as v+, v++, and v+i , respectively. Similarly, we denote the first, second, and
i-th predecessor of v as v−, v−−, and v−i respectively. If u, v ∈ V (C), then C[u, v]
denotes the consecutive vertices on C from u to v in the chosen direction of C , and
C(u, v] = C[u, v] − {u},C[u, v) = C[u, v] − {v},C(u, v) = C[u, v] − {u, v}. The
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same vertices, in the reverse order, are denoted by
←−
C [v, u], ←−

C [v, u),
←−
C (v, u] and←−

C (v, u), respectively. A hop in a cycle is a chord that joins some v to v++.
Given a family F of graphs, G is said to be F-free if G contains no member of

F as an induced subgraph. If F = {K1,3}, then G is said to be claw-free. A graph
G is hamiltonian if it contains a spanning cycle and pancyclic if it contains cycles of
lengths from 3 to |V (G)|. In 1984, Matthews and Sumner [6] conjectured that every
4-connected claw-free graph is hamiltonian. This conjecture is still open, and has also
fostered a large body of research into other structural properties of cycles for claw-
free graphs. In this paper we are specifically interested in the pancyclicity of highly
connected claw-free graphs.

Let Ł denote the graph obtained by connecting two disjoint triangles with a single
edge, and let N (i, j, k) denote the net obtained by identifying an endpoint of each the
paths Pi+1, Pj+1, Pk+1 with distinct vertices of a triangle. N (i, 0, 0) is also denoted
by Zi .

Theorem 1.1 (Gould, Łuczak, Pfender [4]) Let X and Y be connected graphs on at
least three vertices. If neither X nor Y is P3 and Y is not K1,3, then every 3-connected
{X ,Y }-free graph G is pancyclic if and only if X = K1,3 and Y is a subgraph of one
of the graphs in the family

F = {P7,Ł, N (4, 0, 0), N (3, 1, 0), N (2, 2, 0), N (2, 1, 1)}.

Motivated by theMatthews–Sumner Conjecture and Theorem1.1, RonGould came
up with the following problem at the 2010 SIAM Discrete Math Meeting in Austin,
TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected
graph is pancyclic.

Theorem 1.3 (Ferrara, Gould, Gehrke, Magnant, and Powell [2]) Every 4-connected
{K1,3, N (i, j, k)}-free graph with i + j + k = 5 is pancyclic.

Theorem 1.4 (Ferrara, Morris, Wenger [3]) Every 4-connected {K1,3, P10}-free graph
is either pancyclic or is the line graph of the Petersen graph.

The result of this paper is as follows.

Theorem 1.5 Every 4-connected {K1,3, Z8}-free graph is either pancyclic or is the
line graph of the Petersen graph.

Notice that if a graph is P10-free, it must be Z8-free. Theorem1.5 generalizes
Theorem1.4. The line graph of the Petersen graph is 4-connected and {K1,3, Z7}-free,
but not Z6-free, and it contains no cycle of length 4 (Fig. 1). This immediately implies
the following corollary.

Corollary 1.6 Every 4-connected {K1,3, Z6}-free graph is pancyclic.

Corollary 1.7 Every 5-connected {K1,3, Z8}-free graph is pancyclic.

123



Graphs and Combinatorics (2019) 35:67–89 69

Fig. 1 The line graph of the
Petersen graph is the unique
4-connected claw-free, Z8-free
graph that is not pancyclic

We would like to point out that the idea underlying our proofs comes from [3]. In
Sect. 2, we will show that every 4-connected {K1,3, Z8}-free graph G contains cycles
of all lengths from 10 to n by showing that ifG contains a t-cycle (t ≥ 11), thenG also
contains a (t − 1)-cycle. The existence of a 9-cycle follows from the existence of 10-
cycles, which will be given in Sect. 3. The existence of a 3-cycle follows immediately
from the fact that G is claw-free. For 4-cycles, we use similar arguments based on
the longest induced graphs Zk . The proof of the existence of 4-cycles will be given in
Sect. 4. The proof of the existence of t-cycles (t = 5, 6, 7, 8) will be given in Sect. 5.

2 Long Cycles

Let C be a cycle in G and v ∈ V (C) and u /∈ V (C) such that uv ∈ E(G). If C is
hop-free, then we have either uv+ ∈ E(G) or uv− ∈ E(G) as G is claw-free. Let
x1, x2, . . . , xk ∈ V (C) lie on C along the orientation of C and let w1, w2, . . . , wk be
distinct vertices not inV (C) so thatwi xi ∈ E(G). The claw-extension at x1, x2, . . . , xk
of C is the extension of C by inserting w1, w2, . . . , wk into C one by one as follows.

For i = 1, 2, . . . , k, do:

Cases Methods

xi+1 �= x+
i or xiwi+1 /∈ E(G) Insert wi into C by replacing x−

i xi x
+
i by

x−
i wi xi x

+
i or x−

i xiwi x
+
i . Set i := i + 1

xi+1 = x+
i and xiwi+1 ∈ E(G), and x−

i wi ∈ E(G). Insert wi and wi+1 into C by replacing
x−
i xi xi+1 by x−

i wi xiwi+1xi+1. Set
i := i + 2.

xi+1 = x+
i and xiwi+1 ∈ E(G), and x−

i wi /∈ E(G) Then wi xi+1 ∈ E(G). Consider
G[{xi , x−

i , wi , wi+1}], we have either
wi+1x

−
i ∈ E(G), or wiwi+1 ∈ E(G).

• If wi+1x
−
i ∈ E(G), insert wi and wi+1 into

C by replacing x−
i xi xi+1 by

x−
i wi+1xiwi xi+1. Set i := i + 2.

• If wiwi+1 ∈ E(G), insert wi and wi+1 into C
by replacing xi xi+1 by xiwiwi+1xi+1. Set
i := i + 2.
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Lemma 2.1 Let G be a 4-connected {K1,3, Z8}-free graph of order n and let C be a
cycle of length t ≥ 11 in G. If G contains no (t − 1)-cycles, then C contains a chord.

Proof Suppose that C is chordless. Since G is 4-connected, C is not a hamiltonian
cycle. Thus, for any v ∈ V (C), there is a vertex x /∈ V (C) such that vx ∈ E(G).
As v+v− /∈ E(G), we have either v+x ∈ E(G) or v−x ∈ E(G). Without loss of
generality, we assume that xv− ∈ E(G). Denote u = v−. Then uv ∈ E(C) and
G[{x, u, v}] is a clique in G.

Claim 1 xv+, xu−, xv++, xu−−, xv+3, xu−3 /∈ E(G).
Assume that xv+ ∈ E(G). SinceG contains no (t−1)-cycles, xv++, xu− /∈ E(G).

As G is claw-free and C is chordless, for any z ∈ C(v++, u−), xz /∈ E(G). Thus
the subgraph induced by {x, v, v+} ∪ {v++, . . . , v+9} is Z8, a contradiction. This
contradiction implies that xv+ /∈ E(G). Similarly, xu− /∈ E(G). As G contains no
(t − 1)-cycles, xv++, xu−−, xv+3, xu−3 /∈ E(G). Claim 1 holds.

Since G is Z8-free and since C is chordless and t ≥ 11, NG(x) ∩ (V (C) − {u, v})
�= ∅. Let j be a positive integer so that xv+, xv++, . . . , xv+( j−1) /∈ E(G), and
xv+ j ∈ E(G). By Claim 1, j ≥ 4. Choose uv ∈ E(C) (u = v−) and x /∈ V (C) so
that j is as small as possible.

Consider the neighborhoods of u, u−−, and u−3. Since G is 4-connected, there
exits a vertex w1 /∈ V (C) ∪ {x} such that uw1 ∈ E(G). Since G is claw-free, we
have either w1v ∈ E(G) or w1u− ∈ E(G). By Claim 1, w1u−−, w1u−3 /∈ E(G). As
xu−−, xu−3 /∈ E(G), there are distinct vertices w2, w3 /∈ V (C) ∪ {x, w1} such that
w2u−−, w3u−3 ∈ E(G). If xv+4 ∈ E(G), then the (t − 2)-cycle C[v+4, v]xv+4 can
be extended to a (t − 1)-cycle via claw-extension at u−−; if xv+5 ∈ E(G), then the
(t −3)-cycle C[v+5, v]xv+5 can be extended to a (t −1)-cycle via claw-extensions at
u−− and u−3; if xv+6 ∈ E(G), then the (t −4)-cycle C[v+6, v]xv+6 can be extended
to a (t − 1)-cycle via claw-extensions at u, u−− and u−3. This implies that j ≥ 7.

Consider the neighborhoods of u−5 and u−6. By the choice of uv and x ,
(NG(u−5) ∪ NG(u−6)) ∩ {w1, w2, w3, x} = ∅. As G is 4-connected, there are dis-
tinct vertices w4, w5 /∈ V (C) ∪ {x, w1, w2, w3} such that w4u−5, w5u−6 ∈ E(G). If
xv+7 ∈ E(G), then the (t − 5)-cycle C[v+7, v]xv+7 can be extended to a (t − 1)-
cycle via claw-extensions at u, u−−, u−3, and u−5; if xv+8 ∈ E(G), then the
(t − 6)-cycle C[v+8, v]xv+8 can be extended to a (t − 1)-cycle via claw-extensions
at u, u−−, u−3, u−5, and u−6. Therefore, j ≥ 9. Thus the subgraph induced by
{x, u, v} ∪ {v+, . . . , v+8} is Z8, a contradiction. 
�
Lemma 2.2 Let G be a claw-free graphwithminimumdegree at least 4, let C be a cycle
of length t ≥ 6, and let X be the set of vertices in C that are not on any chord of C. If
x1, x2, . . . , x5 ∈ V (C)∩X, then NG(x1)∩NG(x2)∩NG(x3)∩NG(x4)∩NG(x5) = ∅.
Proof Assume that x1, x2, . . . , x5 lie on C in order along the orientation of C . Since
|V (C)| ≥ 6, without loss of generality, we assume that x1x5 /∈ E(C). If w ∈ NG(x1)
∩ NG(x2) ∩ NG(x3) ∩ NG(x4) ∩ NG(x5), then G[{w, x1, x3, x5}] = K1,3, a contra-
diction. 
�
Theorem 2.3 (Gould, Łuczak, Pfender, Lemma 3.1 in [4]) Let G be a claw-free graph
with minimum degree at least 3, let C be a cycle of length t ≥ 5 without hops, and let
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X be the set of vertices in C that are not on any chord of C. If some chord xy of C
satisfies |X ∩ C(x, y)| ≤ 2, then G contains cycles of lengths t − 1 and t − 2.

Let C be a cycle without hops in G, and let X be the set of vertices in C that are
not on any chord of C . Let xy be a chord of C so that (i). |C(x, y) ∩ X | is minimum,
and (ii). subject to (i), |C[x, y]| is minimum.

In order to prove the following lemmas, we need the following technique to insert
some vertices of C(x, y) into the cycle xC[y, x] along the orientation of C . Let
p ∈ C(x, y) − X . Then, by the choice of xy, we conclude that p has a neighbor q
in C(y, x). Since G is claw-free and C is hop-free, we have either pq+ ∈ E(G) or
pq− ∈ E(G). Without loss of generality, we may assume that pq+ ∈ E(G). Then we
can insert p into C(y, x) by replacing qq+ with qpq+. Such a vertex p is called an
insertable vertex, and the edge qq+ is called the insertion edge for p. If there are two
vertices p1, p2 ∈ C(x, y) − X such that ww+ is the insertion edge for both p1 and
p2, then vertices in the path C[p1, p2] can be inserted into C(y, x) by replacing ww+
withwC[p1, p2]w+. Such path C[p1, p2] is called the insertable pathwith respect to
the insertion edge ww+. If there is no p′ ∈ C(x, p1) ∪ C(p2, y) − X such that ww+
is also the insertion edge for p′, the path C[p1, p2] is called the maximal insertable
path in C(x, y) with respect to the insertion edge ww+. The path C[p1, p2] is trivial
if p1 = p2 (Fig. 2).

