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a b s t r a c t

Mader (2010) conjectured that for every positive integer k and every finite tree T with
order m, every k-connected, finite graph G with δ(G) ≥ ⌊

3
2 k⌋ + m − 1 contains a subtree

T ′ isomorphic to T such that G− V (T ′) is k-connected. The conjecture has been verified for
paths, trees when k = 1, and stars or double-stars when k = 2. In this paper we verify the
conjecture for two classes of trees when k = 2.

For digraphs, Mader (2012) conjectured that every k-connected digraph D with mini-
mum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥ 2k + m − 1 for a positive integer m has
a dipath P of order m with κ(D − V (P)) ≥ k. The conjecture has only been verified for the
dipathwithm = 1, and the dipathwithm = 2 and k = 1. In this paper, we prove that every
strongly connected digraph with minimum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥

m+ 1 contains an oriented tree T isomorphic to some given oriented stars or double-stars
with orderm such that D − V (T ) is still strongly connected.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs (digraphs) are finite and without multiple edges (parallel arcs) and without loops. For graph-
theoretical terminologies and notation not defined here, we follow [1]. A graph (digraph) is k-connected means (strongly)
k-vertex-connected.We use κ(G) (κ(D)) to denote the connectivity of the graphG (digraphD). The order of a graphG (digraph
D) is the cardinality of its vertex set, denoted by |G| (|D|).

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.

Theorem 1.1 ([2]). Every k-connected graph G of minimum degree δ(G) ≥ ⌊
3
2k⌋ has a vertex u with κ(G − u) ≥ k.

Fujita and Kawarabayashi proved in [4] that every k-connected graph G with minimum degree at least ⌊
3
2k⌋ + 2 has an

edge e = uv such that G − {u, v} is still k-connected. In the same paper, they stated the following conjecture.

Conjecture 1 ([4]). For all positive integers k,m, there is a (least) non-negative integer fk(m) such that every k-connected graph
G with δ(G) ≥ ⌊

3
2k⌋ − 1 + fk(m) contains a connected subgraph W of exact order m such that G − V (W ) is still k-connected.
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The examples given in [4] showed that fk(m) must be at least m for all positive integers k,m. In [7], Mader confirmed
Conjecture 1 and proved that fk(m) = m holds for all k,m.

Theorem 1.2 ([7]). Every k-connected graph G with δ(G) ≥ ⌊
3
2k⌋ + m − 1 for positive integers k,m contains a path P of order m

such that G − V (P) remains k-connected.

Mader [7] further conjectured that Theorem 1.2 holds for all trees.

Conjecture 2 ([7]). For every positive integer k and every finite tree T , there is a least non-negative integer tk(T ), such that every
k-connected, finite graph G with δ(G) ≥ ⌊

3
2k⌋ − 1 + tk(T ) contains a subgraph T ′ ∼= T with κ(G − V (T ′)) ≥ k. Furthermore,

tk(T ) = |T | holds.

In [8], Mader showed that tk(T ) exists. Actually, he showed that tk(T ) ≤ 2(k + m − 1)2 + m − ⌊
3
2k⌋. Theorem 1.2 implied

that Conjecture 2 is true when T is a path. Diwan and Tholiya [3] proved that Conjecture 2 holds when k = 1. In [9], the
authors verified that Conjecture 2 is true when T is a star or double-star and k = 2. In Section 3, we will verify Conjecture 2
for two classes of trees when k = 2.

The minimum outdegree and the minimum indegree of a digraph D are denoted by δ+(D) and δ−(D), respectively. The
minimum semi-degree of D is δ(D) := min{δ+(D), δ−(D)}. The following result is a digraph analogue to Theorem 1.1.

Theorem 1.3 ([6]). Every k-connected digraph D with minimum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥ 2k has a vertex u
with κ(D − u) ≥ k.

Considering the results for graphs and digraphs, Mader [8] suggested the following conjecture.

Conjecture 3 ([8]). Every k-connected digraph D with minimum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥ 2k + m − 1 for a
positive integer m has a dipath P of order m with κ(D − V (P)) ≥ k.

Mader remarked that one could conjecture also similar results for trees with special orientations, but he thought even
a proof of Conjecture 3 is very difficult. Conjecture 3 has only been verified for the dipath with m = 1, and the dipath
with m = 2 and k = 1. In Section 4, we will prove that every strongly connected digraph with minimum semi-degree
δ(D) = min{δ+(D), δ−(D)} ≥ m+1 contains an oriented tree T isomorphic to some given oriented stars or double-stars with
orderm such that D − V (T ) is still strongly connected.

2. Preliminaries

Let G be a graph with vertex set V (G) and edge set E(G). We write u ∈ G for u ∈ V (G). For a vertex u ∈ G, let NG(u) be the
set of neighbors of u in G and dG(u) = |NG(u)| be the degree of u in G. For a vertex subset U of a graph G, G(U) denotes the
subgraph induced by U and G−U is the subgraph induced by V (G)−U . The neighborhood NG(U) of U is the set of vertices in
V (G)−U which are adjacent to some vertex in U . If U = {u}, we use G− u for G−{u}. If H is a subgraph of G, we often use H
for V (H). For example, NG(H),H∩G and G(H) mean NG(V (H)), V (H)∩V (G) and G(V (H)), respectively. If there is no confusion,
we always delete the subscript, for example, d(u) for dG(u), N(u) for NG(u), N(U) for NG(U) and so on. For H ⊆ G, we define
δG(H) := minx∈HdG(x), whereas δ(H) is the minimum degree of the graph H . For H1,H2 ⊆ G, H1 ∪ H2 is the subgraph of G
with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). For a set S, K (S) denotes the complete graph on vertex set S.

