ORIGINAL PAPER

Pancyclicity of 4-Connected $\{K_{1,3}, Z_8\}$ -Free Graphs

Hong-Jian Lai^{1,2} · Mingquan Zhan³ · Taoye Zhang⁴ · Ju Zhou⁵

Received: 24 March 2015 / Revised: 6 June 2017 / Published online: 29 November 2018 © Springer Japan KK, part of Springer Nature 2018

Abstract

A graph *G* is said to be *pancyclic* if *G* contains cycles of lengths from 3 to |V(G)|. For a positive integer *i*, we use Z_i to denote the graph obtained by identifying an endpoint of the path P_{i+1} with a vertex of a triangle. In this paper, we show that every 4-connected claw-free Z_8 -free graph is either pancyclic or is the line graph of the Petersen graph. This implies that every 4-connected claw-free Z_6 -free graph is pancyclic, and every 5-connected claw-free Z_8 -free graph is pancyclic.

Keywords Claw-free · Pancyclic · Forbidden subgraphs

1 Introduction

We use [1] for terminology and notation not defined here, and consider finite simple graphs only. Let *G* be a graph. If $v \in V(G)$ and $S \subseteq V(G)$, *G*[*S*] is the *subgraph* induced by *S* in *G*, $N_G(v)$ is the *neighborhood* of *v* in *G*, and $N_G(S) = \bigcup_{v \in S} N_G(v)$. Throughout this paper, we will assume that all cycles *C* have an inherent clockwise orientation. For a vertex $v \in V(C)$ we will denote the first, second, and *i*-th *successor* of *v* as v^+ , v^{++} , and v^{+i} , respectively. Similarly, we denote the first, second, and *i*-th *successor* of *v* as v^- , v^{--} , and v^{-i} respectively. If $u, v \in V(C)$, then C[u, v] denotes the consecutive vertices on *C* from *u* to *v* in the chosen direction of *C*, and $C(u, v] = C[u, v] - \{u\}, C[u, v) = C[u, v] - \{v\}, C(u, v) = C[u, v] - \{u, v\}$. The

Mingquan Zhan Mingquan.Zhan@millersville.edu

³ Department of Mathematics, Millersville University of Pennsylvania, Millersville, PA 17551, USA

⁵ Department of Mathematics, Kutztown University of Pennsylvania, Kutztown, PA 19530, USA

¹ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

² College of Mathematics and System Sciences, Xinjiang University, Ürümqi 830046, Xinjiang, People's Republic of China

⁴ Department of Mathematics, Penn State Worthington Scranton, Dunmore, PA 18512, USA

same vertices, in the reverse order, are denoted by $\overleftarrow{C}[v, u]$, $\overleftarrow{C}[v, u]$, $\overleftarrow{C}(v, u]$ and $\overleftarrow{C}(v, u)$, respectively. A *hop* in a cycle is a chord that joins some v to v^{++} .

Given a family \mathcal{F} of graphs, G is said to be \mathcal{F} -free if G contains no member of \mathcal{F} as an induced subgraph. If $\mathcal{F} = \{K_{1,3}\}$, then G is said to be *claw-free*. A graph G is *hamiltonian* if it contains a spanning cycle and *pancyclic* if it contains cycles of lengths from 3 to |V(G)|. In 1984, Matthews and Sumner [6] conjectured that every 4-connected claw-free graph is hamiltonian. This conjecture is still open, and has also fostered a large body of research into other structural properties of cycles for claw-free graphs. In this paper we are specifically interested in the pancyclicity of highly connected claw-free graphs.

Let \mathcal{L} denote the graph obtained by connecting two disjoint triangles with a single edge, and let N(i, j, k) denote the net obtained by identifying an endpoint of each the paths P_{i+1} , P_{j+1} , P_{k+1} with distinct vertices of a triangle. N(i, 0, 0) is also denoted by Z_i .

Theorem 1.1 (Gould, Łuczak, Pfender [4]) Let X and Y be connected graphs on at least three vertices. If neither X nor Y is P_3 and Y is not $K_{1,3}$, then every 3-connected $\{X, Y\}$ -free graph G is pancyclic if and only if $X = K_{1,3}$ and Y is a subgraph of one of the graphs in the family

 $\mathcal{F} = \{P_7, \mathbb{L}, N(4, 0, 0), N(3, 1, 0), N(2, 2, 0), N(2, 1, 1)\}.$

Motivated by the Matthews–Sumner Conjecture and Theorem 1.1, Ron Gould came up with the following problem at the 2010 SIAM Discrete Math Meeting in Austin, TX.

Problem 1.2 *Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.*

Theorem 1.3 (Ferrara, Gould, Gehrke, Magnant, and Powell [2]) *Every 4-connected* $\{K_{1,3}, N(i, j, k)\}$ -free graph with i + j + k = 5 is pancyclic.

Theorem 1.4 (Ferrara, Morris, Wenger [3]) *Every 4-connected* $\{K_{1,3}, P_{10}\}$ *-free graph is either pancyclic or is the line graph of the Petersen graph.*

The result of this paper is as follows.

Theorem 1.5 Every 4-connected $\{K_{1,3}, Z_8\}$ -free graph is either pancyclic or is the line graph of the Petersen graph.

Notice that if a graph is P_{10} -free, it must be Z_8 -free. Theorem 1.5 generalizes Theorem 1.4. The line graph of the Petersen graph is 4-connected and $\{K_{1,3}, Z_7\}$ -free, but not Z_6 -free, and it contains no cycle of length 4 (Fig. 1). This immediately implies the following corollary.

Corollary 1.6 *Every 4-connected* $\{K_{1,3}, Z_6\}$ *-free graph is pancyclic.*

Corollary 1.7 *Every 5-connected* $\{K_{1,3}, Z_8\}$ *-free graph is pancyclic.*

graph that is not pancyclic

We would like to point out that the idea underlying our proofs comes from [3]. In Sect. 2, we will show that every 4-connected $\{K_{1,3}, Z_8\}$ -free graph *G* contains cycles of all lengths from 10 to *n* by showing that if *G* contains a *t*-cycle ($t \ge 11$), then *G* also contains a (t - 1)-cycle. The existence of a 9-cycle follows from the existence of 10cycles, which will be given in Sect. 3. The existence of a 3-cycle follows immediately from the fact that *G* is claw-free. For 4-cycles, we use similar arguments based on the longest induced graphs Z_k . The proof of the existence of 4-cycles will be given in Sect. 4. The proof of the existence of t-cycles (t = 5, 6, 7, 8) will be given in Sect. 5.

2 Long Cycles

Let *C* be a cycle in *G* and $v \in V(C)$ and $u \notin V(C)$ such that $uv \in E(G)$. If *C* is hop-free, then we have either $uv^+ \in E(G)$ or $uv^- \in E(G)$ as *G* is claw-free. Let $x_1, x_2, \ldots, x_k \in V(C)$ lie on *C* along the orientation of *C* and let w_1, w_2, \ldots, w_k be distinct vertices not in V(C) so that $w_i x_i \in E(G)$. The *claw-extension* at x_1, x_2, \ldots, x_k of *C* is the extension of *C* by inserting w_1, w_2, \ldots, w_k into *C* one by one as follows.

For i = 1, 2, ..., k, do:

Cases	Methods
$\overline{x_{i+1}} \neq x_i^+ \text{ or } x_i w_{i+1} \notin E(G)$	Insert w_i into C by replacing $x_i^- x_i x_i^+$ by $x_i^- w_i x_i x_i^+$ or $x_i^- x_i w_i x_i^+$. Set $i := i + 1$
$x_{i+1} = x_i^+$ and $x_i w_{i+1} \in E(G)$, and $x_i^- w_i \in E(G)$.	Insert w_i and w_{i+1} into C by replacing $x_i^- x_i x_{i+1}$ by $x_i^- w_i x_i w_{i+1} x_{i+1}$. Set i := i + 2.
$x_{i+1} = x_i^+$ and $x_i w_{i+1} \in E(G)$, and $x_i^- w_i \notin E(G)$	Then $w_i x_{i+1} \in E(G)$. Consider $G[\{x_i, x_i^-, w_i, w_{i+1}\}]$, we have either $w_{i+1}x_i^- \in E(G)$, or $w_i w_{i+1} \in E(G)$. • If $w_{i+1}x_i^- \in E(G)$, insert w_i and w_{i+1} into C by replacing $x_i^- x_i x_{i+1}$ by $x_i^- w_{i+1} x_i w_i x_{i+1}$. Set $i := i + 2$. • If $w_i w_{i+1} \in E(G)$, insert w_i and w_{i+1} into C by replacing $x_i x_{i+1}$ by $x_i w_i w_{i+1} x_{i+1}$. Set i := i + 2.

Lemma 2.1 Let G be a 4-connected $\{K_{1,3}, Z_8\}$ -free graph of order n and let C be a cycle of length $t \ge 11$ in G. If G contains no (t - 1)-cycles, then C contains a chord.

Proof Suppose that C is chordless. Since G is 4-connected, C is not a hamiltonian cycle. Thus, for any $v \in V(C)$, there is a vertex $x \notin V(C)$ such that $vx \in E(G)$. As $v^+v^- \notin E(G)$, we have either $v^+x \in E(G)$ or $v^-x \in E(G)$. Without loss of generality, we assume that $xv^- \in E(G)$. Denote $u = v^-$. Then $uv \in E(C)$ and $G[\{x, u, v\}]$ is a clique in G.

Claim 1 $xv^+, xu^-, xv^{++}, xu^{--}, xv^{+3}, xu^{-3} \notin E(G)$.

Assume that $xv^+ \in E(G)$. Since *G* contains no (t-1)-cycles, xv^{++} , $xu^- \notin E(G)$. As *G* is claw-free and *C* is chordless, for any $z \in C(v^{++}, u^-)$, $xz \notin E(G)$. Thus the subgraph induced by $\{x, v, v^+\} \cup \{v^{++}, \dots, v^{+9}\}$ is Z_8 , a contradiction. This contradiction implies that $xv^+ \notin E(G)$. Similarly, $xu^- \notin E(G)$. As *G* contains no (t-1)-cycles, xv^{++} , xu^{--} , xv^{+3} , $xu^{-3} \notin E(G)$. Claim 1 holds.

Since G is Z_8 -free and since C is chordless and $t \ge 11$, $N_G(x) \cap (V(C) - \{u, v\}) \ne \emptyset$. Let j be a positive integer so that $xv^+, xv^{++}, \ldots, xv^{+(j-1)} \notin E(G)$, and $xv^{+j} \in E(G)$. By Claim 1, $j \ge 4$. Choose $uv \in E(C)$ $(u = v^-)$ and $x \notin V(C)$ so that j is as small as possible.

Consider the neighborhoods of u, u^{--} , and u^{-3} . Since G is 4-connected, there exits a vertex $w_1 \notin V(C) \cup \{x\}$ such that $uw_1 \in E(G)$. Since G is claw-free, we have either $w_1v \in E(G)$ or $w_1u^- \in E(G)$. By Claim 1, $w_1u^{--}, w_1u^{-3} \notin E(G)$. As $xu^{--}, xu^{-3} \notin E(G)$, there are distinct vertices $w_2, w_3 \notin V(C) \cup \{x, w_1\}$ such that $w_2u^{--}, w_3u^{-3} \in E(G)$. If $xv^{+4} \in E(G)$, then the (t-2)-cycle $C[v^{+4}, v]xv^{+4}$ can be extended to a (t-1)-cycle via claw-extension at u^{--} ; if $xv^{+5} \in E(G)$, then the (t-3)-cycle $C[v^{+5}, v]xv^{+5}$ can be extended to a (t-1)-cycle via claw-extensions at u^{--} and u^{-3} ; if $xv^{+6} \in E(G)$, then the (t-4)-cycle $C[v^{+6}, v]xv^{+6}$ can be extended to a (t-1)-cycle via claw-extensions at u, u^{--} and u^{-3} . This implies that $j \ge 7$.

Consider the neighborhoods of u^{-5} and u^{-6} . By the choice of uv and x, $(N_G(u^{-5}) \cup N_G(u^{-6})) \cap \{w_1, w_2, w_3, x\} = \emptyset$. As G is 4-connected, there are distinct vertices $w_4, w_5 \notin V(C) \cup \{x, w_1, w_2, w_3\}$ such that $w_4u^{-5}, w_5u^{-6} \in E(G)$. If $xv^{+7} \in E(G)$, then the (t-5)-cycle $C[v^{+7}, v]xv^{+7}$ can be extended to a (t-1)-cycle via claw-extensions at u, u^{--}, u^{-3} , and u^{-5} ; if $xv^{+8} \in E(G)$, then the (t-6)-cycle $C[v^{+8}, v]xv^{+8}$ can be extended to a (t-1)-cycle via claw-extensions at u, u^{--}, u^{-3} , and u^{-5} ; if $xv^{+8} \in E(G)$, then the (t-6)-cycle $C[v^{+8}, v]xv^{+8}$ can be extended to a (t-1)-cycle via claw-extensions at $u, u^{--}, u^{-3}, u^{-5}$, and u^{-6} . Therefore, $j \geq 9$. Thus the subgraph induced by $\{x, u, v\} \cup \{v^+, \dots, v^{+8}\}$ is Z_8 , a contradiction.

Lemma 2.2 Let G be a claw-free graph with minimum degree at least 4, let C be a cycle of length $t \ge 6$, and let X be the set of vertices in C that are not on any chord of C. If $x_1, x_2, \ldots, x_5 \in V(C) \cap X$, then $N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) \cap N_G(x_4) \cap N_G(x_5) = \emptyset$.

Proof Assume that $x_1, x_2, ..., x_5$ lie on *C* in order along the orientation of *C*. Since $|V(C)| \ge 6$, without loss of generality, we assume that $x_1x_5 \notin E(C)$. If $w \in N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) \cap N_G(x_4) \cap N_G(x_5)$, then $G[\{w, x_1, x_3, x_5\}] = K_{1,3}$, a contradiction.

