ORIGINAL PAPER

Pancyclicity of 4-Connected $\left\{K_{1,3}, Z_{8}\right\}$-Free Graphs

Hong-Jian Lai ${ }^{1,2} \cdot$ Mingquan Zhan ${ }^{3}$. Taoye Zhang ${ }^{4} \cdot$ Ju Zhou ${ }^{5}$

Received: 24 March 2015 / Revised: 6 June 2017 / Published online: 29 November 2018
© Springer Japan KK, part of Springer Nature 2018

Abstract

A graph G is said to be pancyclic if G contains cycles of lengths from 3 to $|V(G)|$. For a positive integer i, we use Z_{i} to denote the graph obtained by identifying an endpoint of the path P_{i+1} with a vertex of a triangle. In this paper, we show that every 4-connected claw-free Z_{8}-free graph is either pancyclic or is the line graph of the Petersen graph. This implies that every 4-connected claw-free Z_{6}-free graph is pancyclic, and every 5-connected claw-free Z_{8}-free graph is pancyclic.

Keywords Claw-free • Pancyclic • Forbidden subgraphs

1 Introduction

We use [1] for terminology and notation not defined here, and consider finite simple graphs only. Let G be a graph. If $v \in V(G)$ and $S \subseteq V(G), G[S]$ is the subgraph induced by S in $G, N_{G}(v)$ is the neighborhood of v in G, and $N_{G}(S)=\bigcup_{v \in S} N_{G}(v)$. Throughout this paper, we will assume that all cycles C have an inherent clockwise orientation. For a vertex $v \in V(C)$ we will denote the first, second, and i-th successor of v as v^{+}, v^{++}, and v^{+i}, respectively. Similarly, we denote the first, second, and i-th predecessor of v as v^{-}, v^{--}, and v^{-i} respectively. If $u, v \in V(C)$, then $C[u, v]$ denotes the consecutive vertices on C from u to v in the chosen direction of C, and $C(u, v]=C[u, v]-\{u\}, C[u, v)=C[u, v]-\{v\}, C(u, v)=C[u, v]-\{u, v\}$. The

[^0]same vertices, in the reverse order, are denoted by $\overleftarrow{C}[v, u], \overleftarrow{C}[v, u), \overleftarrow{C}(v, u]$ and $\overleftarrow{C}(v, u)$, respectively. A hop in a cycle is a chord that joins some v to v^{++}.

Given a family \mathcal{F} of graphs, G is said to be \mathcal{F}-free if G contains no member of \mathcal{F} as an induced subgraph. If $\mathcal{F}=\left\{K_{1,3}\right\}$, then G is said to be claw-free. A graph G is hamiltonian if it contains a spanning cycle and pancyclic if it contains cycles of lengths from 3 to $|V(G)|$. In 1984, Matthews and Sumner [6] conjectured that every 4-connected claw-free graph is hamiltonian. This conjecture is still open, and has also fostered a large body of research into other structural properties of cycles for clawfree graphs. In this paper we are specifically interested in the pancyclicity of highly connected claw-free graphs.

Let $Ł$ denote the graph obtained by connecting two disjoint triangles with a single edge, and let $N(i, j, k)$ denote the net obtained by identifying an endpoint of each the paths $P_{i+1}, P_{j+1}, P_{k+1}$ with distinct vertices of a triangle. $N(i, 0,0)$ is also denoted by Z_{i}.

Theorem 1.1 (Gould, Łuczak, Pfender [4]) Let X and Y be connected graphs on at least three vertices. If neither X nor Y is P_{3} and Y is not $K_{1,3}$, then every 3-connected $\{X, Y\}$-free graph G is pancyclic if and only if $X=K_{1,3}$ and Y is a subgraph of one of the graphs in the family

$$
\mathcal{F}=\left\{P_{7}, Ł, N(4,0,0), N(3,1,0), N(2,2,0), N(2,1,1)\right\} .
$$

Motivated by the Matthews-Sumner Conjecture and Theorem 1.1, Ron Gould came up with the following problem at the 2010 SIAM Discrete Math Meeting in Austin, TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.

Theorem 1.3 (Ferrara, Gould, Gehrke, Magnant, and Powell [2]) Every 4-connected $\left\{K_{1,3}, N(i, j, k)\right\}$-free graph with $i+j+k=5$ is pancyclic.

Theorem 1.4 (Ferrara, Morris, Wenger [3]) Every 4-connected $\left\{K_{1,3}, P_{10}\right\}$-free graph is either pancyclic or is the line graph of the Petersen graph.

The result of this paper is as follows.
Theorem 1.5 Every 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph is either pancyclic or is the line graph of the Petersen graph.

Notice that if a graph is P_{10}-free, it must be Z_{8}-free. Theorem 1.5 generalizes Theorem 1.4. The line graph of the Petersen graph is 4 -connected and $\left\{K_{1,3}, Z_{7}\right\}$-free, but not Z_{6}-free, and it contains no cycle of length 4 (Fig. 1). This immediately implies the following corollary.

Corollary 1.6 Every 4-connected $\left\{K_{1,3}, Z_{6}\right\}$-free graph is pancyclic.
Corollary 1.7 Every 5-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph is pancyclic.

Fig. 1 The line graph of the Petersen graph is the unique 4-connected claw-free, Z_{8}-free graph that is not pancyclic

We would like to point out that the idea underlying our proofs comes from [3]. In Sect. 2, we will show that every 4 -connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph G contains cycles of all lengths from 10 to n by showing that if G contains a t-cycle $(t \geq 11)$, then G also contains a $(t-1)$-cycle. The existence of a 9 -cycle follows from the existence of $10-$ cycles, which will be given in Sect. 3. The existence of a 3-cycle follows immediately from the fact that G is claw-free. For 4 -cycles, we use similar arguments based on the longest induced graphs Z_{k}. The proof of the existence of 4-cycles will be given in Sect. 4. The proof of the existence of t-cycles $(t=5,6,7,8)$ will be given in Sect. 5.

2 Long Cycles

Let C be a cycle in G and $v \in V(C)$ and $u \notin V(C)$ such that $u v \in E(G)$. If C is hop-free, then we have either $u v^{+} \in E(G)$ or $u v^{-} \in E(G)$ as G is claw-free. Let $x_{1}, x_{2}, \ldots, x_{k} \in V(C)$ lie on C along the orientation of C and let $w_{1}, w_{2}, \ldots, w_{k}$ be distinct vertices not in $V(C)$ so that $w_{i} x_{i} \in E(G)$. The claw-extension at $x_{1}, x_{2}, \ldots, x_{k}$ of C is the extension of C by inserting $w_{1}, w_{2}, \ldots, w_{k}$ into C one by one as follows.

For $i=1,2, \ldots, k$, do:

Cases	Methods
$x_{i+1} \neq x_{i}^{+} \text {or } x_{i} w_{i+1} \notin E(G)$	Insert w_{i} into C by replacing $x_{i}^{-} x_{i} x_{i}^{+}$by $x_{i}^{-} w_{i} x_{i} x_{i}^{+}$or $x_{i}^{-} x_{i} w_{i} x_{i}^{+}$. Set $i:=i+1$
$x_{i+1}=x_{i}^{+}$and $x_{i} w_{i+1} \in E(G)$, and $x_{i}^{-} w_{i} \in E(G)$.	$\begin{aligned} & \text { Insert } w_{i} \text { and } w_{i+1} \text { into } C \text { by replacing } \\ & x_{i}^{-} x_{i} x_{i+1} \text { by } x_{i}^{-} w_{i} x_{i} w_{i+1} x_{i+1} \text {. Set } \\ & i:=i+2 . \end{aligned}$
$x_{i+1}=x_{i}^{+}$and $x_{i} w_{i+1} \in E(G)$, and $x_{i}^{-} w_{i} \notin E(G)$	Then $w_{i} x_{i+1} \in E(G)$. Consider $G\left[\left\{x_{i}, x_{i}^{-}, w_{i}, w_{i+1}\right\}\right]$, we have either $w_{i+1} x_{i}^{-} \in E(G)$, or $w_{i} w_{i+1} \in E(G)$. - If $w_{i+1} x_{i}^{-} \in E(G)$, insert w_{i} and w_{i+1} into C by replacing $x_{i}^{-} x_{i} x_{i+1}$ by $x_{i}^{-} w_{i+1} x_{i} w_{i} x_{i+1}$. Set $i:=i+2$. - If $w_{i} w_{i+1} \in E(G)$, insert w_{i} and w_{i+1} into C by replacing $x_{i} x_{i+1}$ by $x_{i} w_{i} w_{i+1} x_{i+1}$. Set $i:=i+2$.

Lemma 2.1 Let G be a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph of order n and let C be a cycle of length $t \geq 11$ in G. If G contains no $(t-1)$-cycles, then C contains a chord.

Proof Suppose that C is chordless. Since G is 4 -connected, C is not a hamiltonian cycle. Thus, for any $v \in V(C)$, there is a vertex $x \notin V(C)$ such that $v x \in E(G)$. As $v^{+} v^{-} \notin E(G)$, we have either $v^{+} x \in E(G)$ or $v^{-} x \in E(G)$. Without loss of generality, we assume that $x v^{-} \in E(G)$. Denote $u=v^{-}$. Then $u v \in E(C)$ and $G[\{x, u, v\}]$ is a clique in G.

Claim $1 x v^{+}, x u^{-}, x v^{++}, x u^{--}, x v^{+3}, x u^{-3} \notin E(G)$.
Assume that $x v^{+} \in E(G)$. Since G contains no $(t-1)$-cycles, $x v^{++}, x u^{-} \notin E(G)$. As G is claw-free and C is chordless, for any $z \in C\left(v^{++}, u^{-}\right), x z \notin E(G)$. Thus the subgraph induced by $\left\{x, v, v^{+}\right\} \cup\left\{v^{++}, \ldots, v^{+9}\right\}$ is Z_{8}, a contradiction. This contradiction implies that $x v^{+} \notin E(G)$. Similarly, $x u^{-} \notin E(G)$. As G contains no $(t-1)$-cycles, $x v^{++}, x u^{--}, x v^{+3}, x u^{-3} \notin E(G)$. Claim 1 holds.

Since G is Z_{8}-free and since C is chordless and $t \geq 11, N_{G}(x) \cap(V(C)-\{u, v\})$ $\neq \emptyset$. Let j be a positive integer so that $x v^{+}, x v^{++}, \ldots, x v^{+(j-1)} \notin E(G)$, and $x v^{+j} \in E(G)$. By Claim $1, j \geq 4$. Choose $u v \in E(C)\left(u=v^{-}\right)$and $x \notin V(C)$ so that j is as small as possible.

Consider the neighborhoods of u, u^{--}, and u^{-3}. Since G is 4-connected, there exits a vertex $w_{1} \notin V(C) \cup\{x\}$ such that $u w_{1} \in E(G)$. Since G is claw-free, we have either $w_{1} v \in E(G)$ or $w_{1} u^{-} \in E(G)$. By Claim $1, w_{1} u^{--}, w_{1} u^{-3} \notin E(G)$. As $x u^{--}, x u^{-3} \notin E(G)$, there are distinct vertices $w_{2}, w_{3} \notin V(C) \cup\left\{x, w_{1}\right\}$ such that $w_{2} u^{--}, w_{3} u^{-3} \in E(G)$. If $x v^{+4} \in E(G)$, then the $(t-2)$-cycle $C\left[v^{+4}, v\right] x v^{+4}$ can be extended to a $(t-1)$-cycle via claw-extension at u^{--}; if $x v^{+5} \in E(G)$, then the $(t-3)$-cycle $C\left[v^{+5}, v\right] x v^{+5}$ can be extended to a $(t-1)$-cycle via claw-extensions at u^{--}and u^{-3}; if $x v^{+6} \in E(G)$, then the $(t-4)$-cycle $C\left[v^{+6}, v\right] x v^{+6}$ can be extended to a $(t-1)$-cycle via claw-extensions at u, u^{--}and u^{-3}. This implies that $j \geq 7$.

Consider the neighborhoods of u^{-5} and u^{-6}. By the choice of $u v$ and x, $\left(N_{G}\left(u^{-5}\right) \cup N_{G}\left(u^{-6}\right)\right) \cap\left\{w_{1}, w_{2}, w_{3}, x\right\}=\emptyset$. As G is 4-connected, there are distinct vertices $w_{4}, w_{5} \notin V(C) \cup\left\{x, w_{1}, w_{2}, w_{3}\right\}$ such that $w_{4} u^{-5}, w_{5} u^{-6} \in E(G)$. If $x v^{+7} \in E(G)$, then the $(t-5)$-cycle $C\left[v^{+7}, v\right] x v^{+7}$ can be extended to a $(t-1)$ cycle via claw-extensions at u, u^{--}, u^{-3}, and u^{-5}; if $x v^{+8} \in E(G)$, then the $(t-6)$-cycle $C\left[v^{+8}, v\right] x v^{+8}$ can be extended to a $(t-1)$-cycle via claw-extensions at $u, u^{--}, u^{-3}, u^{-5}$, and u^{-6}. Therefore, $j \geq 9$. Thus the subgraph induced by $\{x, u, v\} \cup\left\{v^{+}, \ldots, v^{+8}\right\}$ is Z_{8}, a contradiction.

Lemma 2.2 Let G be a claw-free graph with minimum degree at least 4 , let C be a cycle of length $t \geq 6$, and let X be the set of vertices in C that are not on any chord of C. If $x_{1}, x_{2}, \ldots, x_{5} \in V(C) \cap X$, then $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right) \cap N_{G}\left(x_{4}\right) \cap N_{G}\left(x_{5}\right)=\emptyset$.

Proof Assume that $x_{1}, x_{2}, \ldots, x_{5}$ lie on C in order along the orientation of C. Since $|V(C)| \geq 6$, without loss of generality, we assume that $x_{1} x_{5} \notin E(C)$. If $w \in N_{G}\left(x_{1}\right)$ $\cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right) \cap N_{G}\left(x_{4}\right) \cap N_{G}\left(x_{5}\right)$, then $G\left[\left\{w, x_{1}, x_{3}, x_{5}\right\}\right]=K_{1,3}$, a contradiction.

Theorem 2.3 (Gould, Łuczak, Pfender, Lemma 3.1 in [4]) Let G be a claw-free graph with minimum degree at least 3 , let C be a cycle of length $t \geq 5$ without hops, and let
X be the set of vertices in C that are not on any chord of C. If some chord xy of C satisfies $|X \cap C(x, y)| \leq 2$, then G contains cycles of lengths $t-1$ and $t-2$.

Let C be a cycle without hops in G, and let X be the set of vertices in C that are not on any chord of C. Let $x y$ be a chord of C so that (i). $|C(x, y) \cap X|$ is minimum, and (ii). subject to (i), $|C[x, y]|$ is minimum.

In order to prove the following lemmas, we need the following technique to insert some vertices of $C(x, y)$ into the cycle $x C[y, x]$ along the orientation of C. Let $p \in C(x, y)-X$. Then, by the choice of $x y$, we conclude that p has a neighbor q in $C(y, x)$. Since G is claw-free and C is hop-free, we have either $p q^{+} \in E(G)$ or $p q^{-} \in E(G)$. Without loss of generality, we may assume that $p q^{+} \in E(G)$. Then we can insert p into $C(y, x)$ by replacing $q q^{+}$with $q p q^{+}$. Such a vertex p is called an insertable vertex, and the edge $q q^{+}$is called the insertion edge for p. If there are two vertices $p_{1}, p_{2} \in C(x, y)-X$ such that $w w^{+}$is the insertion edge for both p_{1} and p_{2}, then vertices in the path $C\left[p_{1}, p_{2}\right]$ can be inserted into $C(y, x)$ by replacing $w w^{+}$ with $w C\left[p_{1}, p_{2}\right] w^{+}$. Such path $C\left[p_{1}, p_{2}\right]$ is called the insertable path with respect to the insertion edge $w w^{+}$. If there is no $p^{\prime} \in C\left(x, p_{1}\right) \cup C\left(p_{2}, y\right)-X$ such that $w w^{+}$ is also the insertion edge for p^{\prime}, the path $C\left[p_{1}, p_{2}\right]$ is called the maximal insertable path in $C(x, y)$ with respect to the insertion edge $w w^{+}$. The path $C\left[p_{1}, p_{2}\right]$ is trivial if $p_{1}=p_{2}$ (Fig.2).