A vertex set S is a separating set of a connected graph G if G − S is disconnected, and S is a minimum separating set if
|S| = κ(G). For a minimum separating set S of G, we call the union F of at least one, but not all components of G − S a
fragment F to S, and F := G − (S ∪ V (F )) the complementary fragment . An end of G is a fragment of Gwhich does not contain
another fragment of G. An end of G exists if and only if G is not complete, and then, of course, there are at least two. The
completion of S ⊆ V (G) in G, denoted by G[S], is the graph G ∪ K (S).

Let Kk(m) denote the class of all pairs (G, C), where G is a k-connected graph with |G| ≥ k + 1, C is a complete subgraph
of Gwith |C | = k and with δG(G − V (C)) ≥ ⌊

3
2k⌋ + m − 1. Let K+

k (m) consist of all (G, C) ∈ Kk(m) with κ(G) ≥ k + 1.
In order to use induction to prove Theorem 1.2, Mader [7] proved the following result.

Theorem 2.1 (Mader [7]). For all (G, C) ∈ K+

k (m) and p ∈ G − V (C), there is a path P ⊆ G − V (C) of order m starting from p
such that κ(G − V (P)) ≥ k holds.

The following Theorem was stated in [8]. A proof of Theorem 2.2 was not given, but it follows from Theorem 2 in [7] in a
similar way as that of Theorem 1 in [7].

Theorem 2.2 (Mader [8]). Let G be a (k + 1)-connected graph G with δ(G) ≥ ⌊
3
2k⌋ + m − 1 and let p be a vertex of G. Then there

is a path P of order m starting from p such that κ(G − V (P)) ≥ k holds.

A tree is a connected graph without cycles. A star is a tree that has exact one vertex with degree greater than one. We call
this vertex u with degree greater than one the center-vertex of the star. A double-star is a tree that has exact two vertices
with degree greater than one. Those two vertices u and v with degree greater than one must be adjacent in a double-star.
We call this edge uv the center-edge of the double-star. The authors in [9] proved the following theorem, which verified
Conjecture 2 for stars and double-stars when k = 2.
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Fig. 1. The path-star graph PS(r,m − r).

Theorem 2.3 ([9]). Let G be a 2-connected graph with minimum degree δ(G) ≥ m + 2, where m is a positive integer. Then
(i) G contains a star T ′ with order m such that G − V (T ′) is 2-connected;
(ii) for every double-star T with order m, G contains a double-star T ′ isomorphic to T such that G − V (T ′) is 2-connected.

As indicated in [7], given a (G, C) ∈ Kk(m), we can obtain a graph G′ from (G, C) such that G′ satisfies the condition
δ(G′) ≥ ⌊

3
2k⌋ + m − 1 by pasting together sufficiently many copies of G at C . Then by applying Theorems 1.2 and 2.3 to G′,

we obtain the following results.

Theorem 2.4. (i) [7] Every (G, C) ∈ Kk(m) contains a path P ⊆ G − V (C) of order m such that κ(G − V (P)) ≥ k holds.
(ii) [9] Every (G, C) ∈ K2(m) contains a star T ′

⊆ G − V (C) of order m such that κ(G − V (T ′)) ≥ 2 holds;
(iii) [9] For every double-star T with order m, every (G, C) ∈ K2(m) contains a double-star T ′

⊆ G − V (C) isomorphic to T
such that κ(G − V (T ′)) ≥ 2 holds.

LetD be a digraphwith vertex set V (D) and arc set A(D). An arc (u, v) is considered to be directed from u to v. u ∈ Dmeans
u ∈ V (D). For a vertex set S ⊆ V (D), define N+

D (S) := {v ∈ D − S: there is an s ∈ S such that (s, v) ∈ A(D)}; for a subdigraph
H ⊆ D and a vertex u ∈ D, we write N+

D (H) instead of N+

D (V (H)) and N+

D (u) instead of N+

D ({u}). For u ∈ D, d+

D (u) = |N+

D (u)|
denotes the outdegree of u. δ+(D) denotes the minimum outdegree of D. For the dual concepts, we use the notation N−

D , d−

D
and δ−(D), respectively. Theminimum semi-degree δ(D) of D ismin{δ+(D), δ−(D)}. The subdigraph of D induced by S ⊆ V (D)
or S ⊆ D is denoted by D(S). We say D is strongly connected if κ(D) ≥ 1.

3. Connectivity keeping trees in 2-connected graphs

The next lemma is widely used in studying connectivity of graphs.

Lemma 3.1 (Hamidoune [5]). Let G be a k-connected graph and let S be a separating set of G with |S| = k. Then for every fragment
F of G to S, G[S] − V (F ) is k-connected. Furthermore, if F is an end of G with |F | ≥ 2, then G[S] − V (F ) is (k + 1)-connected.