Theorem 2.3 (Gould, Łuczak, Pfender, Lemma 3.1 in [4]) Let G be a claw-free graph with minimum degree at least 3, let C be a cycle of length $t \ge 5$ without hops, and let

X be the set of vertices in *C* that are not on any chord of *C*. If some chord *xy* of *C* satisfies $|X \cap C(x, y)| \le 2$, then *G* contains cycles of lengths t - 1 and t - 2.

Let *C* be a cycle without hops in *G*, and let *X* be the set of vertices in *C* that are not on any chord of *C*. Let *xy* be a chord of *C* so that (i). $|C(x, y) \cap X|$ is minimum, and (ii). subject to (i), |C[x, y]| is minimum.

In order to prove the following lemmas, we need the following technique to insert some vertices of C(x, y) into the cycle xC[y, x] along the orientation of C. Let $p \in C(x, y) - X$. Then, by the choice of xy, we conclude that p has a neighbor qin C(y, x). Since G is claw-free and C is hop-free, we have either $pq^+ \in E(G)$ or $pq^- \in E(G)$. Without loss of generality, we may assume that $pq^+ \in E(G)$. Then we can insert p into C(y, x) by replacing qq^+ with qpq^+ . Such a vertex p is called an *insertable vertex*, and the edge qq^+ is called the *insertion edge* for p. If there are two vertices $p_1, p_2 \in C(x, y) - X$ such that ww^+ is the insertion edge for both p_1 and p_2 , then vertices in the path $C[p_1, p_2]$ can be inserted into C(y, x) by replacing ww^+ with $wC[p_1, p_2]w^+$. Such path $C[p_1, p_2]$ is called the *insertable path* with respect to the insertion edge ww^+ . If there is no $p' \in C(x, p_1) \cup C(p_2, y) - X$ such that ww^+ is also the insertion edge for p', the path $C[p_1, p_2]$ is called the *maximal insertable path* in C(x, y) with respect to the insertion edge ww^+ . The path $C[p_1, p_2]$ is trivial if $p_1 = p_2$ (Fig. 2).

Let x_1 be the first vertex in C(x, y) - X along the orientation of C. Then x_1 is an insertable vertex in C(x, y) with respect to an insertion edge $w_1w_1^+$. Let $P_1 = C[x_1, y_1]$ be the maximal insertable path in C(x, y) with respect to insertion edge $w_1w_1^+$. Let x_2 be the first vertex in $C(y_1, y) - X$ along the orientation of C. Then x_2 is an insertable vertex in $C(y_1, y)$ with respect to an insertion edge $w_2w_2^+$. By the choice of $P_1, w_2 \neq w_1$. Let $P_2 = C[x_2, y_2]$ be the maximal insertable path in $C(y_1, y)$ with respect to insertion edge $w_2w_2^+$. Repeat this process until $C(y_s, y)$ $-X = \emptyset$. Now P_1, P_2, \ldots, P_s are maximal insertable paths in $C(x, y), C(y_1, y), \ldots,$ $C(y_{s-1}, y)$, with respect to insertion edges $w_1w_1^+, w_2w_2^+, \ldots, w_sw_s^+$, respectively. The set $\{P_1, P_2, \ldots, P_s\}$ is called a *maximal insertable path set* in C(x, y). Denote by W the set of all vertices in these paths, then $C(x, y) - W \subseteq X$.

Lemma 2.4 Let G be a claw-free graph with minimum degree at least 4, let C be a cycle of length $t \ge 6$ without hops, and let X be the set of vertices in C that are not on

🖄 Springer

any chord of C. If some chord xy of C satisfies $|X \cap C(x, y)| \le 4$, then G contains cycles of lengths t - 1 and t - 2.

Proof Choose the chord xy of C such that

- (a) $|C(x, y) \cap X|$ is minimized.
- (b) subject to Condition (a), |C[x, y]| is minimized.

By Theorem 2.3, we assume that $|X \cap C(x, y)| \ge 3$. Thus $|C(x, y) \cap X| \in \{3, 4\}$. By Conditions (a) and (b), $yx^+, xy^- \notin E(G)$. As *G* is claw-free and *C* is hopfree, $xy^+, yx^- \in E(G)$. If $x^-y^+ \notin E(G)$, as $G[\{y, y^+, y^-, x^-\}] \neq K_{1,3}$, we have $x^-y^- \in E(G)$. Similarly, $x^+y^+ \in E(G)$. Thus the cycles $C[y^+, x^-] \overleftarrow{C}[y^-, x^+]y^+$ and $C[y^+, x^-] \overleftarrow{C}[y^-, x]y^+$ are cycles of lengths t - 2 and t - 1, respectively. Therefore, we assume $x^-y^+ \in E(G)$.

If $C(x, y) - X \neq \emptyset$, then let $\{P_1, \ldots, P_s\}$ be a maximal insertable path set in C(x, y). Denote by W the set of all vertices in these paths. Assume that C' is the cycle obtained by inserting vertices of W into the cycle xC[y, x]. Then $C(x, y) - W \neq \emptyset$ (otherwise, the cycles $C'[y^+, x]y^+$ and $C'[y^+, x^-]y^+$ are cycles of lengths t - 1 and t - 2). Let X' = C(x, y) - W. Then $X' \subseteq X$ and $|C(y, x) \cap X| \ge |X'|$. Let k = |X'|. Then the length of the cycle C' is |V(C)| - k = t - k, and $|C(y, x) \cap X| \ge |C(x, y) \cap X| \ge k$.

If k = 1, then the cycles C' and $C'[y, x^-]y$ are cycles of lengths t - 1 and t - 2. If k = 2, then C' is a (t - 2)-cycle. Let $x_0 \in C(y, x) \cap X$, then the (t - 2)-cycle C' can be extended to a (t - 1)-cycle via claw-extension at x_0 . If k = 3, note that $|C(y, x) \cap X| \ge k = 3$. Let $y_1, y_2, y_3 \in C(y, x) \cap X$. Since $\delta(G) \ge 4$, there are vertices $w_1, w_3 \notin V(C)$ such that $y_1w_1, y_3w_3 \in E(G)$. Then the (t - 3)-cycle C' can be extended to a (t - 1)-cycle via claw-extensions at y_1, y_3 , and to a (t - 2)-cycle via claw-extension at y_1, y_3, x_4 are labeled with respect to the orientation of C.

Let $C(y, x) \cap X = \{y_1, y_2, \dots, y_m\}$ be the set of vertices labeled with respect to the orientation of *C* (as well as the orientation of *C'*). As each of $y_i (i = 1, 2, \dots, m)$ has at least two neighbors not on *C*, let $w_1y_1, w_2y_2 \in E(G)$, where $w_1, w_2 \notin V(C)$. Then the (t - 4)-cycle *C'* can be extended to a (t - 2)-cycle via claw-extensions at y_1 and y_2 . Next we will find a (t - 1)-cycle in *G*.

If $N_G(\{y_3, \ldots, y_m\}) - \{w_1, w_2\} \neq \emptyset$, say $w_3y_3 \in E(G)$, then the (t-4)-cycle C' can be extended to a (t-1)-cycle via claw-extensions at y_1, y_2 and y_3 . Therefore, we assume $N_G(\{y_3, \ldots, y_m\}) = \{w_1, w_2\}$. Then $w_1y_i, w_2y_i \in E(G)$ for $i = 3, \ldots, m$. By Lemma 2.2, m = 4. By the minimality of $xy, |C(x, y) \cap X| = 4$, and so $|V(C) \cap X| = 8$.

If $(N_G(y_1) - V(C)) - \{w_1, w_2\} \neq \emptyset$, then there exists $w_4 \in N_G(y_1) - (V(C) \cup \{w_1, w_2\})$ such that $y_1w_4 \in E(G)$. As w_1y_3 , $w_2y_4 \in E(G)$, the (t-4)-cycle C' can be extended to a (t-1)-cycle via claw-extensions at y_1 , y_3 and y_4 . So we may assume that $N_G(y_1) - V(C) = \{w_1, w_2\}$. Similarly, $N_G(y_i) - V(C) = \{w_1, w_2\}(i = 2, 3, 4)$. As G is claw-free, $y_2 = y_1^+$ and $y_4 = y_3^+$, but $|C(y_2, y_3)| \ge 1$ (otherwise, the cycle $C[y_4, y_1]w_1y_4$ is a (t-1)-cycle).

Consider y_2^+ . Then y_2^+ is an endpoint of a chord on *C*. Let y'_2 be the other endpoint of this chord. By the minimality of xy and $|V(C) \cap X| = 8$, we have $y'_2 \in C(x_2, x_3)$.

Without loss of generality, we assume that y'_2 is the last vertex in $C(x_2, x_3)$ adjacent to y_2^+ . Then $y'_2y_2^+$ is the only chord that joins a pair of vertices in $C[y'_2, y'_2^+]$ and $|C(y'_2, y'_2^+) \cap X| = 4$. Thus the chord $y'_2y'_2^+$ also satisfies Conditions (a) and (b). Applying the same discussion mentioned above on the chord $y'_2y'_2^+$ instead of xy, we have $N_G(x_1) - V(C) = \{w_1, w_2\}$ and $N_G(x_2) - V(C) = \{w_1, w_2\}$, contradicting Lemma 2.2.

Lemma 2.5 Let G be a 4-connected $\{K_{1,3}, Z_8\}$ -free graph. If G contains a cycle of length $t \ge 11$, then G contains a cycle of length t - 1.

Proof Let *C* be a cycle of length *t* in *G* and suppose that *G* contains no (t - 1)-cycles. Then *C* does not contain hops. By Lemma 2.1, *C* contains at least one chord. Let *X* be the set of vertices of *C* that are not endpoints of chords of *C*. Let *xy* be a chord of *C*. Then, by Lemma 2.4, $|X \cap C(x, y)| \ge 5$. Choose *xy* such that

- (a) $|C(x, y) \cap X|$ is minimized.
- (b) subject to Condition (a), |C(x, y)| is minimized. Therefore, xy is the only chord that joins a pair of vertices in C[x, y].

Claim 1 xy^+ , yx^- , $x^-y^+ \in E(G)$, and zx^- , $zy^+ \notin E(G)$ for any $z \in C(x, y)$.

By Conditions (a) and (b), yx^+ , $xy^- \notin E(G)$. As G is claw-free and C is hopfree, xy^+ , $yx^- \in E(G)$. If $x^+y^+ \in E(G)$, then the cycle $C[x^+, y]C[x^-, y^+]x^+$ is a (t-1)-cycle, a contradiction. Thus $x^+y^+ \notin E(G)$. Similarly, $x^-y^- \notin E(G)$. Since $G[\{x, y^+, x^-, x^+\}]$ is not a claw, $x^-y^+ \in E(G)$. By Conditions (a) and (b), $y^+z \notin E(G)$ for $z \in C(x^+, y)$, and $x^-z \notin E(G)$ for $z \in C(x, y^-)$. Claim 1 holds.

Claim 2 Let $x_1, x_2, x_3, x_4 \in C(y, x) \cap X$. Then $N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) \cap N_G(x_4) = \emptyset$.

We assume that $w \in N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) \cap N_G(x_4)$. We also assume that x_1, x_2, x_3, x_4 lie on *C* in order along the orientation of *C*. By Claim 1, $|C(x_4, x_1)| \ge |C(x, y)| + |\{x, x^-, y, y^+\}| \ge 9$. As *G* is claw-free and *C* is hop-free, $x_2 = x_1^+$ and $x_4 = x_3^+$, and $|C(x_2, x_3)| \ge 3$. Consider the subgraph induced by $\{x_3, x_4, w\} \cup \{x_1, x_1^-, x_1^{-7}, \dots, x_1^{-7}\}$. Then $wz \notin E(G)$ for $z \in \{x_1^-, \dots, x_1^{-7}\}$ (Otherwise, $G[\{w, z, x_2, x_3\}] = K_{1,3}$, a contradiction). Since $G[\{x_3, x_4, w\} \cup \{x_1, x_1^-, \dots, x_1^{-7}\}]$ is not Z_8 , $G[\{x_1^-, \dots, x_1^{-7}\}]$ contains an edge. Since $|C(x, y)| \ge 5$, by minimality of $xy, x_1^- x_1^{-7} \in E(G)$ but $x_1^- x_1^{-7} \notin E(G)$. Thus $G[\{x_1^-, x_1, x_1^{--}, x_1^{-7}\}] = K_{1,3}$, a contradiction. Claim 2 holds.

Claim 3 $|C(x, y)| \ge 6$.

By way of contradiction, assume that $|C(x, y)| \leq 5$. By Lemma 2.4, $|C(x, y)| = |C(x, y) \cap X| = 5$. As $|C(y, x) \cap X| \geq 5$, let $x_1, x_2, \dots, x_5 \in C(y, x) \cap X$. Consider the bipartite graph H with partitions $\{x_1, x_2, x_3, x_4, x_5\}$ and $\bigcup_{i=1}^{5} \mathbf{N}_G(x_i) - C$. As each x_i has at least two neighbors not in C, by Claim 2, $|N_H(S)| \geq |S| - 1$ for any $S \subseteq \{x_1, x_2, \dots, x_5\}$. Thus H has a matching M with 4 edges. Without loss of generality, we assume that $\{x_1, x_2, x_3, x_4\} \subseteq V(M)$. Then the (t - 5)-cycle xC[y, x] can be extended to a (t - 1)-cycle via claw-extensions at x_1, x_2, x_3 , and x_4 . Claim 3 holds.

Claim 4 Let $x_1, x_2, x_3 \in C(y, x) \cap X$. Then $N_G(x_1) \cap N_G(x_2) \cap N_G(x_3) = \emptyset$.

Assume that $w \in N_G(x_1) \cap N_G(x_2) \cap N_G(x_3)$. Also we assume that x_1, x_2, x_3 lie on the cycle *C* in the order along the orientation of *C*. As *G* is claw-free and $x_1, x_2, x_3 \in X$, we have either $x_2 = x_1^+$ or $x_3 = x_2^+$. Without loss of generality, we assume that $x_2 = x_1^+$. By Claim 3, $|C(x_1, x_3)| \ge |C(x, y)| + |\{x, x^-, y, y^+\}| \ge 10$. Since $x_1, x_2, x_3 \in X$ and *G* is claw-free, we have $x_2x_1^- \notin E(G)$ and $zx_1, zx_2, zw \notin E(G)$ for $z \in \{x_1^{--}, x_1^{-3}, \dots, x_1^{-8}\}$.