Let x_{1} be the first vertex in $C(x, y)-X$ along the orientation of C. Then x_{1} is an insertable vertex in $C(x, y)$ with respect to an insertion edge $w_{1} w_{1}^{+}$. Let P_{1} $=C\left[x_{1}, y_{1}\right]$ be the maximal insertable path in $C(x, y)$ with respect to insertion edge $w_{1} w_{1}^{+}$. Let x_{2} be the first vertex in $C\left(y_{1}, y\right)-X$ along the orientation of C. Then x_{2} is an insertable vertex in $C\left(y_{1}, y\right)$ with respect to an insertion edge $w_{2} w_{2}^{+}$. By the choice of $P_{1}, w_{2} \neq w_{1}$. Let $P_{2}=C\left[x_{2}, y_{2}\right]$ be the maximal insertable path in $C\left(y_{1}, y\right)$ with respect to insertion edge $w_{2} w_{2}^{+}$. Repeat this process until $C\left(y_{s}, y\right)$ $-X=\emptyset$. Now $P_{1}, P_{2}, \ldots, P_{s}$ are maximal insertable paths in $C(x, y), C\left(y_{1}, y\right), \ldots$, $C\left(y_{s-1}, y\right)$, with respect to insertion edges $w_{1} w_{1}^{+}, w_{2} w_{2}^{+}, \ldots, w_{s} w_{s}^{+}$, respectively. The set $\left\{P_{1}, P_{2}, \ldots, P_{s}\right\}$ is called a maximal insertable path set in $C(x, y)$. Denote by W the set of all vertices in these paths, then $C(x, y)-W \subseteq X$.

Lemma 2.4 Let G be a claw-free graph with minimum degree at least 4, let C be a cycle of length $t \geq 6$ without hops, and let X be the set of vertices in C that are not on

Fig. 2 Insertable vertices and insertable paths in $C(x, y)$

any chord of C. If some chord $x y$ of C satisfies $|X \cap C(x, y)| \leq 4$, then G contains cycles of lengths $t-1$ and $t-2$.

Proof Choose the chord $x y$ of C such that
(a) $|C(x, y) \cap X|$ is minimized.
(b) subject to Condition (a), $|C[x, y]|$ is minimized.

By Theorem 2.3, we assume that $|X \cap C(x, y)| \geq 3$. Thus $|C(x, y) \cap X| \in\{3,4\}$. By Conditions (a) and (b), $y x^{+}, x y^{-} \notin E(G)$. As G is claw-free and C is hopfree, $x y^{+}, y x^{-} \in E(G)$. If $x^{-} y^{+} \notin E(G)$, as $G\left[\left\{y, y^{+}, y^{-}, x^{-}\right\}\right] \neq K_{1,3}$, we have $x^{-} y^{-} \in E(G)$. Similarly, $x^{+} y^{+} \in E(G)$. Thus the cycles $C\left[y^{+}, x^{-}\right] \overleftarrow{C}\left[y^{-}, x^{+}\right] y^{+}$ and $C\left[y^{+}, x^{-}\right] \overleftarrow{C}\left[y^{-}, x\right] y^{+}$are cycles of lengths $t-2$ and $t-1$, respectively. Therefore, we assume $x^{-} y^{+} \in E(G)$.

If $C(x, y)-X \neq \emptyset$, then let $\left\{P_{1}, \ldots, P_{s}\right\}$ be a maximal insertable path set in $C(x, y)$. Denote by W the set of all vertices in these paths. Assume that C^{\prime} is the cycle obtained by inserting vertices of W into the cycle $x C[y, x]$. Then $C(x, y)-W \neq \emptyset$ (otherwise, the cycles $C^{\prime}\left[y^{+}, x\right] y^{+}$and $C^{\prime}\left[y^{+}, x^{-}\right] y^{+}$are cycles of lengths $t-1$ and $t-2$). Let $X^{\prime}=C(x, y)-W$. Then $X^{\prime} \subseteq X$ and $|C(y, x) \cap X| \geq\left|X^{\prime}\right|$. Let $k=\left|X^{\prime}\right|$. Then the length of the cycle C^{\prime} is $|V(C)|-k=t-k$, and $|C(y, x) \cap X|$ $\geq|C(x, y) \cap X| \geq k$.

If $k=1$, then the cycles C^{\prime} and $C^{\prime}\left[y, x^{-}\right] y$ are cycles of lengths $t-1$ and $t-2$. If $k=2$, then C^{\prime} is a $(t-2)$-cycle. Let $x_{0} \in C(y, x) \cap X$, then the $(t-2)$-cycle C^{\prime} can be extended to a $(t-1)$-cycle via claw-extension at x_{0}. If $k=3$, note that $|C(y, x) \cap X| \geq k=3$. Let $y_{1}, y_{2}, y_{3} \in C(y, x) \cap X$. Since $\delta(G) \geq 4$, there are vertices $w_{1}, w_{3} \notin V(C)$ such that $y_{1} w_{1}, y_{3} w_{3} \in E(G)$. Then the $(t-3)$-cycle C^{\prime} can be extended to a $(t-1)$-cycle via claw-extensions at y_{1}, y_{3}, and to a $(t-2)$-cycle via claw-extension at y_{1}, Thus $k=4$. Assume $C(x, y)-W=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $x_{1}, x_{2}, x_{3}, x_{4}$ are labeled with respect to the orientation of C.

Let $C(y, x) \cap X=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ be the set of vertices labeled with respect to the orientation of C (as well as the orientation of C^{\prime}). As each of $y_{i}(i=1,2, \ldots, m)$ has at least two neighbors not on C, let $w_{1} y_{1}, w_{2} y_{2} \in E(G)$, where $w_{1}, w_{2} \notin V(C)$. Then the $(t-4)$-cycle C^{\prime} can be extended to a $(t-2)$-cycle via claw-extensions at y_{1} and y_{2}. Next we will find a $(t-1)$-cycle in G.

If $N_{G}\left(\left\{y_{3}, \ldots, y_{m}\right\}\right)-\left\{w_{1}, w_{2}\right\} \neq \emptyset$, say $w_{3} y_{3} \in E(G)$, then the $(t-4)$-cycle C^{\prime} can be extended to a $(t-1)$-cycle via claw-extensions at y_{1}, y_{2} and y_{3}. Therefore, we assume $N_{G}\left(\left\{y_{3}, \ldots, y_{m}\right\}\right)=\left\{w_{1}, w_{2}\right\}$. Then $w_{1} y_{i}, w_{2} y_{i} \in E(G)$ for $i=3, \ldots, m$. By Lemma 2.2, $m=4$. By the minimality of $x y,|C(x, y) \cap X|=4$, and so $\mid V(C) \cap$ $X \mid=8$.

If $\left(N_{G}\left(y_{1}\right)-V(C)\right)-\left\{w_{1}, w_{2}\right\} \neq \emptyset$, then there exists $w_{4} \in N_{G}\left(y_{1}\right)-(V(C)$ $\left.\cup\left\{w_{1}, w_{2}\right\}\right)$ such that $y_{1} w_{4} \in E(G)$. As $w_{1} y_{3}, w_{2} y_{4} \in E(G)$, the $(t-4)$-cycle C^{\prime} can be extended to a $(t-1)$-cycle via claw-extensions at y_{1}, y_{3} and y_{4}. So we may assume that $N_{G}\left(y_{1}\right)-V(C)=\left\{w_{1}, w_{2}\right\}$. Similarly, $N_{G}\left(y_{i}\right)-V(C)=\left\{w_{1}, w_{2}\right\}(i=2,3,4)$. As G is claw-free, $y_{2}=y_{1}^{+}$and $y_{4}=y_{3}^{+}$, but $\left|C\left(y_{2}, y_{3}\right)\right| \geq 1$ (otherwise, the cycle $C\left[y_{4}, y_{1}\right] w_{1} y_{4}$ is a $(t-1)$-cycle).

Consider y_{2}^{+}. Then y_{2}^{+}is an endpoint of a chord on C. Let y_{2}^{\prime} be the other endpoint of this chord. By the minimality of $x y$ and $|V(C) \cap X|=8$, we have $y_{2}^{\prime} \in C\left(x_{2}, x_{3}\right)$.

Without loss of generality, we assume that y_{2}^{\prime} is the last vertex in $C\left(x_{2}, x_{3}\right)$ adjacent to y_{2}^{+}. Then $y_{2}^{\prime} y_{2}^{+}$is the only chord that joins a pair of vertices in $C\left[y_{2}^{\prime}, y_{2}^{+}\right]$and $\left|C\left(y_{2}^{\prime}, y_{2}^{+}\right) \cap X\right|=4$. Thus the chord $y_{2}^{\prime} y_{2}^{+}$also satisfies Conditions (a) and (b). Applying the same discussion mentioned above on the chord $y_{2}^{\prime} y_{2}^{+}$instead of $x y$, we have $N_{G}\left(x_{1}\right)-V(C)=\left\{w_{1}, w_{2}\right\}$ and $N_{G}\left(x_{2}\right)-V(C)=\left\{w_{1}, w_{2}\right\}$, contradicting Lemma 2.2.

Lemma 2.5 Let G be a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph. If G contains a cycle of length $t \geq 11$, then G contains a cycle of length $t-1$.

Proof Let C be a cycle of length t in G and suppose that G contains no $(t-1)$-cycles. Then C does not contain hops. By Lemma 2.1, C contains at least one chord. Let X be the set of vertices of C that are not endpoints of chords of C. Let $x y$ be a chord of C. Then, by Lemma 2.4, $|X \cap C(x, y)| \geq 5$. Choose $x y$ such that
(a) $|C(x, y) \cap X|$ is minimized.
(b) subject to Condition (a), $|C(x, y)|$ is minimized. Therefore, $x y$ is the only chord that joins a pair of vertices in $C[x, y]$.
Claim $1 x y^{+}, y x^{-}, x^{-} y^{+} \in E(G)$, and $z x^{-}, z y^{+} \notin E(G)$ for any $z \in C(x, y)$.
By Conditions (a) and (b), $y x^{+}, x y^{-} \notin E(G)$. As G is claw-free and C is hopfree, $x y^{+}, y x^{-} \in E(G)$. If $x^{+} y^{+} \in E(G)$, then the cycle $C\left[x^{+}, y\right] \overleftarrow{C}\left[x^{-}, y^{+}\right] x^{+}$ is a $(t-1)$-cycle, a contradiction. Thus $x^{+} y^{+} \notin E(G)$. Similarly, $x^{-} y^{-} \notin E(G)$. Since $G\left[\left\{x, y^{+}, x^{-}, x^{+}\right\}\right]$is not a claw, $x^{-} y^{+} \in E(G)$. By Conditions (a) and (b), $y^{+} z \notin E(G)$ for $z \in C\left(x^{+}, y\right)$, and $x^{-} z \notin E(G)$ for $z \in C\left(x, y^{-}\right)$. Claim 1 holds.

Claim 2 Let $x_{1}, x_{2}, x_{3}, x_{4} \in C(y, x) \cap X$. Then $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right) \cap N_{G}\left(x_{4}\right)=$ \emptyset.

We assume that $w \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right) \cap N_{G}\left(x_{4}\right)$. We also assume that $x_{1}, x_{2}, x_{3}, x_{4}$ lie on C in order along the orientation of C. By Claim $1,\left|C\left(x_{4}, x_{1}\right)\right| \geq$ $|C(x, y)|+\left|\left\{x, x^{-}, y, y^{+}\right\}\right| \geq 9$. As G is claw-free and C is hop-free, $x_{2}=x_{1}^{+}$and $x_{4}=x_{3}^{+}$, and $\left|C\left(x_{2}, x_{3}\right)\right| \geq 3$. Consider the subgraph induced by $\left\{x_{3}, x_{4}, w\right\} \cup$ $\left\{x_{1}, x_{1}^{-}, x_{1}^{--}, \ldots, x_{1}^{-7}\right\}$. Then $w z \notin E(G)$ for $z \in\left\{x_{1}^{-}, \ldots, x_{1}^{-7}\right\}$ (Otherwise, $G\left[\left\{w, z, x_{2}, x_{3}\right\}\right]=K_{1,3}$, a contradiction). Since $G\left[\left\{x_{3}, x_{4}, w\right\} \cup\left\{x_{1}, x_{1}^{-}, \ldots, x_{1}^{-7}\right\}\right]$ is not $Z_{8}, G\left[\left\{x_{1}^{-}, \ldots, x_{1}^{-7}\right\}\right]$ contains an edge. Since $|C(x, y)| \geq 5$, by minimality of $x y, x_{1}^{-} x_{1}^{-7} \in E(G)$ but $x_{1}^{--} x_{1}^{-7} \notin E(G)$. Thus $G\left[\left\{x_{1}^{-}, x_{1}, x_{1}^{--}, x_{1}^{-7}\right\}\right]=K_{1,3}$, a contradiction. Claim 2 holds.

Claim $3|C(x, y)| \geq 6$.
By way of contradiction, assume that $|C(x, y)| \leq 5$. By Lemma 2.4, $|C(x, y)|$ $=|C(x, y) \cap X|=5$. As $|C(y, x) \cap X| \geq 5$, let $x_{1}, x_{2}, \ldots, x_{5} \in C(y, x) \cap X$. Consider the bipartite graph H with partitions $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $\bigcup_{i=1}^{5} \mathbf{N}_{G}\left(x_{i}\right)-C$. As each x_{i} has at least two neighbors not in C, by Claim $2,\left|N_{H}(S)\right| \geq|S|-1$ for any $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$. Thus H has a matching M with 4 edges. Without loss of generality, we assume that $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V(M)$. Then the $(t-5)$-cycle $x C[y, x]$ can be extended to a $(t-1)$-cycle via claw-extensions at x_{1}, x_{2}, x_{3}, and x_{4}. Claim 3 holds.

Claim 4 Let $x_{1}, x_{2}, x_{3} \in C(y, x) \cap X$. Then $N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right)=\emptyset$.
Assume that $w \in N_{G}\left(x_{1}\right) \cap N_{G}\left(x_{2}\right) \cap N_{G}\left(x_{3}\right)$. Also we assume that x_{1}, x_{2}, x_{3} lie on the cycle C in the order along the orientation of C. As G is claw-free and $x_{1}, x_{2}, x_{3} \in X$, we have either $x_{2}=x_{1}^{+}$or $x_{3}=x_{2}^{+}$. Without loss of generality, we assume that $x_{2}=x_{1}^{+}$. By Claim 3, $\left|\overleftarrow{C}\left(x_{1}, x_{3}\right)\right| \geq|C(x, y)|+\left|\left\{x, x^{-}, y, y^{+}\right\}\right| \geq 10$. Since $x_{1}, x_{2}, x_{3} \in X$ and G is claw-free, we have $x_{2} x_{1}^{-} \notin E(G)$ and $z x_{1}, z x_{2}, z w \notin E(G)$ for $z \in\left\{x_{1}^{--}, x_{1}^{-3}, \ldots, x_{1}^{-8}\right\}$.

If $G\left[\left\{x_{1}^{-}, x_{1}^{--}, \ldots, x_{1}^{-8}\right\}\right]$ contains a chord, by Claim 3 and the minimality of $x y, x_{1}^{-} x_{1}^{-8} \in E(G)$ but $x_{1}^{--} x_{1}^{-8} \notin E(G)$. Thus $G\left[\left\{x_{1}^{-}, x_{1}, x_{1}^{--}, x_{1}^{-8}\right\}\right]$ $=K_{1,3}$, a contradiction. Hence, $G\left[\left\{x_{1}^{-}, x_{1}^{--}, \ldots, x_{1}^{-8}\right\}\right]=P_{8}$. As $G\left[\left\{w, x_{1}, x_{2}\right\}\right.$ $\left.\cup\left\{x_{1}^{-}, x_{1}^{--}, \ldots, x_{1}^{-8}\right\}\right]$ is not $Z_{8}, w x_{1}^{-} \in E(G)$. It implies that $x_{3} \neq x_{2}^{+}$(otherwise, the cycle $C\left[x_{3}, x_{1}^{-}\right] w x_{3}$ is a $(t-1)$-cycle, a contradiction). Therefore, $G\left[\left\{w, x_{1}^{-}, x_{2}, x_{3}\right\}\right]=K_{1,3}$, a contradiction. Claim 4 holds.

Let $\left\{P_{1}, \ldots, P_{s}\right\}$ be a maximal insertable path set in $C(x, y)$. Denote by W the set of all vertices in these paths. Assume that C^{\prime} is the cycle obtained by inserting vertices of W into the cycle $x C[y, x]$. Then $C(x, y)-W \neq \emptyset$ (otherwise, the cycle $C^{\prime}\left[y^{+}, x\right] y^{+}$ is a $(t-1)$-cycle). Let $X^{\prime}=C(x, y)-W$. Then $X^{\prime} \subseteq X$ and $|C(y, x) \cap X| \geq\left|X^{\prime}\right|$. Let $k=\left|X^{\prime}\right|$. Then the length of the cycle C^{\prime} is $|V(C)|-k=t-k$, and so $k \geq 2$.