Proof. Since a separating set of G[S] − V (F ) is one of G, too, Lemma 3.1 follows immediately. □

Before proving the main results in this section, we need one more lemma.

Lemma 3.2 (Mader [7]). Let G be a k-connected graph and let S be a separating set of G with |S| = k. Then the following hold.
(i) Assume δ(G) ≥ ⌊

3
2k⌋ + m − 1 and let F be a fragment of G to S. If W ⊆ G − (S ∪ V (F )) has order at most m and

κ(G[S] − V (F ∪ W )) ≥ k holds, then also κ(G − V (W )) ≥ k holds.
(ii) Assume (G, C) ∈ Kk(m) and let F be a fragment of G to S with C ⊆ G(F ∪ S). If W ⊆ G − (S ∪ V (F )) has order at most m

and κ(G[S] − V (F ∪ W )) ≥ k holds, then also κ(G − V (W )) ≥ k holds.

Definition 1. The path-star graph, PS(r,m− r), is obtained from the disjoint union of a path with order r +1 and a star with
order m − r , by identifying one end vertex of the path with one vertex of degree one in the star. See Fig. 1 for example.

Theorem 3.3. Let PS(r,m − r) be a path-star graph with order m, where 1 ≤ r ≤ m − 3. Then every 2-connected graph G with
minimum degree δ(G) ≥ m + 2 contains a subgraph T isomorphic to PS(r,m − r) such that G − V (T ) is 2-connected.

Proof. By Theorem 2.3(i), there is a star T1 with order m − r such that G1 := G − V (T1) is 2-connected. Let V (T1) =

{u, v1, . . . , vm−r−1} and E(T1) = {uvi|i = 1, . . . ,m − r − 1}. Since δ(G) ≥ m + 2, we have δ(G1) ≥ m + 2 − (m − r) = r + 2
and |NG(v) ∩ G1| ≥ m + 2 − (m − r − 1) = r + 3 for each v ∈ V (T1).

Case 1. G1 is 3-connected.
Let w1 be a neighbor of v1 in G1. By Theorem 2.2, there is a path P1 of order r in G1 starting from w1 such that G1 − V (P1)

is 2-connected. Then the subgraph T obtained from the union of T1 and P1 by adding an edge v1w1 satisfies T ∼= PS(r,m− r)
and G − V (T ) is 2-connected.
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Case 2. κ(G1) = 2.
Then G1 has an end F . Let S = NG1 (F ) and S = {x, y}. We have |F | ≥ 2 by δ(G1) ≥ r + 2 and |S| = 2. By Lemma 3.1,

G1[S] − V (F ) is 3-connected. By δ(G1) ≥ r + 2, we have (G1[S] − V (F ), S) ∈ K+

2 (r).

Case 2.1. G1 has an end, say F , such that NG(T1) ∩ F ̸= ∅.
If vi has a neighbor wi in F for some i ∈ {1, . . . ,m − r − 1}, then by Theorem 2.1, there is a path P1 ⊆ G1[S] − V (F ) − S

of order r starting from wi such that G1[S] − V (F ) − V (P1) is 2-connected. Since δ(G1) ≥ r + 2 and |V (P1)| = r , we have
G1 − V (P1) is 2-connected by Lemma 3.2(i). Thus the subgraph T obtained from the union of T1 and P1 by adding an edge
viwi satisfies T ∼= PS(r,m − r) and G − V (T ) is 2-connected.

Assume NG(vi) ∩ F = ∅ for any i ∈ {1, . . . ,m − r − 1}. By NG(T1) ∩ F ̸= ∅, u must have a neighbor, say w, in F . Let
T2 = T1 − vm−r−1 and G2 = G − V (T2). Then F is still an end of G2 and δ(G2) ≥ r + 3. Thus (G2[S] − V (F ), S) ∈ K+

2 (r + 1).
By Theorem 2.1, there is a path P2 ⊆ G2[S] − V (F ) − S of order r + 1 starting from w such that G2[S] − V (F ) − V (P2) is
2-connected. Since δ(G2) ≥ r + 3 and |V (P2)| = r + 1, we have G2 − V (P2) is 2-connected by Lemma 3.2(i). Thus the graph
T obtained from the union of T2 and P2 by adding an edge uw satisfies T ∼= PS(r,m − r) and G − V (T ) is 2-connected.

Case 2.2. Each end F in G1 satisfies NG(T1) ∩ F = ∅.
As above, assume F is an end of G1. Let S = NG1 (F ) and S = {x, y}. Since NG(T1) ∩ F = ∅, we know F is also an end of G. If

we can find a subgraph T ⊆ F such that T ∼= PS(r,m − r) and κ(G[S] − V (F ) − V (T )) ≥ 2, then, by applying Lemma 3.2(i)
to G, we obtain G− V (T ) is 2-connected. Thus, in the following, we only need to prove that G[S] − V (F ) contains a subgraph
T ′

⊆ G[S] − V (F ) − S such that T ′ ∼= PS(r,m − r) and κ(G[S] − V (F ) − V (T ′)) ≥ 2.
Let G′

= G[S] − V (F ). By Lemma 3.1, G′ is 3-connected. Since δ(G) ≥ m+ 2, we have (G′, S) ∈ K+

2 (m). By Theorem 2.4(ii),
there is a star T ′

1 ⊆ G′
− S with order m − r such that G′

1 := G′
− V (T ′

1) is 2-connected. Let V (T ′

1) = {u′, v′

1, . . . , v
′

m−r−1}

and E(T ′

1) = {u′v′

i |i = 1, . . . ,m − r − 1}. Since δ(G) ≥ m + 2, we have δG′
1
(G′

1 − S) ≥ m + 2 − (m − r) = r + 2 and
|NG′ (v′) ∩ G′

1| ≥ m + 2 − (m − r − 1) = r + 3 for each v′
∈ V (T ′

1).