If $G[\{x_1^-, x_1^{--}, ..., x_1^{-8}\}]$ contains a chord, by Claim 3 and the minimality of $xy, x_1^-x_1^{-8} \in E(G)$ but $x_1^{--}x_1^{-8} \notin E(G)$. Thus $G[\{x_1^-, x_1, x_1^{--}, x_1^{-8}\}]$ = $K_{1,3}$, a contradiction. Hence, $G[\{x_1^-, x_1^{--}, ..., x_1^{-8}\}] = P_8$. As $G[\{w, x_1, x_2\} \cup \{x_1^-, x_1^{--}, ..., x_1^{-8}\}]$ is not $Z_8, wx_1^- \in E(G)$. It implies that $x_3 \neq x_2^+$ (otherwise, the cycle $C[x_3, x_1^-]wx_3$ is a (t - 1)-cycle, a contradiction). Therefore, $G[\{w, x_1^-, x_2, x_3\}] = K_{1,3}$, a contradiction. Claim 4 holds.

Let $\{P_1, \ldots, P_s\}$ be a maximal insertable path set in C(x, y). Denote by W the set of all vertices in these paths. Assume that C' is the cycle obtained by inserting vertices of W into the cycle xC[y, x]. Then $C(x, y) - W \neq \emptyset$ (otherwise, the cycle $C'[y^+, x]y^+$ is a (t-1)-cycle). Let X' = C(x, y) - W. Then $X' \subseteq X$ and $|C(y, x) \cap X| \ge |X'|$. Let k = |X'|. Then the length of the cycle C' is |V(C)| - k = t - k, and so $k \ge 2$.

As $|X \cap C(x, y)| \ge |C(x, y) - W| \ge k$, by Condition (a), $|C(y, x) \cap X| \ge k$. Let $x_1, x_2, \ldots, x_k \in C(y, x) \cap X$ and they occur on *C* in order along the orientation of *C*. Obviously, x_1, x_2, \ldots, x_k are not endpoints of insertion edges. Since *G* is 4-connected, we assume that $u_i, v_i \notin C$ are adjacent to x_i . Consider the bipartite graph *H* with partitions $\{x_1, x_2, \ldots, x_k\}$ and $\bigcup_{i=1}^k \{u_i, v_i\}$. By Claim 4, for any $S \subseteq \{x_1, x_2, \ldots, x_k\}$, $|N_H(S)| \ge |S|$. Thus *H* has a matching *M* covering $C(y, x) \cap X$. Assume that $M = \{x_1w_1, x_2w_2, \ldots, x_kw_k\}$. Then the (t - k)-cycle *C'* can be extended a (t - 1)-cycle via claw-extensions at $x_1, x_2, \ldots, x_{k-1}$, a contradiction.

Theorem 2.6 (Lai et al. [5]) Every 3-connected $\{K_{1,3}, Z_8\}$ -free graph is hamiltonian.

By Lemmas 2.5 and Theorem 2.6, G contains cycles of lengths 10 through |V(G)|.

3 Existence of 9-Cycles

Lemma 3.1 If G is a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, then G contains a 9-cycle.

Proof Suppose that G does not contain a 9-cycle. By Lemma 2.5 and Theorem 2.6, G contains a 10-cycle C, and we let $\{v_1, v_2, \ldots, v_{10}\}$ be the vertex set of C labeled in order. By Lemma 2.4, C is chordless.

Claim 1 Let $a \notin V(C)$ have a neighbor in V(C). Then $|N_G(a) \cap V(C)| \leq 3$. Moreover, if $|N_G(a) \cap V(C)| = 3$, then these three vertices are consecutive on *C*.

Since $a \notin V(C)$ has a neighbor in V(C), we assume $av_1 \in E(G)$. As G is claw-free and has no chords of C, either $av_2 \in E(G)$ or $av_{10} \in E(G)$. Without loss of generality, we assume that $av_{10} \in E(G)$. As G has no 9-cycles, $N_G(a) \cap \{v_3, v_4, v_7, v_8\} = \emptyset$. Thus $N_G(a) \cap V(C) \subseteq \{v_1, v_{10}, v_2, v_9, v_5, v_6\}$. If $av_5 \in E(G)$, then $av_6 \in E(G)$ since G is claw-free and C is chordless. Since $av_3 \notin E(G)$, let $b \in N_G(v_3)$ such that $b \notin V(C) \cup \{a\}$. Then the 8-cycle $v_{10}v_1v_2v_3v_4v_5v_6av_{10}$ can be extended to a 9-cycle via claw-extension at v_3 . This tells us that $av_5 \notin E(G)$ and so $av_6 \notin E(G)$. Therefore, $N_G(a) \cap V(C) \subseteq \{v_1, v_{10}, v_2, v_9\}$.

If both $av_2 \in E(G)$ and $av_9 \in E(G)$, then the cycle $v_2v_3v_4v_5v_6v_7v_8v_9av_2$ is a 9-cycle. Thus we have $N_G(a) \cap V(C) \in \{\{v_1, v_{10}, v_2\}, \{v_1, v_{10}, v_9\}, \{v_1, v_{10}\}\}$. Claim 1 holds.

Claim 2 There is a vertex $a \notin V(C)$ such that $|N_G(a) \cap V(C)| = 2$.

By way of contradiction, we assume that for any $a \notin V(C)$, $|N_G(a) \cap V(C)| \neq 2$. By Claim 1, every vertex with a neighbor on *C* has exactly three neighbors on *C* which are consecutive. For $1 \le i \le 10$, let $V_i = N_G(v_{i-1}) \cap N_G(v_i) \cap N_G(v_{i+1})$, where indices are taken modulo 10. If there is a vertex $w \notin V(C) \cup \bigcup_{i=1}^{10} V_i$ that has a neighbor w_i in some V_i , then $\{w_i, v_{i-1}, v_{i+1}, w\}$ induces a claw. Thus we may assume that the sets V_1, V_2, \ldots, V_{10} partition $V(G) \setminus V(C)$. If there is an edge joining V_i and V_j when $|i - j| \ge 2 \pmod{10}$, then G contains a 9-cycle. If there are two nonconsecutive values i < j such that V_i and V_j are empty, then $\{v_i, v_j\}$ is a cut set, a contradiction. Thus for some $1 \le i \le 10$, the sets V_i, V_{i+1}, V_{i+2} , and V_{i+3} are all non-empty. Let w_j be any vertex in V_j for $i \le j \le i + 3$. It follows that $v_i w_i v_{i+1} w_{i+2} v_{i+3} v_{i+4} w_{i+3} v_{i+2} w_{i+1} v_i$ is a 9-cycle. Claim 2 holds.

By Claim 2, let $N_G(x_1) \cap V(C) = \{v_1, v_2\}$. Since G is 4-connected, let $\{y_1, y_2, v_1, v_2\} \subseteq N_G(x_1)$. As G has no 9-cycles, $N_G(w) \cap \{v_5, v_6, v_7, v_8\} = \emptyset$ for $w \in N_G(x_1) - \{v_1, v_2\}$.

Claim 3 For any $w \in N_G(x_1) - \{v_1, v_2\}, N_G(w) \cap \{v_3, v_4, v_9, v_{10}\} \neq \emptyset$.

By way of contradiction, assume that $N_G(y_1) \cap \{v_3, v_4, v_9, v_{10}\} = \emptyset$. If $y_1v_2 \in E(G)$, then the subgraph induced by $\{x_1, y_1, v_2\} \cup \{v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ is Z_8 . Thus $y_1v_2 \notin E(G)$. Similarly, $y_1v_1 \notin E(G)$, and therefore $N_G(y_1) \cap V(C) = \emptyset$. As *G* has no 9-cycles, $N_G(w) \cap \{v_6, v_7\} = \emptyset$ for any $w \in N_G(y_1) - \{x_1\}$.

Claim 3.1 For any $w \in N_G(x_1) - \{v_1, v_2, y_1\}, N_G(w) \cap \{v_3, v_4, v_9, v_{10}\} \neq \emptyset$.

Otherwise, by the discussion above, $wv_1, wv_2 \notin E(G)$. As G is claw-free, $y_1w \in E(G)$. Thus the subgraph induced by $\{x_1, y_1, w\} \cup \{v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$ is Z_8 , a contradiction. Claim 3.1 holds.

Claim 3.2 Let $z \in N_G(y_1) - \{x_1\}$. Then $N_G(z) \cap \{v_5, v_8\} = \emptyset$.

By way of contradiction, we assume that $zv_8 \in E(G)$. As $N_G(y_1) \cap V(C) = \emptyset$ and $N_G(x_1) \cap V(C) = \{v_1, v_2\}$, and as *G* is 4-connected, there is a vertex $y'_9 \notin V(C) \cup \{x_1, y_1, z\}$ such that $v_9v'_9 \in E(G)$. Then the 8-cycle $v_2x_1y_1zv_8v_9v_{10}v_1v_2$ can be extended to a 9-cycle via claw-extension at v_9 , a contradiction. Therefore, Claim 3.2 holds.

Claim 3.3 Let $z \in N_G(y_1) - \{x_1\}$. Then $N_G(z) \cap \{v_4, v_9\} = \emptyset$.

By way of contradiction, we assume that $zv_9 \in E(G)$. As $zv_8 \notin E(G)$, $zv_{10} \in E(G)$. By Claim 1, $N_G(z) \subseteq \{v_9, v_{10}, v_1\}$. Considering the subgraph induced by $\{z, v_9, v_{10}\} \cup \{v_8, v_7, v_6, v_5, v_4, v_3, v_2, x_1\}$, we have $zx_1 \in E(G)$.

Consider the neighborhood of v_3 . As $N_G(v_3) \cap \{x_1, y_1, z\} = \emptyset$, there is a vertex $v'_3 \in N_G(v_3)$ such that $v'_3 \notin V(C) \cup \{x_1, y_1, z\}$. As *G* has no 9-cycles, $v'_3x_1, v'_3y_1, v'_3v_{10} \notin E(G)$. As $x_1v_{10} \notin E(G)$ and as *G* is claw-free, $v'_3z \notin E(G)$. Since the subgraph induced by $\{x_1, y_1, z\} \cup \{v_9, v_8, v_7, v_6, v_5, v_4, v_3, v'_3\}$ is not $Z_8, v'_3v_4 \in E(G)$. If $v'_3v_5 \notin E(G)$, then the subgraph induced by $\{v'_3, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}, v_1, x_1\}$ is Z_8 ; if $v'_3v_5 \in E(G)$, then the subgraph induced by $\{v'_3, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}, v_1, x_1, y_1\}$ is Z_8 , a contradiction. Claim 3.3 holds.

Claim 3.4 There exist at least two vertices $z \in N_G(y_1) - \{x_1\}$ such that $N_G(z) \cap \{v_3, v_{10}\} \neq \emptyset$.

By way of contradiction, assume that there is at most one vertex $z \in N_G(y_1) - \{x_1\}$ such that $N_G(z) \cap V(C) \cap \{v_3, v_{10}\} \neq \emptyset$. Since *G* is 4-connected, there are at least two vertices $z_1, z_2 \in N_G(y_1) - \{x_1\}$ such that $N_G(z_1) \cap \{v_3, v_{10}\} = \emptyset$ and $N_G(z_2) \cap \{v_3, v_{10}\} = \emptyset$. By Claim 3.3, $N_G(z_1) \cap \{v_3, v_4, v_9, v_{10}\} = \emptyset$ and $N_G(z_2) \cap \{v_3, v_4, v_9, v_{10}\} = \emptyset$. By Claim 3.1, $z_1x_1, z_2x_1 \notin E(G)$. Thus $z_1z_2 \in E(G)$. As $G[\{v_2, v_3, x_1, z_1\}] \neq K_{1,3}$, we have $z_1v_2 \notin E(G)$. Similarly, $z_2v_2 \notin E(G)$. Therefore, the subgraph induced by $\{y_1, z_1, z_2\} \cup \{x_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ is Z_8 , a contradiction. Claim 3.4 holds.

By Claim 3.4, we assume that $z_1, z_2 \in N_G(y_1) - \{x_1\}$ with $N_G(z_1) \cap \{v_3, v_{10}\} \neq \emptyset$ and $N_G(z_2) \cap \{v_3, v_{10}\} \neq \emptyset$. Without loss of generality, we assume that $z_1v_{10} \in E(G)$. Then $z_1v_1 \in E(G)$. By Claim 1, $z_1v_3 \notin E(G)$. If $z_1x_1 \in E(G)$, then the subgraph induced by $\{x_1, y_1, z_1\} \cup \{v_{10}, v_9, v_8, v_7, v_6, v_5, v_4, v_3\}$ would be Z_8 . This contradiction implies that $z_1x_1 \notin E(G)$. Similarly, $z_2x_1 \notin E(G)$ and so $z_1z_2 \in E(G)$. Since $G[\{v_2, x_1, v_3, z_1\}]$ is not a claw, $z_1v_2 \notin E(G)$. Then $N_G(z_1) \cap V(C) = \{v_1, v_{10}\}$.

Consider the neighborhood of z_2 . If $z_2v_3 \notin E(G)$, then $z_2v_{10} \in E(G)$, and so $N_G(z_2) \cap V(C) = \{v_1, v_{10}\}$. It implies that the subgraph induced by $\{y_1, z_1, z_2\} \cup \{x_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$ is Z_8 . This contradiction tells us that $z_2v_3 \in E(G)$. Thus $N_G(z_2) \cap V(C) = \{v_2, v_3\}$.