As $|X \cap C(x, y)| \geq|C(x, y)-W| \geq k$, by Condition (a), $|C(y, x) \cap X| \geq k$. Let $x_{1}, x_{2}, \ldots, x_{k} \in C(y, x) \cap X$ and they occur on C in order along the orientation of C. Obviously, $x_{1}, x_{2}, \ldots, x_{k}$ are not endpoints of insertion edges. Since G is 4 -connected, we assume that $u_{i}, v_{i} \notin C$ are adjacent to x_{i}. Consider the bipartite graph H with partitions $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\bigcup_{i=1}^{k}\left\{u_{i}, v_{i}\right\}$. By Claim 4 , for any $S \subseteq\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, $\left|N_{H}(S)\right| \geq|S|$. Thus H has a matching M covering $C(y, x) \cap X$. Assume that $M=\left\{x_{1} w_{1}, x_{2} w_{2}, \ldots, x_{k} w_{k}\right\}$. Then the $(t-k)$-cycle C^{\prime} can be extended a $(t-1)$ cycle via claw-extensions at $x_{1}, x_{2}, \ldots, x_{k-1}$, a contradiction.

Theorem 2.6 (Lai et al. [5]) Every 3-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph is hamiltonian.
By Lemmas 2.5 and Theorem 2.6, G contains cycles of lengths 10 through $|V(G)|$.

3 Existence of 9-Cycles

Lemma 3.1 If G is a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, then G contains a 9-cycle.
Proof Suppose that G does not contain a 9-cycle. By Lemma 2.5 and Theorem 2.6, G contains a 10 -cycle C, and we let $\left\{v_{1}, v_{2}, \ldots, v_{10}\right\}$ be the vertex set of C labeled in order. By Lemma 2.4, C is chordless.

Claim 1 Let $a \notin V(C)$ have a neighbor in $V(C)$. Then $\left|N_{G}(a) \cap V(C)\right| \leq 3$. Moreover, if $\left|N_{G}(a) \cap V(C)\right|=3$, then these three vertices are consecutive on C.

Since $a \notin V(C)$ has a neighbor in $V(C)$, we assume $a v_{1} \in E(G)$. As G is claw-free and has no chords of C, either $a v_{2} \in E(G)$ or $a v_{10} \in E(G)$. Without loss of generality, we assume that $a v_{10} \in E(G)$. As G has no 9 -cycles, $N_{G}(a) \cap\left\{v_{3}, v_{4}, v_{7}, v_{8}\right\}=\emptyset$. Thus $N_{G}(a) \cap V(C) \subseteq\left\{v_{1}, v_{10}, v_{2}, v_{9}, v_{5}, v_{6}\right\}$.

If $a v_{5} \in E(G)$, then $a v_{6} \in E(G)$ since G is claw-free and C is chordless. Since $a v_{3} \notin E(G)$, let $b \in N_{G}\left(v_{3}\right)$ such that $b \notin V(C) \cup\{a\}$. Then the 8 -cycle $v_{10} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} a v_{10}$ can be extended to a 9 -cycle via claw-extension at v_{3}. This tells us that $a v_{5} \notin E(G)$ and so $a v_{6} \notin E(G)$. Therefore, $N_{G}(a) \cap V(C) \subseteq\left\{v_{1}, v_{10}, v_{2}, v_{9}\right\}$.

If both $a v_{2} \in E(G)$ and $a v_{9} \in E(G)$, then the cycle $v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} a v_{2}$ is a 9 -cycle. Thus we have $N_{G}(a) \cap V(C) \in\left\{\left\{v_{1}, v_{10}, v_{2}\right\},\left\{v_{1}, v_{10}, v_{9}\right\},\left\{v_{1}, v_{10}\right\}\right\}$. Claim 1 holds.

Claim 2 There is a vertex $a \notin V(C)$ such that $\left|N_{G}(a) \cap V(C)\right|=2$.
By way of contradiction, we assume that for any $a \notin V(C),\left|N_{G}(a) \cap V(C)\right| \neq 2$. By Claim 1, every vertex with a neighbor on C has exactly three neighbors on C which are consecutive. For $1 \leq i \leq 10$, let $V_{i}=N_{G}\left(v_{i-1}\right) \cap N_{G}\left(v_{i}\right) \cap N_{G}\left(v_{i+1}\right)$, where indices are taken modulo 10 . If there is a vertex $w \notin V(C) \cup \bigcup_{i=1}^{10} V_{i}$ that has a neighbor w_{i} in some V_{i}, then $\left\{w_{i}, v_{i-1}, v_{i+1}, w\right\}$ induces a claw. Thus we may assume that the sets $V_{1}, V_{2}, \ldots, V_{10}$ partition $V(G) \backslash V(C)$. If there is an edge joining V_{i} and V_{j} when $|i-j| \geq 2(\bmod 10)$, then G contains a 9 -cycle. If there are two nonconsecutive values $i<j$ such that V_{i} and V_{j} are empty, then $\left\{v_{i}, v_{j}\right\}$ is a cut set, a contradiction. Thus for some $1 \leq i \leq 10$, the sets V_{i}, V_{i+1}, V_{i+2}, and V_{i+3} are all non-empty. Let w_{j} be any vertex in V_{j} for $i \leq j \leq i+3$. It follows that $v_{i} w_{i} v_{i+1} w_{i+2} v_{i+3} v_{i+4} w_{i+3} v_{i+2} w_{i+1} v_{i}$ is a 9 -cycle. Claim 2 holds.

By Claim 2, let $N_{G}\left(x_{1}\right) \cap V(C)=\left\{v_{1}, v_{2}\right\}$. Since G is 4 -connected, let $\left\{y_{1}, y_{2}, v_{1}, v_{2}\right\} \subseteq N_{G}\left(x_{1}\right)$. As G has no 9-cycles, $N_{G}(w) \cap\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$ for $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$.

Claim 3 For any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}, N_{G}(w) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\} \neq \emptyset$.
By way of contradiction, assume that $N_{G}\left(y_{1}\right) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\}=\emptyset$. If $y_{1} v_{2}$ $\in E(G)$, then the subgraph induced by $\left\{x_{1}, y_{1}, v_{2}\right\} \cup\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$ is Z_{8}. Thus $y_{1} v_{2} \notin E(G)$. Similarly, $y_{1} v_{1} \notin E(G)$, and therefore $N_{G}\left(y_{1}\right) \cap V(C)=\emptyset$. As G has no 9-cycles, $N_{G}(w) \cap\left\{v_{6}, v_{7}\right\}=\emptyset$ for any $w \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$.

Claim 3.1 For any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}, y_{1}\right\}, N_{G}(w) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\} \neq \emptyset$.
Otherwise, by the discussion above, $w v_{1}, w v_{2} \notin E(G)$. As G is claw-free, $y_{1} w$ $\in E(G)$. Thus the subgraph induced by $\left\{x_{1}, y_{1}, w\right\} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is Z_{8}, a contradiction. Claim 3.1 holds.

Claim 3.2 Let $z \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$. Then $N_{G}(z) \cap\left\{v_{5}, v_{8}\right\}=\emptyset$.
By way of contradiction, we assume that $z v_{8} \in E(G)$. As $N_{G}\left(y_{1}\right) \cap V(C)$ $=\emptyset$ and $N_{G}\left(x_{1}\right) \cap V(C)=\left\{v_{1}, v_{2}\right\}$, and as G is 4-connected, there is a vertex y_{9}^{\prime} $\notin V(C) \cup\left\{x_{1}, y_{1}, z\right\}$ such that $v_{9} v_{9}^{\prime} \in E(G)$. Then the 8 -cycle $v_{2} x_{1} y_{1} z v_{8} v_{9} v_{10} v_{1} v_{2}$ can be extended to a 9 -cycle via claw-extension at v_{9}, a contradiction. Therefore, Claim 3.2 holds.

Claim 3.3 Let $z \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$. Then $N_{G}(z) \cap\left\{v_{4}, v_{9}\right\}=\emptyset$.
By way of contradiction, we assume that $z v_{9} \in E(G)$. As $z v_{8} \notin E(G), z v_{10}$ $\in E(G)$. By Claim $1, N_{G}(z) \subseteq\left\{v_{9}, v_{10}, v_{1}\right\}$. Considering the subgraph induced by $\left\{z, v_{9}, v_{10}\right\} \cup\left\{v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, x_{1}\right\}$, we have $z x_{1} \in E(G)$.

Consider the neighborhood of v_{3}. As $N_{G}\left(v_{3}\right) \cap\left\{x_{1}, y_{1}, z\right\}=\emptyset$, there is a vertex $v_{3}^{\prime} \in N_{G}\left(v_{3}\right)$ such that $v_{3}^{\prime} \notin V(C) \cup\left\{x_{1}, y_{1}, z\right\}$. As G has no 9 -cycles, $v_{3}^{\prime} x_{1}, v_{3}^{\prime} y_{1}, v_{3}^{\prime} v_{10} \notin E(G)$. As $x_{1} v_{10} \notin E(G)$ and as G is claw-free, $v_{3}^{\prime} z \notin E(G)$. Since the subgraph induced by $\left\{x_{1}, y_{1}, z\right\} \cup\left\{v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}, v_{3}^{\prime}\right\}$ is not $Z_{8}, v_{3}^{\prime} v_{4} \in E(G)$. If $v_{3}^{\prime} v_{5} \notin E(G)$, then the subgraph induced by $\left\{v_{3}^{\prime}, v_{3}, v_{4}\right\}$ $\cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{1}, x_{1}\right\}$ is Z_{8}; if $v_{3}^{\prime} v_{5} \in E(G)$, then the subgraph induced by $\left\{v_{3}^{\prime}, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{1}, x_{1}, y_{1}\right\}$ is Z_{8}, a contradiction. Claim 3.3 holds.

Claim 3.4 There exist at least two vertices $z \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$ such that $N_{G}(z)$ $\cap\left\{v_{3}, v_{10}\right\} \neq \emptyset$.

By way of contradiction, assume that there is at most one vertex $z \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$ such that $N_{G}(z) \cap V(C) \cap\left\{v_{3}, v_{10}\right\} \neq \emptyset$. Since G is 4 -connected, there are at least two vertices $z_{1}, z_{2} \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$ such that $N_{G}\left(z_{1}\right) \cap\left\{v_{3}, v_{10}\right\}=\emptyset$ and $N_{G}\left(z_{2}\right) \cap\left\{v_{3}, v_{10}\right\}=\emptyset$. By Claim 3.3, $N_{G}\left(z_{1}\right) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\}=\emptyset$ and $N_{G}\left(z_{2}\right) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\}=\emptyset$. By Claim 3.1, $z_{1} x_{1}, z_{2} x_{1} \notin E(G)$. Thus $z_{1} z_{2} \in E(G)$. As $G\left[\left\{v_{2}, v_{3}, x_{1}, z_{1}\right\}\right] \neq K_{1,3}$, we have $z_{1} v_{2} \notin E(G)$. Similarly, $z_{2} v_{2} \notin E(G)$. Therefore, the subgraph induced by $\left\{y_{1}, z_{1}, z_{2}\right\} \cup\left\{x_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is Z_{8}, a contradiction. Claim 3.4 holds.

By Claim 3.4, we assume that $z_{1}, z_{2} \in N_{G}\left(y_{1}\right)-\left\{x_{1}\right\}$ with $N_{G}\left(z_{1}\right) \cap\left\{v_{3}, v_{10}\right\}$ $\neq \emptyset$ and $N_{G}\left(z_{2}\right) \cap\left\{v_{3}, v_{10}\right\} \neq \emptyset$. Without loss of generality, we assume that $z_{1} v_{10}$ $\in E(G)$. Then $z_{1} v_{1} \in E(G)$. By Claim $1, z_{1} v_{3} \notin E(G)$. If $z_{1} x_{1} \in E(G)$, then the subgraph induced by $\left\{x_{1}, y_{1}, z_{1}\right\} \cup\left\{v_{10}, v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}\right\}$ would be Z_{8}. This contradiction implies that $z_{1} x_{1} \notin E(G)$. Similarly, $z_{2} x_{1} \notin E(G)$ and so $z_{1} z_{2} \in E(G)$. Since $G\left[\left\{v_{2}, x_{1}, v_{3}, z_{1}\right\}\right]$ is not a claw, $z_{1} v_{2} \notin E(G)$. Then $N_{G}\left(z_{1}\right) \cap V(C)=\left\{v_{1}, v_{10}\right\}$.

Consider the neighborhood of z_{2}. If $z_{2} v_{3} \notin E(G)$, then $z_{2} v_{10} \in E(G)$, and so $N_{G}\left(z_{2}\right) \cap V(C)=\left\{v_{1}, v_{10}\right\}$. It implies that the subgraph induced by $\left\{y_{1}, z_{1}, z_{2}\right\}$ $\cup\left\{x_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is Z_{8}. This contradiction tells us that $z_{2} v_{3} \in E(G)$. Thus $N_{G}\left(z_{2}\right) \cap V(C)=\left\{v_{2}, v_{3}\right\}$.

We will finish the proof of Claim 3 by considering the neighborhood of x_{1}. As $N_{G}\left(x_{1}\right) \cap V(C)=\left\{v_{1}, v_{2}\right\}$ and $z_{1} x_{1}, z_{2} x_{1} \notin E(G)$, there is a vertex $y_{2} \in N_{G}\left(x_{1}\right)$ such that $y_{2} \notin V(C) \cup\left\{y_{1}, z_{1}, z_{2}\right\}$. By Claim 3.1, $N_{G}\left(y_{2}\right) \cap\left\{v_{3}, v_{4}, v_{9}, v_{10}\right\} \neq \emptyset$. By symmetry, we assume that either $y_{2} v_{4} \in E(G)$ or $y_{2} v_{3} \in E(G)$. If $y_{2} v_{4} \in E(G)$, then the cycle $v_{4} y_{2} x_{1} y_{1} z_{2} z_{1} v_{1} v_{2} v_{3} v_{4}$ is a 9 -cycle; if $y_{2} v_{3} \in E(G)$, then the cycle $v_{3} y_{2} x_{1} y_{1} z_{2} z_{1} v_{10} v_{1} v_{2} v_{3}$ is a 9 -cycle. This contradiction finishes the proof of Claim 3.

Claim 4 For any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}, N_{G}(w) \cap\left\{v_{4}, v_{9}\right\}=\emptyset$. Therefore, $N_{G}(w)$ $\cap\left\{v_{3}, v_{10}\right\} \neq \emptyset$.

By way of contradiction, we assume $y_{1}, y_{2} \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$ and $y_{1} v_{9}$ $\in E(G)$. Then $y_{1} v_{10} \in E(G)$ since $y_{1} v_{8} \notin E(G)$. By Claim $1, y_{1} v_{2} \notin E(G)$. As G has no 9 -cycles, $y_{2} v_{4} \notin E(G)$. If $y_{2} v_{3} \in E(G)$, then we consider the 8 -cycle C^{\prime} $=v_{9} v_{10} v_{1} v_{2} v_{3} y_{2} x_{1} y_{1} v_{9}$. As G is 4-connected, there is a vertex $a \notin V\left(C^{\prime}\right)$ so that a is adjacent to one of $V\left(C^{\prime}\right)-\left\{v_{3}, v_{9}, x_{1}\right\}$. If $a y_{2} \in E(G)$, then either $a v_{3} \in E(G)$ or $a x_{1} \in E(G)$. Thus C^{\prime} can be extended to a 9 -cycle by replacing $v_{3} y_{2} x_{1}$ to be $v_{3} a y_{2} x_{1}$ or $v_{3} y_{2} a x_{1}$. If a is adjacent to any other vertex in $V\left(C^{\prime}\right)-\left\{v_{3}, v_{9}, x_{1}\right\}$, we can still use this method to insert a into C^{\prime} to get a 9-cycle. This contradiction implies that $y_{2} v_{3} \notin E(G)$.