Let x1 be the first vertex in C(x, y) − X along the orientation of C . Then x1
is an insertable vertex in C(x, y) with respect to an insertion edge w1w

+
1 . Let P1= C[x1, y1] be the maximal insertable path in C(x, y) with respect to insertion edge

w1w
+
1 . Let x2 be the first vertex in C(y1, y) − X along the orientation of C . Then

x2 is an insertable vertex in C(y1, y) with respect to an insertion edge w2w
+
2 . By

the choice of P1, w2 �= w1. Let P2 = C[x2, y2] be the maximal insertable path
in C(y1, y) with respect to insertion edge w2w

+
2 . Repeat this process until C(ys, y)

− X = ∅. Now P1, P2, . . ., Ps are maximal insertable paths in C(x, y), C(y1, y), . . .,
C(ys−1, y), with respect to insertion edges w1w

+
1 , w2w

+
2 , . . ., wsw

+
s , respectively.

The set {P1, P2, . . . , Ps} is called a maximal insertable path set in C(x, y). Denote
by W the set of all vertices in these paths, then C(x, y) − W ⊆ X .

Lemma 2.4 Let G be a claw-free graph with minimum degree at least 4, let C be a
cycle of length t ≥ 6 without hops, and let X be the set of vertices in C that are not on

Fig. 2 Insertable vertices and
insertable paths in C(x, y)

x−
x

p
p1

p2

y
y+

q
q+ w

w+
u
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any chord of C. If some chord xy of C satisfies |X ∩ C(x, y)| ≤ 4, then G contains
cycles of lengths t − 1 and t − 2.

Proof Choose the chord xy of C such that

(a) |C(x, y) ∩ X | is minimized.
(b) subject to Condition (a), |C[x, y]| is minimized.

By Theorem 2.3, we assume that |X ∩ C(x, y)| ≥ 3. Thus |C(x, y) ∩ X | ∈ {3, 4}.
By Conditions (a) and (b), yx+, xy− /∈ E(G). As G is claw-free and C is hop-
free, xy+, yx− ∈ E(G). If x−y+ /∈ E(G), as G[{y, y+, y−, x−}] �= K1,3, we have

x−y− ∈ E(G). Similarly, x+y+ ∈ E(G). Thus the cycles C[y+, x−] ←−
C [y−, x+]y+

and C[y+, x−]←−C [y−, x]y+ are cycles of lengths t − 2 and t − 1, respectively. There-
fore, we assume x−y+ ∈ E(G).

If C(x, y) − X �= ∅, then let {P1, . . . , Ps} be a maximal insertable path set in
C(x, y). Denote byW the set of all vertices in these paths. Assume thatC ′ is the cycle
obtained by inserting vertices of W into the cycle xC[y, x]. Then C(x, y) − W �= ∅
(otherwise, the cycles C ′[y+, x]y+ and C ′[y+, x−]y+ are cycles of lengths t − 1
and t − 2). Let X ′ = C(x, y) − W . Then X ′ ⊆ X and |C(y, x) ∩ X | ≥ |X ′|. Let
k = |X ′|. Then the length of the cycle C ′ is |V (C)| − k = t − k, and |C(y, x) ∩ X |
≥ |C(x, y) ∩ X | ≥ k.

If k = 1, then the cycles C ′ and C ′[y, x−]y are cycles of lengths t − 1 and t − 2.
If k = 2, then C ′ is a (t − 2)-cycle. Let x0 ∈ C(y, x) ∩ X , then the (t − 2)-cycle
C ′ can be extended to a (t − 1)-cycle via claw-extension at x0. If k = 3, note that
|C(y, x) ∩ X | ≥ k = 3. Let y1, y2, y3 ∈ C(y, x) ∩ X . Since δ(G) ≥ 4, there are
vertices w1, w3 /∈ V (C) such that y1w1, y3w3 ∈ E(G). Then the (t −3)-cycle C ′ can
be extended to a (t − 1)-cycle via claw-extensions at y1, y3, and to a (t − 2)-cycle
via claw-extension at y1, Thus k = 4. Assume C(x, y) − W = {x1, x2, x3, x4} and
x1, x2, x3, x4 are labeled with respect to the orientation of C .

Let C(y, x) ∩ X = {y1, y2, . . . , ym} be the set of vertices labeled with respect to
the orientation of C (as well as the orientation of C ′). As each of yi (i = 1, 2, . . . ,m)

has at least two neighbors not on C , let w1y1, w2y2 ∈ E(G), where w1, w2 /∈ V (C).
Then the (t − 4)-cycle C ′ can be extended to a (t − 2)-cycle via claw-extensions at
y1 and y2. Next we will find a (t − 1)-cycle in G.

If NG({y3, . . . , ym}) − {w1, w2} �= ∅, say w3y3 ∈ E(G), then the (t − 4)-cycle C ′
can be extended to a (t − 1)-cycle via claw-extensions at y1, y2 and y3. Therefore, we
assume NG({y3, . . . , ym}) = {w1, w2}. Then w1yi , w2yi ∈ E(G) for i = 3, . . . ,m.
By Lemma2.2, m = 4. By the minimality of xy, |C(x, y) ∩ X | = 4, and so |V (C) ∩
X | = 8.

If (NG(y1) − V (C)) − {w1, w2} �= ∅, then there exists w4 ∈ NG(y1) − (V (C)

∪{w1, w2}) such that y1w4 ∈ E(G). Asw1y3, w2y4 ∈ E(G), the (t−4)-cycleC ′ can
be extended to a (t −1)-cycle via claw-extensions at y1, y3 and y4. So we may assume
that NG(y1)−V (C) = {w1, w2}. Similarly, NG(yi )−V (C) = {w1, w2}(i = 2, 3, 4).
As G is claw-free, y2 = y+

1 and y4 = y+
3 , but |C(y2, y3)| ≥ 1 (otherwise, the cycle

C[y4, y1]w1y4 is a (t − 1)-cycle).
Consider y+

2 . Then y+
2 is an endpoint of a chord on C . Let y′

2 be the other endpoint
of this chord. By the minimality of xy and |V (C) ∩ X | = 8, we have y′

2 ∈ C(x2, x3).
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Without loss of generality, we assume that y′
2 is the last vertex in C(x2, x3) adjacent

to y+
2 . Then y′

2y
+
2 is the only chord that joins a pair of vertices in C[y′

2, y
+
2 ] and

|C(y′
2, y

+
2 ) ∩ X | = 4. Thus the chord y′

2y
+
2 also satisfies Conditions (a) and (b).

Applying the same discussion mentioned above on the chord y′
2y

+
2 instead of xy, we

have NG(x1) − V (C) = {w1, w2} and NG(x2) − V (C) = {w1, w2}, contradicting
Lemma2.2. 
�
Lemma 2.5 Let G be a 4-connected {K1,3, Z8}-free graph. If G contains a cycle of
length t ≥ 11, then G contains a cycle of length t − 1.

Proof Let C be a cycle of length t in G and suppose that G contains no (t −1)-cycles.
Then C does not contain hops. By Lemma 2.1, C contains at least one chord. Let X
be the set of vertices of C that are not endpoints of chords of C . Let xy be a chord of
C . Then, by Lemma2.4, |X ∩ C(x, y)| ≥ 5. Choose xy such that

(a) |C(x, y) ∩ X | is minimized.
(b) subject to Condition (a), |C(x, y)| is minimized. Therefore, xy is the only chord

that joins a pair of vertices in C[x, y].
Claim 1 xy+, yx−, x−y+ ∈ E(G), and zx−, zy+ /∈ E(G) for any z ∈ C(x, y).

By Conditions (a) and (b), yx+, xy− /∈ E(G). As G is claw-free and C is hop-
free, xy+, yx− ∈ E(G). If x+y+ ∈ E(G), then the cycle C[x+, y]←−C [x−, y+]x+
is a (t − 1)-cycle, a contradiction. Thus x+y+ /∈ E(G). Similarly, x−y− /∈ E(G).
Since G[{x, y+, x−, x+}] is not a claw, x−y+ ∈ E(G). By Conditions (a) and (b),
y+z /∈ E(G) for z ∈ C(x+, y), and x−z /∈ E(G) for z ∈ C(x, y−). Claim 1 holds.

Claim2Let x1, x2, x3, x4 ∈ C(y, x)∩X . Then NG(x1)∩NG(x2)∩NG(x3)∩NG(x4) =
∅.

We assume that w ∈ NG(x1) ∩ NG(x2) ∩ NG(x3) ∩ NG(x4). We also assume that
x1, x2, x3, x4 lie on C in order along the orientation of C . By Claim 1, |C(x4, x1)| ≥
|C(x, y)| + |{x, x−, y, y+}| ≥ 9. As G is claw-free and C is hop-free, x2 = x+

1 and
x4 = x+

3 , and |C(x2, x3)| ≥ 3. Consider the subgraph induced by {x3, x4, w} ∪
{x1, x−

1 , x−−
1 , . . . , x−7

1 }. Then wz /∈ E(G) for z ∈ {x−
1 , . . . , x−7

1 } (Otherwise,
G[{w, z, x2, x3}] = K1,3, a contradiction). Since G[{x3, x4, w} ∪ {x1, x−

1 , . . . , x−7
1 }]

is not Z8, G[{x−
1 , . . . , x−7

1 }] contains an edge. Since |C(x, y)| ≥ 5, by minimality
of xy, x−

1 x−7
1 ∈ E(G) but x−−

1 x−7
1 /∈ E(G). Thus G[{x−

1 , x1, x
−−
1 , x−7

1 }] = K1,3, a
contradiction. Claim 2 holds.

Claim 3 |C(x, y)| ≥ 6.
By way of contradiction, assume that |C(x, y)| ≤ 5. By Lemma2.4, |C(x, y)|

= |C(x, y) ∩ X | = 5. As |C(y, x) ∩ X | ≥ 5, let x1, x2, . . . , x5 ∈ C(y, x) ∩ X . Con-
sider the bipartite graph H with partitions {x1, x2, x3, x4, x5} and ⋃5

i=1 NG(xi ) − C .
As each xi has at least two neighbors not in C , by Claim 2, |NH (S)| ≥ |S| − 1 for
any S ⊆ {x1, x2, . . . , x5}. Thus H has a matching M with 4 edges. Without loss of
generality, we assume that {x1, x2, x3, x4} ⊆ V (M). Then the (t − 5)-cycle xC[y, x]
can be extended to a (t − 1)-cycle via claw-extensions at x1, x2, x3, and x4. Claim 3
holds.
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Claim 4 Let x1, x2, x3 ∈ C(y, x) ∩ X . Then NG(x1) ∩ NG(x2) ∩ NG(x3) = ∅.
Assume thatw ∈ NG(x1)∩NG(x2)∩NG(x3). Also we assume that x1, x2, x3 lie on

the cycleC in the order along the orientationofC .AsG is claw-free and x1, x2, x3 ∈ X ,
we have either x2 = x+

1 or x3 = x+
2 . Without loss of generality, we assume that

x2 = x+
1 . By Claim 3, |←−C (x1, x3)| ≥ |C(x, y)| + |{x, x−, y, y+}| ≥ 10. Since

x1, x2, x3 ∈ X and G is claw-free, we have x2x
−
1 /∈ E(G) and zx1, zx2, zw /∈ E(G)

for z ∈ {x−−
1 , x−3

1 , . . . , x−8
1 }.