Case 2.2.1. G′

1 is 3-connected.
Let w′

1 be a neighbor of v′

1 in G′

1 − S (w′

1 exists because |NG′ (v′

1) ∩ G′

1| ≥ r + 3 and |S| = 2). By Theorem 2.1, there is a
path P ′

1 ⊆ G′

1 − S of order r starting from w′

1 such that G′

1 −V (P ′

1) is 2-connected. Then the graph T ′ obtained from the union
of T ′

1 and P ′

1 by adding an edge v′

1w
′

1 satisfies T ′ ∼= PS(r,m − r) and G′
− V (T ′) is 2-connected.

Case 2.2.2. κ(G′

1) = 2.
The proof of Case 2.2.2 is similar to Case 2.1. Nevertheless, we also outline the proof for completeness.
We can choose an end F ′ ofG′

1 such that F ′
∩S = ∅. Let S ′

= NG′
1
(F ′) and S ′

= {x′, y′
}.Wehave |F ′

| ≥ 2by δG′
1
(G′

1−S) ≥ r+2
and |S ′

| = 2. By Lemma 3.1, G′

1[S
′
] − V (F ′) is 3-connected. By δG′

1
(G′

1 − S) ≥ r + 2, we have (G′

1[S
′
] − V (F ′), S ′) ∈ K+

2 (r).
If v′

i has a neighbor w′

i in F ′ for some i ∈ {1, . . . ,m− r − 1}, then by Theorem 2.1, there is a path P ′

1 ⊆ G′

1[S
′
] − V (F ′)− S ′

of order r starting from w′

i such that G′

1[S
′
] − V (F ′) − V (P ′

1) is 2-connected. Since δG′
1
(G′

1 − S) ≥ r + 2 and |V (P ′

1)| = r , we
have G′

1 − V (P ′

1) is 2-connected by Lemma 3.2(ii). Thus the graph T ′ obtained from the union of T ′

1 and P ′

1 by adding an edge
v′

iw
′

i satisfies T
′ ∼= PS(r,m − r) and G′

− V (T ′) is 2-connected.
Assume NG′ (vi) ∩ F ′

= ∅ for any i ∈ {1, . . . ,m − r − 1}. By G′ is 3-connected, u′ must have a neighbor, say w′, in F ′. Let
T ′

2 = T ′

1−u′

m−r−1 andG′

2 = G′
−V (T ′

2). Then F ′ is still an end ofG′

2 and δG′
2
(G′

2−S) ≥ r+3. Thus (G′

2[S
′
]−V (F ′), S ′) ∈ K+

2 (r+1).
By Theorem 2.1, there is a path P ′

2 ⊆ G′

2[S
′
] − V (F ′) − S ′ of order r + 1 starting from w′ such that G′

2[S
′
] − V (F ′) − V (P ′

2)
is 2-connected. Since δG′

2
(G′

2 − S) ≥ r + 3 and |V (P ′

2)| = r + 1, we have G′

2 − V (P ′

2) is 2-connected by Lemma 3.2(ii). Thus
the graph T ′ obtained from the union of T ′

2 and P ′

2 by adding an edge u′w′ satisfies T ′ ∼= PS(r,m − r) and G′
− V (T ′) is

2-connected. □

Definition 2. The path-double-star graph, PDS(r,m − r), is obtained from the disjoint union of a path with order r + 1 and
a double-star with order m − r , by identifying one end vertex of the path with one vertex of degree one in the double-star.
See Fig. 2 for example.

Specifically, we denote PDS1(r,m − r) the path-double-star graph obtained from the disjoint union of a path with order
r+1 and a double-star with orderm−r , by identifying one end vertex of the pathwith one pendant vertexwhich is adjacent
to the vertex withmaximum degree in the double-star. We denote PDS2(r,m− r) the path-double-star graph obtained from
the disjoint union of a path with order r + 1 and a double-star with order m − r , by identifying one end vertex of the path
with one pendant vertex which is adjacent to the vertex with the second maximum degree in the double-star.

By replacing the star with a double-star in the proof of Theorem 3.3, we can obtain the proof of Theorem 3.4 by using
almost the same arguments as the proof of Theorem 3.3. Besides, we use Theorem 2.3(ii) instead of Theorem 2.3(i) and
Theorem 2.4(iii) instead of Theorem 2.4(ii) in the proof of Theorem 3.4. So we omit the proof here.

Theorem 3.4. For two integers r,m with 1 ≤ r ≤ m − 4, every 2-connected graph G with minimum degree δ(G) ≥ m + 2
contains a subgraph T isomorphic to PDS1(r,m − r) or PDS2(r,m − r) such that G − V (T ) is 2-connected.