Next we will prove that $w v_{2} \notin E(G)$ for any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$. By way of contradiction, we may assume that $y_{2} v_{2} \in E(G)$. Then $y_{2} v_{1} \in E(G)$. By Claims 1 and $3, y_{2} v_{10} \in E(G)$ and $y_{2} v_{9} \notin E(G)$. Since the subgraph induced by $\left\{v_{1}, x_{1}, y_{2}\right\} \cup$ $\left\{y_{1}, v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}\right\}$ is not Z_{8}, we have either $y_{1} y_{2} \in E(G)$ or $y_{1} v_{1} \in E(G)$. Since $d_{G}\left(v_{9}\right) \geq 4$, let $y_{9}^{\prime} \in N_{G}\left(v_{9}\right)-\left(V(C) \cup\left\{y_{1}, y_{2}, x_{1}\right\}\right)$. If $v_{9}^{\prime} v_{8} \in E(G)$, as G has no 9 -cycles, $N_{G}\left(v_{9}^{\prime}\right) \cap\left\{y_{1}, y_{2}, v_{10}, v_{1}\right\}=\emptyset$. Since the subgraph induced by

$$
\begin{cases}\left\{y_{1}, v_{1}, v_{10}\right\} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}^{\prime}\right\}, & \text { if } y_{1} v_{1} \in E(G) \\ \left\{y_{1}, y_{2}, v_{10}\right\} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}^{\prime}\right\}, & \text { if } y_{1} y_{2} \in E(G)\end{cases}
$$

is not Z_{8}, we have $v_{9}^{\prime} v_{7} \in E(G)$. Thus the subgraph induced by $\left\{v_{7}, v_{9}^{\prime}, v_{8}\right\}$ $\cup\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, x_{1}, y_{1}, v_{10}\right\}$ is Z_{8}. This contradiction implies that $v_{9}^{\prime} v_{8} \notin E(G)$. Thus $v_{9}^{\prime} v_{10} \in E(G)$. As $G\left[\left\{v_{9}, v_{9}^{\prime}, y_{1}, v_{8}\right\}\right] \neq K_{1,3}, y_{1} v_{9}^{\prime} \in E(G)$. Let H be a subgraph induced by $\left\{v_{1}, v_{2}, v_{10}, v_{9}, v_{9}^{\prime}, y_{1}, y_{2}, x_{1}\right\}$. Since G is 4-connected, there is a vertex b adjacent to a vertex in $V(H)-\left\{v_{2}, v_{9}, v_{9}^{\prime}\right\}$. If $b y_{2} \in E(G)$, by $G\left[\left\{y_{2}, b, v_{2}, v_{10}\right\}\right]$, we have either $b v_{2} \in E(G)$ or $b v_{10} \in E(G)$. Thus

$$
C^{\prime}= \begin{cases}v_{2} b y_{2} x_{1} y_{1} v_{9}^{\prime} v_{9} v_{10} v_{1} v_{2}, & \text { if } b v_{2} \in E(G) \\ v_{2} y_{2} b v_{10} v_{9} v_{9}^{\prime} y_{1} x_{1} v_{1} v_{2}, & \text { if } b v_{10} \in E(G)\end{cases}
$$

is a 9 -cycle in G. If b is adjacent to any other vertex in $V(H)-\left\{v_{2}, v_{9}, v_{9}^{\prime}\right\}$, we can still use this method to insert b into H to get a 9-cycle. This contradiction implies that $w v_{2} \notin E(G)$ for any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$.

As $y_{1} v_{2} \notin E(G)$, we have $y_{1} y_{2} \in E(G)$. By Claim 3, we have $y_{2} v_{10} \in E(G)$. Let $v_{8}^{\prime} \in N_{G}\left(v_{8}\right)$ such that $v_{8}^{\prime} \notin V(C) \cup\left\{y_{1}, y_{2}, x_{1}\right\}$. Obviously, $x_{1}, y_{1}, y_{2} \notin N_{G}\left(v_{8}^{\prime}\right)$. Considering the subgraph induced by $\left\{x_{1}, y_{1}, y_{2}\right\} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{8}^{\prime}\right\}$, we have $v_{8}^{\prime} v_{7} \in E(G)$. By the subgraph induced by $\left\{v_{7}, v_{8}, v_{8}^{\prime}\right\} \cup\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, x_{1}, y_{2}, v_{10}\right\}$, we have $v_{8}^{\prime} v_{6} \in E(G)$. Since the subgraph induced by $\left\{v_{6}, v_{7}, v_{8}^{\prime}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}\right.$, $\left.x_{1}, y_{2}, v_{10}, v_{9}\right\}$ is not $Z_{8}, y_{2} v_{9} \in E(G)$. Again, since the subgraph induced by $\left\{v_{9}, y_{1}, y_{2}\right\} \cup\left\{v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, v_{1}\right\}$ is not Z_{8}, we have either $y_{2} v_{1} \in E(G)$ or $y_{1} v_{1} \in E(G)$. By symmetry, we assume that $y_{2} v_{1} \in E(G)$.

Consider the neighborhood of v_{2}. As $y_{1} v_{2}, y_{2} v_{2} \notin E(G)$, let $v_{2}^{\prime} \in N_{G}\left(v_{2}\right)$ such that $v_{2}^{\prime} \notin V(C) \cup\left\{y_{1}, y_{2}, x_{1}\right\}$. As $w v_{2} \notin E(G)$ for any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$, $v_{2}^{\prime} x_{1} \notin E(G)$. Since $G\left[\left\{v_{2}, v_{2}^{\prime}, v_{3}, x_{1}\right\}\right]$ is not a claw, $v_{2}^{\prime} v_{3} \in E(G)$. Thus $v_{2}^{\prime} v_{1}, v_{2}^{\prime} y_{1}, v_{2}^{\prime} y_{2} \notin E(G)$ since G has no 9 -cycles. By the subgraph induced by $\left\{x_{1}, v_{1}, y_{2}\right\} \cup\left\{v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}, v_{2}^{\prime}\right\}$, we have $v_{2}^{\prime} v_{4} \in E(G)$. By Claim 1, $v_{2}^{\prime} v_{5}$ $\notin E(G)$. Thus the subgraph induced by $\left\{v_{3}, v_{4}, v_{2}^{\prime}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}, v_{9}, v_{10}, v_{1}, x_{1}\right\}$ is Z_{8}, a contradiction. Claim 4 holds.

By Claim 4, for any $w \in N_{G}\left(x_{1}\right)$, either $w v_{10} \in E(G)$ or $w v_{3} \in E(G)$. If there are two vertices, say $y_{1}, y_{2} \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}$, such that $y_{1} v_{10}, y_{2} v_{3} \in E(G)$. Then $y_{1} v_{1}, y_{2} v_{2} \in E(G)$. Let H be the subgraph induced by $\left\{v_{10}, v_{1}, v_{2}, v_{3}, x_{1}, y_{1}, y_{2}\right\}$. Since G is 4-connected, there are two vertices q_{1}, q_{2} such that $q_{1}, q_{2} \notin V(H)$ adjacent to different vertices in $V(H)-\left\{v_{3}, v_{10}\right\}$. Since G is claw-free, by Claim 4, $N_{G}\left(q_{i}\right)$ $\cap\left\{v_{3}, v_{10}\right\} \neq \emptyset(i=1,2)$. By symmetry, we assume that $q_{1} v_{10} \in E(G)$. Then $q_{1} v_{9} \notin E(G)$ (otherwise, the subgraph induced by $V(H) \cup\left\{q_{1}, v_{9}\right\}$ contains a 9 -cycle). Thus $q_{1} v_{1} \in E(G)$. Using this discussion on q_{2}, we have either $q_{2} v_{3}, q_{2} v_{2} \in E(G)$
or $q_{2} v_{10}, q_{2} v_{1} \in E(G)$. If $q_{2} v_{3}, q_{2} v_{2} \in E(G)$, then $v_{10} y_{1} x_{1} y_{2} v_{3} q_{2} v_{2} v_{1} q_{1} v_{10}$ is a 9-cycle; if $q_{2} v_{10}, q_{2} v_{1} \in E(G)$, then $q_{1} q_{2} \in E(G)$ (otherwise, $G\left[\left\{v_{10}, q_{1}, q_{2}, v_{9}\right\}\right]$ is a claw), and so $v_{10} q_{2} q_{1} v_{1} v_{2} v_{3} y_{2} x_{1} y_{1} v_{10}$ is a 9 -cycle. This contradiction implies that either $N_{G}\left(v_{3}\right) \cap\left(N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}\right)=\emptyset$ or $N_{G}\left(v_{10}\right) \cap\left(N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}\right)=\emptyset$. Without loss of generality, we assume that $N_{G}\left(v_{3}\right) \cap\left(N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}\right)=\emptyset$. Thus for any $w \in N_{G}\left(x_{1}\right)-\left\{v_{1}, v_{2}\right\}, N_{G}(w) \cap\left(V(C)-\left\{v_{1}, v_{2}\right\}\right)=\left\{v_{10}\right\}$.

Consider the neighborhood of x_{1}, and let $N_{G}\left(x_{1}\right)=\left\{v_{1}, v_{2}, y_{1}, y_{2}, \ldots, y_{k}\right\}(k$ $\geq 2)$. Then $y_{i} v_{10} \in E(G)(i=1,2, \ldots, k)$. By Claim 4, the subgraph induced by $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ is a clique, and $y_{i} v_{1} \in E(G)(i=1,2, \ldots, k)$. Let H^{\prime} be the subgraph induced by $N_{G}\left(x_{1}\right) \cup\left\{x_{1}, v_{10}\right\}$. Since G is 4-connected, there are at least two vertices $q_{3}, q_{4} \notin V\left(H^{\prime}\right)$ adjacent to different vertices in $V\left(H^{\prime}\right)-\left\{v_{2}, v_{10}\right\}$. Since G is clawfree, by Claim $4, q_{3} v_{10}, q_{4} v_{10} \in E(G)$. If $k \geq 3$, then $q_{3} v_{9} \notin E(G)$ (otherwise, the subgraph induced by $V\left(H^{\prime}\right) \cup\left\{q_{3}, v_{9}\right\}$ contains a 9-cycle). Similarly, $q_{4} v_{9} \notin E(G)$. Thus $q_{3} q_{4}, q_{3} v_{1}, q_{4} v_{1} \in E(G)$, and so $v_{10} q_{3} q_{4} v_{1} v_{2} x_{1} y_{1} y_{2} y_{3} v_{10}$ is a 9 -cycle. This contradiction implies that $k=2$ and $N_{G}\left(x_{1}\right)=\left\{v_{1}, v_{2}, y_{1}, y_{2}\right\}$. Notice that q_{3}, q_{4} are adjacent to different vertices in $\left\{y_{1}, y_{2}, v_{1}\right\}$. By symmetry, we have either $q_{3} y_{1}, q_{4} v_{1}$ $\in E(G)$, or $q_{3} y_{1}, q_{4} y_{2} \in E(G)$. For each of these two cases, $q_{3} v_{9}, q_{4} v_{9} \notin E(G)$ since G has no 9 -cycles. Therefore, $q_{3} q_{4} \in E(G)$ and $\left\{y_{1}, y_{2}, v_{1}\right\} \subseteq N_{G}\left(q_{i}\right)$ for $i=3,4$.

Since the subgraph induced by $\left\{q_{3}, q_{4}, v_{1}\right\} \cup\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}, v_{9}\right\}$ is not Z_{8}, we have either $q_{3} v_{2} \in E(G)$ or $q_{4} v_{2} \in E(G)$. By symmetry, we assume that $q_{3} v_{2} \in E(G)$. Since G has no 9 -cycles, for any $x \in\left\{y_{1}, y_{2}, x_{1}, v_{1}, q_{3}\right\}, N_{G}(x)$ $\subseteq H^{\prime} \cup\left\{q_{3}, q_{4}\right\}$. This implies that $\left\{v_{1}, v_{10}, q_{4}\right\}$ is a 3-cut, a contradiction.

4 Existence of 4-Cycles

In this section we will prove that if G is a 4 -connected, claw-free and Z_{8}-free graph, then G is the line graph of the Petersen graph if G has no 4 -cycles. Suppose that G is a 4-connected, claw-free and Z_{8}-free graph and that G does not have 4-cycles. Since G is claw-free, the neighborhood of every vertex is either connected or two cliques. Since G is 4-connected, the minimum degree of G is at least 4. If the neighborhood of a vertex is connected, then the neighborhood of this vertex contains a path of order 3, yielding a 4 -cycle. Thus the neighborhood of every vertex is two cliques. If a vertex has degree at least 5 , then one of the cliques has at least three vertices, yielding a 4 -cycle. Thus we have the following properties for the graph G.
(P0) G is 4-regular and, for any $v \in V(G), G\left[N_{G}(v) \cup\{v\}\right]$ are two triangles identified at v.
(P1) Any two distinct vertices in G can have at most one common neighbor.
By Theorem 1.3, G has an induced subgraph Z_{5}. Let $H=Z_{t}$ be an induced subgraph of G such that t is maximized. Since G is Z_{8}-free, $t \in\{5,6,7\}$. Let $V(H)$ $=\left\{v, v_{1}, v_{2}, \ldots, v_{t+2}\right\}$ and $E(H)=\left\{v v_{1}, v v_{2}, v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{t} v_{t+1}, v_{t+1} v_{t+2}\right\}$. By the choice of H, v_{t+2} has no neighbors in $V(H) \backslash\left\{v_{t+1}\right\}$. By (P0), let y_{1}, y_{2}, y_{3} be the three neighbors of v_{t+2} which are not in $V(H) \backslash\left\{v_{t+1}\right\}$ and we may assume, without loss of generality, that y_{3} is adjacent to v_{t+1} and that y_{1} and y_{2} are adjacent.

Since G is claw-free and G does not have 4-cycles, y_{1}, y_{2}, and y_{3} satisfy the following properties.
(P2) By the choice of H (the maximum of t), both y_{1} and y_{2} have neighbors in $V(H) \backslash\left\{v_{t+2}\right\}$.
(P3) y_{1} (also y_{2}) is not adjacent to v_{t+1} or v_{t}, and y_{3} is not adjacent to v_{t-1}, v_{t} (since G has no 4-cycles).
(P4) Any vertex not in H that is adjacent to v_{i} for $i \in\{2,3, \ldots, t+1\}$ is also adjacent to v_{i+1} or v_{i-1} (since G is claw-free).

Lemma 4.1 Let G be a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, and let $H=Z_{t}$ be an induced subgraph of G such that t is maximized. If G has no 4 -cycles, then $t \neq 5$.

Proof Assume that $t=5$. First of all, we claim that $N_{G}\left(v_{3}\right) \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$. By way of contradiction, we assume that $N_{G}\left(v_{3}\right) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. $\mathrm{By}(\mathrm{P} 3), N_{G}\left(v_{5}\right) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. By (P4), $N_{G}\left(v_{4}\right) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. By (P2), $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}, v_{2}\right\} \neq \emptyset$ and $N_{G}\left(y_{2}\right) \cap$ $\left\{v, v_{1}, v_{2}\right\} \neq \emptyset$. Note that $v_{7} \in N_{G}\left(y_{1}\right) \cap N_{G}\left(y_{2}\right)$. By (P1), y_{1} and y_{2} are adjacent to two distinct vertices in $\left\{v, v_{1}, v_{2}\right\}$, implying a 4 -cycle in G. This contradiction implies that $N_{G}\left(v_{3}\right) \cap\left\{y_{1}, y_{2}\right\} \neq \emptyset$. Without loss of generality, we assume that $v_{3} y_{2} \in E(G)$.

Next we claim that $v_{4} y_{2} \in E(G)$. Otherwise, by (P4), $v_{2} y_{2} \in E(G)$. As G has no 4-cycles, $N_{G}\left(y_{1}\right) \cap\left\{v_{1}, v_{2}, v_{3}, v_{4}, v\right\}=\emptyset$. By (P3), $N_{G}\left(y_{1}\right) \cap\left(V(H)-\left\{v_{7}\right\}\right)=\emptyset$, contradicting (P2). Therefore, $v_{4} y_{2} \in E(G)$. $\mathrm{By}(\mathrm{P} 1), N_{G}\left(y_{1}\right) \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, y_{3}\right\}$ $=\emptyset$. By $(\mathrm{P} 2), N_{G}\left(y_{1}\right) \cap\left\{v_{1}, v\right\} \neq \emptyset$. By symmetry, we assume that $y_{1} v_{1} \in E(G)$. Then $v_{1} y_{2}, v_{1} y_{3} \notin E(G)$.

Consider $N_{G}\left(v_{1}\right)$. As $d_{G}\left(v_{1}\right)=4$, we assume that $N_{G}\left(v_{1}\right)=\left\{v, v_{2}, y_{1}, a\right\}$, where $a \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), ay $y_{1} \in E(G)$. As G has no 4-cycles, $N_{G}(a)$ $\cap\left\{v_{2}, v_{3}, v_{4}, v_{6}, y_{3}\right\}=\emptyset$. By (P4), $v_{5} a \notin E(G)$. As G has no 4-cycles again, $N_{G}\left(y_{3}\right)$ $\cap\left\{v_{3}, v_{4}, v_{5}\right\}=\emptyset$. As $d_{G}\left(v_{1}\right)=4, y_{3} v_{1} \notin E(G)$. By (P3), $y_{3} v_{2} \notin E(G)$. Thus the subgraph induced by $\left\{a, y_{1}, v_{1}\right\} \cup\left\{v_{2}, \ldots, v_{6}, y_{3}\right\}$ is Z_{6}. It contradicts the maximality of t.

Lemma 4.2 Let G be a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, and let $H=Z_{t}$ be an induced subgraph of G such that t is maximized. If G has no 4 -cycles, then $t \neq 7$.

Proof Assume that $t=7$.
Claim 1 Either $v_{4} \in N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$ or $v_{5} \in N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$.
Assume that $v_{4}, v_{5} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. By (P3), $v_{7}, v_{8} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. By (P4), $v_{6} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. Therefore, $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$ and $N_{G}\left(y_{2}\right)$ $\cap\left\{v, v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$, contradicting (P1). Claim 1 holds.