We will finish the proof of Claim 3 by considering the neighborhood of x_1 . As $N_G(x_1) \cap V(C) = \{v_1, v_2\}$ and $z_1x_1, z_2x_1 \notin E(G)$, there is a vertex $y_2 \in N_G(x_1)$ such that $y_2 \notin V(C) \cup \{y_1, z_1, z_2\}$. By Claim 3.1, $N_G(y_2) \cap \{v_3, v_4, v_9, v_{10}\} \neq \emptyset$. By symmetry, we assume that either $y_2v_4 \in E(G)$ or $y_2v_3 \in E(G)$. If $y_2v_4 \in E(G)$, then the cycle $v_4y_2x_1y_1z_2z_1v_1v_2v_3v_4$ is a 9-cycle; if $y_2v_3 \in E(G)$, then the cycle $v_3y_2x_1y_1z_2z_1v_1o_1v_2v_3$ is a 9-cycle. This contradiction finishes the proof of Claim 3.

Claim 4 For any $w \in N_G(x_1) - \{v_1, v_2\}, N_G(w) \cap \{v_4, v_9\} = \emptyset$. Therefore, $N_G(w) \cap \{v_3, v_{10}\} \neq \emptyset$.

By way of contradiction, we assume $y_1, y_2 \in N_G(x_1) - \{v_1, v_2\}$ and $y_1v_9 \in E(G)$. Then $y_1v_{10} \in E(G)$ since $y_1v_8 \notin E(G)$. By Claim 1, $y_1v_2 \notin E(G)$. As *G* has no 9-cycles, $y_2v_4 \notin E(G)$. If $y_2v_3 \in E(G)$, then we consider the 8-cycle $C' = v_9v_{10}v_1v_2v_3y_2x_1y_1v_9$. As *G* is 4-connected, there is a vertex $a \notin V(C')$ so that *a* is adjacent to one of $V(C') - \{v_3, v_9, x_1\}$. If $ay_2 \in E(G)$, then either $av_3 \in E(G)$ or $ax_1 \in E(G)$. Thus C' can be extended to a 9-cycle by replacing $v_3y_2x_1$ to be $v_3ay_2x_1$ or $v_3y_2ax_1$. If *a* is adjacent to any other vertex in $V(C') - \{v_3, v_9, x_1\}$, we can still use this method to insert *a* into C' to get a 9-cycle. This contradiction implies that $y_2v_3 \notin E(G)$. Next we will prove that $wv_2 \notin E(G)$ for any $w \in N_G(x_1) - \{v_1, v_2\}$. By way of contradiction, we may assume that $y_2v_2 \in E(G)$. Then $y_2v_1 \in E(G)$. By Claims 1 and 3, $y_2v_{10} \in E(G)$ and $y_2v_9 \notin E(G)$. Since the subgraph induced by $\{v_1, x_1, y_2\} \cup \{y_1, v_9, v_8, v_7, v_6, v_5, v_4, v_3\}$ is not Z_8 , we have either $y_1y_2 \in E(G)$ or $y_1v_1 \in E(G)$. Since $d_G(v_9) \ge 4$, let $y'_9 \in N_G(v_9) - (V(C) \cup \{y_1, y_2, x_1\})$. If $v'_9v_8 \in E(G)$, as G has no 9-cycles, $N_G(v'_9) \cap \{y_1, y_2, v_{10}, v_1\} = \emptyset$. Since the subgraph induced by

$$\begin{cases} \{y_1, v_1, v_{10}\} \cup \{v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9'\}, & \text{if } y_1 v_1 \in E(G) \\ \{y_1, y_2, v_{10}\} \cup \{v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9'\}, & \text{if } y_1 y_2 \in E(G) \end{cases},$$

is not Z_8 , we have $v'_9v_7 \in E(G)$. Thus the subgraph induced by $\{v_7, v'_9, v_8\}$ $\cup \{v_6, v_5, v_4, v_3, v_2, x_1, y_1, v_{10}\}$ is Z_8 . This contradiction implies that $v'_9v_8 \notin E(G)$. Thus $v'_9v_{10} \in E(G)$. As $G[\{v_9, v'_9, y_1, v_8\}] \neq K_{1,3}, y_1v'_9 \in E(G)$. Let H be a subgraph induced by $\{v_1, v_2, v_{10}, v_9, v'_9, y_1, y_2, x_1\}$. Since G is 4-connected, there is a vertex b adjacent to a vertex in $V(H) - \{v_2, v_9, v'_9\}$. If $by_2 \in E(G)$, by $G[\{y_2, b, v_2, v_{10}\}]$, we have either $bv_2 \in E(G)$ or $bv_{10} \in E(G)$. Thus

$$C' = \begin{cases} v_2 b y_2 x_1 y_1 v'_9 v_9 v_{10} v_1 v_2, & \text{if } b v_2 \in E(G) \\ v_2 y_2 b v_{10} v_9 v'_9 y_1 x_1 v_1 v_2, & \text{if } b v_{10} \in E(G) \end{cases}$$

is a 9-cycle in G. If b is adjacent to any other vertex in $V(H) - \{v_2, v_9, v'_9\}$, we can still use this method to insert b into H to get a 9-cycle. This contradiction implies that $wv_2 \notin E(G)$ for any $w \in N_G(x_1) - \{v_1, v_2\}$.

As $y_1v_2 \notin E(G)$, we have $y_1y_2 \in E(G)$. By Claim 3, we have $y_2v_{10} \in E(G)$. Let $v'_8 \in N_G(v_8)$ such that $v'_8 \notin V(C) \cup \{y_1, y_2, x_1\}$. Obviously, $x_1, y_1, y_2 \notin N_G(v'_8)$. Considering the subgraph induced by $\{x_1, y_1, y_2\} \cup \{v_2, v_3, v_4, v_5, v_6, v_7, v_8, v'_8\}$, we have $v'_8v_7 \in E(G)$. By the subgraph induced by $\{v_7, v_8, v'_8\} \cup \{v_6, v_5, v_4, v_3, v_2, x_1, y_2, v_{10}\}$, we have $v'_8v_6 \in E(G)$. Since the subgraph induced by $\{v_6, v_7, v'_8\} \cup \{v_5, v_4, v_3, v_2, x_1, y_2, v_{10}\}$, is not $Z_8, y_2v_9 \in E(G)$. Again, since the subgraph induced by $\{v_9, y_1, y_2\} \cup \{v_8, v_7, v_6, v_5, v_4, v_3, v_2, v_1\}$ is not Z_8 , we have either $y_2v_1 \in E(G)$ or $y_1v_1 \in E(G)$. By symmetry, we assume that $y_2v_1 \in E(G)$.

Consider the neighborhood of v_2 . As $y_1v_2, y_2v_2 \notin E(G)$, let $v'_2 \in N_G(v_2)$ such that $v'_2 \notin V(C) \cup \{y_1, y_2, x_1\}$. As $wv_2 \notin E(G)$ for any $w \in N_G(x_1) - \{v_1, v_2\}$, $v'_2x_1 \notin E(G)$. Since $G[\{v_2, v'_2, v_3, x_1\}]$ is not a claw, $v'_2v_3 \in E(G)$. Thus $v'_2v_1, v'_2y_1, v'_2y_2 \notin E(G)$ since G has no 9-cycles. By the subgraph induced by $\{x_1, v_1, y_2\} \cup \{v_9, v_8, v_7, v_6, v_5, v_4, v_3, v'_2\}$, we have $v'_2v_4 \in E(G)$. By Claim 1, $v'_2v_5 \notin E(G)$. Thus the subgraph induced by $\{v_3, v_4, v'_2\} \cup \{v_5, v_6, v_7, v_8, v_9, v_{10}, v_1, x_1\}$ is Z_8 , a contradiction. Claim 4 holds.

By Claim 4, for any $w \in N_G(x_1)$, either $wv_{10} \in E(G)$ or $wv_3 \in E(G)$. If there are two vertices, say $y_1, y_2 \in N_G(x_1) - \{v_1, v_2\}$, such that $y_1v_{10}, y_2v_3 \in E(G)$. Then $y_1v_1, y_2v_2 \in E(G)$. Let H be the subgraph induced by $\{v_{10}, v_1, v_2, v_3, x_1, y_1, y_2\}$. Since G is 4-connected, there are two vertices q_1, q_2 such that $q_1, q_2 \notin V(H)$ adjacent to different vertices in $V(H) - \{v_3, v_{10}\}$. Since G is claw-free, by Claim 4, $N_G(q_i)$ $\cap \{v_3, v_{10}\} \neq \emptyset(i = 1, 2)$. By symmetry, we assume that $q_1v_{10} \in E(G)$. Then $q_1v_9 \notin E(G)$ (otherwise, the subgraph induced by $V(H) \cup \{q_1, v_9\}$ contains a 9-cycle). Thus $q_1v_1 \in E(G)$. Using this discussion on q_2 , we have either $q_2v_3, q_2v_2 \in E(G)$ or $q_2v_{10}, q_2v_1 \in E(G)$. If $q_2v_3, q_2v_2 \in E(G)$, then $v_{10}y_1x_1y_2v_3q_2v_2v_1q_1v_{10}$ is a 9-cycle; if $q_2v_{10}, q_2v_1 \in E(G)$, then $q_1q_2 \in E(G)$ (otherwise, $G[\{v_{10}, q_1, q_2, v_9\}]$ is a claw), and so $v_{10}q_2q_1v_1v_2v_3y_2x_1y_1v_{10}$ is a 9-cycle. This contradiction implies that either $N_G(v_3) \cap (N_G(x_1) - \{v_1, v_2\}) = \emptyset$ or $N_G(v_{10}) \cap (N_G(x_1) - \{v_1, v_2\}) = \emptyset$. Without loss of generality, we assume that $N_G(v_3) \cap (N_G(x_1) - \{v_1, v_2\}) = \emptyset$. Thus for any $w \in N_G(x_1) - \{v_1, v_2\}, N_G(w) \cap (V(C) - \{v_1, v_2\}) = \{v_{10}\}$.

Consider the neighborhood of x_1 , and let $N_G(x_1) = \{v_1, v_2, y_1, y_2, \ldots, y_k\}(k \ge 2)$. Then $y_iv_{10} \in E(G)(i = 1, 2, \ldots, k)$. By Claim 4, the subgraph induced by $\{y_1, y_2, \ldots, y_k\}$ is a clique, and $y_iv_1 \in E(G)(i = 1, 2, \ldots, k)$. Let H' be the subgraph induced by $N_G(x_1) \cup \{x_1, v_{10}\}$. Since G is 4-connected, there are at least two vertices $q_3, q_4 \notin V(H')$ adjacent to different vertices in $V(H') - \{v_2, v_{10}\}$. Since G is clawfree, by Claim 4, $q_3v_{10}, q_4v_{10} \in E(G)$. If $k \ge 3$, then $q_3v_9 \notin E(G)$ (otherwise, the subgraph induced by $V(H') \cup \{q_3, v_9\}$ contains a 9-cycle). Similarly, $q_4v_9 \notin E(G)$. Thus $q_3q_4, q_3v_1, q_4v_1 \in E(G)$, and so $v_{10}q_3q_4v_1v_2x_1y_1y_2y_3v_{10}$ is a 9-cycle. This contradiction implies that k = 2 and $N_G(x_1) = \{v_1, v_2, y_1, y_2\}$. Notice that q_3, q_4 are adjacent to different vertices in $\{y_1, y_2, v_1\}$. By symmetry, we have either $q_3y_1, q_4v_1 \in E(G)$. For each of these two cases, $q_3v_9, q_4v_9 \notin E(G)$ since G has no 9-cycles. Therefore, $q_3q_4 \in E(G)$ and $\{y_1, y_2, v_1\} \subseteq N_G(q_i)$ for i = 3, 4.

Since the subgraph induced by $\{q_3, q_4, v_1\} \cup \{v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$ is not Z_8 , we have either $q_3v_2 \in E(G)$ or $q_4v_2 \in E(G)$. By symmetry, we assume that $q_3v_2 \in E(G)$. Since G has no 9-cycles, for any $x \in \{y_1, y_2, x_1, v_1, q_3\}$, $N_G(x) \subseteq H' \cup \{q_3, q_4\}$. This implies that $\{v_1, v_{10}, q_4\}$ is a 3-cut, a contradiction.

4 Existence of 4-Cycles

In this section we will prove that if *G* is a 4-connected, claw-free and Z_8 -free graph, then *G* is the line graph of the Petersen graph if *G* has no 4-cycles. Suppose that *G* is a 4-connected, claw-free and Z_8 -free graph and that *G* does not have 4-cycles. Since *G* is claw-free, the neighborhood of every vertex is either connected or two cliques. Since *G* is 4-connected, the minimum degree of *G* is at least 4. If the neighborhood of a vertex is connected, then the neighborhood of this vertex contains a path of order 3, yielding a 4-cycle. Thus the neighborhood of every vertex is two cliques. If a vertex has degree at least 5, then one of the cliques has at least three vertices, yielding a 4-cycle. Thus we have the following properties for the graph *G*.

- (P0) G is 4-regular and, for any $v \in V(G)$, $G[N_G(v) \cup \{v\}]$ are two triangles identified at v.
- (P1) Any two distinct vertices in G can have at most one common neighbor.

By Theorem 1.3, *G* has an induced subgraph Z_5 . Let $H = Z_t$ be an induced subgraph of *G* such that *t* is maximized. Since *G* is Z_8 -free, $t \in \{5, 6, 7\}$. Let V(H)= $\{v, v_1, v_2, \ldots, v_{t+2}\}$ and $E(H) = \{vv_1, vv_2, v_1v_2, v_2v_3, \ldots, v_tv_{t+1}, v_{t+1}v_{t+2}\}$. By the choice of H, v_{t+2} has no neighbors in $V(H) \setminus \{v_{t+1}\}$. By (PO), let y_1, y_2, y_3 be the three neighbors of v_{t+2} which are not in $V(H) \setminus \{v_{t+1}\}$ and we may assume, without loss of generality, that y_3 is adjacent to v_{t+1} and that y_1 and y_2 are adjacent. Since G is claw-free and G does not have 4-cycles, y_1 , y_2 , and y_3 satisfy the following properties.