Remark. In Definition 2, if the degrees of the two vertices of the center-edge in the double-star are equal, then PDS1(r,m−r)
is isomorphic to PDS2(r,m − r). Thus Theorem 3.4 implies that Conjecture 2 is true for this kind of path-double-stars when
k = 2.
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Fig. 2. The path-double-star graph PDS(r,m − r).

Fig. 3. (1) The out-star; (2) The in-star.

4. Nonseparating oriented stars or double-stars in strongly connected digraphs

Definition 3. The out-star OSm is the digraph obtained from a star of order m by orienting each edge of the star away from
the center-vertex. The in-star ISm is the digraph obtained from a star of order m by orienting each edge of the star towards
the center-vertex. See Fig. 3 for examples.

Lemma 4.1. Let D be a strongly connected digraph and H be a subdigraph of D with |V (H)| < |V (D)|. Then there is a dipath
P := p0p1 · · · pt (t ≥ 2) in D such that p0, pt ∈ V (H) and p1, . . . , pt−1 ∈ V (D) − V (H), where p0 and pt may be the same vertex.

Proof. Since D is strongly connected, there is an arc, say (p0, p1), from V (H) to V (D) − V (H). By D is strongly connected,
there is a dipath, say P ′

:= p1 · · · pt , from p1 to V (H), where p1, . . . , pt−1 ∈ V (D) − V (H) and pt ∈ V (H). Thus the dipath
P := p0p1 · · · pt is just a dipath we needed. □

Theorem 4.2. Let D be a strongly connected digraph with minimum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥ m + 1. Then D
contains a subdigraph T isomorphic to OSm or ISm such that D − V (T ) remains strongly connected.

Proof. Since δ(D) ≥ m + 1, there are subdigraphs in D isomorphic to OSm or ISm. Let T be a subdigraph in D isomorphic to
OSm or ISm. Let D′

= D − T . If D′ is strongly connected, then we are done. Thus we assume that D′ is not strongly connected.
We order all strong components of D′ as C1, . . . , Cl such that there are no arcs from Cj to Ci for all 1 ≤ i < j ≤ l. Let B be a
maximum strong component of D′. We choose such a T so that

(1) |B| is as large as possible.
Let P := p0p1 · · · pt (t ≥ 2) be a shortest dipath in D such that p0, pt ∈ B and p1, . . . , pt−1 ∈ V (D) − B (by Lemma 4.1).

We consider three cases in the following.

Case 1. t = 2.
By t = 2, we have p1 ∈ V (T ). If B = C1, then for any vertex cl ∈ Cl, we have |N+

D (cl)\(B ∪ {p1})| ≥ m+1−1 = m. Thus we
can find anout-star T ′ rooted at cl with orderm such thatV (T ′)∩(V (B)∪V (P)) = ∅. But thenV (B)∪V (P) is contained in a strong
component ofD−V (T ′), contrary to (1). If B ̸= C1, then for any vertex c1 ∈ C1, we have |N−

D (c1) \ (B ∪ {p1})| ≥ m+1−1 = m.
Thuswe can find an in-star T ′′ rooted at c1 with orderm such that V (T ′′)∩(V (B)∪V (P)) = ∅. But then V (B)∪V (P) is contained
in a strong component of D − V (T ′′), contrary to (1).

Case 2. t = 3.
By the choice of P , we have N+

D (p1) ∩ B = ∅. Then |N+

D (p1) \ (B ∪ P)| ≥ m + 1 − 1 = m. Let q ∈ N+

D (p1) \ (B ∪ P). If
N+

D (q)∩B = ∅, then |N+

D (q)\(B ∪ P)| ≥ m+1−2 = m−1. Thus we can find an out-star T ′ rooted at qwith orderm such that
V (T ′)∩(V (B)∪V (P)) = ∅. But thenV (B)∪V (P) is contained in a strong component ofD−V (T ′), contrary to (1). IfN+

D (q)∩B ̸= ∅,
then N−

D (q)∩ B = ∅ (for otherwise, we can find a dipath P ′ shorter than P). Thus |N−

D (q)\(B ∪ P)| ≥ m+ 1− 2 = m− 1, and
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Fig. 4. (1) The out-double-star; (2) The in-double-star; (3) The out-in-double-star.

we can find an in-star T ′′ rooted at qwith orderm such that V (T ′′)∩ (V (B)∪ V (P)) = ∅. But then V (B)∪ V (P) is contained in
a strong component of D − V (T ′′), contrary to (1).