Claim $2 v_{4} \in N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$.
Assume $v_{4} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. By Claim 1, $v_{5} \in N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. Without loss of generality, we assume that $y_{2} v_{5} \in E(G)$. By (P4), $y_{2} v_{6} \in E(G)$. By (P1) and $(\mathrm{P} 3), N_{G}\left(y_{1}\right) \cap\left\{v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}=\emptyset$. Вy (P2), $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}, v_{2}, v_{3}\right\} \neq \emptyset$.

We claim that $y_{1} v_{2} \notin E(G)$. By way of contradiction, we assume that $y_{1} v_{2} \in E(G)$. By (P1), $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}\right\}=\emptyset$. By (P4), $y_{1} v_{3} \in E(G)$. As G has no 4-cycles, $N_{G}\left(y_{3}\right)$ $\cap\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{7}\right\}=\emptyset$. Ву (P4), $y_{3} v_{4} \notin E(G)$. As $d_{G}\left(v_{3}\right)=4$, let $N_{G}\left(v_{3}\right)$
$=\left\{v_{2}, v_{4}, y_{1}, v_{3}^{\prime}\right\}$, where $v_{3}^{\prime} \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), $v_{3}^{\prime} v_{4} \in E(G)$. As G has no 4-cycles, $N_{G}\left(v_{3}^{\prime}\right) \cap\left\{v, v_{1}, v_{2}, v_{5}, v_{6}\right\}=\emptyset$. As G is 4-regular, $v_{3}^{\prime} v_{9}, v_{3}^{\prime} y_{1} \notin E(G)$. Since the subgraph induced by $\left\{v, v_{1}, v_{2}\right\} \cup\left\{y_{1}, v_{9}, v_{8}, v_{7}, v_{6}, v_{5}, v_{4}, v_{3}^{\prime}\right\}$ is not Z_{8}, by (P4), we have $v_{3}^{\prime} v_{7}, v_{3}^{\prime} v_{8} \in E(G)$. By (P1), we have either $v_{1} y_{3} \notin E(G)$ or $v y_{3} \notin$ $E(G)$. Without loss of generality, we assume that $v_{1} y_{3} \notin E(G)$. Then $v y_{3} \notin E(G)$ and the subgraph induced by $\left\{y_{3}, v_{9}, v_{8}\right\} \cup\left\{v_{7}, v_{6}, \ldots, v_{1}\right\}$ is Z_{7}. $\mathrm{By}(\mathrm{P} 0)$, we assume that $N_{G}\left(v_{1}\right)=\left\{v, v_{2}, z_{1}, z_{2}\right\}$, where $z_{1}, z_{2} \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}, v_{3}^{\prime}\right\}$. Then $z_{1} z_{2} \in E(G)$. By symmetry and Claim $1,\left\{v_{5}, v_{6}\right\} \cap\left(N_{G}\left(z_{1}\right) \cup N_{G}\left(z_{2}\right)\right) \neq \emptyset$. Since G is 4-regular, we assume that $N_{G}\left(z_{1}\right) \cap\left\{v_{5}, v_{6}\right\} \neq \emptyset$. Then we have either $z_{1} v_{6}, z_{1} v_{7} \in E(G)$ or $z_{1} v_{4}, z_{1} v_{5} \in E(G)$. For each of these two cases, $N_{G}\left(z_{2}\right) \cap\left\{v_{2}, v_{3}, \ldots, v_{9}\right\}=\emptyset$. By the maximality of $t, z_{2} y_{3} \in E(G)$. Let $z_{3} \in N_{G}\left(y_{3}\right)-\left\{v_{8}, v_{9}, z_{2}\right\}$. Then $z_{3} z_{2} \in E(G)$. Let $z_{4} \in N_{G}\left(v_{5}\right)-\left\{v_{4}, v_{6}, y_{2}\right\}$ if $z_{1} v_{6}, z_{1} v_{7} \in E(G)$, or $z_{4} \in N_{G}\left(v_{6}\right)-\left\{v_{5}, v_{7}, y_{2}\right\}$ if $z_{1} v_{4}, z_{1} v_{5} \in E(G)$. Since G is 4-regular, $\left\{v, z_{3}, z_{4}\right\}$ is a 3 -cut in G, a contradiction. So $y_{1} v_{2} \notin E(G)$.

By (P4), $v_{3} y_{1} \notin E(G)$, and so $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}\right\} \neq \emptyset$. We assume that $v_{1} y_{1} \in E(G)$. Then $v_{1} y_{3} \notin E(G)$. Consider $N_{G}\left(v_{1}\right)$. Assume that $N_{G}\left(v_{1}\right)=\left\{v, v_{2}, y_{1}, a\right\}$, where $a \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), ay $\in E(G)$. As G has no 4-cycles, $N_{G}(a)$ $\cap\left\{v, v_{2}, v_{3}, v_{5}, v_{6}, v_{8}, v_{9}, y_{3}\right\}=\emptyset$. Ву (P4), $a v_{4}, a v_{7} \notin E(G)$. Notice that the subgraph induced by $\left\{a, v_{1}, y_{1}\right\} \cup\left\{v_{2}, v_{3}, \ldots, v_{8}, y_{3}\right\}$ is not Z_{8}. We have $N_{G}\left(y_{3}\right)$ $\cap\left\{v_{2}, v_{3}, v_{4}\right\} \neq \emptyset$. Then $y_{3} v_{3} \in E(G)$.

Consider the neighborhood of v_{7}, and let $N_{G}\left(v_{7}\right)=\left\{b, c, v_{6}, v_{8}\right\}$, where b, c $\notin V(H) \cup\left\{a, y_{1}, y_{2}, y_{3}\right\}$. By (P0), we assume $b v_{6}, c v_{8} \in E(G)$. Then $N_{G}(b)$ $\cap\left\{v_{1}, v_{4}, v_{5}, v_{8}, v_{9}, y_{1}, y_{2}, y_{3}, c\right\}=\emptyset$ and $N_{G}(c) \cap\left\{v_{1}, v_{5}, v_{6}, v_{9}, y_{1}, y_{2}, y_{3}\right\}=\emptyset$. We consider the following two cases.

Case $1 b v \notin E(G)$.
Considering the subgraph induced by $\left\{v, v_{1}, v_{2}\right\} \cup\left\{v_{3}, v_{4}, v_{5}, y_{2}, v_{9}, v_{8}, v_{7}, b\right\}$, we have $b v_{2}, b v_{3} \in E(G)$. As G is 4-regular, $y_{3} v_{2} \notin E(G)$. Thus $y_{3} v_{4}$ $\in E(G)$. Consider the neighborhood of v_{5} and let $N_{G}\left(v_{5}\right)=\left\{r, v_{4}, v_{6}, y_{2}\right\}$. Then $r v_{4} \in E(G)$. Since G has no 4-cycles, $r \notin\{v, a, c\}$. As G is 4regular, $N_{G}(r) \cap\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{8}, v_{9}, y_{1}, y_{2}, y_{3}, b\right\}=\emptyset$. As $G\left[\left\{r, v_{4}, v_{5}\right\} \cup\right.$ $\left.\left\{v_{3}, b, v_{7}, v_{8}, v_{9}, y_{1}, v_{1}, v\right\}\right] \neq Z_{8}$, we have $r v \in E(G)$. Let $r^{\prime} \in N_{G}(r)-\left\{v_{4}, v_{5}, v\right\}$. Then $r^{\prime} v \in E(G)$, and so $\left\{r^{\prime}, a, c\right\}$ is a 3-cut in G, a contradiction.

Case $2 b v \in E(G)$.
As G has no 4-cycles, $a b, v c \notin E(G)$. As $b y_{3} \notin E(G), v y_{3} \notin E(G)$. Since the subgraph induced by $\left\{a, v_{1}, y_{1}\right\} \cup\left\{y_{2}, v_{5}, v_{4}, v_{3}, y_{3}, v_{8}, v_{7}, b\right\}$ is not Z_{8}, we have $y_{3} v_{4}$ $\in E(G)$. Also, since the subgraph induced by $\left\{y_{1}, y_{2}, v_{9}\right\} \cup\left\{v_{5}, v_{4}, v_{3}, v_{2}, v, b, v_{7}, c\right\}$ is not Z_{8}, we have $c v_{2}, c v_{3} \in E(G)$. Consider the neighborhood of v_{5}. Assume $N_{G}\left(v_{5}\right)=\left\{r, v_{4}, v_{6}, y_{2}\right\}$. Then $r v_{4} \in E(G)$. Since G has no 4-cycles, $r \notin\{v, a, b, c\}$ and $r b \notin E(G)$. Let $b^{\prime} \in N_{G}(b)-\left\{v_{6}, v_{7}, v\right\}$. Then $b^{\prime} v \in E(G)$. So $\left\{b^{\prime}, a, r\right\}$ is a 3-cut in G, a contradiction.

By Claim 2, we assume that $v_{4} y_{2} \in E(G)$.
Claim $3 v_{5} y_{2} \notin E(G)$. Therefore, $v_{3} y_{2} \in E(G)$.

By way of contradiction, we assume that $v_{5} y_{2} \in E(G)$. Then $N_{G}\left(y_{1}\right)$ $\cap\left\{v_{3}, v_{4}, \ldots, v_{8}\right\}=\emptyset$. By (P2), $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}, v_{2}\right\} \neq \emptyset$. Then $y_{1} v_{2} \notin E(G)$ (otherwise, by (P4), $y_{1} v_{1} \in E(G)$. Then $v v_{1} y_{1} v_{2} v$ is a 4 -cycle). Thus $N_{G}\left(y_{1}\right) \cap\left\{v, v_{1}\right\} \neq \emptyset$. Without loss of generality, we assume $v_{1} y_{1} \in E(G)$. Let $N_{G}\left(v_{1}\right)=\left\{y_{1}, v_{2}, v, a\right\}$, where $a \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), $a y_{1} \in E(G)$. As G has no 4-cycles, $N_{G}(a) \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{8}, y_{3}\right\}=\emptyset$.

We claim that $a v_{6}, a v_{7} \in E(G)$. Otherwise, considering the subgraph induced by $\left\{a, v_{1}, y_{1}\right\} \cup\left\{v_{2}, v_{3}, \ldots, v_{8}, y_{3}\right\}$, we have $y_{3} v_{2}, y_{3} v_{3} \in E(G)$. Consider the neighborhood of v, and let $N_{G}(v)=\left\{v_{1}, v_{2}, b, c\right\}$, where $b, c \notin V(H) \cup\left\{a, y_{1}, y_{2}, y_{3}\right\}$. Then $\left\{v_{1}, v_{2}, v_{3}, v_{9}, a, y_{1}, y_{2}, y_{3}\right\} \cap\left(N_{G}(b) \cup N_{G}(c)\right)=\emptyset$. As $y_{2} v_{4}, y_{2} v_{5} \in E(G)$, by $(\mathrm{P} 4), v_{4} \notin N_{G}(b) \cup N_{G}(c)$. As $G\left[\{v, b, c\} \cup\left\{v_{1}, y_{1}, v_{9}, y_{3}, v_{3}, v_{4}, v_{5}, v_{6}\right\}\right] \neq Z_{8}$, we have $\left\{v_{5}, v_{6}\right\} \cap\left(N_{G}(b) \cup N_{G}(c)\right) \neq \emptyset$. Without loss of generality, we assume that $\left\{v_{5}, v_{6}\right\} \cap N_{G}(c) \neq \emptyset$. By (P4), we have either $c v_{5}, c v_{6} \in E(G)$ or $c v_{6}, c v_{7} \in E(G)$. If $c v_{5}, c v_{6} \in E(G)$, then $v_{7}, v_{8} \notin N_{G}(b) \cup N_{G}(c)$ and so the subgraph induced by $\{v, b, c\} \cup\left\{v_{6}, v_{7}, v_{8}, y_{3}, v_{3}, v_{4}, y_{2}, y_{1}\right\}$ is Z_{8}. If $c v_{6}, c v_{7} \in E(G)$, the subgraph induced by $\{v, b, c\} \cup\left\{v_{6}, v_{5}, v_{4}, v_{3}, y_{3}, v_{9}, y_{1}, a\right\}$ is Z_{8}, a contradiction. Therefore, $a v_{6}, a v_{7} \in E(G)$.

Since G has no 4-cycles, let $b \in N_{G}\left(v_{4}\right)-\left\{v_{3}, v_{5}, y_{2}\right\}$ and $c \in N_{G}\left(v_{5}\right)-$ $\left\{v_{4}, v_{6}, y_{2}\right\}$ and $b \neq c$. Since G has no 4-cycles, we have $b v_{3}, c v_{6} \in E(G)$, and $N_{G}(b) \cap\left\{v_{5}, v_{6}, v_{9}, y_{1}, v_{1}, v\right\}=\emptyset$ and $N_{G}(c) \cap\left\{v_{7}, v_{8}, v_{9}, y_{1}, v_{1}, v_{3}, v_{4}\right\}=\emptyset$. By (P4), $c v_{2} \notin E(G)$. Since the subgraph induced by $\left\{b, v_{3}, v_{4}\right\} \cup\left\{v_{5}, v_{6}, v_{7}\right.$, $\left.v_{8}, v_{9}, y_{1}, v_{1}, v\right\}$ is not Z_{8}, we have $b v_{7}, b v_{8} \in E(G)$. Since the subgraphs induced by $\left\{c, v_{5}, v_{6}\right\} \cup\left\{y_{2}, y_{1}, v_{1}, v_{2}, v_{3}, b, v_{8}, y_{3}\right\}$ and $\left\{c, v_{5}, v_{6}\right\} \cup\left\{a, y_{1}, v_{9}, v_{8}, b, v_{3}, v_{2}, v\right\}$ are not Z_{8}, we have $c y_{3}, c v \in E(G)$. Thus $v y_{3} \in E(G)$. As G is 4-regular, $\left\{v_{2}, v_{3}\right\}$ is a 2 -cut in G, a contradiction. Therefore, Claim 3 holds.

By Claim 3, $y_{2} v_{3}, y_{2} v_{4} \in E(G)$. By (P3) and (P1), $N_{G}\left(y_{1}\right) \cap\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{7}, v_{8}\right\}$ $=\emptyset$. By (P4), $v_{6} y_{1} \notin E(G)$. By (P2), we assume that $y_{1} v_{1} \in E(G)$. Thus $y_{3} v_{1} \notin$ $E(G)$. Let $N_{G}\left(v_{1}\right)=\left\{v, y_{1}, v_{2}, a\right\}$, where $a \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), $a y_{1} \in$ $E(G)$. As G has no 4-cycles, $N_{G}\left(y_{3}\right) \cap\left\{v_{1}, v_{3}, v_{4}, v_{6}, v_{7}\right\}=\emptyset$. By (P4), $v_{2} y_{3}, v_{5} y_{3} \notin$ $E(G)$. Then the subgraph induced by $\left\{y_{3}, v_{8}, v_{9}\right\} \cup\left\{v_{7}, v_{6}, \ldots, v_{1}\right\}$ is Z_{7}. By symmetry (discussion used in Claims 2 and 3), we assume that $a v_{6}, a v_{7} \in E(G)$.

Consider the neighborhoods of v_{3} and v_{4}. Let $N_{G}\left(v_{3}\right)=\left\{v_{2}, v_{4}, y_{2}, b\right\}$ and $N_{G}\left(v_{4}\right)=\left\{v_{3}, v_{5}, y_{2}, c\right\}$. Then $b \neq c$ and $b, c \notin V(H) \cup\left\{a, y_{1}, y_{2}, y_{3}\right\}$. Also, we have $b v_{2}, c v_{5} \in E(G)$. Considering the subgraph induced by $\left\{c, v_{4}, v_{5}\right\}$ $\cup\left\{v_{6}, v_{7}, v_{8}, v_{9}, y_{1}, v_{1}, v_{2}, b\right\}$, we conclude that $b v_{7}, b v_{8} \in E(G)$. Considering the subgraph induced by $\left\{y_{3}, v_{8}, v_{9}\right\} \cup\left\{b, v_{3}, v_{4}, v_{5}, v_{6}, a, v_{1}, v\right\}$, we have $v y_{3} \in E(G)$. Considering the subgraph induced by $\left\{c, v_{4}, v_{5}\right\} \cup\left\{v_{6}, v_{7}, b, v_{2}, v, y_{3}, v_{9}, y_{1}\right\}$, we have $N_{G}(c) \cap\left\{v, y_{3}\right\} \neq \emptyset$. By (P0), $c v, c y_{3} \in E(G)$. As G is 4-regular, $\left\{v_{5}, v_{6}\right\}$ is a 2-cut, a contradiction.

Lemma 4.3 If G is a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, then G has a 4-cycles unless G is the line graph of the Petersen graph.