- (P2) By the choice of *H* (the maximum of *t*), both y_1 and y_2 have neighbors in $V(H) \setminus \{v_{t+2}\}$.
- (P3) y_1 (also y_2) is not adjacent to v_{t+1} or v_t , and y_3 is not adjacent to v_{t-1} , v_t (since *G* has no 4-cycles).
- (P4) Any vertex not in *H* that is adjacent to v_i for $i \in \{2, 3, ..., t+1\}$ is also adjacent to v_{i+1} or v_{i-1} (since *G* is claw-free).

Lemma 4.1 Let G be a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, and let $H = Z_t$ be an induced subgraph of G such that t is maximized. If G has no 4-cycles, then $t \neq 5$.

Proof Assume that t = 5. First of all, we claim that $N_G(v_3) \cap \{y_1, y_2\} \neq \emptyset$. By way of contradiction, we assume that $N_G(v_3) \cap \{y_1, y_2\} = \emptyset$. By (P3), $N_G(v_5) \cap \{y_1, y_2\} = \emptyset$. By (P4), $N_G(v_4) \cap \{y_1, y_2\} = \emptyset$. By (P2), $N_G(y_1) \cap \{v, v_1, v_2\} \neq \emptyset$ and $N_G(y_2) \cap \{v, v_1, v_2\} \neq \emptyset$. Note that $v_7 \in N_G(y_1) \cap N_G(y_2)$. By (P1), y_1 and y_2 are adjacent to two distinct vertices in $\{v, v_1, v_2\}$, implying a 4-cycle in G. This contradiction implies that $N_G(v_3) \cap \{y_1, y_2\} \neq \emptyset$. Without loss of generality, we assume that $v_3y_2 \in E(G)$.

Next we claim that $v_4y_2 \in E(G)$. Otherwise, by (P4), $v_2y_2 \in E(G)$. As *G* has no 4-cycles, $N_G(y_1) \cap \{v_1, v_2, v_3, v_4, v\} = \emptyset$. By (P3), $N_G(y_1) \cap (V(H) - \{v_7\}) = \emptyset$, contradicting (P2). Therefore, $v_4y_2 \in E(G)$. By (P1), $N_G(y_1) \cap \{v_2, v_3, v_4, v_5, v_6, y_3\} = \emptyset$. By (P2), $N_G(y_1) \cap \{v_1, v\} \neq \emptyset$. By symmetry, we assume that $y_1v_1 \in E(G)$. Then $v_1y_2, v_1y_3 \notin E(G)$.

Consider $N_G(v_1)$. As $d_G(v_1) = 4$, we assume that $N_G(v_1) = \{v, v_2, y_1, a\}$, where $a \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $ay_1 \in E(G)$. As *G* has no 4-cycles, $N_G(a) \cap \{v_2, v_3, v_4, v_6, y_3\} = \emptyset$. By (P4), $v_5a \notin E(G)$. As *G* has no 4-cycles again, $N_G(y_3) \cap \{v_3, v_4, v_5\} = \emptyset$. As $d_G(v_1) = 4$, $y_3v_1 \notin E(G)$. By (P3), $y_3v_2 \notin E(G)$. Thus the subgraph induced by $\{a, y_1, v_1\} \cup \{v_2, \dots, v_6, y_3\}$ is Z₆. It contradicts the maximality of *t*.

Lemma 4.2 Let G be a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, and let $H = Z_t$ be an induced subgraph of G such that t is maximized. If G has no 4-cycles, then $t \neq 7$.

Proof Assume that t = 7.

Claim 1 Either $v_4 \in N_G(y_1) \cup N_G(y_2)$ or $v_5 \in N_G(y_1) \cup N_G(y_2)$.

Assume that $v_4, v_5 \notin N_G(y_1) \cup N_G(y_2)$. By (P3), $v_7, v_8 \notin N_G(y_1) \cup N_G(y_2)$. By (P4), $v_6 \notin N_G(y_1) \cup N_G(y_2)$. Therefore, $N_G(y_1) \cap \{v, v_1, v_2, v_3\} \neq \emptyset$ and $N_G(y_2) \cap \{v, v_1, v_2, v_3\} \neq \emptyset$, contradicting (P1). Claim 1 holds.

Claim 2 $v_4 \in N_G(y_1) \cup N_G(y_2)$.

Assume $v_4 \notin N_G(y_1) \cup N_G(y_2)$. By Claim 1, $v_5 \in N_G(y_1) \cup N_G(y_2)$. Without loss of generality, we assume that $y_2v_5 \in E(G)$. By (P4), $y_2v_6 \in E(G)$. By (P1) and (P3), $N_G(y_1) \cap \{v_4, v_5, v_6, v_7, v_8\} = \emptyset$. By (P2), $N_G(y_1) \cap \{v, v_1, v_2, v_3\} \neq \emptyset$.

We claim that $y_1v_2 \notin E(G)$. By way of contradiction, we assume that $y_1v_2 \in E(G)$. By (P1), $N_G(y_1) \cap \{v, v_1\} = \emptyset$. By (P4), $y_1v_3 \in E(G)$. As G has no 4-cycles, $N_G(y_3) \cap \{v_2, v_3, v_5, v_6, v_7\} = \emptyset$. By (P4), $y_3v_4 \notin E(G)$. As $d_G(v_3) = 4$, let $N_G(v_3)$

79

= { v_2, v_4, y_1, v_3' }, where $v_3' \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $v_3'v_4 \in E(G)$. As *G* has no 4-cycles, $N_G(v_3') \cap \{v, v_1, v_2, v_5, v_6\} = \emptyset$. As *G* is 4-regular, $v_3'v_9, v_3'y_1 \notin E(G)$. Since the subgraph induced by { v, v_1, v_2 } $\cup \{y_1, v_9, v_8, v_7, v_6, v_5, v_4, v_3'\}$ is not Z_8 , by (P4), we have $v_3'v_7, v_3'v_8 \in E(G)$. By (P1), we have either $v_1y_3 \notin E(G)$ or $vy_3 \notin E(G)$. Without loss of generality, we assume that $v_1y_3 \notin E(G)$. Then $vy_3 \notin E(G)$ and the subgraph induced by { y_3, v_9, v_8 } $\cup \{v_7, v_6, \ldots, v_1\}$ is Z_7 . By (P0), we assume that $N_G(v_1) = \{v, v_2, z_1, z_2\}$, where $z_1, z_2 \notin V(H) \cup \{y_1, y_2, y_3, v_3'\}$. Then $z_1z_2 \in E(G)$. By symmetry and Claim 1, { v_5, v_6 } $\cap (N_G(z_1) \cup N_G(z_2)) \neq \emptyset$. Since *G* is 4-regular, we assume that $N_G(z_1) \cap \{v_5, v_6\} \neq \emptyset$. Then we have either $z_1v_6, z_1v_7 \in E(G)$ or $z_1v_4, z_1v_5 \in E(G)$. For each of these two cases, $N_G(z_2) \cap \{v_2, v_3, \ldots, v_9\} = \emptyset$. By the maximality of $t, z_2y_3 \in E(G)$. Let $z_3 \in N_G(y_3) - \{v_8, v_9, z_2\}$. Then $z_3z_2 \in E(G)$. Let $z_4 \in N_G(v_5) - \{v_4, v_6, y_2\}$ if $z_1v_6, z_1v_7 \in E(G)$, or $z_4 \in N_G(v_6) - \{v_5, v_7, y_2\}$ if $z_1v_4, z_1v_5 \in E(G)$. Since *G* is 4-regular, { v, z_3, z_4 } is a 3-cut in *G*, a contradiction. So $y_1v_2 \notin E(G)$.

By (P4), $v_3y_1 \notin E(G)$, and so $N_G(y_1) \cap \{v, v_1\} \neq \emptyset$. We assume that $v_1y_1 \in E(G)$. Then $v_1y_3 \notin E(G)$. Consider $N_G(v_1)$. Assume that $N_G(v_1) = \{v, v_2, y_1, a\}$, where $a \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $ay_1 \in E(G)$. As G has no 4-cycles, $N_G(a) \cap \{v, v_2, v_3, v_5, v_6, v_8, v_9, y_3\} = \emptyset$. By (P4), $av_4, av_7 \notin E(G)$. Notice that the subgraph induced by $\{a, v_1, y_1\} \cup \{v_2, v_3, \dots, v_8, y_3\}$ is not Z_8 . We have $N_G(y_3) \cap \{v_2, v_3, v_4\} \neq \emptyset$. Then $y_3v_3 \in E(G)$.

Consider the neighborhood of v_7 , and let $N_G(v_7) = \{b, c, v_6, v_8\}$, where $b, c \notin V(H) \cup \{a, y_1, y_2, y_3\}$. By (P0), we assume $bv_6, cv_8 \in E(G)$. Then $N_G(b) \cap \{v_1, v_4, v_5, v_8, v_9, y_1, y_2, y_3, c\} = \emptyset$ and $N_G(c) \cap \{v_1, v_5, v_6, v_9, y_1, y_2, y_3\} = \emptyset$. We consider the following two cases.

Case 1 $bv \notin E(G)$.

Considering the subgraph induced by $\{v, v_1, v_2\} \cup \{v_3, v_4, v_5, y_2, v_9, v_8, v_7, b\}$, we have $bv_2, bv_3 \in E(G)$. As G is 4-regular, $y_3v_2 \notin E(G)$. Thus $y_3v_4 \in E(G)$. Consider the neighborhood of v_5 and let $N_G(v_5) = \{r, v_4, v_6, y_2\}$. Then $rv_4 \in E(G)$. Since G has no 4-cycles, $r \notin \{v, a, c\}$. As G is 4-regular, $N_G(r) \cap \{v_1, v_2, v_3, v_6, v_7, v_8, v_9, y_1, y_2, y_3, b\} = \emptyset$. As $G[\{r, v_4, v_5\} \cup \{v_3, b, v_7, v_8, v_9, y_1, v_1, v\}] \neq Z_8$, we have $rv \in E(G)$. Let $r' \in N_G(r) - \{v_4, v_5, v\}$. Then $r'v \in E(G)$, and so $\{r', a, c\}$ is a 3-cut in G, a contradiction.

Case 2 $bv \in E(G)$.

As *G* has no 4-cycles, $ab, vc \notin E(G)$. As $by_3 \notin E(G), vy_3 \notin E(G)$. Since the subgraph induced by $\{a, v_1, y_1\} \cup \{y_2, v_5, v_4, v_3, y_3, v_8, v_7, b\}$ is not Z_8 , we have $y_3v_4 \in E(G)$. Also, since the subgraph induced by $\{y_1, y_2, v_9\} \cup \{v_5, v_4, v_3, v_2, v, b, v_7, c\}$ is not Z_8 , we have $cv_2, cv_3 \in E(G)$. Consider the neighborhood of v_5 . Assume $N_G(v_5) = \{r, v_4, v_6, y_2\}$. Then $rv_4 \in E(G)$. Since *G* has no 4-cycles, $r \notin \{v, a, b, c\}$ and $rb \notin E(G)$. Let $b' \in N_G(b) - \{v_6, v_7, v\}$. Then $b'v \in E(G)$. So $\{b', a, r\}$ is a 3-cut in *G*, a contradiction.

By Claim 2, we assume that $v_4 y_2 \in E(G)$.

Claim 3 $v_5 y_2 \notin E(G)$. Therefore, $v_3 y_2 \in E(G)$.

By way of contradiction, we assume that $v_5y_2 \in E(G)$. Then $N_G(y_1) \cap \{v_3, v_4, \ldots, v_8\} = \emptyset$. By (P2), $N_G(y_1) \cap \{v, v_1, v_2\} \neq \emptyset$. Then $y_1v_2 \notin E(G)$ (otherwise, by (P4), $y_1v_1 \in E(G)$. Then $vv_1y_1v_2v$ is a 4-cycle). Thus $N_G(y_1) \cap \{v, v_1\} \neq \emptyset$. Without loss of generality, we assume $v_1y_1 \in E(G)$. Let $N_G(v_1) = \{y_1, v_2, v, a\}$, where $a \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $ay_1 \in E(G)$. As *G* has no 4-cycles, $N_G(a) \cap \{v_2, v_3, v_4, v_5, v_8, y_3\} = \emptyset$.

We claim that $av_6, av_7 \in E(G)$. Otherwise, considering the subgraph induced by $\{a, v_1, y_1\} \cup \{v_2, v_3, \ldots, v_8, y_3\}$, we have $y_3v_2, y_3v_3 \in E(G)$. Consider the neighborhood of v, and let $N_G(v) = \{v_1, v_2, b, c\}$, where $b, c \notin V(H) \cup \{a, y_1, y_2, y_3\}$. Then $\{v_1, v_2, v_3, v_9, a, y_1, y_2, y_3\} \cap (N_G(b) \cup N_G(c)) = \emptyset$. As $y_2v_4, y_2v_5 \in E(G)$, by (P4), $v_4 \notin N_G(b) \cup N_G(c)$. As $G[\{v, b, c\} \cup \{v_1, y_1, v_9, y_3, v_3, v_4, v_5, v_6\}] \neq Z_8$, we have $\{v_5, v_6\} \cap (N_G(b) \cup N_G(c)) \neq \emptyset$. Without loss of generality, we assume that $\{v_5, v_6\} \cap N_G(c) \neq \emptyset$. By (P4), we have either $cv_5, cv_6 \in E(G)$ or $cv_6, cv_7 \in E(G)$. If $cv_5, cv_6 \in E(G)$, then $v_7, v_8 \notin N_G(b) \cup N_G(c)$ and so the subgraph induced by $\{v, b, c\} \cup \{v_6, v_7, v_8, y_3, v_3, v_4, y_2, y_1\}$ is Z_8 . If $cv_6, cv_7 \in E(G)$, the subgraph induced by $\{v, b, c\} \cup \{v_6, v_5, v_4, v_3, y_3, v_9, y_1, a\}$ is Z_8 , a contradiction. Therefore, $av_6, av_7 \in E(G)$.