Case 3. t ≥ 4.
By the choice of P , we have N+

D (p1) ∩ (B ∪ P) = {p2}. Then |N+

D (p1) \ (B ∪ P)| ≥ m + 1 − 1 = m. Let q1, . . . , qm ∈

N+

D (p1) \ (B∪ P). By the choice of P , we have N+

D (qj)∩ (B∪ P) ⊆ {p1, p2, p3} for each j ∈ {1, . . . ,m}. Thus |N+

D (qj) \ (B ∪ P)| ≥

m + 1 − 3 = m − 2 for each j ∈ {1, . . . ,m}. If there is some j ∈ {1, . . . ,m} such that |N+

D (qj) \ (B ∪ P)| ≥ m − 1,
then we can find an out-star T ′ rooted at qj with order m such that V (T ′) ∩ (V (B) ∪ V (P)) = ∅. But then V (B) ∪ V (P)
is contained in a strong component of D − V (T ′), contrary to (1). Thus we assume that |N+

D (qj) \ (B ∪ P)| = m − 2 and
N+

D (qj) ∩ (B ∪ P) = {p1, p2, p3} for each j ∈ {1, . . . ,m}. But then there is an in-star T ′′ rooted at p2 with vertex set
{p2, q1, . . . , qm−1} such that V (T ′′) ∩ (V (B) ∪ V (P ′)) = ∅, where P ′ is the dipath p0p1qmp3 · · · pt . But then V (B) ∪ V (P ′) is
contained in a strong component of D − V (T ′′), contrary to (1). □

Definition 4. The out-double-star ODS(m; r, s) is the digraph obtained from the disjoint union of two out-stars (one is
isomorphic to OSr+1 rooted at u and the other is isomorphic to OSs+1 rooted at v, where r + s = m−2) by adding an arc from
u to v. The in-double-star IDS(m; r, s) is the digraph obtained from the disjoint union of two in-stars (one is isomorphic to
ISr+1 rooted at u and the other is isomorphic to ISs+1 rooted at v, where r + s = m − 2) by adding an arc from u to v. The
out-in-double-starOIDS(m; r, s) is the digraph obtained from the disjoint union of one out-star and one in-star (the out-star
is isomorphic to OSr+1 rooted at u and the in-star is isomorphic to ISs+1 rooted at v, where r + s = m − 2) by adding an arc
from u to v. We often call the arc (u, v) center-arc. See Fig. 4 for examples.

Lemma 4.3. Let D be a digraph, T1 be an out-double-star with order m, T2 be an in-double-star with order m, and T3 be an
out-in-double-star with order m.

(i) If there is an arc a = (u, v) ∈ A(D) such that |N+

D (u) \ {v}| ≥ m−3, |N+

D (v) \ {u}| ≥ m−3 and |(N+

D (u) ∪ N+

D (v)) \ {u, v}|

≥ m − 2, then there is an out-double-star T ⊆ D isomorphic to T1.
(ii) If there is an arc a = (u, v) ∈ A(D) such that |N−

D (u) \ {v}| ≥ m−3, |N−

D (v) \ {u}| ≥ m−3 and |(N−

D (u) ∪ N−

D (v)) \ {u, v}|

≥ m − 2, then there is an in-double-star T ⊆ D isomorphic to T2.
(iii) If there is an arc a = (u, v) ∈ A(D) such that |N+

D (u) \ {v}| ≥ m−3, |N−

D (v) \ {u}| ≥ m−3 and |(N+

D (u) ∪ N−

D (v)) \ {u, v}|

≥ m − 2, then there is an out-in-double-star T ⊆ D isomorphic to T3.

Proof. (i) By T1 is an out-double-star, we have m ≥ 4. Assume the out-double-star T1 has the center-arc a′
= (u′, v′), where

|N+

T1
(u′) \ {v′

}| = r , |N+

T1
(v′) \ {u′

}| = s and |(N+

T1
(u′) ∪ N+

T1
(v′)) \ {u′, v′

}| = m − 2 (1 ≤ r, s ≤ m − 3 and r + s = m − 2).
Since |N+

D (u) \ {v}| ≥ m − 3, |N+

D (v) \ {u}| ≥ m − 3 and |(N+

D (u) ∪ N+

D (v)) \ {u, v}| ≥ m − 2, we can find an out-double-star
T ∼= T1 in Dwith center-arc a = (u, v).

(ii) and (iii) follow similarly. □

While the main idea of the proof of Theorem 4.4 is similar to that of Theorem 4.2, the proof of Theorem 4.4 is somewhat
more complicated with different details.

Theorem 4.4. For any integers m, r, s with 1 ≤ r, s ≤ m − 3 and r + s = m − 2, every strongly connected digraph
D with minimum semi-degree δ(D) = min{δ+(D), δ−(D)} ≥ m + 1 contains a subdigraph T isomorphic to a member in
S(m; r, s) = {ODS(m; r, s), IDS(m; r, s),OIDS(m; r, s)} such that D − V (T ) remains strongly connected.

Proof. Since δ(D) ≥ m + 1, there is a subdigraph in D isomorphic to a member in S(m; r, s) = {ODS(m; r, s),
IDS(m; r, s),OIDS(m; r, s)} by Lemma4.3. Let T be a subdigraph inD isomorphic to amember inS(m; r, s). LetD′

= D−T . IfD′

is strongly connected, then we are done. Thus we assume that D′ is not strongly connected. We order all strong components
of D′ as C1, . . . , Cl such that there are no arcs from Cj to Ci for all 1 ≤ i < j ≤ l. Let B be a maximum strong component of D′.
We choose such a T so that

(1) |B| is as large as possible.



350 Y. Tian et al. / Discrete Mathematics 342 (2019) 344–351

Let P := p0p1 · · · pt (t ≥ 2) be a shortest dipath in D such that p0, pt ∈ B and p1, . . . , pt−1 ∈ V (D) − B (by Lemma 4.1).
We consider three cases in the following.