If G[{x−
1 , x−−

1 , . . . , x−8
1 }] contains a chord, by Claim 3 and the minimal-

ity of xy, x−
1 x−8

1 ∈ E(G) but x−−
1 x−8

1 /∈ E(G). Thus G[{x−
1 , x1, x

−−
1 , x−8

1 }]
= K1,3, a contradiction. Hence, G[{x−

1 , x−−
1 , . . . , x−8

1 }] = P8. As G[{w, x1, x2}
∪ {x−

1 , x−−
1 , . . . , x−8

1 }] is not Z8, wx−
1 ∈ E(G). It implies that x3 �= x+

2 (oth-
erwise, the cycle C[x3, x−

1 ]wx3 is a (t − 1)-cycle, a contradiction). Therefore,
G[{w, x−

1 , x2, x3}] = K1,3, a contradiction. Claim 4 holds.
Let {P1, . . . , Ps} be amaximal insertable path set inC(x, y). Denote byW the set of

all vertices in these paths. Assume thatC ′ is the cycle obtained by inserting vertices of
W into the cycle xC[y, x]. Then C(x, y)−W �= ∅ (otherwise, the cycle C ′[y+, x]y+
is a (t − 1)-cycle). Let X ′ = C(x, y) − W . Then X ′ ⊆ X and |C(y, x) ∩ X | ≥ |X ′|.
Let k = |X ′|. Then the length of the cycle C ′ is |V (C)| − k = t − k, and so k ≥ 2.

As |X ∩ C(x, y)| ≥ |C(x, y) − W | ≥ k, by Condition (a), |C(y, x) ∩ X | ≥ k. Let
x1, x2, . . . , xk ∈ C(y, x)∩ X and they occur on C in order along the orientation of C .
Obviously, x1, x2, . . . , xk are not endpoints of insertion edges. SinceG is 4-connected,
we assume that ui , vi /∈ C are adjacent to xi . Consider the bipartite graph H with
partitions {x1, x2, . . . , xk} and⋃k

i=1{ui , vi }. ByClaim4, for any S ⊆ {x1, x2, . . . , xk},
|NH (S)| ≥ |S|. Thus H has a matching M covering C(y, x) ∩ X . Assume that
M = {x1w1, x2w2, . . . , xkwk}. Then the (t − k)-cycle C ′ can be extended a (t − 1)-
cycle via claw-extensions at x1, x2, . . . , xk−1, a contradiction. 
�
Theorem 2.6 (Lai et al. [5]) Every 3-connected {K1,3, Z8}-free graph is hamiltonian.

By Lemmas 2.5 and Theorem 2.6, G contains cycles of lengths 10 through |V (G)|.

3 Existence of 9-Cycles

Lemma 3.1 If G is a 4-connected {K1,3, Z8}-free graph, then G contains a 9-cycle.

Proof Suppose that G does not contain a 9-cycle. By Lemma2.5 and Theorem2.6, G
contains a 10-cycle C , and we let {v1, v2, . . . , v10} be the vertex set of C labeled in
order. By Lemma2.4, C is chordless.

Claim 1 Let a /∈ V (C) have a neighbor in V (C). Then |NG(a) ∩ V (C)| ≤ 3.
Moreover, if |NG(a) ∩ V (C)| = 3, then these three vertices are consecutive on C .

Since a /∈ V (C) has a neighbor inV (C), we assume av1 ∈ E(G). AsG is claw-free
and has no chords ofC , either av2 ∈ E(G) or av10 ∈ E(G).Without loss of generality,
we assume that av10 ∈ E(G). As G has no 9-cycles, NG(a) ∩ {v3, v4, v7, v8} = ∅.
Thus NG(a) ∩ V (C) ⊆ {v1, v10, v2, v9, v5, v6}.
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If av5 ∈ E(G), then av6 ∈ E(G) since G is claw-free and C is chordless.
Since av3 /∈ E(G), let b ∈ NG(v3) such that b /∈ V (C) ∪ {a}. Then the 8-cycle
v10v1v2v3v4v5v6av10 can be extended to a 9-cycle via claw-extension at v3. This tells
us that av5 /∈ E(G) and so av6 /∈ E(G). Therefore, NG(a)∩V (C) ⊆ {v1, v10, v2, v9}.

If both av2 ∈ E(G) and av9 ∈ E(G), then the cycle v2v3v4v5v6v7v8v9av2 is a
9-cycle. Thus we have NG(a)∩V (C) ∈ {{v1, v10, v2}, {v1, v10, v9}, {v1, v10}}. Claim
1 holds.

Claim 2 There is a vertex a /∈ V (C) such that |NG(a) ∩ V (C)| = 2.
By way of contradiction, we assume that for any a /∈ V (C), |NG(a) ∩ V (C)| �= 2.

By Claim 1, every vertex with a neighbor on C has exactly three neighbors on C
which are consecutive. For 1 ≤ i ≤ 10, let Vi = NG(vi−1) ∩ NG(vi ) ∩ NG(vi+1),
where indices are taken modulo 10. If there is a vertex w /∈ V (C) ∪ ⋃10

i=1 Vi that
has a neighbor wi in some Vi , then {wi , vi−1, vi+1, w} induces a claw. Thus we may
assume that the sets V1, V2, . . . , V10 partition V (G)\V (C). If there is an edge joining
Vi and Vj when |i − j | ≥ 2(mod 10), then G contains a 9-cycle. If there are two
nonconsecutive values i < j such that Vi and Vj are empty, then {vi , v j } is a cut
set, a contradiction. Thus for some 1 ≤ i ≤ 10, the sets Vi , Vi+1, Vi+2, and Vi+3
are all non-empty. Let w j be any vertex in Vj for i ≤ j ≤ i + 3. It follows that
viwivi+1wi+2vi+3vi+4wi+3vi+2wi+1vi is a 9-cycle. Claim 2 holds.

By Claim 2, let NG(x1) ∩ V (C) = {v1, v2}. Since G is 4-connected, let
{y1, y2, v1, v2} ⊆ NG(x1). As G has no 9-cycles, NG(w) ∩ {v5, v6, v7, v8} = ∅
for w ∈ NG(x1) − {v1, v2}.

Claim 3 For any w ∈ NG(x1) − {v1, v2}, NG(w) ∩ {v3, v4, v9, v10} �= ∅.
By way of contradiction, assume that NG(y1) ∩ {v3, v4, v9, v10} = ∅. If y1v2

∈ E(G), then the subgraph induced by {x1, y1, v2}∪ {v3, v4, v5, v6, v7, v8, v9, v10} is
Z8. Thus y1v2 /∈ E(G). Similarly, y1v1 /∈ E(G), and therefore NG(y1) ∩ V (C) = ∅.
As G has no 9-cycles, NG(w) ∩ {v6, v7} = ∅ for any w ∈ NG(y1) − {x1}.

Claim 3.1 For any w ∈ NG(x1) − {v1, v2, y1}, NG(w) ∩ {v3, v4, v9, v10} �= ∅.
Otherwise, by the discussion above, wv1, wv2 /∈ E(G). As G is claw-free, y1w

∈ E(G). Thus the subgraph induced by {x1, y1, w} ∪ {v2, v3, v4, v5, v6, v7, v8, v9} is
Z8, a contradiction. Claim 3.1 holds.

Claim 3.2 Let z ∈ NG(y1) − {x1}. Then NG(z) ∩ {v5, v8} = ∅.
By way of contradiction, we assume that zv8 ∈ E(G). As NG(y1) ∩ V (C)

= ∅ and NG(x1) ∩ V (C) = {v1, v2}, and as G is 4-connected, there is a vertex y′
9

/∈ V (C) ∪ {x1, y1, z} such that v9v
′
9 ∈ E(G). Then the 8-cycle v2x1y1zv8v9v10v1v2

can be extended to a 9-cycle via claw-extension at v9, a contradiction. Therefore,
Claim 3.2 holds.

Claim 3.3 Let z ∈ NG(y1) − {x1}. Then NG(z) ∩ {v4, v9} = ∅.
By way of contradiction, we assume that zv9 ∈ E(G). As zv8 /∈ E(G), zv10

∈ E(G). By Claim 1, NG(z) ⊆ {v9, v10, v1}. Considering the subgraph induced by
{z, v9, v10} ∪ {v8, v7, v6, v5, v4, v3, v2, x1}, we have zx1 ∈ E(G).
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Consider the neighborhood of v3. As NG(v3) ∩ {x1, y1, z} = ∅, there is a ver-
tex v′

3 ∈ NG(v3) such that v′
3 /∈ V (C) ∪ {x1, y1, z}. As G has no 9-cycles,

v′
3x1, v

′
3y1, v

′
3v10 /∈ E(G). As x1v10 /∈ E(G) and as G is claw-free, v′

3z /∈ E(G).
Since the subgraph induced by {x1, y1, z} ∪ {v9, v8, v7, v6, v5, v4, v3, v′

3} is not
Z8, v′

3v4 ∈ E(G). If v′
3v5 /∈ E(G), then the subgraph induced by {v′

3, v3, v4}∪ {v5, v6, v7, v8, v9, v10, v1, x1} is Z8; if v′
3v5 ∈ E(G), then the subgraph induced

by {v′
3, v4, v5}∪{v6, v7, v8, v9, v10, v1, x1, y1} is Z8, a contradiction. Claim 3.3 holds.

Claim 3.4 There exist at least two vertices z ∈ NG(y1) − {x1} such that NG(z)
∩ {v3, v10} �= ∅.

By way of contradiction, assume that there is at most one vertex z ∈ NG(y1)−{x1}
such that NG(z) ∩ V (C) ∩ {v3, v10} �= ∅. Since G is 4-connected, there are at
least two vertices z1, z2 ∈ NG(y1) − {x1} such that NG(z1) ∩ {v3, v10} = ∅
and NG(z2) ∩ {v3, v10} = ∅. By Claim 3.3, NG(z1) ∩ {v3, v4, v9, v10} = ∅ and
NG(z2)∩{v3, v4, v9, v10} = ∅. By Claim 3.1, z1x1, z2x1 /∈ E(G). Thus z1z2 ∈ E(G).
As G[{v2, v3, x1, z1}] �= K1,3, we have z1v2 /∈ E(G). Similarly, z2v2 /∈ E(G).
Therefore, the subgraph induced by {y1, z1, z2} ∪ {x1, v2, v3, v4, v5, v6, v7, v8} is Z8,
a contradiction. Claim 3.4 holds.

By Claim 3.4, we assume that z1, z2 ∈ NG(y1) − {x1} with NG(z1) ∩ {v3, v10}
�= ∅ and NG(z2) ∩ {v3, v10} �= ∅. Without loss of generality, we assume that z1v10
∈ E(G). Then z1v1 ∈ E(G). By Claim 1, z1v3 /∈ E(G). If z1x1 ∈ E(G), then the
subgraph induced by {x1, y1, z1} ∪ {v10, v9, v8, v7, v6, v5, v4, v3} would be Z8. This
contradiction implies that z1x1 /∈ E(G). Similarly, z2x1 /∈ E(G) and so z1z2 ∈ E(G).
SinceG[{v2, x1, v3, z1}] is not a claw, z1v2 /∈ E(G). Then NG(z1)∩V (C) = {v1, v10}.

Consider the neighborhood of z2. If z2v3 /∈ E(G), then z2v10 ∈ E(G), and so
NG(z2) ∩ V (C) = {v1, v10}. It implies that the subgraph induced by {y1, z1, z2}
∪ {x1, v2, v3, v4, v5, v6, v7, v8} is Z8. This contradiction tells us that z2v3 ∈ E(G).
Thus NG(z2) ∩ V (C) = {v2, v3}.