Since G has no 4-cycles, let $b \in N_G(v_4) - \{v_3, v_5, y_2\}$ and $c \in N_G(v_5) - \{v_4, v_6, y_2\}$ and $b \neq c$. Since G has no 4-cycles, we have $bv_3, cv_6 \in E(G)$, and $N_G(b) \cap \{v_5, v_6, v_9, y_1, v_1, v\} = \emptyset$ and $N_G(c) \cap \{v_7, v_8, v_9, y_1, v_1, v_3, v_4\} = \emptyset$. By (P4), $cv_2 \notin E(G)$. Since the subgraph induced by $\{b, v_3, v_4\} \cup \{v_5, v_6, v_7, v_8, v_9, y_1, v_1, v\}$ is not Z_8 , we have $bv_7, bv_8 \in E(G)$. Since the subgraphs induced by $\{c, v_5, v_6\} \cup \{y_2, y_1, v_1, v_2, v_3, b, v_8, y_3\}$ and $\{c, v_5, v_6\} \cup \{a, y_1, v_9, v_8, b, v_3, v_2, v\}$ are not Z_8 , we have $cy_3, cv \in E(G)$. Thus $vy_3 \in E(G)$. As G is 4-regular, $\{v_2, v_3\}$ is a 2-cut in G, a contradiction. Therefore, Claim 3 holds.

By Claim 3, y_2v_3 , $y_2v_4 \in E(G)$. By (P3) and (P1), $N_G(y_1) \cap \{v_2, v_3, v_4, v_5, v_7, v_8\} = \emptyset$. By (P4), $v_6y_1 \notin E(G)$. By (P2), we assume that $y_1v_1 \in E(G)$. Thus $y_3v_1 \notin E(G)$. Let $N_G(v_1) = \{v, y_1, v_2, a\}$, where $a \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $ay_1 \in E(G)$. As *G* has no 4-cycles, $N_G(y_3) \cap \{v_1, v_3, v_4, v_6, v_7\} = \emptyset$. By (P4), $v_2y_3, v_5y_3 \notin E(G)$. Then the subgraph induced by $\{y_3, v_8, v_9\} \cup \{v_7, v_6, \dots, v_1\}$ is Z_7 . By symmetry (discussion used in Claims 2 and 3), we assume that $av_6, av_7 \in E(G)$.

Consider the neighborhoods of v_3 and v_4 . Let $N_G(v_3) = \{v_2, v_4, y_2, b\}$ and $N_G(v_4) = \{v_3, v_5, y_2, c\}$. Then $b \neq c$ and $b, c \notin V(H) \cup \{a, y_1, y_2, y_3\}$. Also, we have $bv_2, cv_5 \in E(G)$. Considering the subgraph induced by $\{c, v_4, v_5\} \cup \{v_6, v_7, v_8, v_9, y_1, v_1, v_2, b\}$, we conclude that $bv_7, bv_8 \in E(G)$. Considering the subgraph induced by $\{y_3, v_8, v_9\} \cup \{b, v_3, v_4, v_5, v_6, a, v_1, v\}$, we have $vy_3 \in E(G)$. Considering the subgraph induced by $\{c, v_4, v_5\} \cup \{v_6, v_7, b, v_2, v, y_3, v_9, y_1\}$, we have $N_G(c) \cap \{v, y_3\} \neq \emptyset$. By (P0), $cv, cy_3 \in E(G)$. As G is 4-regular, $\{v_5, v_6\}$ is a 2-cut, a contradiction.

Lemma 4.3 If G is a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, then G has a 4-cycles unless G is the line graph of the Petersen graph.

Proof Suppose that G does not have 4-cycles. By Theorem 1.3, G has an induced subgraph Z_5 . Let $H = Z_t$ be an induced subgraph of G such that t is maximized. Since G is Z_8 -free, t = 5, 6, 7. By Lemmas 4.1 and 4.2, t = 6. Let H be the graph obtained from $P_8 = v_1v_2 \dots v_8$ by adding a vertex v and joining v to v_1 and v_2 . By

the choice of H, v_8 has no neighbors in $V(H) \setminus \{v_7\}$. By (P0), let y_1, y_2, y_3 be the three neighbors of v_8 which are not in $V(H) \setminus \{v_7\}$ and we may assume, without loss of generality, that y_3 is adjacent to v_7 and that y_1 and y_2 are adjacent. By (P3), $v_6, v_7 \notin N_G(y_1) \cup N_G(y_2)$ and $y_3v_5, y_3v_6 \notin E(G)$.

Claim 1 $v_4 \in N_G(y_1) \cup N_G(y_2)$.

Assume that $v_4 \notin N_G(y_1) \cup N_G(y_2)$. By (P4), $v_5 \notin N_G(y_1) \cup N_G(y_2)$. If $v_2y_1 \in E(G)$, by (P0) and (P1), $N_G(y_2) \cap (V(H) - \{v_8\}) = \emptyset$, contradicting (P2). Thus $v_2y_1 \notin E(G)$. Similarly, $v_2y_2 \notin E(G)$. By (P4), $v_3 \notin N_G(y_1) \cup N_G(y_2)$. By (P2) and (P1), we may assume that $v_1y_1, v_2 \in E(G)$. This results in a 4-cycle $vv_1y_1y_2v$, a contradiction. Claim 1 holds.

By Claim 1, we assume that $v_4y_2 \in E(G)$. By (P1) and (P4), $\{v_3, v_4, v_5\}$ $\cap N_G(y_1) = \emptyset$. If $v_2y_1 \in E(G)$, then $v_1y_1 \in E(G)$ by (P4). This would result in a 4-cycle $vv_1y_1v_2v$. Therefore, $v_2y_1 \notin E(G)$. By (P2) and by symmetry, we assume that $v_1y_1 \in E(G)$. Thus $v_1y_3, v_1y_2 \notin E(G)$. As $d_G(v_1) = 4$, we assume that $N_G(v_1) = \{v, v_2, y_1, y'_1\}$, where $y'_1 \notin V(H) \cup \{y_1, y_2, y_3\}$. By (P0), $y_1y'_1 \in E(G)$. Then $N_G(y_1) \cap \{v, v_2, v_3, \ldots, v_7, y_3\} = \emptyset$.

Claim 2 $y_2v_5 \notin E(G)$.

Assume that $y_2v_5 \in E(G)$. Since G has no 4-cycles, $\{v_2, v_3, v_4, v_5, v_7, y_3\} \cap N_G(y'_1) = \emptyset$. By (P4), $v_6y'_1 \notin E(G)$. Considering the subgraph induced by $\{y'_1, y_1, v_1\} \cup \{v_2, \ldots, v_7, y_3\}$, we have that $y_3v_2, y_3v_3 \in E(G)$. Let $N_G(v) = \{b, c, v_1, v_2\}$, where $b, c \notin V(H) \cup \{y_1, y_2, y_3, y'_1\}$. Thus $(N_G(b) \cup N_G(c)) \cap \{v_1, v_2, v_3, v_8, y_1, y_3\} = \emptyset$. As $y_2v_4, y_2v_5 \in E(G)$, by (P4), $v_4 \notin N_G(b) \cup N_G(c)$. Since the subgraph induced by $\{v, b, c\} \cup \{v_1, y_1, v_8, y_3, v_3, v_4, v_5\}$ is not $Z_7, v_5 \in N_G(b) \cup N_G(c)$. Without loss of generality, we assume that $cv_5 \in E(G)$. By (P0), $cv_6 \in E(G)$. Since G has no 4-cycles, $(N_G(b) \cup N_G(c)) \cap \{v_7, y_1\} = \emptyset$. As G is 4-regular, $y_2 \notin N_G(b) \cup N_G(c)$. This implies that the subgraph induced by $\{v, b, c\} \cup \{v_1, y_1, y_2, v_4, v_3, y_3, v_7\}$ is Z_7 , contradicting the maximality of t = 6. Claim 2 holds.

By Claim 2 and (P4), $y_2v_3 \in E(G)$. As *G* has no 4-cycles, $\{v_2, v_3, v_4, v_7, y_3\} \cap N_G(y'_1) = \emptyset$. Since *G* is *Z*₇-free, considering the subgraph induced by $\{y'_1, y_1, v_1\} \cup \{v_2, \ldots, v_7, y_3\}, N_G(y'_1) \cap \{v_5, v_6\} \neq \emptyset$. By (P4), $y'_1v_5, y'_1v_6 \in E(G)$. Again, as *G* has no 4-cycles, $N_G(y_3) \cap \{v_1, v_3, v_4, v_5, v_6\} = \emptyset$. By (P4), $y_3v_2 \notin E(G)$.

Claim 3 $vy_3 \in E(G)$.

Assume that $vy_3 \notin E(G)$. Let $N_G(y_3) = \{v_7, v_8, a, b\}$, where $a, b \notin V(H) \cup \{y'_1, y_1, y_2\}$. By (P0), $ab \in E(G)$. Notice that the subgraph induced by $(V(H) - \{v_8\}) \cup \{y_3\}$ is still Z_6 . Using the discussion in Claims 1 and 2, we have either av_3 , $av_4 \in E(G)$ or bv_3 , $bv_4 \in E(G)$, implying a 4-cycle $av_3y_2v_4a$ or $bv_3y_2v_4b$, a contradiction. Claim 3 holds.

Let $N_G(y_3) = \{v_7, v_8, v, x_2\}$. By (P0), $vx_2 \in E(G)$. As G has no 4-cycles, $N_G(x_2) \cap \{v_2, v_3, v_6, v_7\} = \emptyset$. By (P0), $N_G(x_2) \cap \{v_1, v_8, y_1, y_2, y_1'\} = \emptyset$.

Claim 4 $x_2v_4 \in E(G)$. Therefore, $x_2v_5 \in E(G)$.

Fig. 3 Two drawings of the line graph of the Petersen graph

By way of contradiction, we assume that $x_2v_4 \notin E(G)$. By (P4), $x_2v_5 \notin E(G)$. Thus we assume that $N_G(x_2) = \{v, y_3, s, t\}$, where $s, t \notin V(H) \cup \{y_1, y_2, y_3, y'_1\}$. By (P0), $st \in E(G)$. As *G* has no 4-cycles, $v_2 \notin N_G(s) \cup N_G(t)$. As $y_2v_3, y_2v_4 \in E(G)$, by (P4), $v_3 \notin N_G(s) \cup N_G(t)$.

If $v_6 \notin N_G(s) \cup N_G(t)$, then $G[\{s, t, x_2\} \cup \{v, v_2, v_3, y_2, y_1, y'_1, v_6\}] = Z_7$, contradicting the maximality of t = 6. Without loss of generality, we assume that $v_6t \in E(G)$. As $y'_1v_5, y'_1v_6 \in E(G), v_7t \in E(G)$. Thus $G[\{x_2, s, t\} \cup \{v_7, v_8, y_2, v_3, v_2, v_1, y'_1\}] = Z_7$, contradicting the maximality of t = 6 again. Claim 4 holds.

We will get the line graph of Peterson graph by considering the neighborhood of v_2 . As *G* is 4-regular, we assume that $N_G(v_2) = \{v, v_1, v_3, z\}$, where $z \notin V(H) \cup \{y_1, y_2, y_3, y'_1, x_2\}$. By (P4), $zv_3 \in E(G)$. As $G[\{z, v_2, v_3\} \cup \{y_2, y_1, y'_1, v_6, v_7, y_3, x_2\}] \neq Z_7$, by (P4), $zv_6, zv_7 \in E(G)$. Since *G* is 4-regular, *G* is the left graph in Fig. 3. It is easy to check that *G* is the line graph of Peterson graph.

5 Existence of *t*-Cycles (t = 5, 6, 7, 8)

Lemma 5.1 If G is a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, then G has a 5-cycle.

Proof Suppose that *G* does not have 5-cycles. Since the line graph of the Petersen graph has 5-cycles, *G* is not the line graph of the Petersen graph. By Theorem 1.4, *G* has an induced path P_{10} . Let $P_k = v_1 v_2 \cdots v_k$ be a longest induced path of *G*, and let $Y = N_G(v_1) - \{v_2\} = \{y_1, y_2, \dots, y_s\}, Y_1 = N_G(v_1) \cap N_G(v_2) = \{y_1, \dots, y_r\}$, and $Y_2 = Y - Y_1$. Then $k \ge 10$, $s \ge 3$, $r \ge 0$. Since *G* is claw-free, $G[Y_2]$ is a complete graph.

- (Q1) For $w \notin V(P_k)$, if $wv_i \in E(G)(1 < i < k)$, then either $wv_{i-1} \in E(G)$ or $wv_{i+1} \in E(G)$.
- (Q2) For $w \notin V(P_k)$, if $wv_i \in E(G)$ $(1 \le i \le k-2)$, then $wv_{i+2} \notin E(G)$. (Otherwise, let $a \in N_G(v_{i+1}) \{v_i, v_{i+2}\}$. Then either $av_i \in E(G)$ or $av_{i+2} \in E(G)$. Thus either $v_i av_{i+1}v_{i+2}wv_1$ or $v_i v_{i+1}av_{i+2}wv_1$ is a 5-cycle.) In addition, $wv_{i+3} \notin E(G)$ if $i \le k-3$. Thus, $N_G(y_i) \cap \{v_3, v_4, v_5\} = \emptyset$ for $y_i \in Y_1$, and

 $N_G(y_i) \cap \{v_2, v_3, v_4\} = \emptyset$ for $y_i \in Y_2$. As G is claw-free, $G[Y_1]$ is a complete graph.

Claim 1 $|Y_2| \le 2$. Therefore, $|Y_1| \ge 1$.

Assume that $Y_2 = \{y_{r+1}, \dots, y_s\} = \{u_1, u_2, \dots, u_{s-r}\}$ $(s - r \ge 3)$. By (Q2), $N_G(u_i) \cap \{v_2, v_3, v_4\} = \emptyset$.

We claim that $N_G(v_5) \cap \{u_1, u_2, u_3\} = \emptyset$. Otherwise, we assume $u_3v_5 \in E(G)$. By (Q1), $u_3v_6 \in E(G)$. Since G is claw-free, $N_G(u_3) \cap V(P_k) = \{v_1, v_5, v_6\}$. As G has no 5-cycles, $N_G(u_i) \cap \{v_5, ..., v_8\} = \emptyset$ for i = 1, 2. As G is Z_8 -free, there is a vertex in $\{u_1, u_2\}$, say u_2 , such that $u_2v_9 \in E(G)$. Then $N_G(u_2) \cap V(P_k) = \{v_1, v_9, v_{10}\}$ and $N_G(u_1) \cap \{v_2, ..., v_{10}\} = \emptyset$. By the choice of P_k , $k \ge 11$. As $u_1v_{11} \notin E(G)$, $k \ge 12$. As $u_1v_{12} \notin E(G)$, $k \ge 13$. Consider $N_G(v_2)$ and let $w \in N_G(v_2) - \{v_1, v_3\}$. Since G has no 5-cycles, $N_G(w) \cap \{u_1, u_2, u_3, v_4, v_5, v_6, v_9, v_{10}\} = \emptyset$. If $wv_1 \in E(G)$, then $N_G(w) \cap \{v_3, v_7, v_8\} = \emptyset$. This implies that $G[\{w, v_1, v_2, ..., v_{10}\}] = Z_8$, a contradiction. So $wv_1 \notin E(G)$. By (Q1), $wv_3 \in E(G)$. Since $G[\{w, v_2, v_3, ..., v_9, u_2, u_1\}] \neq Z_8$, wv_7 , $wv_8 \in E(G)$. So $N_G(w) \cap V(P_k) = \{v_2, v_3, v_7, v_8\}$. Hence $G[\{w, v_7, v_8, v_3, v_4, v_5, u_3, u_2, v_{10}, v_{11}, v_{12}\}] = Z_8$, a contradiction. So $N_G(v_5) \cap \{u_1, u_2, u_3\} = \emptyset$.

If $N_G(u_3) \cap \{v_6, v_7, v_8, v_9\} \neq \emptyset$, as *G* has no 5-cycles, by (Q1), $N_G(u_i) \cap \{v_6, \dots, v_9\} = \emptyset$ for i = 1, 2. This implies that $G[\{u_1, u_2, v_1, \dots, v_9\}] = Z_8$, a contradiction. So $N_G(u_3) \cap \{v_6, v_7, v_8, v_9\} = \emptyset$. Similarly, we have $N_G(u_2) \cap \{v_6, v_7, v_8, v_9\} = \emptyset$. So $G[\{u_2, u_3, v_1, \dots, v_9\}] = Z_8$, a contradiction. Claim 1 holds.

Claim 2 $|Y_1| \le 1$.

Assume that $v_2y_1, v_2y_2 \in E(G)$. By (Q2), $N_G(y_i) \cap \{v_3, v_4, v_5\} = \emptyset$ for $i = 1, 2, y_1y_2 \in E(G)$ and $N_G(y_3) \cap \{v_2, v_3, v_4\} = \emptyset$. As *G* has no 5-cycles, $G_G(y_3) \cap \{y_1, y_2\} = \emptyset$. Since *G* is Z_8 -free, $N_G(y_i) \cap \{v_6, v_7, \dots, v_{10}\} \neq \emptyset$ for i = 1, 2. Furthermore, if $y_1v_i, y_2v_j \in E(G)$, where $i, j \in \{6, \dots, 10\}$, then $|j - i| \ge 3$. Thus, by (Q1), we may assume that $y_1v_6, y_1v_7, y_2v_{10} \in E(G)$. As *G* has no 5-cycles, $N_G(y_3) \cap \{v_2, v_3, \dots, v_{10}\} = \emptyset$, and so $k \ge 11$ and $d_G(v_1) = 4$. Hence $y_2v_{11} \in E(G)$ and $y_3v_{11} \notin E(G)$. Therefore, $k \ge 12$. Let $z_1, z_2, z_3 \in N_G(y_3) - \{v_1\}$. Then $z_1z_2, z_1z_3, z_2z_3 \in E(G)$. For $i = 1, 2, 3, N_G(z_i) \cap \{y_1, y_2, v_1, v_2, v_3, v_6, v_7, v_{10}, v_{11}\} = \emptyset$. If $z_iv_4 \in E(G)$, then $z_iv_5 \in E(G)$ and $z_iv_8, z_iv_9 \notin E(G)$. Thus $G[\{z_i, v_4, v_5, v_3, v_2, y_1, \dots, v_1\}] = Z_8$. If $z_iv_8, z_iv_9 \in E(G)$, then $z_iv_4, z_iv_5 \notin E(G)$ and $G[\{z_1, z_2, y_3, v_1, \dots, v_8\}] = Z_8$, a contradiction. Claim 2 holds.

By Claims 1 and 2, $Y_1 = \{y_1\}$ and $Y_2 = \{y_2, y_3\}$. Thus $y_2y_3 \in E(G)$. As *G* has no 5-cycles, $N_G(y_1) \cap \{y_2, y_3, v_4, v_5\} = \emptyset$ and $N_G(y_i) \cap \{v_2, v_3, v_4\} = \emptyset(i = 2, 3)$. As *G* is Z_8 -free, $N_G(y_1) \cap \{v_6, \dots, v_{10}\} \neq \emptyset$ and $\bigcup_{i=2}^3 N_G(y_i) \cap \{v_5, v_6, \dots, v_9\} \neq \emptyset$. We assume that $T = N_G(y_3) \cap \{v_5, v_6, \dots, v_9\} \neq \emptyset$. Let $w \in N_G(v_2) - \{v_1, v_3, y_1\}$. Then $wv_1 \notin E(G)$ and so $wv_3 \in E(G)$. By (Q2), $N_G(w) \cap \{v_4, v_5, v_6\} = \emptyset$. As *G* has no 5-cycles, $N_G(w) \cap \{y_1, y_2, y_3\} = \emptyset$.

We claim that $N_G(y_1) \cap \{v_6, \dots, v_9\} = \emptyset$. Otherwise, by (Q1), $N_G(y_1) \cap V(P_k) = \{v_1, v_2, v_{i_0}, v_{i_0+1}\}$, where $i_0 = 6, 7, 8, 9$. As G has no 5-cycles, Thus $\bigcup_{i=2}^3 N_G(y_i) \cap \{v_{i_0-1}, v_{i_0}, v_{i_0+1}\} = \emptyset$ and $y_2 v_{i_0+2}, y_3 v_{i_0+2} \notin E(G)$ if $i \neq 9$. Thus $i_0 \neq 7$.

If $i_0 = 6$, then $T = \{v_9, v_{10}\}$; if $i_0 = 8$, then $T = \{v_5, v_6\}$; if $i_0 = 9$, then T is either $\{v_5, v_6\}$ or $\{v_6, v_7\}$. For these three cases, $N_G(y_2) \cap \{v_6, v_7, \dots, v_{10}\}$ $= \emptyset$. By the choice of $P_k, k \ge 11$. For $i_0 = 6$, as G has no 5-cycles, $N_G(w)$ $\cap \{v_7, \ldots, v_{10}\} = \emptyset$. So $G[\{w, v_2, v_3, \ldots, v_9, y_3, y_2\}] = Z_8$, a contradiction. For $i_0 =$ 9, $N_G(w) \cap \{v_8, \ldots, v_{11}\} = \emptyset$. By (Q1), $wv_7 \notin E(G)$. So $G[\{w, v_2, v_3, \ldots, v_{11}\}] =$ Z_8 , a contradiction. For $i_0 = 8$, let $z_1, z_2 \in N_G(y_2) - \{v_1, y_3\}$. As $d_G(v_1) = 4$, $z_1 z_2 \in E(G)$. As G has no 5-cycles, $N_G(z_i) \cap \{v_1, v_2, \dots, v_9\} = \emptyset$ for i = 1, 2. Thus $G[\{z_1, z_2, y_2, v_1, v_2, \dots, v_8\}] = Z_8$, a contradiction. So $N_G(y_1) \cap \{v_6, \dots, v_9\} = \emptyset$. Notice that $N_G(y_1) \cap \{v_6, \ldots, v_{10}\} \neq \emptyset$. We have $y_1v_{10} \in E(G)$. As G has no 5-cycles, $N_G(y_i) \cap \{v_9, v_{10}\} = \emptyset$ for i = 2, 3. Thus $T \subseteq \{v_5, \dots, v_8\}$, and so $N_G(y_2) \cap \{v_2, \dots, v_{10}\} = \emptyset$. By the choice of $P_k, k \ge 11$, and so $y_1v_{11} \in E(G)$ and $y_2v_{11}, y_3v_{11} \notin E(G)$. This implies that $k \ge 12$ and $y_2v_{12}, y_3v_{12} \notin E(G)$. As G has no 5-cycles, $N_G(w) \cap \{v_9, \ldots, v_{12}\} = \emptyset$. As $G[\{w, v_2, v_3, \ldots, v_{11}\}] \neq \emptyset$ $Z_8, wv_7, wv_8 \in E(G)$. Thus $y_3v_7, y_3v_8 \notin E(G)$ and $y_3v_5, y_3v_6 \in E(G)$. So $G[\{y_3, v_5, v_6, v_1, v_2, w, v_8, \dots, v_{12}\}] = Z_8$, a contradiction.

The next lemma states that G has 6-, 7-, and 8-cycles if G is a 4-connected $\{K_{1,3}, Z_8\}$ -free graph. In the proof Lemma 5.2, we follow the setup originated by Ferrara, Morris, and Wenger in [3], utilizing an argument based on the neighborhoods of vertices in smaller cycles. The Figs. 4 and 5 below are also originally from [3].

Lemma 5.2 If G is a 4-connected $\{K_{1,3}, Z_8\}$ -free graph, then G has cycles of length 6, 7, and 8.

Proof By Lemma 5.1, *G* has a 5-cycle. Let *t* be the largest integer less than 8 such that *G* has a *t*-cycle but no (t + 1)-cycle. Let *C* be a *t*-cycle in *G* and *X* be the set of vertices in *C* that have neighbors not in *C*. Since *G* is 4-connected, $|X| = l \ge 4$. Assume $X = \{v_1, v_2, \ldots, v_l\}$. If $w_i \in N_G(v_i) - V(C)$, then $w_i v_i^+, w_i v_i^- \notin E(G)$ since *G* does not have a (t + 1)-cycle. Since *G* is claw-free, we have $v_i^+ v_i^- \notin E(G)$. Using similar arguments, we have $x_i y_i \in E(G)$ if $x_i, y_i \in N_G(v_i) \cap V(C)$. Continue this process, we have that G[V(C)] contains one of the graphs in Fig. 4 as a subgraph, where v_1, v_2, v_3 , and v_4 are the vertices incident to the dashed edges.

For any two vertices v_i and v_j in X, if t = 5, G[V(C)] contains paths of length 1 through t - 1 = 4 joining v_i and v_j ; if $t \in \{6, 7\}$, then G[V(C)] contains paths of length 2 through t - 1 joining any two vertices v_i and v_j . Let P(i, j) be a shortest path in G[V(C)] connecting v_i and v_j that does not contain v_k for any k distinct from i and j. For $1 \le i \le l$, let S_i be the set of vertices in V(G) - V(C) that are adjacent to v_i , S'_i be the set of vertices in V(G) - V(C) that have distance 2 to v_i , and S''_i be the set of vertices in V(G) - V(C) that have distance 3 to v_i . We conclude that the following claims hold for $1 \le i < j \le l$.

(W1) For any $x \in S_i$, $N_G(x) \cap V(C) = \{v_i\}$. Therefore, for any $i \neq j$, $S_i \cap S_j = \emptyset$.

- (W2) For $i \neq j$, and for any $x \in S'_i \cup S''_i$, $N_G(x) \cap (V(C) \cup S_j) = \emptyset$. Therefore, for any $i \neq j$, $S'_i \cap (S_j \cup S'_j) = \emptyset$, and there are no edges joining $S_i \cup S'_i$ and $S_j \cup S'_j$.
- (W3) $S'_i \neq \emptyset$ and $S''_i \neq \emptyset$ for $1 \le i \le l$.
- (W4) No vertex can have a neighbor in S'_i for three distinct values of *i*.

Fig. 4 Necessary subgraphs in G[V(C)] with v_1, v_2, v_3 , and v_4 incident to the dashed edges

Fig. 5 The structure of G

The structure of G[V(C)] and the assumption that G does not contain a (t + 1)-cycle imply (W1) and (W2). Since G is 4-connected, (W3) must hold, as otherwise v_i is a cut vertex. (W4) comes from (W2) since G is claw-free. Thus G has the structure shown in Fig. 5.

For $1 \leq i \leq l$, we use s_i to denote a general vertex in S_i , use s'_i to denote a general vertex in S'_i , and use s''_i to denote a general vertex in S''_i such that $v_i s_i, s_i s'_i, s'_i s''_i \in E(G)$.

Claim 1 There are distinct values $i, j \in \{1, 2, ..., l\}$ such that $S''_i \cap S''_i \neq \emptyset$.

By way of contradiction, we assume that for any $i \neq j$, $S''_i \cap S''_j = \emptyset$. Consider the graph H from G - E(C) - (V(G) - X) by contracting $v_i \cup S_i \cup S'_i \cup S''_i$ for $1 \le i \le l$, and denote the contracted vertices be x_i . If H is disconnected, one component of H contains at most 3 vertices of $\{x_1, x_2, \ldots, x_l\}$. Without loss of generality, we may assume that x_1, \ldots, x_k are in the same component of H with $k \le 3$, then $\{v_1, \ldots, v_k\}$ is a vertex-cut of G, contradiction to the fact that G is 4-connected. Therefore H is connected, and there is a path from each S''_i to each S''_i in G, where $i \neq j$, that

contains no vertices in *C*. Let *P'* be a shortest such path connecting S_i'' and S_j'' over all choices of *i* and *j*. Without loss of generality, we assume that i = 1 and j = 2. Since *P'* is minimal, $V(P') \cap S_k = \emptyset$ and $V(P') \cap S_k' = \emptyset$ for all $k \in \{1, 2, ..., l\}$, and $V(P') \cap S_1'' = \{s_1''\}$ and $V(P') \cap S_2'' = \{s_2''\}$. Thus $Q = s_1s_1's_1''P's_2''s_2s_2v_2P(2, 3)v_3s_3s_3'$ is an induced path on at least 10 vertices. Consider the neighborhood of s_1 . Since *G* is 4-connected, let $\{z_1, z_2, v_1, s_1'\} \subseteq N_G(s_1)$.

If both $z_1v_1 \in E(G)$ and $z_2v_1 \in E(G)$, then $z_1, z_2 \in S_1$. If both $z_1s'_1 \notin E(G)$ and $z_2s'_1 \notin E(G)$, then $z_1z_2 \in E(G)$ and the subgraph induced by $\{z_1, z_2\} \cup V(Q)$ contains $Z_t(t \ge 9)$. Otherwise, assume that $z_1s'_1 \in E(G)$. As $z_1 \in S_1, z_1s''_1 \notin E(G)$. Thus the subgraph induced by $\{z_1\} \cup V(Q)$ contains $Z_t(t \ge 8)$. This contradiction implies that either $z_1v_1 \notin E(G)$ or $z_2v_1 \notin E(G)$. Without loss of generality, we assume that $z_1v_1 \notin E(G)$. Then $z_1s'_1 \in E(G)$ and $z_1 \in S'_1$. If $z_1s''_1 \notin E(G)$, then the subgraph induced by $V(Q) \cup \{z_1\}$ would be $Z_t(t \ge 8)$. This contradiction implies that $z_1s''_1 \in E(G)$. Notice that $S''_1 \cap S''_1 = \emptyset$ for $i \neq j$. If $|V(P')| \ge 3$, then the subgraph induced by $\{z_1\} \cup (V(Q) - \{s_1\})$ would be $Z_t(t \ge 8)$. This implies that $P' = s''_1s''_2$. Consider the subgraph induced by $\{z_1, s''_3\} \cup (V(Q) - \{s_1\})$. We have either $s''_1s''_3 \in E(G)$ or $s''_2s''_3 \in E(G)$. If $s''_2s''_3 \in E(G)$, then the subgraph induced by $\{z_1, s_1, s'_1\} \cup (V(P(1, 2)) \cup \{s_2, s'_2, s''_2, s''_3, s'_3, s_3\}$ is $Z_t(t \ge 8)$. Thus $s''_2s''_3 \notin E(G)$ and $s''_1s''_3 \in E(G)$.

Next we consider the neighborhood of s_3 . Applying the method used on z_1 and z_2 to the neighborhood of s_3 , there is a vertex $a \in N_G(s_3)$ such that $av_3 \notin E(G)$ and $as'_3, as''_3 \in E(G)$. Thus the subgraph induced by $\{a, s_3, s'_3\} \cup (V(P(2, 3)) \cup \{s_2, s'_2, s''_1, s'_1, s_1\}$ is $Z_t(t \ge 8)$, a contradiction. So Claim 1 holds.

By Claim 1, we may assume that $x_{12} \in S_1'' \cap S_2''$. Consider S_3'' . By (W3), $S_3'' \neq \emptyset$. Since there is a path $K(v_1, v_2)$ of length 2 joining v_1 and v_2 in C, then $K(v_1, v_2)s_2s_2'x_{12}s_1's_1v_1$ forms an 8-cycle. So t = 5, 6.

Claim 2 $S_3'' \cap S_4'' = \emptyset$.

By way of contradiction, we assume that $x_{34} \in S_3'' \cap S_4''$. Since G is claw-free, by (W4), $x_{12}x_{34} \notin E(G)$, implying that $Q = s_1s_1'x_{12}s_2's_2v_2P(2,3)v_3s_3s_3'x_{34}s_4's_4$ is an induced path on at least 12 vertices. Since G is 4-connected, we assume that $\{z_3, z_4, s_1, x_{12}\} \subseteq N_G(s_1')$.

Let us consider z_3 first. Since G is claw-free, we have either $z_3s_1 \in E(G)$ or $z_3x_{12} \in E(G)$. If $z_3 \in S_1 \cup S'_1$, then $N_G(z_3) \cap V(Q) \subseteq \{s_1, s'_1, x_{12}\}$. Thus the subgraph induced by $V(Q) \cup \{z_3\}$ contains Z_9 , a contradiction. This contradiction implies that $z_3 \notin S_1 \cup S'_1$. As $z_3s'_1 \in E(G)$, $z_3 \in S''_1$, and so $z_3s_1 \notin E(G)$ and $z_3x_{12} \in E(G)$. Applying this argument on z_4 , we have $z_4 \in S''_1$ and $z_4x_{12} \in E(G)$. As G is claw-free, $z_3z_4 \in E(G)$.

If $z_3s'_2 \in E(G)$, by (W4), $z_3s'_3$, $z_3s'_4 \notin E(G)$. Thus $z_3x_{34} \notin E(G)$, implying that the subgraph induced by $(V(Q) - \{s_1, s'_1\}) \cup \{z_3\}$ is $Z_t(t \ge 8)$, a contradiction. So $z_3s'_2 \notin E(G)$. Similarly, $z_4s'_2 \notin E(G)$

If $z_3x_{34} \notin E(G)$, then $z_3s'_3 \notin E(G)$ (otherwise, $G[\{s'_3, s_3, z_3, x_{34}\}]$ is a claw, a contradiction). Similarly, $z_3s'_4 \notin E(G)$. Thus the subgraph induced by $(V(Q) - \{s_1\}) \cup \{z_3\}$ is $Z_t(t \ge 9)$, a contradiction. So $z_3x_{34} \in E(G)$. Similarly, $z_4x_{34} \in E(G)$.

Next let us consider the neighborhood of s'_2 . Since G is 4-connected and since $z_3, z_4, x_{34} \notin N_G(s'_2)$, we assume that $\{z_5, z_6, s_2, x_{12}\} \subseteq N_G(s'_2)$. Using the method we

used for z_3 and z_4 on the vertices z_5 and z_6 , we have $G[\{z_5, z_6, s'_2, x_{12}\}]$ is a clique and $z_5x_{34}, z_6x_{34} \in E(G)$. Thus the subgraph induced by $\{z_3, z_4, z_5, z_6, s'_1, s'_2, x_{12}, x_{34}\}$ contains cycles of lengths 6,7,8, a contradiction. Claim 2 holds.

Claim 3 $S_3'' \cap (S_1'' \cup S_2'') \neq \emptyset$ and $S_4'' \cap (S_1'' \cup S_2'') \neq \emptyset$.

We prove $S''_3 \cap (S''_1 \cup S''_2) \neq \emptyset$ by contradiction. The proof for $S''_4 \cap (S''_1 \cup S''_2) \neq \emptyset$ is similar. Suppose that $S''_3 \cap (S''_1 \cup S''_2) = \emptyset$. Then there is a vertex s'''_3 such that $s''_3 s''_3 \in E(G)$ and the distance between s''_3 and v_3 is 4. As G has no (t + 1)-cycles, $N_G(s''_3) \cap V(C) = \emptyset$. By Claim 2 and the assumption of $S''_3 \cap (S''_1 \cup S''_2) = \emptyset$, $N_G(s''_3) \cap (S_1 \cup S_2 \cup S_3 \cup S_4) = \emptyset$ and $N_G(s''_3) \cap \{s'_1, s'_2, x_{12}\} = \emptyset$.

Consider the neighborhood of s_1 and let $\{z_7, z_8, v_1, s_1'\} \subseteq N_G(s_1)$. If both $z_7v_1 \in E(G)$ and $z_8v_1 \in E(G)$, then $z_7, z_8 \in S_1$ and $z_7z_8 \in E(G)$. If $z_7s_1' \notin E(G)$ and $z_8s_1' \notin E(G)$, the subgraph induced by $\{z_7, z_8, s_1\} \cup \{s_1', x_{12}, s_2', s_2\} \cup V(P(2, 3)) \cup \{s_3, s_3'\}$ is $Z_t(t \ge 8)$. Otherwise, assume that $z_7s_1' \in E(G)$. Then the subgraph induced by $\{z_7, s_1, s_1'\} \cup \{x_{12}, s_2', s_2\} \cup V(P(2, 3)) \cup \{s_3, s_3', s_3''\}$ is $Z_t(t \ge 8)$. This contradiction implies that either $z_7v_1 \notin E(G)$ or $z_8v_1 \notin E(G)$. Without loss of generality, we assume that $z_7v_1 \notin E(G)$. Then $z_7s_1' \in E(G)$ and $z_7 \in S_1'$. If $z_7x_{12} \notin E(G)$, the subgraph induced by $\{z_7, s_1, s_1'\} \cup \{x_{12}, s_2', s_2\} \cup V(P(2, 3)) \cup \{s_3, s_3', s_3''\}$ would $Z_t(t \ge 8)$. This contradiction implies that $z_7v_1 \notin E(G)$.

Considering the subgraph induced by $\{z_7, s'_1, x_{12}\} \cup \{s'_2, s_2\} \cup V(P(2, 3)) \cup \{s_3, s'_3, s''_3, s''_3\}$, we have $N_G(s'''_3) \cap \{z_7, s'_1, s'_2, x_{12}\} \neq \emptyset$. Notice that if $x_{12}s'''_3 \notin E(G)$, then $N_G(s'''_3) \cap \{z_7, s'_1, s'_2\} \neq \emptyset$. Thus either $G[\{s'_1, s_1, x_{12}, s'''_3\}] = K_{1,3}$, or $G[\{s'_2, s_2, x_{12}, s'''_3\}] = K_{1,3}$, or $G[\{z_7, s_1, x_{12}, s'''_3\}] = K_{1,3}$. This contradiction implies that $x_{12}s'''_3 \in E(G)$. By $G[\{x_{12}, s''_3, s'_1, s'_2\}]$, we have either $s'''_3s'_1 \in E(G)$ or $s'''_3s'_2 \in E(G)$. Without loss of generality, we assume that $s'_2s'''_3 \in E(G)$ (otherwise, we can consider the neighborhood of s_2 instead). As $S''_3 \cap (S''_1 \cup S''_2 \cup S''_4) = \emptyset$, $N_G(s'''_3) \cap \{s'_1, z_7, s'_4\} = \emptyset$ (otherwise, $G[\{s'''_3, s'_2, s''_3, w\}] = K_{1,3}$, where $w \in \{s'_1, z_7, s'_4\}$, a contradiction). Then the subgraph induced by $\{z_7, s'_1, x_{12}\} \cup \{s'''_3, s'_3, s_3\} \cup V(P(3, 4)) \cup \{s_4, s'_4\}$ is $Z_t(t \ge 8)$, a contradiction. Therefore, Claim 3 holds.

By Claim 3, without loss of generality, we assume that $S''_3 \cap S''_1 \neq \emptyset$. Let $x_{13} \in S''_1 \cap S''_3$. Applying the argument used in Claim 2 on S''_2 and S''_4 , we have $S''_2 \cap S''_4 = \emptyset$. By Claim 3, $S''_1 \cap S''_4 \neq \emptyset$. Let $x_{14} \in S''_1 \cap S''_4$. Since *G* is claw-free, $x_{12}x_{13}$, $x_{12}x_{14}$, $x_{13}x_{14} \in E(G)$. By (W4), $S'_4 \cap (N_G(x_{12}) \cup N_G(x_{13})) = \emptyset$.

Consider the neighborhood of s_4 and let $\{z_9, z_{10}, v_4, s'_4\} \subseteq N_G(s_4)$. If both $z_9v_4 \in E(G)$ and $z_{10}v_4 \in E(G)$, then $z_9, z_{10} \in S_4$ and $z_{9}z_{10} \in E(G)$. If $z_9s'_4 \notin E(G)$ and $z_{10}s'_4 \notin E(G)$, the subgraph induced by $\{z_9, z_{10}, s_4\} \cup \{s'_4, x_{14}, x_{13}, s'_3, s_3\} \cup V(P(2, 3)) \cup \{s_2, s'_2\}$ is $Z_t(t \ge 9)$. Otherwise, assume that $z_9s'_4 \in E(G)$. Then the subgraph induced by $\{z_9, s_4, s'_4\} \cup \{x_{14}, x_{13}, s'_3, s_3\} \cup V(P(2, 3)) \cup \{s_2, s'_2\}$ is $Z_t(t \ge 8)$. This contradiction implies that either $z_9v_4 \notin E(G)$ or $z_{10}v_4 \notin E(G)$. Without loss of generality, we assume that $z_9v_4 \notin E(G)$. Then $z_9s'_4 \in E(G)$ and $z_9 \in S'_4$. Thus, $z_9x_{13}, z_9x_{12} \notin E(G)$ (otherwise, $G[\{x_{12}, s'_1, s'_2, z_9\}] = K_{1,3}$ and $G[\{x_{13}, s'_1, s'_3, z_9\}] = K_{1,3}$, a contradiction). Therefore, the subgraph induced by $\{s_4, s'_4, z_9\} \cup V(P(3, 4)) \cup \{s_3, s'_3, x_{13}, x_{12}, s'_2, s_2\}$ is $Z_t(t \ge 8)$, a contradiction. \Box

References

- 1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Elsevier, New York (1976)
- Ferrara, M., Gould, R., Gehrke, S., Magnant, C., Pfender, F.: Pancyclicity of 4-connected claw, generalized net-free graphs (submitted) (2010)
- Ferrara, M., Morris, T., Wenger, P.: Pancyclicity of 4-connected, claw-free, P₁₀-free graphs. J. Graph Theory 71(4), 435–447 (2012)
- 4. Gould, R., Łuczak, T., Pfender, F.: Pancyclicity of 3-connected graphs: pairs of forbidden subgraphs. J. Graph Theory **47**(3), 183–202 (2004)
- Lai, H.-J., Xiong, L., Yan, H., Yan, J.: Every 3-connected claw-free Z₈-free graph is Hamiltonian. J. Graph Theory 64(1), 1–11 (2010)
- Matthews, M.M., Sumner, D.P.: Hamiltonian results in K_{1,3}-free graphs. J. Graph Theory 8(1), 139–146 (1984)
- Ryjáček, Z.: On, : a closure concept in claw-free graphs. J. Combin. Theory Ser. B 70(2), 217–224 (1997)