Case 1. t = 2.
By t = 2, we have p1 ∈ V (T ). If B = C1, then for any vertex cl ∈ Cl, we have |N+

D (cl)\(B ∪ {p1})| ≥ m + 1 − 1 = m
and |N+

D (cl) ∩ Cl| ≥ m + 1 − |T | = 1. Let (cl, c ′

l ) be an arc in Cl. Since |N+

D (cl)\(B ∪ {p1, c ′

l })| ≥ m + 1 − 2 = m − 1 and
|N+

D (c ′

l )\(B ∪ {p1, cl})| ≥ m+1−2 = m−1, by Lemma4.3(i),we can find anout-double-star T ′ ∼= ODS(m; r, s)with center-arc
(cl, c ′

l ) such that V (T ′)∩ (V (B)∪V (P)) = ∅. But then V (B)∪V (P) is contained in a strong component of D−V (T ′), contrary to
(1). If B ̸= C1, then for any vertex c1 ∈ C1, we have |N−

D (c1)\(B ∪ {p1})| ≥ m+1−1 = m and |N−

D (c1) ∩ C1| ≥ m+1−|T | = 1.
Let (c1, c ′

1) be an arc in C1. Since |N−

D (c1)\(B ∪ {p1, c ′

1})| ≥ m+1−2 = m−1 and |N−

D (c ′

1)\(B ∪ {p1, c1})| ≥ m+1−2 = m−1,
by Lemma 4.3(ii), we can find an in-double-star T ′′ ∼= IDS(m; r, s) with center-arc (c1, c ′

1) such that V (T ′′)∩(V (B)∪V (P)) = ∅.
But then V (B) ∪ V (P) is contained in a strong component of D − V (T ′′), contrary to (1).

Case 2. t = 3.
By the choice of P , we have N+

D (p1) ∩ B = ∅. Then |N+

D (p1) \ (B ∪ P)| ≥ m + 1 − 1 = m. Let q ∈ N+(p1) \ (B ∪ P).

Case 2.1. N+

D (q) ∩ B = ∅.
By N+

D (q) ∩ B = ∅, we have |N+

D (q)\(B ∪ P)| ≥ m + 1 − 2 = m − 1. Let w ∈ N+

D (q) \ (B ∪ P).
If N+

D (w) ∩ B = ∅, then |N+

D (w)\(B ∪ P)| ≥ m + 1 − 2 = m − 1. Since |N+

D (q)\(B ∪ P ∪ {w})| ≥ m + 1 − 3 = m − 2
and |N+

D (w)\(B ∪ P ∪ {q})| ≥ m + 1 − 3 = m − 2, by Lemma 4.3(i), we can find an out-double-star T ′ ∼= ODS(m; r, s) with
center-arc (q, w) such that V (T ′)∩ (V (B)∪ V (P)) = ∅. But then V (B)∪ V (P) is contained in a strong component of D− V (T ′),
contrary to (1).

If N+

D (w) ∩ B ̸= ∅, then N−

D (w) ∩ B = ∅ (for otherwise, we can find a dipath P ′ shorter than P). Thus |N−

D (w)\(B ∪ P)| ≥

m+ 1− 2 = m− 1. Since |N+

D (q)\(B ∪ P ∪ {w})| ≥ m+ 1− 3 = m− 2 and |N−

D (w)\(B ∪ P ∪ {q})| ≥ m+ 1− 3 = m− 2, by
Lemma 4.3(iii), we can find an out-in-double-star T ′ ∼= OIDS(m; r, s) with center-arc (q, w) such that V (T ′)∩ (V (B)∪V (P)) =

∅. But then V (B) ∪ V (P) is contained in a strong component of D − V (T ′), contrary to (1).

Case 2.2. N+

D (q) ∩ B ̸= ∅.
By N+

D (q) ∩ B ̸= ∅, we have N−

D (q) ∩ B = ∅ (for otherwise, we can find a dipath P ′ shorter that P), and then
|N−

D (q)\(B ∪ P)| ≥ m + 1 − 2 = m − 1. Let w′
∈ N−

D (q) \ (B ∪ P).
If N+

D (w′)∩ B = ∅, then |N+

D (w′)\(B ∪ P)| ≥ m+ 1− 2 = m− 1. Since |N−

D (q)\(B ∪ P ∪ {w′
})| ≥ m+ 1− 3 = m− 2 and

|N+

D (w′)\(B ∪ P ∪ {q})| ≥ m + 1 − 3 = m − 2, by Lemma 4.3(iii), we can find an out-in-double-star T ′ ∼= OIDS(m; r, s) with
center-arc (w′, q) such that V (T ′)∩ (V (B)∪V (P)) = ∅. But then V (B)∪V (P) is contained in a strong component of D−V (T ′),
contrary to (1).

If N+

D (w′) ∩ B ̸= ∅, then N−

D (w′) ∩ B = ∅ (for otherwise, we can find a dipath P ′ shorter than P). Thus |N−

D (w′)\(B ∪ P)| ≥

m+1−2 = m−1. Since |N−

D (q)\(B ∪ P ∪ {w′
})| ≥ m+1−3 = m−2 and |N−

D (w′)\(B ∪ P ∪ {q})| ≥ m+1−3 = m−2, by
Lemma 4.3(ii), we can find an in-double-star T ′ ∼= IDS(m; r, s) with center-arc (w′, q) such that V (T ′) ∩ (V (B) ∪ V (P)) = ∅.
But then V (B) ∪ V (P) is contained in a strong component of D − V (T ′), contrary to (1).