Proof Suppose that G does not have 4-cycles. By Theorem 1.3, G has an induced subgraph Z_{5}. Let $H=Z_{t}$ be an induced subgraph of G such that t is maximized. Since G is Z_{8}-free, $t=5,6,7$. By Lemmas 4.1 and $4.2, t=6$. Let H be the graph obtained from $P_{8}=v_{1} v_{2} \ldots v_{8}$ by adding a vertex v and joining v to v_{1} and v_{2}. By
the choice of H, v_{8} has no neighbors in $V(H) \backslash\left\{v_{7}\right\}$. By (P0), let y_{1}, y_{2}, y_{3} be the three neighbors of v_{8} which are not in $V(H) \backslash\left\{v_{7}\right\}$ and we may assume, without loss of generality, that y_{3} is adjacent to v_{7} and that y_{1} and y_{2} are adjacent. By (P3), $v_{6}, v_{7} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$ and $y_{3} v_{5}, y_{3} v_{6} \notin E(G)$.

Claim $1 v_{4} \in N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$.
Assume that $v_{4} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. By (P4), $v_{5} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. If $v_{2} y_{1}$ $\in E(G)$, by $(\mathrm{P} 0)$ and $(\mathrm{P} 1), N_{G}\left(y_{2}\right) \cap\left(V(H)-\left\{v_{8}\right\}\right)=\emptyset$, contradicting (P2). Thus $v_{2} y_{1} \notin E(G)$. Similarly, $v_{2} y_{2} \notin E(G)$. By (P4), $v_{3} \notin N_{G}\left(y_{1}\right) \cup N_{G}\left(y_{2}\right)$. By (P2) and (P1), we may assume that $v_{1} y_{1}, v y_{2} \in E(G)$. This results in a 4-cycle $v v_{1} y_{1} y_{2} v$, a contradiction. Claim 1 holds.

By Claim 1, we assume that $v_{4} y_{2} \in E(G)$. By (P1) and (P4), $\left\{v_{3}, v_{4}, v_{5}\right\}$ $\cap N_{G}\left(y_{1}\right)=\emptyset$. If $v_{2} y_{1} \in E(G)$, then $v_{1} y_{1} \in E(G)$ by (P4). This would result in a 4 -cycle $v v_{1} y_{1} v_{2} v$. Therefore, $v_{2} y_{1} \notin E(G)$. By (P2) and by symmetry, we assume that $v_{1} y_{1} \in E(G)$. Thus $v_{1} y_{3}, v_{1} y_{2} \notin E(G)$. As $d_{G}\left(v_{1}\right)=4$, we assume that $N_{G}\left(v_{1}\right)=\left\{v, v_{2}, y_{1}, y_{1}^{\prime}\right\}$, where $y_{1}^{\prime} \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}\right\}$. By (P0), $y_{1} y_{1}^{\prime} \in E(G)$. Then $N_{G}\left(y_{1}\right) \cap\left\{v, v_{2}, v_{3}, \ldots, v_{7}, y_{3}\right\}=\emptyset$.

Claim $2 y_{2} v_{5} \notin E(G)$.
Assume that $y_{2} v_{5} \in E(G)$. Since G has no 4-cycles, $\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{7}, y_{3}\right\}$ $\cap N_{G}\left(y_{1}^{\prime}\right)=\emptyset$. By (P4), $v_{6} y_{1}^{\prime} \notin E(G)$. Considering the subgraph induced by $\left\{y_{1}^{\prime}, y_{1}, v_{1}\right\} \cup\left\{v_{2}, \ldots, v_{7}, y_{3}\right\}$, we have that $y_{3} v_{2}, y_{3} v_{3} \in E(G)$. Let $N_{G}(v)$ $=\left\{b, c, v_{1}, v_{2}\right\}$, where $b, c \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\}$. Thus $\left(N_{G}(b) \cup N_{G}(c)\right) \cap$ $\left\{v_{1}, v_{2}, v_{3}, v_{8}, y_{1}, y_{3}\right\}=\emptyset$. As $y_{2} v_{4}, y_{2} v_{5} \in E(G)$, by $(\mathrm{P} 4), v_{4} \notin N_{G}(b) \cup N_{G}(c)$. Since the subgraph induced by $\{v, b, c\} \cup\left\{v_{1}, y_{1}, v_{8}, y_{3}, v_{3}, v_{4}, v_{5}\right\}$ is not Z_{7}, v_{5} $\in N_{G}(b) \cup N_{G}(c)$. Without loss of generality, we assume that $c v_{5} \in E(G)$. By $(\mathrm{P} 0), c v_{6} \in E(G)$. Since G has no 4-cycles, $\left(N_{G}(b) \cup N_{G}(c)\right) \cap\left\{v_{7}, y_{1}\right\}=\emptyset$. As G is 4-regular, $y_{2} \notin N_{G}(b) \cup N_{G}(c)$. This implies that the subgraph induced by $\{v, b, c\} \cup\left\{v_{1}, y_{1}, y_{2}, v_{4}, v_{3}, y_{3}, v_{7}\right\}$ is Z_{7}, contradicting the maximality of $t=6$. Claim 2 holds.

By Claim 2 and (P4), $y_{2} v_{3} \in E(G)$. As G has no 4 -cycles, $\left\{v_{2}, v_{3}, v_{4}, v_{7}, y_{3}\right\}$ $\cap N_{G}\left(y_{1}^{\prime}\right)=\emptyset$. Since G is Z_{7}-free, considering the subgraph induced by $\left\{y_{1}^{\prime}, y_{1}, v_{1}\right\} \cup$ $\left\{v_{2}, \ldots, v_{7}, y_{3}\right\}, N_{G}\left(y_{1}^{\prime}\right) \cap\left\{v_{5}, v_{6}\right\} \neq \emptyset$. By (P4), $y_{1}^{\prime} v_{5}, y_{1}^{\prime} v_{6} \in E(G)$. Again, as G has no 4-cycles, $N_{G}\left(y_{3}\right) \cap\left\{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\right\}=\emptyset$. By (P4), $y_{3} v_{2} \notin E(G)$.

Claim $3 v y_{3} \in E(G)$.
Assume that $v y_{3} \notin E(G)$. Let $N_{G}\left(y_{3}\right)=\left\{v_{7}, v_{8}, a, b\right\}$, where $a, b \notin V(H)$ $\cup\left\{y_{1}^{\prime}, y_{1}, y_{2}\right\}$. By $(\mathrm{P} 0), a b \in E(G)$. Notice that the subgraph induced by $(V(H)-$ $\left.\left\{v_{8}\right\}\right) \cup\left\{y_{3}\right\}$ is still Z_{6}. Using the discussion in Claims 1 and 2, we have either $a v_{3}, a v_{4} \in$ $E(G)$ or $b v_{3}, b v_{4} \in E(G)$, implying a 4 -cycle $a v_{3} y_{2} v_{4} a$ or $b v_{3} y_{2} v_{4} b$, a contradiction. Claim 3 holds.

Let $N_{G}\left(y_{3}\right)=\left\{v_{7}, v_{8}, v, x_{2}\right\}$. By (P 0$), v x_{2} \in E(G)$. As G has no 4-cycles, $N_{G}\left(x_{2}\right) \cap\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\}=\emptyset$. By (P0), $N_{G}\left(x_{2}\right) \cap\left\{v_{1}, v_{8}, y_{1}, y_{2}, y_{1}^{\prime}\right\}=\emptyset$.

Claim $4 x_{2} v_{4} \in E(G)$. Therefore, $x_{2} v_{5} \in E(G)$.

Fig. 3 Two drawings of the line graph of the Petersen graph

By way of contradiction, we assume that $x_{2} v_{4} \notin E(G)$. By (P4), $x_{2} v_{5} \notin E(G)$. Thus we assume that $N_{G}\left(x_{2}\right)=\left\{v, y_{3}, s, t\right\}$, where $s, t \notin V(H) \cup\left\{y_{1}, y_{2}, y_{3}, y_{1}^{\prime}\right\}$. By (P0), $s t \in E(G)$. As G has no 4-cycles, $v_{2} \notin N_{G}(s) \cup N_{G}(t)$. As $y_{2} v_{3}, y_{2} v_{4} \in E(G)$, by (P4), $v_{3} \notin N_{G}(s) \cup N_{G}(t)$.

If $v_{6} \notin N_{G}(s) \cup N_{G}(t)$, then $G\left[\left\{s, t, x_{2}\right\} \cup\left\{v, v_{2}, v_{3}, y_{2}, y_{1}, y_{1}^{\prime}, v_{6}\right\}\right]=Z_{7}$, contradicting the maximality of $t=6$. Without loss of generality, we assume that $v_{6} t \in E(G)$. As $y_{1}^{\prime} v_{5}, y_{1}^{\prime} v_{6} \in E(G), v_{7} t \in E(G)$. Thus $G\left[\left\{x_{2}, s, t\right\} \cup\right.$ $\left.\left\{v_{7}, v_{8}, y_{2}, v_{3}, v_{2}, v_{1}, y_{1}^{\prime}\right\}\right]=Z_{7}$, contradicting the maximality of $t=6$ again. Claim 4 holds.

We will get the line graph of Peterson graph by considering the neighborhood of v_{2}. As G is 4-regular, we assume that $N_{G}\left(v_{2}\right)=\left\{v, v_{1}, v_{3}, z\right\}$, where $z \notin$ $V(H) \cup\left\{y_{1}, y_{2}, y_{3}, y_{1}^{\prime}, x_{2}\right\}$. By (P4), $z v_{3} \in E(G)$. As $G\left[\left\{z, v_{2}, v_{3}\right\} \cup\left\{y_{2}, y_{1}, y_{1}^{\prime}, v_{6}\right.\right.$, $\left.\left.v_{7}, y_{3}, x_{2}\right\}\right] \neq Z_{7}$, by (P4), $z v_{6}, z v_{7} \in E(G)$. Since G is 4-regular, G is the left graph in Fig. 3. It is easy to check that G is the line graph of Peterson graph.

5 Existence of t-Cycles $(t=5,6,7,8)$

Lemma 5.1 If G is a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, then G has a 5 -cycle.
Proof Suppose that G does not have 5-cycles. Since the line graph of the Petersen graph has 5-cycles, G is not the line graph of the Petersen graph. By Theorem 1.4, G has an induced path P_{10}. Let $P_{k}=v_{1} v_{2} \cdots v_{k}$ be a longest induced path of G, and let $Y=N_{G}\left(v_{1}\right)-\left\{v_{2}\right\}=\left\{y_{1}, y_{2}, \ldots, y_{s}\right\}, Y_{1}=N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)=\left\{y_{1}, \ldots, y_{r}\right\}$, and $Y_{2}=Y-Y_{1}$. Then $k \geq 10, s \geq 3, r \geq 0$. Since G is claw-free, $G\left[Y_{2}\right]$ is a complete graph.
(Q1) For $w \notin V\left(P_{k}\right)$, if $w v_{i} \in E(G)(1<i<k)$, then either $w v_{i-1} \in E(G)$ or $w v_{i+1} \in E(G)$.
(Q2) For $w \notin V\left(P_{k}\right)$, if $w v_{i} \in E(G)(1 \leq i \leq k-2)$, then $w v_{i+2} \notin E(G)$. (Otherwise, let $a \in N_{G}\left(v_{i+1}\right)-\left\{v_{i}, v_{i+2}\right\}$. Then either $a v_{i} \in E(G)$ or $a v_{i+2} \in E(G)$. Thus either $v_{i} a v_{i+1} v_{i+2} w v_{1}$ or $v_{i} v_{i+1} a v_{i+2} w v_{1}$ is a 5 -cycle.) In addition, $w v_{i+3}$ $\notin E(G)$ if $i \leq k-3$. Thus, $N_{G}\left(y_{i}\right) \cap\left\{v_{3}, v_{4}, v_{5}\right\}=\emptyset$ for $y_{i} \in Y_{1}$, and
$N_{G}\left(y_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset$ for $y_{i} \in Y_{2}$. As G is claw-free, $G\left[Y_{1}\right]$ is a complete graph.

Claim $1\left|Y_{2}\right| \leq 2$. Therefore, $\left|Y_{1}\right| \geq 1$.
Assume that $Y_{2}=\left\{y_{r+1}, \ldots, y_{s}\right\}=\left\{u_{1}, u_{2}, \ldots, u_{s-r}\right\}(s-r \geq 3)$. By (Q2), $N_{G}\left(u_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset$.

We claim that $N_{G}\left(v_{5}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$. Otherwise, we assume $u_{3} v_{5} \in E(G)$. By $(\mathrm{Q} 1), u_{3} v_{6} \in E(G)$. Since G is claw-free, $N_{G}\left(u_{3}\right) \cap V\left(P_{k}\right)=\left\{v_{1}, v_{5}, v_{6}\right\}$. As G has no 5-cycles, $N_{G}\left(u_{i}\right) \cap\left\{v_{5}, \ldots, v_{8}\right\}=\emptyset$ for $i=1,2$. As G is $Z_{8^{-}}$ free, there is a vertex in $\left\{u_{1}, u_{2}\right\}$, say u_{2}, such that $u_{2} v_{9} \in E(G)$. Then $N_{G}\left(u_{2}\right)$ $\cap V\left(P_{k}\right)=\left\{v_{1}, v_{9}, v_{10}\right\}$ and $N_{G}\left(u_{1}\right) \cap\left\{v_{2}, \ldots, v_{10}\right\}=\emptyset$. By the choice of P_{k}, $k \geq 11$. As $u_{1} v_{11} \notin E(G), k \geq 12$. As $u_{1} v_{12} \notin E(G), k \geq 13$. Consider $N_{G}\left(v_{2}\right)$ and let $w \in N_{G}\left(v_{2}\right)-\left\{v_{1}, v_{3}\right\}$. Since G has no 5-cycles, $N_{G}(w) \cap\left\{u_{1}, u_{2}, u_{3}, v_{4}\right.$, $\left.v_{5}, v_{6}, v_{9}, v_{10}\right\}=\emptyset$. If $w v_{1} \in E(G)$, then $N_{G}(w) \cap\left\{v_{3}, v_{7}, v_{8}\right\}=\emptyset$. This implies that $G\left[\left\{w, v_{1}, v_{2}, \ldots, v_{10}\right\}\right]=Z_{8}$, a contradiction. So $w v_{1} \notin E(G)$. By (Q1), wv $v_{3} \in$ $E(G)$. Since $G\left[\left\{w, v_{2}, v_{3}, \ldots, v_{9}, u_{2}, u_{1}\right\}\right] \neq Z_{8}, w v_{7}, w v_{8} \in E(G)$. So $N_{G}(w) \cap$ $V\left(P_{k}\right)=\left\{v_{2}, v_{3}, v_{7}, v_{8}\right\}$. Hence $G\left[\left\{w, v_{7}, v_{8}, v_{3}, v_{4}, v_{5}, u_{3}, u_{2}, v_{10}, v_{11}, v_{12}\right\}\right]$ $=Z_{8}$, a contradiction. So $N_{G}\left(v_{5}\right) \cap\left\{u_{1}, u_{2}, u_{3}\right\}=\emptyset$.

If $N_{G}\left(u_{3}\right) \cap\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\} \neq \emptyset$, as G has no 5-cycles, by $(\mathrm{Q} 1), N_{G}\left(u_{i}\right) \cap$ $\left\{v_{6}, \ldots, v_{9}\right\}=\emptyset$ for $i=1,2$. This implies that $G\left[\left\{u_{1}, u_{2}, v_{1}, \ldots, v_{9}\right\}\right]=Z_{8}$, a contradiction. So $N_{G}\left(u_{3}\right) \cap\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. Similarly, we have $N_{G}\left(u_{2}\right) \cap$ $\left\{v_{6}, v_{7}, v_{8}, v_{9}\right\}=\emptyset$. So $G\left[\left\{u_{2}, u_{3}, v_{1}, \ldots, v_{9}\right\}\right]=Z_{8}$, a contradiction. Claim 1 holds.