We will finish the proof of Claim 3 by considering the neighborhood of x1. As
NG(x1) ∩ V (C) = {v1, v2} and z1x1, z2x1 /∈ E(G), there is a vertex y2 ∈ NG(x1)
such that y2 /∈ V (C) ∪ {y1, z1, z2}. By Claim 3.1, NG(y2) ∩ {v3, v4, v9, v10} �= ∅.
By symmetry, we assume that either y2v4 ∈ E(G) or y2v3 ∈ E(G). If y2v4 ∈ E(G),
then the cycle v4y2x1y1z2z1v1v2v3v4 is a 9-cycle; if y2v3 ∈ E(G), then the cycle
v3y2x1y1z2z1v10v1v2v3 is a 9-cycle. This contradiction finishes the proof of Claim 3.

Claim 4 For any w ∈ NG(x1) − {v1, v2}, NG(w) ∩ {v4, v9} = ∅. Therefore, NG(w)

∩ {v3, v10} �= ∅.
By way of contradiction, we assume y1, y2 ∈ NG(x1) − {v1, v2} and y1v9

∈ E(G). Then y1v10 ∈ E(G) since y1v8 /∈ E(G). By Claim 1, y1v2 /∈ E(G).
As G has no 9-cycles, y2v4 /∈ E(G). If y2v3 ∈ E(G), then we consider the 8-cycle C ′
= v9v10v1v2v3y2x1y1v9. As G is 4-connected, there is a vertex a /∈ V (C ′) so that a
is adjacent to one of V (C ′) − {v3, v9, x1}. If ay2 ∈ E(G), then either av3 ∈ E(G) or
ax1 ∈ E(G). Thus C ′ can be extended to a 9-cycle by replacing v3y2x1 to be v3ay2x1
or v3y2ax1. If a is adjacent to any other vertex in V (C ′) − {v3, v9, x1}, we can still
use this method to insert a into C ′ to get a 9-cycle. This contradiction implies that
y2v3 /∈ E(G).
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Next we will prove that wv2 /∈ E(G) for any w ∈ NG(x1) − {v1, v2}. By way of
contradiction, we may assume that y2v2 ∈ E(G). Then y2v1 ∈ E(G). By Claims 1
and 3, y2v10 ∈ E(G) and y2v9 /∈ E(G). Since the subgraph induced by {v1, x1, y2} ∪
{y1, v9, v8, v7, v6, v5, v4, v3} is not Z8, we have either y1y2 ∈ E(G) or y1v1 ∈ E(G).
Since dG(v9) ≥ 4, let y′

9 ∈ NG(v9) − (V (C) ∪ {y1, y2, x1}). If v′
9v8 ∈ E(G), as G

has no 9-cycles, NG(v′
9) ∩ {y1, y2, v10, v1} = ∅. Since the subgraph induced by

{ {y1, v1, v10} ∪ {v2, v3, v4, v5, v6, v7, v8, v′
9}, if y1v1 ∈ E(G)

{y1, y2, v10} ∪ {v2, v3, v4, v5, v6, v7, v8, v′
9}, if y1y2 ∈ E(G)

,

is not Z8, we have v′
9v7 ∈ E(G). Thus the subgraph induced by {v7, v′

9, v8}∪ {v6, v5, v4, v3, v2, x1, y1, v10} is Z8. This contradiction implies that v′
9v8 /∈ E(G).

Thus v′
9v10 ∈ E(G). As G[{v9, v′

9, y1, v8}] �= K1,3, y1v′
9 ∈ E(G). Let H be a

subgraph induced by {v1, v2, v10, v9, v′
9, y1, y2, x1}. Since G is 4-connected, there

is a vertex b adjacent to a vertex in V (H) − {v2, v9, v′
9}. If by2 ∈ E(G), by

G[{y2, b, v2, v10}], we have either bv2 ∈ E(G) or bv10 ∈ E(G). Thus

C ′ =
{

v2by2x1y1v′
9v9v10v1v2, if bv2 ∈ E(G)

v2y2bv10v9v′
9y1x1v1v2, if bv10 ∈ E(G)

is a 9-cycle in G. If b is adjacent to any other vertex in V (H) − {v2, v9, v′
9}, we can

still use this method to insert b into H to get a 9-cycle. This contradiction implies that
wv2 /∈ E(G) for any w ∈ NG(x1) − {v1, v2}.

As y1v2 /∈ E(G), we have y1y2 ∈ E(G). By Claim 3, we have y2v10 ∈ E(G). Let
v′
8 ∈ NG(v8) such thatv′

8 /∈ V (C)∪{y1, y2, x1}.Obviously, x1, y1, y2 /∈ NG(v′
8). Con-

sidering the subgraph induced by {x1, y1, y2}∪{v2, v3, v4, v5, v6, v7, v8, v′
8}, we have

v′
8v7∈ E(G). By the subgraph inducedby {v7, v8, v′

8}∪{v6, v5, v4, v3, v2, x1, y2, v10},
we have v′

8v6 ∈ E(G). Since the subgraph induced by {v6, v7, v′
8} ∪ {v5, v4, v3, v2,

x1, y2, v10, v9} is not Z8, y2v9 ∈ E(G). Again, since the subgraph induced by
{v9, y1, y2} ∪ {v8, v7, v6, v5, v4, v3, v2, v1} is not Z8, we have either y2v1 ∈ E(G) or
y1v1 ∈ E(G). By symmetry, we assume that y2v1 ∈ E(G).

Consider the neighborhood of v2. As y1v2, y2v2 /∈ E(G), let v′
2 ∈ NG(v2) such

that v′
2 /∈ V (C) ∪ {y1, y2, x1}. As wv2 /∈ E(G) for any w ∈ NG(x1) − {v1, v2},

v′
2x1 /∈ E(G). Since G[{v2, v′

2, v3, x1}] is not a claw, v′
2v3 ∈ E(G). Thus

v′
2v1, v

′
2y1, v

′
2y2 /∈ E(G) since G has no 9-cycles. By the subgraph induced by

{x1, v1, y2} ∪ {v9, v8, v7, v6, v5, v4, v3, v′
2}, we have v′

2v4 ∈ E(G). By Claim 1, v′
2v5

/∈ E(G). Thus the subgraph induced by {v3, v4, v′
2} ∪ {v5, v6, v7, v8, v9, v10, v1, x1}

is Z8, a contradiction. Claim 4 holds.
By Claim 4, for any w ∈ NG(x1), either wv10 ∈ E(G) or wv3 ∈ E(G). If there

are two vertices, say y1, y2 ∈ NG(x1)−{v1, v2}, such that y1v10, y2v3 ∈ E(G). Then
y1v1, y2v2 ∈ E(G). Let H be the subgraph induced by {v10, v1, v2, v3, x1, y1, y2}.
SinceG is 4-connected, there are two vertices q1, q2 such that q1, q2 /∈ V (H) adjacent
to different vertices in V (H) − {v3, v10}. Since G is claw-free, by Claim 4, NG(qi )
∩ {v3, v10} �= ∅(i = 1, 2). By symmetry, we assume that q1v10 ∈ E(G). Then
q1v9 /∈ E(G) (otherwise, the subgraph induced by V (H)∪{q1, v9} contains a 9-cycle).
Thus q1v1 ∈ E(G). Using this discussion on q2, we have either q2v3, q2v2 ∈ E(G)
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or q2v10, q2v1 ∈ E(G). If q2v3, q2v2 ∈ E(G), then v10y1x1y2v3q2v2v1q1v10 is a
9-cycle; if q2v10, q2v1 ∈ E(G), then q1q2 ∈ E(G) (otherwise, G[{v10, q1, q2, v9}] is
a claw), and so v10q2q1v1v2v3y2x1y1v10 is a 9-cycle. This contradiction implies that
either NG(v3) ∩ (NG(x1) − {v1, v2}) = ∅ or NG(v10) ∩ (NG(x1) − {v1, v2}) = ∅.
Without loss of generality, we assume that NG(v3) ∩ (NG(x1) − {v1, v2}) = ∅. Thus
for any w ∈ NG(x1) − {v1, v2}, NG(w) ∩ (V (C) − {v1, v2}) = {v10}.

Consider the neighborhood of x1, and let NG(x1) = {v1, v2, y1, y2, . . . , yk}(k
≥ 2). Then yiv10 ∈ E(G)(i = 1, 2, . . . , k). By Claim 4, the subgraph induced by
{y1, y2, . . . , yk} is a clique, and yiv1 ∈ E(G)(i = 1, 2, . . . , k). Let H ′ be the subgraph
induced by NG(x1) ∪ {x1, v10}. Since G is 4-connected, there are at least two vertices
q3, q4 /∈ V (H ′) adjacent to different vertices in V (H ′) − {v2, v10}. Since G is claw-
free, by Claim 4, q3v10, q4v10 ∈ E(G). If k ≥ 3, then q3v9 /∈ E(G) (otherwise, the
subgraph induced by V (H ′) ∪ {q3, v9} contains a 9-cycle). Similarly, q4v9 /∈ E(G).
Thus q3q4, q3v1, q4v1 ∈ E(G), and so v10q3q4v1v2x1y1y2y3v10 is a 9-cycle. This
contradiction implies that k = 2 and NG(x1) = {v1, v2, y1, y2}. Notice that q3, q4 are
adjacent to different vertices in {y1, y2, v1}. By symmetry, we have either q3y1, q4v1
∈ E(G), or q3y1, q4y2 ∈ E(G). For each of these two cases, q3v9, q4v9 /∈ E(G) since
G has no 9-cycles. Therefore, q3q4 ∈ E(G) and {y1, y2, v1} ⊆ NG(qi ) for i = 3, 4.

Since the subgraph induced by {q3, q4, v1} ∪ {v2, v3, v4, v5, v6, v7, v8, v9} is not
Z8, we have either q3v2 ∈ E(G) or q4v2 ∈ E(G). By symmetry, we assume that
q3v2 ∈ E(G). Since G has no 9-cycles, for any x ∈ {y1, y2, x1, v1, q3}, NG(x)
⊆ H ′ ∪ {q3, q4}. This implies that {v1, v10, q4} is a 3-cut, a contradiction. 
�

4 Existence of 4-Cycles

In this section we will prove that if G is a 4-connected, claw-free and Z8-free graph,
then G is the line graph of the Petersen graph if G has no 4-cycles. Suppose that G is
a 4-connected, claw-free and Z8-free graph and that G does not have 4-cycles. Since
G is claw-free, the neighborhood of every vertex is either connected or two cliques.
Since G is 4-connected, the minimum degree of G is at least 4. If the neighborhood of
a vertex is connected, then the neighborhood of this vertex contains a path of order 3,
yielding a 4-cycle. Thus the neighborhood of every vertex is two cliques. If a vertex
has degree at least 5, then one of the cliques has at least three vertices, yielding a
4-cycle. Thus we have the following properties for the graph G.

(P0) G is 4-regular and, for any v ∈ V (G),G[NG(v)∪{v}] are two triangles identified
at v.

(P1) Any two distinct vertices in G can have at most one common neighbor.

By Theorem 1.3, G has an induced subgraph Z5. Let H = Zt be an induced
subgraph of G such that t is maximized. Since G is Z8-free, t ∈ {5, 6, 7}. Let V (H)

= {v, v1, v2, . . . , vt+2} and E(H) = {vv1, vv2, v1v2, v2v3, . . . , vtvt+1, vt+1vt+2}.
By the choice of H , vt+2 has no neighbors in V (H) \ {vt+1}. By (P0), let y1, y2, y3
be the three neighbors of vt+2 which are not in V (H) \ {vt+1} and we may assume,
without loss of generality, that y3 is adjacent to vt+1 and that y1 and y2 are adjacent.
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Since G is claw-free and G does not have 4-cycles, y1, y2, and y3 satisfy the following
properties.

(P2) By the choice of H (the maximum of t), both y1 and y2 have neighbors in
V (H) \ {vt+2}.

(P3) y1 (also y2) is not adjacent to vt+1 or vt , and y3 is not adjacent to vt−1, vt (since
G has no 4-cycles).

(P4) Any vertex not in H that is adjacent to vi for i ∈ {2, 3, . . . , t+1} is also adjacent
to vi+1 or vi−1 (since G is claw-free).

Lemma 4.1 Let G be a 4-connected {K1,3, Z8}-free graph, and let H = Zt be an
induced subgraph of G such that t is maximized. If G has no 4-cycles, then t �= 5.

Proof Assume that t = 5. First of all, we claim that NG(v3)∩{y1, y2} �= ∅. By way of
contradiction, we assume that NG(v3)∩{y1, y2} = ∅. By (P3), NG(v5)∩{y1, y2} = ∅.
By (P4), NG(v4) ∩ {y1, y2} = ∅. By (P2), NG(y1) ∩ {v, v1, v2} �= ∅ and NG(y2) ∩
{v, v1, v2} �= ∅. Note that v7 ∈ NG(y1) ∩ NG(y2). By (P1), y1 and y2 are adjacent to
two distinct vertices in {v, v1, v2}, implying a 4-cycle in G. This contradiction implies
that NG(v3)∩ {y1, y2} �= ∅. Without loss of generality, we assume that v3y2 ∈ E(G).

Next we claim that v4y2 ∈ E(G). Otherwise, by (P4), v2y2 ∈ E(G). As G has no
4-cycles, NG(y1) ∩ {v1, v2, v3, v4, v} = ∅. By (P3), NG(y1) ∩ (V (H) − {v7}) = ∅,
contradicting (P2). Therefore, v4y2 ∈ E(G). By (P1), NG(y1)∩{v2, v3, v4, v5, v6, y3}
= ∅. By (P2), NG(y1) ∩ {v1, v} �= ∅. By symmetry, we assume that y1v1 ∈ E(G).
Then v1y2, v1y3 /∈ E(G).

Consider NG(v1). As dG(v1) = 4, we assume that NG(v1) = {v, v2, y1, a}, where
a /∈ V (H) ∪ {y1, y2, y3}. By (P0), ay1 ∈ E(G). As G has no 4-cycles, NG(a)

∩{v2, v3, v4, v6, y3} = ∅. By (P4), v5a /∈ E(G). As G has no 4-cycles again, NG(y3)
∩ {v3, v4, v5} = ∅. As dG(v1) = 4, y3v1 /∈ E(G). By (P3), y3v2 /∈ E(G). Thus the
subgraph induced by {a, y1, v1}∪{v2, . . . , v6, y3} is Z6. It contradicts the maximality
of t . 
�
Lemma 4.2 Let G be a 4-connected {K1,3, Z8}-free graph, and let H = Zt be an
induced subgraph of G such that t is maximized. If G has no 4-cycles, then t �= 7.

Proof Assume that t = 7.

Claim 1 Either v4 ∈ NG(y1) ∪ NG(y2) or v5 ∈ NG(y1) ∪ NG(y2).
Assume that v4, v5 /∈ NG(y1) ∪ NG(y2). By (P3), v7, v8 /∈ NG(y1) ∪ NG(y2). By

(P4), v6 /∈ NG(y1) ∪ NG(y2). Therefore, NG(y1) ∩ {v, v1, v2, v3} �= ∅ and NG(y2)
∩ {v, v1, v2, v3} �= ∅, contradicting (P1). Claim 1 holds.

Claim 2 v4 ∈ NG(y1) ∪ NG(y2).
Assume v4 /∈ NG(y1) ∪ NG(y2). By Claim 1, v5 ∈ NG(y1) ∪ NG(y2). Without

loss of generality, we assume that y2v5 ∈ E(G). By (P4), y2v6 ∈ E(G). By (P1) and
(P3), NG(y1) ∩ {v4, v5, v6, v7, v8} = ∅. By (P2), NG(y1) ∩ {v, v1, v2, v3} �= ∅.

We claim that y1v2 /∈ E(G). Byway of contradiction,we assume that y1v2 ∈ E(G).
By (P1), NG(y1)∩{v, v1} = ∅. By (P4), y1v3 ∈ E(G). As G has no 4-cycles, NG(y3)
∩ {v2, v3, v5, v6, v7} = ∅. By (P4), y3v4 /∈ E(G). As dG(v3) = 4, let NG(v3)
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= {v2, v4, y1, v′
3}, where v′

3 /∈ V (H) ∪ {y1, y2, y3}. By (P0), v′
3v4 ∈ E(G). As G has

no 4-cycles, NG(v′
3) ∩ {v, v1, v2, v5, v6} = ∅. As G is 4-regular, v′

3v9, v
′
3y1 /∈ E(G).

Since the subgraph induced by {v, v1, v2} ∪ {y1, v9, v8, v7, v6, v5, v4, v′
3} is not Z8,

by (P4), we have v′
3v7, v

′
3v8 ∈ E(G). By (P1), we have either v1y3 /∈ E(G) or vy3 /∈

E(G).Without loss of generality, we assume that v1y3 /∈ E(G). Then vy3 /∈ E(G) and
the subgraph induced by {y3, v9, v8}∪ {v7, v6, . . . , v1} is Z7. By (P0), we assume that
NG(v1) = {v, v2, z1, z2}, where z1, z2 /∈ V (H)∪{y1, y2, y3, v′

3}. Then z1z2 ∈ E(G).
By symmetry and Claim 1, {v5, v6} ∩ (NG(z1) ∪ NG(z2)) �= ∅. Since G is 4-regular,
we assume that NG(z1) ∩ {v5, v6} �= ∅. Then we have either z1v6, z1v7 ∈ E(G) or
z1v4, z1v5 ∈ E(G). For each of these two cases, NG(z2) ∩ {v2, v3, . . . , v9} = ∅. By
themaximality of t , z2y3 ∈ E(G). Let z3 ∈ NG(y3)−{v8, v9, z2}. Then z3z2 ∈ E(G).
Let z4 ∈ NG(v5) − {v4, v6, y2} if z1v6, z1v7 ∈ E(G), or z4 ∈ NG(v6) − {v5, v7, y2}
if z1v4, z1v5 ∈ E(G). Since G is 4-regular, {v, z3, z4} is a 3-cut in G, a contradiction.
So y1v2 /∈ E(G).

By (P4), v3y1 /∈ E(G), and so NG(y1)∩{v, v1} �= ∅.We assume that v1y1 ∈ E(G).
Then v1y3 /∈ E(G). Consider NG(v1). Assume that NG(v1) = {v, v2, y1, a}, where
a /∈ V (H) ∪ {y1, y2, y3}. By (P0), ay1 ∈ E(G). As G has no 4-cycles, NG(a)

∩ {v, v2, v3, v5, v6, v8, v9, y3} = ∅. By (P4), av4, av7 /∈ E(G). Notice that the
subgraph induced by {a, v1, y1} ∪ {v2, v3, . . . , v8, y3} is not Z8. We have NG(y3)
∩ {v2, v3, v4} �= ∅. Then y3v3 ∈ E(G).

Consider the neighborhood of v7, and let NG(v7) = {b, c, v6, v8}, where b, c
/∈ V (H) ∪ {a, y1, y2, y3}. By (P0), we assume bv6, cv8 ∈ E(G). Then NG(b)
∩ {v1, v4, v5, v8, v9, y1, y2, y3, c} = ∅ and NG(c) ∩ {v1, v5, v6, v9, y1, y2, y3} = ∅.
We consider the following two cases.

Case 1 bv /∈ E(G).
Considering the subgraph induced by {v, v1, v2} ∪ {v3, v4, v5, y2, v9, v8, v7, b},

we have bv2, bv3 ∈ E(G). As G is 4-regular, y3v2 /∈ E(G). Thus y3v4
∈ E(G). Consider the neighborhood of v5 and let NG(v5) = {r , v4, v6, y2}.
Then rv4 ∈ E(G). Since G has no 4-cycles, r /∈ {v, a, c}. As G is 4-
regular, NG(r) ∩ {v1, v2, v3, v6, v7, v8, v9, y1, y2, y3, b} = ∅. As G[{r , v4, v5} ∪
{v3, b, v7, v8, v9, y1, v1, v}] �= Z8, we have rv ∈ E(G). Let r ′ ∈ NG(r)−{v4, v5, v}.
Then r ′v ∈ E(G), and so {r ′, a, c} is a 3-cut in G, a contradiction.

Case 2 bv ∈ E(G).
As G has no 4-cycles, ab, vc /∈ E(G). As by3 /∈ E(G), vy3 /∈ E(G). Since the

subgraph induced by {a, v1, y1}∪{y2, v5, v4, v3, y3, v8, v7, b} is not Z8, we have y3v4
∈ E(G). Also, since the subgraph induced by {y1, y2, v9}∪{v5, v4, v3, v2, v, b, v7, c}
is not Z8, we have cv2, cv3 ∈ E(G). Consider the neighborhood of v5. Assume
NG(v5) = {r , v4, v6, y2}. Then rv4 ∈ E(G). Since G has no 4-cycles, r /∈ {v, a, b, c}
and rb /∈ E(G). Let b′ ∈ NG(b) − {v6, v7, v}. Then b′v ∈ E(G). So {b′, a, r} is a
3-cut in G, a contradiction.

By Claim 2, we assume that v4y2 ∈ E(G).

Claim 3 v5y2 /∈ E(G). Therefore, v3y2 ∈ E(G).
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By way of contradiction, we assume that v5y2 ∈ E(G). Then NG(y1)
∩{v3, v4, . . . , v8} = ∅. By (P2), NG(y1)∩{v, v1, v2} �= ∅. Then y1v2 /∈ E(G) (other-
wise, by (P4), y1v1 ∈ E(G). Then vv1y1v2v is a 4-cycle). Thus NG(y1)∩{v, v1} �= ∅.
Without loss of generality, we assume v1y1 ∈ E(G). Let NG(v1) = {y1, v2, v, a},
where a /∈ V (H) ∪ {y1, y2, y3}. By (P0), ay1 ∈ E(G). As G has no 4-cycles,
NG(a) ∩ {v2, v3, v4, v5, v8, y3} = ∅.

We claim that av6, av7 ∈ E(G). Otherwise, considering the subgraph induced by
{a, v1, y1} ∪{v2, v3, . . . , v8, y3}, we have y3v2, y3v3 ∈ E(G). Consider the neigh-
borhood of v, and let NG(v) = {v1, v2, b, c}, where b, c /∈ V (H) ∪ {a, y1, y2, y3}.
Then {v1, v2, v3, v9, a, y1, y2, y3} ∩ (NG(b) ∪ NG(c)) = ∅. As y2v4, y2v5 ∈ E(G),
by (P4), v4 /∈ NG(b) ∪ NG(c). As G[{v, b, c} ∪ {v1, y1, v9, y3, v3, v4, v5, v6}] �= Z8,
we have {v5, v6} ∩ (NG(b) ∪ NG(c)) �= ∅. Without loss of generality, we assume that
{v5, v6} ∩ NG(c) �= ∅. By (P4), we have either cv5, cv6 ∈ E(G) or cv6, cv7 ∈ E(G).
If cv5, cv6 ∈ E(G), then v7, v8 /∈ NG(b) ∪ NG(c) and so the subgraph induced
by {v, b, c} ∪ {v6, v7, v8, y3, v3, v4, y2, y1} is Z8. If cv6, cv7 ∈ E(G), the subgraph
induced by {v, b, c} ∪ {v6, v5, v4, v3, y3, v9, y1, a} is Z8, a contradiction. Therefore,
av6, av7 ∈ E(G).

Since G has no 4-cycles, let b ∈ NG(v4) − {v3, v5, y2} and c ∈ NG(v5) −
{v4, v6, y2} and b �= c. Since G has no 4-cycles, we have bv3, cv6 ∈ E(G), and
NG(b) ∩ {v5, v6, v9, y1, v1, v} = ∅ and NG(c) ∩ {v7, v8, v9, y1, v1, v3, v4} = ∅.
By (P4), cv2 /∈ E(G). Since the subgraph induced by {b, v3, v4} ∪ {v5, v6, v7,
v8, v9, y1, v1, v} is not Z8, we have bv7, bv8 ∈ E(G). Since the subgraphs induced by
{c, v5, v6} ∪ {y2, y1, v1, v2, v3, b, v8, y3} and {c, v5, v6} ∪ {a, y1, v9, v8, b, v3, v2, v}
are not Z8, we have cy3, cv ∈ E(G). Thus vy3 ∈ E(G). As G is 4-regular, {v2, v3} is
a 2-cut in G, a contradiction. Therefore, Claim 3 holds.

By Claim 3, y2v3, y2v4 ∈ E(G). By (P3) and (P1), NG(y1)∩{v2, v3, v4, v5, v7, v8}
= ∅. By (P4), v6y1 /∈ E(G). By (P2), we assume that y1v1 ∈ E(G). Thus y3v1 /∈
E(G). Let NG(v1) = {v, y1, v2, a}, where a /∈ V (H) ∪ {y1, y2, y3}. By (P0), ay1 ∈
E(G). AsG has no 4-cycles, NG(y3)∩{v1, v3, v4, v6, v7} = ∅. By (P4), v2y3, v5y3 /∈
E(G). Then the subgraph inducedby {y3, v8, v9}∪{v7, v6, . . . , v1} is Z7.By symmetry
(discussion used in Claims 2 and 3), we assume that av6, av7 ∈ E(G).

Consider the neighborhoods of v3 and v4. Let NG(v3) = {v2, v4, y2, b} and
NG(v4) = {v3, v5, y2, c}. Then b �= c and b, c /∈ V (H) ∪ {a, y1, y2, y3}.
Also, we have bv2, cv5 ∈ E(G). Considering the subgraph induced by {c, v4, v5}
∪ {v6, v7, v8, v9, y1, v1, v2, b}, we conclude that bv7, bv8 ∈ E(G). Considering the
subgraph induced by {y3, v8, v9} ∪ {b, v3, v4, v5, v6, a, v1, v}, we have vy3 ∈ E(G).
Considering the subgraph induced by {c, v4, v5}∪{v6, v7, b, v2, v, y3, v9, y1}, we have
NG(c) ∩ {v, y3} �= ∅. By (P0), cv, cy3 ∈ E(G). As G is 4-regular, {v5, v6} is a 2-cut,
a contradiction. 
�
Lemma 4.3 If G is a 4-connected {K1,3, Z8}-free graph, then G has a 4-cycles unless
G is the line graph of the Petersen graph.

Proof Suppose that G does not have 4-cycles. By Theorem 1.3, G has an induced
subgraph Z5. Let H = Zt be an induced subgraph of G such that t is maximized.
Since G is Z8-free, t = 5, 6, 7. By Lemmas 4.1 and 4.2, t = 6. Let H be the graph
obtained from P8 = v1v2 . . . v8 by adding a vertex v and joining v to v1 and v2. By
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the choice of H , v8 has no neighbors in V (H) \ {v7}. By (P0), let y1, y2, y3 be the
three neighbors of v8 which are not in V (H) \ {v7} and we may assume, without
loss of generality, that y3 is adjacent to v7 and that y1 and y2 are adjacent. By (P3),
v6, v7 /∈ NG(y1) ∪ NG(y2) and y3v5, y3v6 /∈ E(G).

Claim 1 v4 ∈ NG(y1) ∪ NG(y2).
Assume that v4 /∈ NG(y1) ∪ NG(y2). By (P4), v5 /∈ NG(y1) ∪ NG(y2). If v2y1

∈ E(G), by (P0) and (P1), NG(y2) ∩ (V (H) − {v8}) = ∅, contradicting (P2). Thus
v2y1 /∈ E(G). Similarly, v2y2 /∈ E(G). By (P4), v3 /∈ NG(y1)∪ NG(y2). By (P2) and
(P1), we may assume that v1y1, vy2 ∈ E(G). This results in a 4-cycle vv1y1y2v, a
contradiction. Claim 1 holds.

By Claim 1, we assume that v4y2 ∈ E(G). By (P1) and (P4), {v3, v4, v5}
∩ NG(y1) = ∅. If v2y1 ∈ E(G), then v1y1 ∈ E(G) by (P4). This would result
in a 4-cycle vv1y1v2v. Therefore, v2y1 /∈ E(G). By (P2) and by symmetry, we
assume that v1y1 ∈ E(G). Thus v1y3, v1y2 /∈ E(G). As dG(v1) = 4, we assume that
NG(v1) = {v, v2, y1, y′

1}, where y′
1 /∈ V (H) ∪ {y1, y2, y3}. By (P0), y1y′

1 ∈ E(G).
Then NG(y1) ∩ {v, v2, v3, . . . , v7, y3} = ∅.

Claim 2 y2v5 /∈ E(G).
Assume that y2v5 ∈ E(G). Since G has no 4-cycles, {v2, v3, v4, v5, v7, y3}

∩ NG(y′
1) = ∅. By (P4), v6y′

1 /∈ E(G). Considering the subgraph induced
by {y′

1, y1, v1} ∪ {v2, . . . , v7, y3}, we have that y3v2, y3v3 ∈ E(G). Let NG(v)

= {b, c, v1, v2}, where b, c /∈ V (H) ∪ {y1, y2, y3, y′
1}. Thus (NG(b) ∪ NG(c)) ∩

{v1, v2, v3, v8, y1, y3} = ∅. As y2v4, y2v5 ∈ E(G), by (P4), v4 /∈ NG(b) ∪ NG(c).
Since the subgraph induced by {v, b, c} ∪ {v1, y1, v8, y3, v3, v4, v5} is not Z7, v5
∈ NG(b) ∪ NG(c). Without loss of generality, we assume that cv5 ∈ E(G). By
(P0), cv6 ∈ E(G). Since G has no 4-cycles, (NG(b) ∪ NG(c)) ∩ {v7, y1} = ∅. As
G is 4-regular, y2 /∈ NG(b) ∪ NG(c). This implies that the subgraph induced by
{v, b, c} ∪ {v1, y1, y2, v4, v3, y3, v7} is Z7, contradicting the maximality of t = 6.
Claim 2 holds.

By Claim 2 and (P4), y2v3 ∈ E(G). As G has no 4-cycles, {v2, v3, v4, v7, y3}
∩NG(y′

1) = ∅. SinceG is Z7-free, considering the subgraph induced by {y′
1, y1, v1}∪{v2, . . . , v7, y3}, NG(y′

1) ∩ {v5, v6} �= ∅. By (P4), y′
1v5, y

′
1v6 ∈ E(G). Again, as G

has no 4-cycles, NG(y3) ∩ {v1, v3, v4, v5, v6} = ∅. By (P4), y3v2 /∈ E(G).

Claim 3 vy3 ∈ E(G).
Assume that vy3 /∈ E(G). Let NG(y3) = {v7, v8, a, b}, where a, b /∈ V (H)

∪ {y′
1, y1, y2}. By (P0), ab ∈ E(G). Notice that the subgraph induced by (V (H) −

{v8})∪{y3} is still Z6.Using the discussion inClaims 1 and2,wehave eitherav3, av4 ∈
E(G) or bv3, bv4 ∈ E(G), implying a 4-cycle av3y2v4a or bv3y2v4b, a contradiction.
Claim 3 holds.

Let NG(y3) = {v7, v8, v, x2}. By (P0), vx2 ∈ E(G). As G has no 4-cycles,
NG(x2) ∩ {v2, v3, v6, v7} = ∅. By (P0), NG(x2) ∩ {v1, v8, y1, y2, y′

1} = ∅.

Claim 4 x2v4 ∈ E(G). Therefore, x2v5 ∈ E(G).
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Fig. 3 Two drawings of the line graph of the Petersen graph

By way of contradiction, we assume that x2v4 /∈ E(G). By (P4), x2v5 /∈ E(G).
Thus we assume that NG(x2) = {v, y3, s, t}, where s, t /∈ V (H)∪{y1, y2, y3, y′

1}. By
(P0), st ∈ E(G). As G has no 4-cycles, v2 /∈ NG(s)∪ NG(t). As y2v3, y2v4 ∈ E(G),
by (P4), v3 /∈ NG(s) ∪ NG(t).

If v6 /∈ NG(s) ∪ NG(t), then G[{s, t, x2} ∪ {v, v2, v3, y2, y1, y′
1, v6}] = Z7,

contradicting the maximality of t = 6. Without loss of generality, we assume
that v6t ∈ E(G). As y′

1v5, y
′
1v6 ∈ E(G), v7t ∈ E(G). Thus G[{x2, s, t} ∪

{v7, v8, y2, v3, v2, v1, y′
1}] = Z7, contradicting the maximality of t = 6 again. Claim

4 holds.
We will get the line graph of Peterson graph by considering the neighborhood

of v2. As G is 4-regular, we assume that NG(v2) = {v, v1, v3, z}, where z /∈
V (H) ∪ {y1, y2, y3, y′

1, x2}. By (P4), zv3 ∈ E(G). As G[{z, v2, v3} ∪ {y2, y1, y′
1, v6,

v7, y3, x2}] �= Z7, by (P4), zv6, zv7 ∈ E(G). Since G is 4-regular, G is the left graph
in Fig. 3. It is easy to check that G is the line graph of Peterson graph. 
�

5 Existence of t-Cycles (t = 5, 6, 7, 8)

Lemma 5.1 If G is a 4-connected {K1,3, Z8}-free graph, then G has a 5-cycle.

Proof Suppose that G does not have 5-cycles. Since the line graph of the Petersen
graph has 5-cycles, G is not the line graph of the Petersen graph. By Theorem 1.4, G
has an induced path P10. Let Pk = v1v2 · · · vk be a longest induced path of G, and let
Y = NG(v1) − {v2} = {y1, y2, . . . , ys}, Y1 = NG(v1) ∩ NG(v2) = {y1, . . . , yr }, and
Y2 = Y − Y1. Then k ≥ 10, s ≥ 3, r ≥ 0. Since G is claw-free, G[Y2] is a complete
graph.

(Q1) For w /∈ V (Pk), if wvi ∈ E(G)(1 < i < k), then either wvi−1 ∈ E(G) or
wvi+1 ∈ E(G).

(Q2) For w /∈ V (Pk), if wvi ∈ E(G) (1 ≤ i ≤ k − 2), then wvi+2 /∈ E(G). (Other-
wise, let a ∈ NG(vi+1)−{vi , vi+2}. Then either avi ∈ E(G) or avi+2 ∈ E(G).
Thus either vi avi+1vi+2wv1 or vivi+1avi+2wv1 is a 5-cycle.) In addition,wvi+3
/∈ E(G) if i ≤ k − 3. Thus, NG(yi ) ∩ {v3, v4, v5} = ∅ for yi ∈ Y1, and
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NG(yi ) ∩ {v2, v3, v4} = ∅ for yi ∈ Y2. As G is claw-free, G[Y1] is a complete
graph.

Claim 1 |Y2| ≤ 2. Therefore, |Y1| ≥ 1.
Assume that Y2 = {yr+1, . . . , ys} = {u1, u2, . . . , us−r } (s − r ≥ 3). By (Q2),

NG(ui ) ∩ {v2, v3, v4} = ∅.
We claim that NG(v5) ∩ {u1, u2, u3} = ∅. Otherwise, we assume u3v5 ∈ E(G).

By (Q1), u3v6 ∈ E(G). Since G is claw-free, NG(u3) ∩ V (Pk) = {v1, v5, v6}.
As G has no 5-cycles, NG(ui ) ∩ {v5, . . . , v8} = ∅ for i = 1, 2. As G is Z8-
free, there is a vertex in {u1, u2}, say u2, such that u2v9 ∈ E(G). Then NG(u2)
∩ V (Pk) = {v1, v9, v10} and NG(u1) ∩ {v2, . . . , v10} = ∅. By the choice of Pk ,
k ≥ 11. As u1v11 /∈ E(G), k ≥ 12. As u1v12 /∈ E(G), k ≥ 13. Consider NG(v2)

and let w ∈ NG(v2) − {v1, v3}. Since G has no 5-cycles, NG(w) ∩ {u1, u2, u3, v4,
v5, v6, v9, v10} = ∅. If wv1 ∈ E(G), then NG(w) ∩ {v3, v7, v8} = ∅. This implies
that G[{w, v1, v2, . . . , v10}] = Z8, a contradiction. So wv1 /∈ E(G). By (Q1), wv3 ∈
E(G). Since G[{w, v2, v3, . . . , v9, u2, u1}] �= Z8, wv7, wv8 ∈ E(G). So NG(w) ∩
V (Pk) = {v2, v3, v7, v8}. Hence G[{w, v7, v8, v3, v4, v5, u3, u2, v10, v11, v12}]
= Z8, a contradiction. So NG(v5) ∩ {u1, u2, u3} = ∅.

If NG(u3) ∩ {v6, v7, v8, v9} �= ∅, as G has no 5-cycles, by (Q1), NG(ui ) ∩
{v6, . . . , v9} = ∅ for i = 1, 2. This implies that G[{u1, u2, v1, . . . , v9}] = Z8,
a contradiction. So NG(u3) ∩ {v6, v7, v8, v9} = ∅. Similarly, we have NG(u2) ∩
{v6, v7, v8, v9} = ∅. So G[{u2, u3, v1, . . . , v9}] = Z8, a contradiction. Claim 1 holds.

Claim 2 |Y1| ≤ 1.
Assume that v2y1, v2y2 ∈ E(G). By (Q2), NG(yi ) ∩ {v3, v4, v5} = ∅ for

i = 1, 2, y1y2 ∈ E(G) and NG(y3) ∩ {v2, v3, v4} = ∅. As G has no 5-cycles,
GG(y3) ∩ {y1, y2} = ∅. Since G is Z8-free, NG(yi ) ∩ {v6, v7, . . . , v10} �= ∅ for
i = 1, 2. Furthermore, if y1vi , y2v j ∈ E(G), where i, j ∈ {6, . . . , 10}, then
| j − i | ≥ 3. Thus, by (Q1), we may assume that y1v6, y1v7, y2v10 ∈ E(G).
As G has no 5-cycles, NG(y3) ∩ {v2, v3, . . . , v10} = ∅, and so k ≥ 11 and
dG(v1) = 4. Hence y2v11 ∈ E(G) and y3v11 /∈ E(G). Therefore, k ≥ 12.
Let z1, z2, z3 ∈ NG(y3) − {v1}. Then z1z2, z1z3, z2z3 ∈ E(G). For i = 1, 2, 3,
NG(zi ) ∩ {y1, y2, v1, v2, v3, v6, v7, v10, v11} = ∅. If ziv4 ∈ E(G), then ziv5 ∈
E(G) and ziv8, ziv9 /∈ E(G). Thus G[{zi , v4, v5, v3, v2, y1, v7, . . . , v11}] = Z8. If
ziv8, ziv9 ∈ E(G), then ziv4, ziv5 /∈ E(G) andG[{zi , v9, v8, . . . , v2, y2, v11}] = Z8.
So NG(zi ) ∩ {v4, v5, v8, v9} = ∅. This implies that G[{z1, z2, y3, v1, . . . , v8}] = Z8,
a contradiction. Claim 2 holds.

By Claims 1 and 2, Y1 = {y1} and Y2 = {y2, y3}. Thus y2y3 ∈ E(G). As G has no
5-cycles, NG(y1) ∩ {y2, y3, v3, v4, v5} = ∅ and NG(yi ) ∩ {v2, v3, v4} = ∅(i = 2, 3).
AsG is Z8-free, NG(y1)∩{v6, . . . , v10} �= ∅ and∪3

i=2NG(yi )∩{v5, v6, . . . , v9} �= ∅.
We assume that T = NG(y3) ∩ {v5, v6, . . . , v9} �= ∅. Let w ∈ NG(v2) − {v1, v3, y1}.
Then wv1 /∈ E(G) and so wv3 ∈ E(G). By (Q2), NG(w) ∩ {v4, v5, v6} = ∅. As G
has no 5-cycles, NG(w) ∩ {y1, y2, y3} = ∅.

We claim that NG(y1) ∩ {v6, . . . , v9} = ∅. Otherwise, by (Q1), NG(y1) ∩ V (Pk)
= {v1, v2, vi0 , vi0+1}, where i0 = 6, 7, 8, 9. AsG has no 5-cycles, Thus∪3

i=2NG(yi )∩
{vi0−1, vi0 , vi0+1} = ∅ and y2vi0+2, y3vi0+2 /∈ E(G) if i �= 9. Thus i0 �= 7.
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If i0 = 6, then T = {v9, v10}; if i0 = 8, then T = {v5, v6}; if i0 = 9, then
T is either {v5, v6} or {v6, v7}. For these three cases, NG(y2) ∩ {v6, v7, . . . , v10}
= ∅. By the choice of Pk , k ≥ 11. For i0 = 6, as G has no 5-cycles, NG(w)

∩{v7, . . . , v10} = ∅. SoG[{w, v2, v3, . . . , v9, y3, y2}] = Z8, a contradiction. For i0 =
9, NG(w) ∩ {v8, . . . , v11} = ∅. By (Q1), wv7 /∈ E(G). So G[{w, v2, v3, . . . , v11}] =
Z8, a contradiction. For i0 = 8, let z1, z2 ∈ NG(y2) − {v1, y3}. As dG(v1) = 4,
z1z2 ∈ E(G). As G has no 5-cycles, NG(zi )∩{v1, v2, . . . , v9} = ∅ for i = 1, 2. Thus
G[{z1, z2, y2, v1, v2, . . . , v8}] = Z8, a contradiction. So NG(y1) ∩ {v6, . . . , v9} = ∅.

Notice that NG(y1) ∩ {v6, . . . , v10} �= ∅. We have y1v10 ∈ E(G). As G has no
5-cycles, NG(yi ) ∩ {v9, v10} = ∅ for i = 2, 3. . Thus T ⊆ {v5, . . . , v8}, and so
NG(y2) ∩ {v2, . . . , v10} = ∅. By the choice of Pk , k ≥ 11, and so y1v11 ∈ E(G)

and y2v11, y3v11 /∈ E(G). This implies that k ≥ 12 and y2v12, y3v12 /∈ E(G).
As G has no 5-cycles, NG(w) ∩ {v9, . . . , v12} = ∅. As G[{w, v2, v3, . . . , v11}] �=
Z8, wv7, wv8 ∈ E(G). Thus y3v7, y3v8 /∈ E(G) and y3v5, y3v6 ∈ E(G). So
G[{y3, v5, v6, v1, v2, w, v8, . . . , v12}] = Z8, a contradiction. 
�

The next lemma states that G has 6-, 7-, and 8-cycles if G is a 4-connected
{K1,3, Z8}-free graph. In the proof Lemma5.2, we follow the setup originated by
Ferrara, Morris, and Wenger in [3], utilizing an argument based on the neighborhoods
of vertices in smaller cycles. The Figs. 4 and 5 below are also originally from [3].

Lemma 5.2 If G is a 4-connected {K1,3, Z8}-free graph, then G has cycles of length
6, 7, and 8.

Proof By Lemma 5.1, G has a 5-cycle. Let t be the largest integer less than 8 such
that G has a t-cycle but no (t + 1)-cycle. Let C be a t-cycle in G and X be the set
of vertices in C that have neighbors not in C . Since G is 4-connected, |X | = l ≥ 4.
Assume X = {v1, v2, . . . , vl}. If wi ∈ NG(vi ) − V (C), then wiv

+
i , wiv

−
i /∈ E(G)

since G does not have a (t + 1)-cycle. Since G is claw-free, we have v+
i v−

i ∈ E(G).
Using similar arguments, we have xi yi ∈ E(G) if xi , yi ∈ NG(vi ) ∩ V (C). Continue
this process, we have that G[V (C)] contains one of the graphs in Fig. 4 as a subgraph,
where v1, v2, v3, and v4 are the vertices incident to the dashed edges.

For any two vertices vi and v j in X , if t = 5, G[V (C)] contains paths of length
1 through t − 1 = 4 joining vi and v j ; if t ∈ {6, 7}, then G[V (C)] contains paths of
length 2 through t − 1 joining any two vertices vi and v j . Let P(i, j) be a shortest
path in G[V (C)] connecting vi and v j that does not contain vk for any k distinct from
i and j . For 1 ≤ i ≤ l, let Si be the set of vertices in V (G) − V (C) that are adjacent
to vi , S′

i be the set of vertices in V (G) − V (C) that have distance 2 to vi , and S′′
i be

the set of vertices in V (G) − V (C) that have distance 3 to vi . We conclude that the
following claims hold for 1 ≤ i < j ≤ l.

(W1) For any x ∈ Si , NG(x) ∩ V (C) = {vi }. Therefore, for any i �= j , Si ∩ S j = ∅.
(W2) For i �= j , and for any x ∈ S′

i ∪ S′′
i , NG(x) ∩ (V (C) ∪ S j ) = ∅. Therefore,

for any i �= j , S′
i ∩ (S j ∪ S′

j ) = ∅, and there are no edges joining Si ∪ S′
i and

S j ∪ S′
j .

(W3) S′
i �= ∅ and S′′

i �= ∅ for 1 ≤ i ≤ l.
(W4) No vertex can have a neighbor in S′

i for three distinct values of i .
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5-cycle:

6-cycle:

7-cycle:

Fig. 4 Necessary subgraphs in G[V (C)] with v1, v2, v3, and v4 incident to the dashed edges

Sl Sl

S3 S3

S2 S2

S1 S1

vl

v3

v2

v1

t-cycle the rest of
the vertices

Fig. 5 The structure of G

The structure of G[V (C)] and the assumption that G does not contain a (t + 1)-
cycle imply (W1) and (W2). Since G is 4-connected, (W3) must hold, as otherwise vi
is a cut vertex. (W4) comes from (W2) since G is claw-free. Thus G has the structure
shown in Fig. 5.

For 1 ≤ i ≤ l, we use si to denote a general vertex in Si , use s′
i to denote

a general vertex in S′
i , and use s′′

i to denote a general vertex in S′′
i such that

vi si , si s′
i , s

′
i s

′′
i ∈ E(G).