Case 3. t ≥ 4.
By the choice of P , we have N+

D (p1) ∩ (B ∪ P) = {p2}. Then |N+

D (p1) \ (B ∪ P)| ≥ m + 1 − 1 = m. Let q1, . . . , qm ∈

N+

D (p1) \ (B∪ P). By the choice of P , we have N+

D (qj)∩ (B∪ P) ⊆ {p1, p2, p3} for each j ∈ {1, . . . ,m}. Thus |N+

D (qj) \ (B ∪ P)| ≥

m + 1 − 3 = m − 2 for each j ∈ {1, . . . ,m}. Let w ∈ N+

D (q1) \ (B ∪ P).
If N+

D (w) ∩ B ̸= ∅, then N−

D (w) ∩ (B ∪ P) ⊆ {pt−2, pt−1} by the choice of P . Thus |N−

D (w) \ (B ∪ P)| ≥ m − 1.
Since |N+

D (q1) \ (B ∪ P)| ≥ m − 2 and |N−

D (w) \ (B ∪ P)| ≥ m − 1, by Lemma 4.3(iii), we can find an out-in-double-star
T ′ ∼= OIDS(m; r, s) with center-arc (q1, w) such that V (T ′)∩ (V (B)∪ V (P)) = ∅. But then V (B)∪ V (P) is contained in a strong
component of D − V (T ′), contrary to (1).

If N−

D (w) ∩ B ̸= ∅, then N+

D (w) ∩ (B ∪ P) ⊆ {p1, p2} by the choice of P . Thus |N+

D (w) \ (B ∪ P)| ≥ m − 1. Since
|N+

D (q1) \ (B ∪ P)| ≥ m−2 and |N+

D (w) \ (B ∪ P)| ≥ m−1, by Lemma 4.3(i), we can find an out-double-star T ′ ∼= ODS(m; r, s)
with center-arc (q1, w) such that V (T ′) ∩ (V (B) ∪ V (P)) = ∅. But then V (B) ∪ V (P) is contained in a strong component of
D − V (T ′), contrary to (1).

In the following, we assume N+

D (w) ∩ B = ∅ and N−

D (w) ∩ B = ∅ for every w ∈ N+

D (q1) \ (B ∪ P). By the choice of P , we
have N+

D (w)∩ (B∪ P) ⊆ {p1, p2, p3, p4} for each w ∈ N+

D (q1) \ (B∪ P). Thus |N+

D (w) \ (B ∪ P)| ≥ m+ 1− 4 = m− 3 for each
w ∈ N+

D (q1) \ (B ∪ P).
If there is some j ∈ {1, . . . ,m}, say j = 1, such that |N+

D (q1) \ (B ∪ P)| ≥ m − 1, let w1, . . . , wm−1 ∈ N+

D (q1) \ (B ∪ P). If
there is some k ∈ {1, . . . ,m−1}, say k = 1, such that |N+

D (w1) ∩ (B ∪ P)| ≥ m−2, then by Lemma 4.3(i), we can find an out-
double-star T ′ ∼= ODS(m; r, s) with center-arc (q1, w1) such that V (T ′)∩ (V (B)∪V (P)) = ∅. But then V (B)∪V (P) is contained
in a strong component of D − V (T ′), contrary to (1). So we assume |N+

D (wk) \ (B ∪ P)| = m − 3 for each k ∈ {1, . . . ,m − 1}.
Then we have N+

D (wk) ∩ (B ∪ P) = {p1, p2, p3, p4} for each k ∈ {1, . . . ,m − 1}. By Lemma 4.3(ii), there is an in-double-star
T ′′ ∼= IDS(m; r, s) with center-arc (p2, p3) and vertex set {p2, p3, w1, . . . , wm−2} such that V (T ′′)∩ (V (B)∪ V (P ′)) = ∅, where
P ′

:= p0p1q1wm−1p4 · · · pt . But then V (B) ∪ V (P ′) is contained in a strong component of D − V (T ′′), contrary to (1).
Thus we assume that |N+

D (qj) \ (B ∪ P)| = m − 2 and N+

D (qj) ∩ (B ∪ P) = {p1, p2, p3} for each j ∈ {1, . . . ,m}. By
|N+

D (qj) \ (B ∪ P)| = m − 2, there is an integer j ∈ {2, . . . ,m}, say j = m, such that qm /∈ N+

D (q1). Since {q2, . . . , qm−1} ∈
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N−

D (p2) and |N+

D (q1) \ (B ∪ P)| = m−2, by Lemma 4.3(iii), we can find an out-in-double-star T ′ ∼= OIDS(m; r, s) with center-
arc (q1, p2) such that V (T ′) ∩ (V (B) ∪ V (P ′)) = ∅, where P ′

:= p0p1qmp3 · · · pt . But then V (B) ∪ V (P ′) is contained in a strong
component of D − V (T ′), contrary to (1).

The theorem is established as all cases lead to contradictions. □
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