Claim $2\left|Y_{1}\right| \leq 1$.
Assume that $v_{2} y_{1}, v_{2} y_{2} \in E(G)$. By $(\mathrm{Q} 2), N_{G}\left(y_{i}\right) \cap\left\{v_{3}, v_{4}, v_{5}\right\}=\emptyset$ for $i=1,2, y_{1} y_{2} \in E(G)$ and $N_{G}\left(y_{3}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset$. As G has no 5-cycles, $G_{G}\left(y_{3}\right) \cap\left\{y_{1}, y_{2}\right\}=\emptyset$. Since G is Z_{8}-free, $N_{G}\left(y_{i}\right) \cap\left\{v_{6}, v_{7}, \ldots, v_{10}\right\} \neq \emptyset$ for $i=1,2$. Furthermore, if $y_{1} v_{i}, y_{2} v_{j} \in E(G)$, where $i, j \in\{6, \ldots, 10\}$, then $|j-i| \geq 3$. Thus, by (Q1), we may assume that $y_{1} v_{6}, y_{1} v_{7}, y_{2} v_{10} \in E(G)$. As G has no 5-cycles, $N_{G}\left(y_{3}\right) \cap\left\{v_{2}, v_{3}, \ldots, v_{10}\right\}=\emptyset$, and so $k \geq 11$ and $d_{G}\left(v_{1}\right)=4$. Hence $y_{2} v_{11} \in E(G)$ and $y_{3} v_{11} \notin E(G)$. Therefore, $k \geq 12$. Let $z_{1}, z_{2}, z_{3} \in N_{G}\left(y_{3}\right)-\left\{v_{1}\right\}$. Then $z_{1} z_{2}, z_{1} z_{3}, z_{2} z_{3} \in E(G)$. For $i=1,2,3$, $N_{G}\left(z_{i}\right) \cap\left\{y_{1}, y_{2}, v_{1}, v_{2}, v_{3}, v_{6}, v_{7}, v_{10}, v_{11}\right\}=\emptyset$. If $z_{i} v_{4} \in E(G)$, then $z_{i} v_{5} \in$ $E(G)$ and $z_{i} v_{8}, z_{i} v_{9} \notin E(G)$. Thus $G\left[\left\{z_{i}, v_{4}, v_{5}, v_{3}, v_{2}, y_{1}, v_{7}, \ldots, v_{11}\right\}\right]=Z_{8}$. If $z_{i} v_{8}, z_{i} v_{9} \in E(G)$, then $z_{i} v_{4}, z_{i} v_{5} \notin E(G)$ and $G\left[\left\{z_{i}, v_{9}, v_{8}, \ldots, v_{2}, y_{2}, v_{11}\right\}\right]=Z_{8}$. So $N_{G}\left(z_{i}\right) \cap\left\{v_{4}, v_{5}, v_{8}, v_{9}\right\}=\emptyset$. This implies that $G\left[\left\{z_{1}, z_{2}, y_{3}, v_{1}, \ldots, v_{8}\right\}\right]=Z_{8}$, a contradiction. Claim 2 holds.

By Claims 1 and 2, $Y_{1}=\left\{y_{1}\right\}$ and $Y_{2}=\left\{y_{2}, y_{3}\right\}$. Thus $y_{2} y_{3} \in E(G)$. As G has no 5-cycles, $N_{G}\left(y_{1}\right) \cap\left\{y_{2}, y_{3}, v_{3}, v_{4}, v_{5}\right\}=\emptyset$ and $N_{G}\left(y_{i}\right) \cap\left\{v_{2}, v_{3}, v_{4}\right\}=\emptyset(i=2,3)$. As G is Z_{8}-free, $N_{G}\left(y_{1}\right) \cap\left\{v_{6}, \ldots, v_{10}\right\} \neq \emptyset$ and $\cup_{i=2}^{3} N_{G}\left(y_{i}\right) \cap\left\{v_{5}, v_{6}, \ldots, v_{9}\right\} \neq \emptyset$. We assume that $T=N_{G}\left(y_{3}\right) \cap\left\{v_{5}, v_{6}, \ldots, v_{9}\right\} \neq \emptyset$. Let $w \in N_{G}\left(v_{2}\right)-\left\{v_{1}, v_{3}, y_{1}\right\}$. Then $w v_{1} \notin E(G)$ and so $w v_{3} \in E(G)$. By (Q2), $N_{G}(w) \cap\left\{v_{4}, v_{5}, v_{6}\right\}=\emptyset$. As G has no 5-cycles, $N_{G}(w) \cap\left\{y_{1}, y_{2}, y_{3}\right\}=\emptyset$.

We claim that $N_{G}\left(y_{1}\right) \cap\left\{v_{6}, \ldots, v_{9}\right\}=\emptyset$. Otherwise, by (Q1), $N_{G}\left(y_{1}\right) \cap V\left(P_{k}\right)$ $=\left\{v_{1}, v_{2}, v_{i_{0}}, v_{i_{0}+1}\right\}$, where $i_{0}=6,7,8,9$. As G has no 5-cycles, Thus $\cup_{i=2}^{3} N_{G}\left(y_{i}\right) \cap$ $\left\{v_{i_{0}-1}, v_{i_{0}}, v_{i_{0}+1}\right\}=\emptyset$ and $y_{2} v_{i_{0}+2}, y_{3} v_{i_{0}+2} \notin E(G)$ if $i \neq 9$. Thus $i_{0} \neq 7$.

If $i_{0}=6$, then $T=\left\{v_{9}, v_{10}\right\}$; if $i_{0}=8$, then $T=\left\{v_{5}, v_{6}\right\}$; if $i_{0}=9$, then T is either $\left\{v_{5}, v_{6}\right\}$ or $\left\{v_{6}, v_{7}\right\}$. For these three cases, $N_{G}\left(y_{2}\right) \cap\left\{v_{6}, v_{7}, \ldots, v_{10}\right\}$ $=\emptyset$. By the choice of $P_{k}, k \geq 11$. For $i_{0}=6$, as G has no 5-cycles, $N_{G}(w)$ $\cap\left\{v_{7}, \ldots, v_{10}\right\}=\emptyset$. So $G\left[\left\{w, v_{2}, v_{3}, \ldots, v_{9}, y_{3}, y_{2}\right\}\right]=Z_{8}$, a contradiction. For $i_{0}=$ $9, N_{G}(w) \cap\left\{v_{8}, \ldots, v_{11}\right\}=\emptyset$. Ву (Q1), $w v_{7} \notin E(G)$. So $G\left[\left\{w, v_{2}, v_{3}, \ldots, v_{11}\right\}\right]=$ Z_{8}, a contradiction. For $i_{0}=8$, let $z_{1}, z_{2} \in N_{G}\left(y_{2}\right)-\left\{v_{1}, y_{3}\right\}$. As $d_{G}\left(v_{1}\right)=4$, $z_{1} z_{2} \in E(G)$. As G has no 5-cycles, $N_{G}\left(z_{i}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{9}\right\}=\emptyset$ for $i=1,2$. Thus $G\left[\left\{z_{1}, z_{2}, y_{2}, v_{1}, v_{2}, \ldots, v_{8}\right\}\right]=Z_{8}$, a contradiction. So $N_{G}\left(y_{1}\right) \cap\left\{v_{6}, \ldots, v_{9}\right\}=\emptyset$.

Notice that $N_{G}\left(y_{1}\right) \cap\left\{v_{6}, \ldots, v_{10}\right\} \neq \emptyset$. We have $y_{1} v_{10} \in E(G)$. As G has no 5-cycles, $N_{G}\left(y_{i}\right) \cap\left\{v_{9}, v_{10}\right\}=\emptyset$ for $i=2,3$. Thus $T \subseteq\left\{v_{5}, \ldots, v_{8}\right\}$, and so $N_{G}\left(y_{2}\right) \cap\left\{v_{2}, \ldots, v_{10}\right\}=\emptyset$. By the choice of $P_{k}, k \geq 11$, and so $y_{1} v_{11} \in E(G)$ and $y_{2} v_{11}, y_{3} v_{11} \notin E(G)$. This implies that $k \geq 12$ and $y_{2} v_{12}, y_{3} v_{12} \notin E(G)$. As G has no 5-cycles, $N_{G}(w) \cap\left\{v_{9}, \ldots, v_{12}\right\}=\emptyset$. As $G\left[\left\{w, v_{2}, v_{3}, \ldots, v_{11}\right\}\right] \neq$ $Z_{8}, w v_{7}, w v_{8} \in E(G)$. Thus $y_{3} v_{7}, y_{3} v_{8} \notin E(G)$ and $y_{3} v_{5}, y_{3} v_{6} \in E(G)$. So $G\left[\left\{y_{3}, v_{5}, v_{6}, v_{1}, v_{2}, w, v_{8}, \ldots, v_{12}\right\}\right]=Z_{8}$, a contradiction.

The next lemma states that G has $6-$ - $7-$, and 8 -cycles if G is a 4 -connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph. In the proof Lemma5.2, we follow the setup originated by Ferrara, Morris, and Wenger in [3], utilizing an argument based on the neighborhoods of vertices in smaller cycles. The Figs. 4 and 5 below are also originally from [3].

Lemma 5.2 If G is a 4-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph, then G has cycles of length 6,7 , and 8.

Proof By Lemma 5.1, G has a 5-cycle. Let t be the largest integer less than 8 such that G has a t-cycle but no $(t+1)$-cycle. Let C be a t-cycle in G and X be the set of vertices in C that have neighbors not in C. Since G is 4-connected, $|X|=l \geq 4$. Assume $X=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$. If $w_{i} \in N_{G}\left(v_{i}\right)-V(C)$, then $w_{i} v_{i}^{+}, w_{i} v_{i}^{-} \notin E(G)$ since G does not have a $(t+1)$-cycle. Since G is claw-free, we have $v_{i}^{+} v_{i}^{-} \in E(G)$. Using similar arguments, we have $x_{i} y_{i} \in E(G)$ if $x_{i}, y_{i} \in N_{G}\left(v_{i}\right) \cap V(C)$. Continue this process, we have that $G[V(C)]$ contains one of the graphs in Fig. 4 as a subgraph, where v_{1}, v_{2}, v_{3}, and v_{4} are the vertices incident to the dashed edges.

For any two vertices v_{i} and v_{j} in X, if $t=5, G[V(C)]$ contains paths of length 1 through $t-1=4$ joining v_{i} and v_{j}; if $t \in\{6,7\}$, then $G[V(C)]$ contains paths of length 2 through $t-1$ joining any two vertices v_{i} and v_{j}. Let $P(i, j)$ be a shortest path in $G[V(C)]$ connecting v_{i} and v_{j} that does not contain v_{k} for any k distinct from i and j. For $1 \leq i \leq l$, let S_{i} be the set of vertices in $V(G)-V(C)$ that are adjacent to v_{i}, S_{i}^{\prime} be the set of vertices in $V(G)-V(C)$ that have distance 2 to v_{i}, and $S_{i}^{\prime \prime}$ be the set of vertices in $V(G)-V(C)$ that have distance 3 to v_{i}. We conclude that the following claims hold for $1 \leq i<j \leq l$.
(W1) For any $x \in S_{i}, N_{G}(x) \cap V(C)=\left\{v_{i}\right\}$. Therefore, for any $i \neq j, S_{i} \cap S_{j}=\emptyset$.
(W2) For $i \neq j$, and for any $x \in S_{i}^{\prime} \cup S_{i}^{\prime \prime}, N_{G}(x) \cap\left(V(C) \cup S_{j}\right)=\emptyset$. Therefore, for any $i \neq j, S_{i}^{\prime} \cap\left(S_{j} \cup S_{j}^{\prime}\right)=\emptyset$, and there are no edges joining $S_{i} \cup S_{i}^{\prime}$ and $S_{j} \cup S_{j}^{\prime}$.
(W3) $S_{i}^{\prime} \neq \emptyset$ and $S_{i}^{\prime \prime} \neq \emptyset$ for $1 \leq i \leq l$.
(W4) No vertex can have a neighbor in S_{i}^{\prime} for three distinct values of i.

Fig. 4 Necessary subgraphs in $G[V(C)]$ with v_{1}, v_{2}, v_{3}, and v_{4} incident to the dashed edges

Fig. 5 The structure of G

The structure of $G[V(C)]$ and the assumption that G does not contain a $(t+1)$ cycle imply (W1) and (W2). Since G is 4-connected, (W3) must hold, as otherwise v_{i} is a cut vertex. (W4) comes from (W2) since G is claw-free. Thus G has the structure shown in Fig. 5.

For $1 \leq i \leq l$, we use s_{i} to denote a general vertex in S_{i}, use s_{i}^{\prime} to denote a general vertex in S_{i}^{\prime}, and use $s_{i}^{\prime \prime}$ to denote a general vertex in $S_{i}^{\prime \prime}$ such that $v_{i} s_{i}, s_{i} s_{i}^{\prime}, s_{i}^{\prime} s_{i}^{\prime \prime} \in E(G)$.

Claim 1 There are distinct values $i, j \in\{1,2, \ldots, l\}$ such that $S_{i}^{\prime \prime} \cap S_{j}^{\prime \prime} \neq \emptyset$.
By way of contradiction, we assume that for any $i \neq j, S_{i}^{\prime \prime} \cap S_{j}^{\prime \prime}=\emptyset$. Consider the graph H from $G-E(C)-(V(G)-X)$ by contracting $v_{i} \cup S_{i} \cup S_{i}^{\prime} \cup S_{i}^{\prime \prime}$ for $1 \leq i \leq l$, and denote the contracted vertices be x_{i}. If H is disconnected, one component of H contains at most 3 vertices of $\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}$. Without loss of generality, we may assume that x_{1}, \ldots, x_{k} are in the same component of H with $k \leq 3$, then $\left\{v_{1}, \ldots, v_{k}\right\}$ is a vertex-cut of G, contradiction to the fact that G is 4 -connected. Therefore H is connected, and there is a path from each $S_{i}^{\prime \prime}$ to each $S_{j}^{\prime \prime}$ in G, where $i \neq j$, that
contains no vertices in C. Let P^{\prime} be a shortest such path connecting $S_{i}^{\prime \prime}$ and $S_{j}^{\prime \prime}$ over all choices of i and j. Without loss of generality, we assume that $i=1$ and $j=2$. Since P^{\prime} is minimal, $V\left(P^{\prime}\right) \cap S_{k}=\emptyset$ and $V\left(P^{\prime}\right) \cap S_{k}^{\prime}=\emptyset$ for all $k \in\{1,2, \ldots, l\}$, and $V\left(P^{\prime}\right) \cap S_{1}^{\prime \prime}=\left\{s_{1}^{\prime \prime}\right\}$ and $V\left(P^{\prime}\right) \cap S_{2}^{\prime \prime}=\left\{s_{2}^{\prime \prime}\right\}$. Thus $Q=s_{1} s_{1}^{\prime} s_{1}^{\prime \prime} P^{\prime} s_{2}^{\prime \prime} s_{2}^{\prime} s_{2} v_{2} P(2,3) v_{3} s_{3} s_{3}^{\prime}$ is an induced path on at least 10 vertices. Consider the neighborhood of s_{1}. Since G is 4-connected, let $\left\{z_{1}, z_{2}, v_{1}, s_{1}^{\prime}\right\} \subseteq N_{G}\left(s_{1}\right)$.

If both $z_{1} v_{1} \in E(G)$ and $z_{2} v_{1} \in E(G)$, then $z_{1}, z_{2} \in S_{1}$. If both $z_{1} s_{1}^{\prime} \notin E(G)$ and $z_{2} s_{1}^{\prime} \notin E(G)$, then $z_{1} z_{2} \in E(G)$ and the subgraph induced by $\left\{z_{1}, z_{2}\right\} \cup V(Q)$ contains $Z_{t}(t \geq 9)$. Otherwise, assume that $z_{1} s_{1}^{\prime} \in E(G)$. As $z_{1} \in S_{1}, z_{1} s_{1}^{\prime \prime} \notin E(G)$. Thus the subgraph induced by $\left\{z_{1}\right\} \cup V(Q)$ contains $Z_{t}(t \geq 8)$. This contradiction implies that either $z_{1} v_{1} \notin E(G)$ or $z_{2} v_{1} \notin E(G)$. Without loss of generality, we assume that $z_{1} v_{1} \notin E(G)$. Then $z_{1} s_{1}^{\prime} \in E(G)$ and $z_{1} \in S_{1}^{\prime}$. If $z_{1} s_{1}^{\prime \prime} \notin E(G)$, then the subgraph induced by $V(Q) \cup\left\{z_{1}\right\}$ would be $Z_{t}(t \geq 8)$. This contradiction implies that $z_{1} s_{1}^{\prime \prime} \in E(G)$. Notice that $S_{i}^{\prime \prime} \cap S_{j}^{\prime \prime}=\emptyset$ for $i \neq j$. If $\left|V\left(P^{\prime}\right)\right| \geq 3$, then the subgraph induced by $\left\{z_{1}\right\} \cup\left(V(Q)-\left\{s_{1}\right\}\right)$ would be $Z_{t}(t \geq 8)$. This implies that $P^{\prime}=s_{1}^{\prime \prime} s_{2}^{\prime \prime}$. Consider the subgraph induced by $\left\{z_{1}, s_{3}^{\prime \prime}\right\} \cup\left(V(Q)-\left\{s_{1}\right\}\right)$. We have either $s_{1}^{\prime \prime} s_{3}^{\prime \prime} \in E(G)$ or $s_{2}^{\prime \prime} s_{3}^{\prime \prime} \in E(G)$. If $s_{2}^{\prime \prime} s_{3}^{\prime \prime} \in E(G)$, then the subgraph induced by $\left\{z_{1}, s_{1}, s_{1}^{\prime}\right\} \cup\left(V(P(1,2)) \cup\left\{s_{2}, s_{2}^{\prime}, s_{2}^{\prime \prime}, s_{3}^{\prime \prime}, s_{3}^{\prime}, s_{3}\right\}\right.$ is $Z_{t}(t \geq 8)$. Thus $s_{2}^{\prime \prime} s_{3}^{\prime \prime} \notin E(G)$ and $s_{1}^{\prime \prime} s_{3}^{\prime \prime} \in E(G)$.