Claim 1 There are distinct values i, j ∈ {1, 2, . . . , l} such that S′′
i ∩ S′′

j �= ∅.
By way of contradiction, we assume that for any i �= j , S′′

i ∩ S′′
j = ∅. Consider the

graph H from G− E(C)− (V (G)− X) by contracting vi ∪ Si ∪ S′
i ∪ S′′

i for 1 ≤ i ≤ l,
and denote the contracted vertices be xi . If H is disconnected, one component of H
contains at most 3 vertices of {x1, x2, . . . , xl}. Without loss of generality, we may
assume that x1, . . . , xk are in the same component of H with k ≤ 3, then {v1, . . . , vk}
is a vertex-cut of G, contradiction to the fact that G is 4-connected. Therefore H
is connected, and there is a path from each S′′

i to each S′′
j in G, where i �= j , that
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contains no vertices in C . Let P ′ be a shortest such path connecting S′′
i and S′′

j over all
choices of i and j . Without loss of generality, we assume that i = 1 and j = 2. Since
P ′ is minimal, V (P ′) ∩ Sk = ∅ and V (P ′) ∩ S′

k = ∅ for all k ∈ {1, 2, . . . , l}, and
V (P ′)∩S′′

1 = {s′′
1 } and V (P ′)∩S′′

2 = {s′′
2 }. Thus Q = s1s′

1s
′′
1 P

′s′′
2 s

′
2s2v2P(2, 3)v3s3s′

3
is an induced path on at least 10 vertices. Consider the neighborhood of s1. Since G
is 4-connected, let {z1, z2, v1, s′

1} ⊆ NG(s1).
If both z1v1 ∈ E(G) and z2v1 ∈ E(G), then z1, z2 ∈ S1. If both z1s′

1 /∈ E(G)

and z2s′
1 /∈ E(G), then z1z2 ∈ E(G) and the subgraph induced by {z1, z2} ∪ V (Q)

contains Zt (t ≥ 9). Otherwise, assume that z1s′
1 ∈ E(G). As z1 ∈ S1, z1s′′

1 /∈ E(G).
Thus the subgraph induced by {z1} ∪ V (Q) contains Zt (t ≥ 8). This contradiction
implies that either z1v1 /∈ E(G) or z2v1 /∈ E(G). Without loss of generality, we
assume that z1v1 /∈ E(G). Then z1s′

1 ∈ E(G) and z1 ∈ S′
1. If z1s

′′
1 /∈ E(G), then the

subgraph induced by V (Q) ∪ {z1} would be Zt (t ≥ 8). This contradiction implies
that z1s′′

1 ∈ E(G). Notice that S′′
i ∩ S′′

j = ∅ for i �= j . If |V (P ′)| ≥ 3, then the
subgraph induced by {z1} ∪ (V (Q) − {s1}) would be Zt (t ≥ 8). This implies that
P ′ = s′′

1 s
′′
2 . Consider the subgraph induced by {z1, s′′

3 } ∪ (V (Q) − {s1}). We have
either s′′

1 s
′′
3 ∈ E(G) or s′′

2 s
′′
3 ∈ E(G). If s′′

2 s
′′
3 ∈ E(G), then the subgraph induced by

{z1, s1, s′
1} ∪ (V (P(1, 2)) ∪ {s2, s′

2, s
′′
2 , s′′

3 , s′
3, s3} is Zt (t ≥ 8). Thus s′′

2 s
′′
3 /∈ E(G)

and s′′
1 s

′′
3 ∈ E(G).

Next we consider the neighborhood of s3. Applying the method used on z1 and
z2 to the neighborhood of s3, there is a vertex a ∈ NG(s3) such that av3 /∈ E(G)

and as′
3, as

′′
3 ∈ E(G). Thus the subgraph induced by {a, s3, s′

3} ∪ (V (P(2, 3)) ∪
{s2, s′

2, s
′′
2 , s′′

1 , s′
1, s1} is Zt (t ≥ 8), a contradiction. So Claim 1 holds.

By Claim 1, we may assume that x12 ∈ S′′
1 ∩ S′′

2 . Consider S′′
3 . By (W3),

S′′
3 �= ∅. Since there is a path K (v1, v2) of length 2 joining v1 and v2 in C , then
K (v1, v2)s2s′

2x12s
′
1s1v1 forms an 8-cycle. So t = 5, 6.

Claim 2 S′′
3 ∩ S′′

4 = ∅.
By way of contradiction, we assume that x34 ∈ S′′

3 ∩ S′′
4 . Since G is claw-free,

by (W4), x12x34 /∈ E(G), implying that Q = s1s′
1x12s

′
2s2v2P(2, 3)v3s3s′

3x34s
′
4s4

is an induced path on at least 12 vertices. Since G is 4-connected, we assume that
{z3, z4, s1, x12} ⊆ NG(s′

1).
Let us consider z3 first. Since G is claw-free, we have either z3s1 ∈ E(G) or

z3x12 ∈ E(G). If z3 ∈ S1 ∪ S′
1, then NG(z3) ∩ V (Q) ⊆ {s1, s′

1, x12}. Thus the
subgraph induced by V (Q) ∪ {z3} contains Z9, a contradiction. This contradiction
implies that z3 /∈ S1 ∪ S′

1. As z3s′
1 ∈ E(G), z3 ∈ S′′

1 , and so z3s1 /∈ E(G) and
z3x12 ∈ E(G). Applying this argument on z4, we have z4 ∈ S′′

1 and z4x12 ∈ E(G).
As G is claw-free, z3z4 ∈ E(G).

If z3s′
2 ∈ E(G), by (W4), z3s′

3, z3s
′
4 /∈ E(G). Thus z3x34 /∈ E(G), implying that

the subgraph induced by (V (Q) − {s1, s′
1}) ∪ {z3} is Zt (t ≥ 8), a contradiction. So

z3s′
2 /∈ E(G). Similarly, z4s′

2 /∈ E(G)

If z3x34 /∈ E(G), then z3s′
3 /∈ E(G) (otherwise, G[{s′

3, s3, z3, x34}] is a claw,
a contradiction). Similarly, z3s′

4 /∈ E(G). Thus the subgraph induced by (V (Q) −
{s1})∪{z3} is Zt (t ≥ 9), a contradiction. So z3x34 ∈ E(G). Similarly, z4x34 ∈ E(G).

Next let us consider the neighborhood of s′
2. Since G is 4-connected and since

z3, z4, x34 /∈ NG(s′
2), we assume that {z5, z6, s2, x12} ⊆ NG(s′

2). Using themethodwe
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used for z3 and z4 on the vertices z5 and z6, we haveG[{z5, z6, s′
2, x12}] is a clique and

z5x34, z6x34 ∈ E(G). Thus the subgraph induced by {z3, z4, z5, z6, s′
1, s

′
2, x12, x34}

contains cycles of lengths 6,7,8, a contradiction. Claim 2 holds.

Claim 3 S′′
3 ∩ (S′′

1 ∪ S′′
2 ) �= ∅ and S′′

4 ∩ (S′′
1 ∪ S′′

2 ) �= ∅.
We prove S′′

3 ∩ (S′′
1 ∪ S′′

2 ) �= ∅ by contradiction. The proof for S′′
4 ∩ (S′′

1 ∪ S′′
2 ) �= ∅

is similar. Suppose that S′′
3 ∩ (S′′

1 ∪ S′′
2 ) = ∅. Then there is a vertex s′′′

3 such that
s′′
3 s

′′′
3 ∈ E(G) and the distance between s′′′

3 and v3 is 4. As G has no (t + 1)-cycles,
NG(s′′′

3 ) ∩ V (C) = ∅. By Claim 2 and the assumption of S′′
3 ∩ (S′′

1 ∪ S′′
2 ) = ∅,

NG(s′′′
3 ) ∩ (S1 ∪ S2 ∪ S3 ∪ S4) = ∅ and NG(s′′

3 ) ∩ {s′
1, s

′
2, x12} = ∅.

Consider the neighborhood of s1 and let {z7, z8, v1, s′
1} ⊆ NG(s1). If both z7v1 ∈

E(G) and z8v1 ∈ E(G), then z7, z8 ∈ S1 and z7z8 ∈ E(G). If z7s′
1 /∈ E(G) and z8s′

1 /∈
E(G), the subgraph induced by {z7, z8, s1} ∪ {s′

1, x12, s
′
2, s2} ∪ V (P(2, 3)) ∪ {s3, s′

3}
is Zt (t ≥ 8). Otherwise, assume that z7s′

1 ∈ E(G). Then the subgraph induced by
{z7, s1, s′

1} ∪ {x12, s′
2, s2} ∪ V (P(2, 3)) ∪ {s3, s′

3, s
′′
3 } is Zt (t ≥ 8). This contradiction

implies that either z7v1 /∈ E(G) or z8v1 /∈ E(G). Without loss of generality, we
assume that z7v1 /∈ E(G). Then z7s′

1 ∈ E(G) and z7 ∈ S′
1. If z7x12 /∈ E(G),

the subgraph induced by {z7, s1, s′
1} ∪ {x12, s′

2, s2} ∪ V (P(2, 3)) ∪ {s3, s′
3, s

′′
3 } would

Zt (t ≥ 8). This contradiction implies that z7x12 ∈ E(G).
Considering the subgraph induced by {z7, s′

1, x12} ∪ {s′
2, s2} ∪ V (P(2, 3)) ∪

{s3, s′
3, s

′′
3 , s′′′

3 }, we have NG(s′′′
3 ) ∩ {z7, s′

1, s
′
2, x12} �= ∅. Notice that if x12s′′′

3 /∈
E(G), then NG(s′′′

3 ) ∩ {z7, s′
1, s

′
2} �= ∅. Thus either G[{s′

1, s1, x12, s
′′′
3 }] = K1,3,

or G[{s′
2, s2, x12, s

′′′
3 }] = K1,3, or G[{z7, s1, x12, s′′′

3 }] = K1,3. This contradiction
implies that x12s′′′

3 ∈ E(G). By G[{x12, s′′′
3 , s′

1, s
′
2}], we have either s′′′

3 s′
1 ∈ E(G) or

s′′′
3 s′

2 ∈ E(G).Without loss of generality, we assume that s′
2s

′′′
3 ∈ E(G) (otherwise, we

can consider the neighborhood of s2 instead). As S′′
3 ∩ (S′′

1 ∪ S′′
2 ∪ S′′

4 ) = ∅, NG(s′′′
3 )∩

{s′
1, z7, s

′
4} = ∅ (otherwise, G[{s′′′

3 , s′
2, s

′′
3 , w}] = K1,3, where w ∈ {s′

1, z7, s
′
4}, a con-

tradiction). Then the subgraph induced by {z7, s′
1, x12}∪{s′′′

3 , s′′
3 , s′

3, s3}∪V (P(3, 4))∪
{s4, s′

4} is Zt (t ≥ 8), a contradiction. Therefore, Claim 3 holds.
By Claim 3, without loss of generality, we assume that S′′

3 ∩ S′′
1 �= ∅. Let x13 ∈

S′′
1 ∩S′′

3 . Applying the argument used inClaim 2 on S′′
2 and S

′′
4 , we have S

′′
2 ∩S′′

4 = ∅. By
Claim3, S′′

1∩S′′
4 �= ∅. Let x14 ∈ S′′

1∩S′′
4 . SinceG is claw-free, x12x13, x12x14, x13x14 ∈

E(G). By (W4), S′
4 ∩ (NG(x12) ∪ NG(x13)) = ∅.

Consider the neighborhood of s4 and let {z9, z10, v4, s′
4} ⊆ NG(s4). If both z9v4 ∈

E(G) and z10v4 ∈ E(G), then z9, z10 ∈ S4 and z9z10 ∈ E(G). If z9s′
4 /∈ E(G)

and z10s′
4 /∈ E(G), the subgraph induced by {z9, z10, s4} ∪ {s′

4, x14, x13, s
′
3, s3} ∪

V (P(2, 3)) ∪ {s2, s′
2} is Zt (t ≥ 9). Otherwise, assume that z9s′

4 ∈ E(G). Then
the subgraph induced by {z9, s4, s′

4} ∪ {x14, x13, s′
3, s3} ∪ V (P(2, 3)) ∪ {s2, s′

2} is
Zt (t ≥ 8). This contradiction implies that either z9v4 /∈ E(G) or z10v4 /∈ E(G).
Without loss of generality, we assume that z9v4 /∈ E(G). Then z9s′

4 ∈ E(G) and
z9 ∈ S′

4. Thus, z9x13, z9x12 /∈ E(G) (otherwise, G[{x12, s′
1, s

′
2, z9}] = K1,3 and

G[{x13, s′
1, s

′
3, z9}] = K1,3, a contradiction). Therefore, the subgraph induced by

{s4, s′
4, z9} ∪ V (P(3, 4)) ∪ {s3, s′

3, x13, x12, s
′
2, s2} is Zt (t ≥ 8), a contradiction. 
�
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