Next we consider the neighborhood of s_{3}. Applying the method used on z_{1} and z_{2} to the neighborhood of s_{3}, there is a vertex $a \in N_{G}\left(s_{3}\right)$ such that $a v_{3} \notin E(G)$ and $a s_{3}^{\prime}, a s_{3}^{\prime \prime} \in E(G)$. Thus the subgraph induced by $\left\{a, s_{3}, s_{3}^{\prime}\right\} \cup(V(P(2,3)) \cup$ $\left\{s_{2}, s_{2}^{\prime}, s_{2}^{\prime \prime}, s_{1}^{\prime \prime}, s_{1}^{\prime}, s_{1}\right\}$ is $Z_{t}(t \geq 8)$, a contradiction. So Claim 1 holds.

By Claim 1, we may assume that $x_{12} \in S_{1}^{\prime \prime} \cap S_{2}^{\prime \prime}$. Consider $S_{3}^{\prime \prime}$. By (W3), $S_{3}^{\prime \prime} \neq \emptyset$. Since there is a path $K\left(v_{1}, v_{2}\right)$ of length 2 joining v_{1} and v_{2} in C, then $K\left(v_{1}, v_{2}\right) s_{2} s_{2}^{\prime} x_{12} s_{1}^{\prime} s_{1} v_{1}$ forms an 8-cycle. So $t=5,6$.

Claim $2 S_{3}^{\prime \prime} \cap S_{4}^{\prime \prime}=\emptyset$.
By way of contradiction, we assume that $x_{34} \in S_{3}^{\prime \prime} \cap S_{4}^{\prime \prime}$. Since G is claw-free, by (W4), $x_{12} x_{34} \notin E(G)$, implying that $Q=s_{1} s_{1}^{\prime} x_{12} s_{2}^{\prime} s_{2} v_{2} P(2,3) v_{3} s_{3} s_{3}^{\prime} x_{34} s_{4}^{\prime} s_{4}$ is an induced path on at least 12 vertices. Since G is 4 -connected, we assume that $\left\{z_{3}, z_{4}, s_{1}, x_{12}\right\} \subseteq N_{G}\left(s_{1}^{\prime}\right)$.

Let us consider z_{3} first. Since G is claw-free, we have either $z_{3} s_{1} \in E(G)$ or $z_{3} x_{12} \in E(G)$. If $z_{3} \in S_{1} \cup S_{1}^{\prime}$, then $N_{G}\left(z_{3}\right) \cap V(Q) \subseteq\left\{s_{1}, s_{1}^{\prime}, x_{12}\right\}$. Thus the subgraph induced by $V(Q) \cup\left\{z_{3}\right\}$ contains Z_{9}, a contradiction. This contradiction implies that $z_{3} \notin S_{1} \cup S_{1}^{\prime}$. As $z_{3} s_{1}^{\prime} \in E(G), z_{3} \in S_{1}^{\prime \prime}$, and so $z_{3} s_{1} \notin E(G)$ and $z_{3} x_{12} \in E(G)$. Applying this argument on z_{4}, we have $z_{4} \in S_{1}^{\prime \prime}$ and $z_{4} x_{12} \in E(G)$. As G is claw-free, $z_{3} z_{4} \in E(G)$.

If $z_{3} s_{2}^{\prime} \in E(G)$, by (W4), $z_{3} s_{3}^{\prime}, z_{3} s_{4}^{\prime} \notin E(G)$. Thus $z_{3} x_{34} \notin E(G)$, implying that the subgraph induced by $\left(V(Q)-\left\{s_{1}, s_{1}^{\prime}\right\}\right) \cup\left\{z_{3}\right\}$ is $Z_{t}(t \geq 8)$, a contradiction. So $z_{3} s_{2}^{\prime} \notin E(G)$. Similarly, $z_{4} s_{2}^{\prime} \notin E(G)$

If $z_{3} x_{34} \notin E(G)$, then $z_{3} s_{3}^{\prime} \notin E(G)$ (otherwise, $G\left[\left\{s_{3}^{\prime}, s_{3}, z_{3}, x_{34}\right\}\right]$ is a claw, a contradiction). Similarly, $z_{3} s_{4}^{\prime} \notin E(G)$. Thus the subgraph induced by $(V(Q)-$ $\left.\left\{s_{1}\right\}\right) \cup\left\{z_{3}\right\}$ is $Z_{t}(t \geq 9)$, a contradiction. So $z_{3} x_{34} \in E(G)$. Similarly, $z_{4} x_{34} \in E(G)$.

Next let us consider the neighborhood of s_{2}^{\prime}. Since G is 4-connected and since $z_{3}, z_{4}, x_{34} \notin N_{G}\left(s_{2}^{\prime}\right)$, we assume that $\left\{z_{5}, z_{6}, s_{2}, x_{12}\right\} \subseteq N_{G}\left(s_{2}^{\prime}\right)$. Using the method we
used for z_{3} and z_{4} on the vertices z_{5} and z_{6}, we have $G\left[\left\{z_{5}, z_{6}, s_{2}^{\prime}, x_{12}\right\}\right]$ is a clique and $z_{5} x_{34}, z_{6} x_{34} \in E(G)$. Thus the subgraph induced by $\left\{z_{3}, z_{4}, z_{5}, z_{6}, s_{1}^{\prime}, s_{2}^{\prime}, x_{12}, x_{34}\right\}$ contains cycles of lengths $6,7,8$, a contradiction. Claim 2 holds.

Claim $3 S_{3}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right) \neq \emptyset$ and $S_{4}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right) \neq \emptyset$.
We prove $S_{3}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right) \neq \emptyset$ by contradiction. The proof for $S_{4}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right) \neq \emptyset$ is similar. Suppose that $S_{3}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right)=\emptyset$. Then there is a vertex $s_{3}^{\prime \prime \prime}$ such that $s_{3}^{\prime \prime} s_{3}^{\prime \prime \prime} \in E(G)$ and the distance between $s_{3}^{\prime \prime \prime}$ and v_{3} is 4 . As G has no $(t+1)$-cycles, $N_{G}\left(s_{3}^{\prime \prime \prime}\right) \cap V(C)=\emptyset$. By Claim 2 and the assumption of $S_{3}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime}\right)=\emptyset$, $N_{G}\left(s_{3}^{\prime \prime \prime}\right) \cap\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right)=\emptyset$ and $N_{G}\left(s_{3}^{\prime \prime}\right) \cap\left\{s_{1}^{\prime}, s_{2}^{\prime}, x_{12}\right\}=\emptyset$.

Consider the neighborhood of s_{1} and let $\left\{z_{7}, z_{8}, v_{1}, s_{1}^{\prime}\right\} \subseteq N_{G}\left(s_{1}\right)$. If both $z_{7} v_{1} \in$ $E(G)$ and $z_{8} v_{1} \in E(G)$, then $z_{7}, z_{8} \in S_{1}$ and $z_{7} z_{8} \in E(G)$. If $z_{7} s_{1}^{\prime} \notin E(G)$ and $z_{8} s_{1}^{\prime} \notin$ $E(G)$, the subgraph induced by $\left\{z_{7}, z_{8}, s_{1}\right\} \cup\left\{s_{1}^{\prime}, x_{12}, s_{2}^{\prime}, s_{2}\right\} \cup V(P(2,3)) \cup\left\{s_{3}, s_{3}^{\prime}\right\}$ is $Z_{t}(t \geq 8)$. Otherwise, assume that $z_{7} s_{1}^{\prime} \in E(G)$. Then the subgraph induced by $\left\{z_{7}, s_{1}, s_{1}^{\prime}\right\} \cup\left\{x_{12}, s_{2}^{\prime}, s_{2}\right\} \cup V(P(2,3)) \cup\left\{s_{3}, s_{3}^{\prime}, s_{3}^{\prime \prime}\right\}$ is $Z_{t}(t \geq 8)$. This contradiction implies that either $z_{7} v_{1} \notin E(G)$ or $z_{8} v_{1} \notin E(G)$. Without loss of generality, we assume that $z_{7} v_{1} \notin E(G)$. Then $z_{7} s_{1}^{\prime} \in E(G)$ and $z_{7} \in S_{1}^{\prime}$. If $z_{7} x_{12} \notin E(G)$, the subgraph induced by $\left\{z_{7}, s_{1}, s_{1}^{\prime}\right\} \cup\left\{x_{12}, s_{2}^{\prime}, s_{2}\right\} \cup V(P(2,3)) \cup\left\{s_{3}, s_{3}^{\prime}, s_{3}^{\prime \prime}\right\}$ would $Z_{t}(t \geq 8)$. This contradiction implies that $z_{7} x_{12} \in E(G)$.

Considering the subgraph induced by $\left\{z_{7}, s_{1}^{\prime}, x_{12}\right\} \cup\left\{s_{2}^{\prime}, s_{2}\right\} \cup V(P(2,3)) \cup$ $\left\{s_{3}, s_{3}^{\prime}, s_{3}^{\prime \prime}, s_{3}^{\prime \prime \prime}\right\}$, we have $N_{G}\left(s_{3}^{\prime \prime \prime}\right) \cap\left\{z_{7}, s_{1}^{\prime}, s_{2}^{\prime}, x_{12}\right\} \neq \emptyset$. Notice that if $x_{12} s_{3}^{\prime \prime \prime} \notin$ $E(G)$, then $N_{G}\left(s_{3}^{\prime \prime \prime}\right) \cap\left\{z_{7}, s_{1}^{\prime}, s_{2}^{\prime}\right\} \neq \emptyset$. Thus either $G\left[\left\{s_{1}^{\prime}, s_{1}, x_{12}, s_{3}^{\prime \prime \prime}\right\}\right]=K_{1,3}$, or $G\left[\left\{s_{2}^{\prime}, s_{2}, x_{12}, s_{3}^{\prime \prime \prime}\right\}\right]=K_{1,3}$, or $G\left[\left\{z_{7}, s_{1}, x_{12}, s_{3}^{\prime \prime \prime}\right\}\right]=K_{1,3}$. This contradiction implies that $x_{12} s_{3}^{\prime \prime \prime} \in E(G)$. By $G\left[\left\{x_{12}, s_{3}^{\prime \prime \prime}, s_{1}^{\prime}, s_{2}^{\prime}\right\}\right]$, we have either $s_{3}^{\prime \prime \prime} s_{1}^{\prime} \in E(G)$ or $s_{3}^{\prime \prime \prime} s_{2}^{\prime} \in E(G)$. Without loss of generality, we assume that $s_{2}^{\prime} s_{3}^{\prime \prime \prime} \in E(G)$ (otherwise, we can consider the neighborhood of s_{2} instead). As $S_{3}^{\prime \prime} \cap\left(S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime} \cup S_{4}^{\prime \prime}\right)=\emptyset, N_{G}\left(s_{3}^{\prime \prime \prime}\right) \cap$ $\left\{s_{1}^{\prime}, z_{7}, s_{4}^{\prime}\right\}=\emptyset$ (otherwise, $G\left[\left\{s_{3}^{\prime \prime \prime}, s_{2}^{\prime}, s_{3}^{\prime \prime}, w\right\}\right]=K_{1,3}$, where $w \in\left\{s_{1}^{\prime}, z_{7}, s_{4}^{\prime}\right\}$, a contradiction). Then the subgraph induced by $\left\{z_{7}, s_{1}^{\prime}, x_{12}\right\} \cup\left\{s_{3}^{\prime \prime \prime}, s_{3}^{\prime \prime}, s_{3}^{\prime}, s_{3}\right\} \cup V(P(3,4)) \cup$ $\left\{s_{4}, s_{4}^{\prime}\right\}$ is $Z_{t}(t \geq 8)$, a contradiction. Therefore, Claim 3 holds.

By Claim 3, without loss of generality, we assume that $S_{3}^{\prime \prime} \cap S_{1}^{\prime \prime} \neq \emptyset$. Let $x_{13} \in$ $S_{1}^{\prime \prime} \cap S_{3}^{\prime \prime}$. Applying the argument used in Claim 2 on $S_{2}^{\prime \prime}$ and $S_{4}^{\prime \prime}$, we have $S_{2}^{\prime \prime} \cap S_{4}^{\prime \prime}=\emptyset$. By Claim 3, $S_{1}^{\prime \prime} \cap S_{4}^{\prime \prime} \neq \emptyset$. Let $x_{14} \in S_{1}^{\prime \prime} \cap S_{4}^{\prime \prime}$. Since G is claw-free, $x_{12} x_{13}, x_{12} x_{14}, x_{13} x_{14} \in$ $E(G)$. By (W4), $S_{4}^{\prime} \cap\left(N_{G}\left(x_{12}\right) \cup N_{G}\left(x_{13}\right)\right)=\emptyset$.

Consider the neighborhood of s_{4} and let $\left\{z_{9}, z_{10}, v_{4}, s_{4}^{\prime}\right\} \subseteq N_{G}\left(s_{4}\right)$. If both $z_{9} v_{4} \in$ $E(G)$ and $z_{10} v_{4} \in E(G)$, then $z_{9}, z_{10} \in S_{4}$ and $z_{9} z_{10} \in E(G)$. If $z 9 s_{4}^{\prime} \notin E(G)$ and $z_{10} s_{4}^{\prime} \notin E(G)$, the subgraph induced by $\left\{z_{9}, z_{10}, s_{4}\right\} \cup\left\{s_{4}^{\prime}, x_{14}, x_{13}, s_{3}^{\prime}, s_{3}\right\} \cup$ $V(P(2,3)) \cup\left\{s_{2}, s_{2}^{\prime}\right\}$ is $Z_{t}(t \geq 9)$. Otherwise, assume that $z 9 s_{4}^{\prime} \in E(G)$. Then the subgraph induced by $\left\{z_{9}, s_{4}, s_{4}^{\prime}\right\} \cup\left\{x_{14}, x_{13}, s_{3}^{\prime}, s_{3}\right\} \cup V(P(2,3)) \cup\left\{s_{2}, s_{2}^{\prime}\right\}$ is $Z_{t}(t \geq 8)$. This contradiction implies that either $z_{9} v_{4} \notin E(G)$ or $z_{10} v_{4} \notin E(G)$. Without loss of generality, we assume that $z_{9} v_{4} \notin E(G)$. Then $z_{9} s_{4}^{\prime} \in E(G)$ and $z_{9} \in S_{4}^{\prime}$. Thus, $z_{9} x_{13}, z_{9} x_{12} \notin E(G)$ (otherwise, $G\left[\left\{x_{12}, s_{1}^{\prime}, s_{2}^{\prime}, z_{9}\right\}\right]=K_{1,3}$ and $G\left[\left\{x_{13}, s_{1}^{\prime}, s_{3}^{\prime}, z_{9}\right\}\right]=K_{1,3}$, a contradiction). Therefore, the subgraph induced by $\left\{s_{4}, s_{4}^{\prime}, z_{9}\right\} \cup V(P(3,4)) \cup\left\{s_{3}, s_{3}^{\prime}, x_{13}, x_{12}, s_{2}^{\prime}, s_{2}\right\}$ is $Z_{t}(t \geq 8)$, a contradiction.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier, New York (1976)
2. Ferrara, M., Gould, R., Gehrke, S., Magnant, C., Pfender, F.: Pancyclicity of 4-connected claw, generalized net-free graphs (submitted) (2010)
3. Ferrara, M., Morris, T., Wenger, P.: Pancyclicity of 4-connected, claw-free, P_{10}-free graphs. J. Graph Theory 71(4), 435-447 (2012)
4. Gould, R., Łuczak, T., Pfender, F.: Pancyclicity of 3-connected graphs: pairs of forbidden subgraphs. J. Graph Theory 47(3), 183-202 (2004)
5. Lai, H.-J., Xiong, L., Yan, H., Yan, J.: Every 3-connected claw-free Z_{8}-free graph is Hamiltonian. J. Graph Theory 64(1), 1-11 (2010)
6. Matthews, M.M., Sumner, D.P.: Hamiltonian results in $K_{1,3}$-free graphs. J. Graph Theory 8(1), 139-146 (1984)
7. Ryjáček, Z.: On, : a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70(2), 217-224 (1997)

[^0]: Mingquan Zhan
 Mingquan.Zhan@millersville.edu
 1 Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
 2 College of Mathematics and System Sciences, Xinjiang University, Ürümqi 830046, Xinjiang, People's Republic of China
 3 Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA
 4 Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, USA
 5 Department of Mathematics, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA

