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A graph G is Hamilton-connected if for any pair of vertices v and w, G has a spanning 

(v , w ) -path. Extending theorems of Dirac and Ore, Erd ̋os prove a sufficient condition in 

terms of minimum degree and the size of G to assure G to be Hamiltonian. We investi- 

gate the spectral analogous of Erd ̋os’ theorem for a Hamilton-connected graph with given 

minimum degree, and prove that there exist two graphs { L k n , M 

k 
n } such that each of the 

following holds for an integer k ≥ 3 and a simple graph G on n vertices. 

(i) If n ≥ 6 k , δ( G ) ≥ k , and | E(G ) | > 

(
n −k 

2 

)
+ k (k + 1) , then G is Hamilton-connected if and 

only if C n +1 (G ) / ∈ { L k n , M 

k 
n } . 

(ii) If n ≥ max { 6 k, 1 
2 

k 3 − 1 
2 

k 2 + k + 4 } , δ( G ) ≥ k and spectral radius λ(G ) ≥ n − k, then G 

is Hamilton–connected if and only if G / ∈ { L k n , M 

k 
n } . 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

We consider finite and simple graphs, with undefined notation and term following [3] . We normally use e ( G ), n , δ( G )

and A ( G ) to denote | E ( G )|, | V ( G )|, the minimum degree and the adjacency matrix of a graph G , respectively. The largest

eigenvalue of A ( G ), called the spectral radius of G , is denoted by λ( G ). Let H be a subgraph of a graph G , and let u ∈ V ( G ). The

set of neighbors of a vertex u in H is denoted by N H ( u ). Thus 

N H (u ) = { v ∈ V (H) : u v ∈ E(G ) } . 
Define d H (u ) = | N H (u ) | . A clique is a subset of vertices of an undirected graph whose induced subgraph is a complete graph.

The maximum size of a clique of a graph is called clique number , denoted by ω( G ). For S ⊆V ( G ), the induced subgraph G [ S ] is

the graph with vertex set S and edge set { u v ∈ E(G ) | u, v ∈ S} . 
The disjoint union of two graphs G 1 and G 2 , denoted by G 1 + G 2 , is the graph with the vertex set V ( G 1 ) ∪ V ( G 2 ) and edge

set E ( G 1 ) ∪ E ( G 2 ). The disjoint union of k copies of a graph G is denoted by kG . The join of G 1 and G 2 , denoted by G 1 ∨ G 2 , has

vertex set V ( G 1 ) ∪ V ( G 2 ) and edge set E ( G 1 ) ∪ E ( G 2 ) ∪ { xy | x ∈ V ( G 1 ), y ∈ V ( G 2 )}. 

A path (or a cycle, respectively) of a graph G is called a Hamilton path (or Hamilton cycle, respectively) if it passes through

all the vertices of G . A graph is Hamilton-connected if any two vertices are connected by a Hamilton path. The investigation

of hamiltonian graphs has a long history. Dirac and Ore proved the following. 
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Theorem 1.1. Let G be a graph of order n. 

(i) (Dirac [6] ) If δ(G ) ≥ n 
2 , then G is Hamiltonian. 

(ii) (Ore [14] ) If e (G ) > 

(
n −1 

2 

)
+ 1 , then G is Hamiltonian. 

Motivated by these results, Erd ̋os [7] later extended Theorem 1.1 (ii) by utilizing the minimum degree as a new parame-

ter. 

Theorem 1.2. (Erd ̋os [7] ) Let G be a graph of order n and the minimum degree δ and k be an integer with 1 ≤ k ≤ δ ≤ n −1 
2 . If 

e (G ) > max 

{(
n − k 

2 

)
+ k 2 , 

(	 n +1 
2 


 
2 

)
+ 

⌊ 

n + 1 

2 

⌋ 2 
}

, 

then G is Hamiltonian. 

How many edges can ensure a graph to be Hamilton–connected with a given number of vertices? In 1963, Ore [15] an-

swered the question. 

Theorem 1.3. [15] Let G be a graph of order n , if 

e (G ) ≥
(

n − 1 

2 

)
+ 3 , 

then G is Hamilton-connected. 

Theorem 1.4. ( [16] , Theorem 1.8) Let G be a graph of order n ≥ 6 k 2 − 8 k + 5 with δ( G ) ≥ k ≥ 2 . If e (G ) ≥ n 2 −(2 k −1) n +2 k −2 
2 , then

G is Hamilton-connected unless cl n +1 (G ) = K 2 ∨ (K n −k −1 ∪ K k −1 ) or cl n +1 (G ) = K k ∨ (K n −2 k −1 ∪ K k −1 ) . 

Theorem 1.5. ( [16] , Corollary 1.10) Let G be a graph of order n ≥ max { 6 k 2 − 8 k + 5 , k 
3 −k 2 +4 k −1 

2 } with δ( G ) ≥ k ≥ 2 . If ρ(G ) ≥
n − k, then G is Hamilton-connected unless G = K 2 ∨ (K n −k −1 ∪ K k −1 ) or G = K k ∨ (K n −2 k +1 ∪ K k −1 ) . 

The results above, as well as the recent advances in [9,13,16] , motivate the current research. In this paper, we present a

spectral analogous of Erd ̋os theorem for a Hamilton-connected graph with a given minimum degree. For a graph G , notice

that δ( G ) ≥ 3 is a necessary condition for G to be Hamilton-connected. A sufficient condition for a Hamilton-connected graph

in terms of spectral radius is also justified. This paper is independently research work with Chen and Zhang’s ( [16] ) results.

Throughout this paper, for 2 ≤ k ≤ n 
2 , let 

L k n = K 2 ∨ (K n −k −1 + K k −1 ) and M 

k 
n = K k ∨ (K n −2 k +1 + (k − 1) K 1 ) . 

In Section 2 , extremal sizes of graphs to ensure Hamilton-connectedness are investigated. These will be applied in

Section 3 to find an optimal spectral sufficient condition for a graph G to be Hamilton-connected. 

2. Extremal sizes of Hamilton-connected graphs 

Let X , Y be vertex subsets of a graph G . Following [3] , we adopt these notation: e (X ) = | E(G [ X]) | , 
E G [ X, Y ] = { xy ∈ E(G ) : x ∈ X and y ∈ Y } , and e (X, Y ) = | E G [ X, Y ] | . 

Throughout this section, if J is a subgraph of G and v ∈ V (G ) − V (J) , define d J (v ) = | E G [ { v } , V (J)] | . 
The purpose of this section is to prove two extremal results, namely, Theorems 2.2 and 2.5 in this section, on the optimal

sizes to assure a graph to be Hamilton-connected . We state some known results as our tools. 

Theorem 2.1. (Erd ̋os, Gallai, [8] ) Let G be a graph of order n ≥ 3, and u , v are any pair distinct and nonadjacent vertices. If 

d G (u ) + d G (v ) ≥ n + 1 , 

then G is Hamilton-connected. 

Lemma 2.1. [1] Let G be a graph of order n ≥ 3 with the degree sequence (d 1 , d 2 , . . . , d n ) , where d 1 ≤ d 2 ≤ ��� ≤ d n . If there is no

integer 2 ≤ t ≤ n 
2 such that d t−1 ≤ t and d n −t ≤ n − t, then G is Hamilton-connected. 

Theorem 2.2. Let G be a graph with order n and the minimum degree δ, and let k be an integer with 2 ≤ k ≤ δ. If 

e (G ) > max 

{(
n − k + 1 

2 

)
+ k (k − 1) , 

(	 n 
2 

 + 1 

2 

)
+ 

⌊ 

n 

2 

⌋ (⌊ 

n 

2 

⌋ 

− 1 

)}
, (2.1)

then G is Hamilton-connected. 

Proof. Suppose that G is not Hamilton-connected. By Lemma 2.1 , there exists an integer t such that d t−1 ≤ t, where k ≤ t ≤
n . Without loss of generality, let d(v i ) = d i for 1 ≤ i ≤ t − 1 . The number of edges which are not incident to any vertex in
2 
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{ v 1 , v 2 , . . . , v t−1 } does not exceed 

(
n −t+1 

2 

)
, and the number of edges incident to any vertex in { v 1 , v 2 , . . . , v t−1 } is at most

t(t − 1) . It follows that 

e (G ) ≤
(

n − t + 1 

2 

)
+ t(t − 1) . (2.2) 

The bound in (2.2) is best possible in the sense that the graph M 

t 
n = K t ∨ (K n −2 t+1 + (t − 1) K 1 ) is not Hamilton-connected. 

For k ≤ t ≤ n 
2 , by (2.1) , 

e (G ) > max 

{(
n − k + 1 

2 

)
+ k (k − 1) , 

(	 n 
2 

 + 1 

2 

)
+ 

⌊ 

n 

2 

⌋ (⌊ 

n 

2 

⌋ 

− 1 

)}

≥
(

n − t + 1 

2 

)
+ t(t − 1) , 

contrary to (2.2) . Hence G must be Hamilton-connected. �

In [2] , Bondy and Chvátal introduced the closure concept which plays an important role in cycle theory. For a graph G of

order n and an integer k = k (n ) > 0 , the k–closure of G , denoted by C k ( G ), is obtained from G by sequentially joining pairs

of nonadjacent vertices whose degree sum is at least k until no such vertex pairs exist. 

Theorem 2.3. (Bondy and Chvátal [2] ) A graph G is Hamilton-connected if and only if C n +1 (G ) is Hamilton-connected. 

Lemma 2.2. Let k ≥ 2 be an integer, G be a graph of order n ≥ 6 k , and G = C n +1 (G ) . Let ω( G ) denote the clique number of G. If 

e (G ) > 

(
n − k 

2 

)
+ k (k + 1) , 

then ω(G ) ≥ n − k + 1 . 

Proof. It suffices to show that G contains a clique C with | C| ≥ n − k + 1 . Define 

F = 

{ 

u ∈ V (G ) : d G (u ) ≥ n + 1 

2 

} 

. 

As G = C n +1 (G ) , F is a clique, and so there exists a maximal clique C of G with F ⊆C . Let s = | C| and H = G − C. As C is a

maximal clique and as F ⊆C , for any v ∈ V (H) , we have 

d C (v ) ≤ s − 1 and d G (v ) ≤ n 

2 

. (2.3) 

Claim 1. s ≥ n 
3 + k + 1 . 

By contradiction, we assume that s < 

n 
3 + k + 1 . It follows by | V (H) | = n − s and by (2.3) that 

e (H) + e (V (H) , C) = 

∑ 

v ∈ V (H) d G (v ) + 

∑ 

v ∈ V (H) | N C (v ) | 
2 

= 

∑ 

v ∈ V (H) d G (v ) + 

∑ 

v ∈ V (H) d C (v ) 
2 

≤ (n − s ) n 
2 

+ (n − s )(s − 1) 

2 

= 

(n − s )(n + 2 s − 2) 

4 

. (2.4) 

As C is a clique, e (G [ C]) = 

(
s 

2 

)
and so by (2.4) and by s < 

n 
3 + k + 1 , we have 

e (G ) = e (G [ C]) + e (H) + e (V (H) , C) ≤
(

s 

2 

)
+ 

(n − s )(n + 2 s − 2) 

4 

= 

n (n + s − 2) 

4 

< 

n (n + 

n 
3 

+ k + 1 − 2) 

4 

= 

1 

3 

n 

2 + 

k − 1 

4 

n ≤
(

n − k 

2 

)
+ k (k + 1) < e (G ) , 

a contradiction. Hence Claim 1 must hold. 

Claim 2. s ≥ n − k + 1 . 

By contradiction, we assume that s ≤ n − k . Since G = C n +1 (G ) , if u v / ∈ E(G ) , then d G (u ) + d G (v ) ≤ n . As C is a clique,

every vertex u ∈ C satisfies d G (u ) ≥ s − 1 . For each v ∈ V (H) , as v / ∈ C, we have d G (v ) + d G (u ) ≤ n, and so d G (v ) ≤ n − d G (u ) ≤
n − s + 1 . As H = G − C, we have 

∑ 

v ∈ V (H) d G (v ) = 2 e (H) + e (V (H) , C) . Thus 
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e (H) + e (V (H) , C) = 

∑ 

v ∈ V (H) d H (v ) 
2 

+ 

∑ 

v ∈ V (H) 

d C (v ) ≤
∑ 

v ∈ V (H) 

d G (v ) ≤ (n − s )(n − s + 1) , 

and so 

e (G ) = e (G [ C]) + e (H) + e (V (H) , C) ≤
(

s 

2 

)
+ (n − s )(n − s + 1) = 

3 

2 

s 2 −
(

2 n + 

3 

2 

)
s + n 

2 + n. 

Let f (x ) = 

3 

2 
x 2 − (2 n + 

3 

2 
) x + n 2 + n . It is routine to show that f ( x ) is increasing on x for x ≥ 2 

3 n + 

1 
2 and decreasing on x for

x ≤ 2 
3 n + 

1 
2 . As f (n − k ) = f ( n 3 + k + 1) = 

(
n −k 

2 

)
+ k (k + 1) . it follows that 

e (G ) = 

3 

2 

s 2 − (2 n + 

3 

2 

) s + n 

2 + n ≤
(

n − k 

2 

)
+ k (k + 1) < e (G ) , 

a contradiction. Hence Claim 2 holds and so ω(G ) ≥ s ≥ n − k + 1 . �

Theorem 2.4. (Dirac [6] ) If a simple graph G has minimum degree d > 1, then G contains a cycle of length at least d + 1 . 

Let H be a subgraph of a graph G . Define the vertices of attachment of H in G to be the vertex set: 

A G (H) = { v ∈ V (H) : ∃ u ∈ V (G ) − V (H) such that u v ∈ E(G ) } . 
Theorem 2.5. Let k ≥ 3 be an integer, G be a graph with order n ≥ 6 k and δ( G ) ≥ k. Suppose that 

e (G ) > 

(
n − k 

2 

)
+ k (k + 1) . 

Then G is Hamilton-connected if and only if C n +1 (G ) / ∈ { L k n , M 

k 
n } . 

Proof. Let G 

′ = C n +1 (G ) . By Theorem 2.3 , G is Hamilton-connected if and only if G 

′ is Hamilton-connected. It is routine to

verify that neither L k n nor M 

k 
n is Hamilton-connected, and so it remains to assume that G 

′ / ∈ { L k n , M 

k 
n } to prove that G 

′ is

Hamilton-connected. 

We argue by contradiction and assume that G 

′ / ∈ { L k n , M 

k 
n } and G 

′ is not Hamilton-connected. Since δ( G 

′ ) ≥ δ( G ) ≥ k and

e ( G 

′ ) ≥ e ( G ), it follows by Lemma 2.2 that ω(G 

′ ) ≥ n − k + 1 . Let C be a maximum clique of G 

′ , w = ω(G 

′ ) and H = G 

′ − C. 

Claim 1: Each of the following holds: 

(i) If v ∈ C satisfying d G ′ (v ) ≥ ω(G 

′ ) , then for any u ∈ V ( H ), u v ∈ E(G 

′ ) . 
(ii) There is no vertex u ∈ V ( H ) satisfying d G ′ (u ) ≥ n − ω(G 

′ ) + 2 . 

Let v ∈ C be a vertex with d G ′ (v ) ≥ ω(G 

′ ) . For any u ∈ V ( H ), by δ( G 

′ ) ≥ δ( G ) ≥ k and by Lemma 2.2 , we have d G ′ (v ) +
d G ′ (u ) ≥ ω(G 

′ ) + k ≥ n − k + 1 + k = n + 1 , and so as G 

′ = C n +1 (G ) , we have u v ∈ E(G 

′ ) . This proves (i). 

We argue by contradiction to prove (ii) and assume that there exists a vertex u ∈ V ( H ) satisfying d G ′ (u ) ≥ n − ω(G 

′ ) + 2 ,

then as C is a clique, for any vertex v ∈ C, d G ′ (v ) ≥ ω(G 

′ ) − 1 . Hence d G ′ (v ) + d G ′ (u ) ≥ ω(G 

′ ) − 1 + n − ω(G 

′ ) + 2 = n + 1 . It

follows by G 

′ = C n +1 (G ) that u v ∈ E(G 

′ ) , and so every vertex in H is adjacent to every vertex in C , contrary to the fact that

C is a maximum clique. This verifies Claim 1(ii), and so Claim 1 is justified. 

Claim 2: ω(G 

′ ) = n − k + 1 and for any vertex u ∈ V ( H ), d G ′ (u ) = k . 

If ω(G 

′ ) ≥ n − k + 2 , then for any vertex v ∈ C, d G ′ (v ) ≥ n − k + 1 . Since G 

′ is not Hamilton-connected, G 

′ is not a clique,

and so V (H)  = ∅ . For any vertex u ∈ V ( H ), as d G ′ (u ) ≥ δ(G ) ≥ k, we obtain a contradiction to Claim 1. Hence by Lemma 2.2 ,

we have ω(G 

′ ) = n − k + 1 . As ω(G 

′ ) = n − k + 1 and δ( G ) ≥ k , it follows by Claim 1 that for any vertex u ∈ V ( H ), d G ′ (u ) = k .

This justifies Claim 2. 

Denote F = A G ′ (C) = { u 1 , u 2 , . . . , u s } . As C is a maximum clique of G 

′ , it follows from Claim 2 that d G ′ (u i ) ≥ n − k + 1 =
ω(G 

′ ) , and so by Claim 1(i) that d G ′ (u i ) = n − 1 . This implies that for any u ∈ V ( H ), A G ′ (C) ⊆ N G ′ (u ) , and so by Claim 2, s ≤ k .

As ω(G 

′ ) = n − k + 1 , for any u ∈ H , d H (u ) ≤ k − 2 . Hence 2 ≤ s ≤ k . 

By inspection, if s = 2 , then G 

′ = K 2 ∨ (K k −1 + K n −k −1 ) = L k n ; and if s = k, then G 

′ = K k ∨ (K n −2 k +1 + (k − 1) K 1 ) = M 

k 
n . As

we assume that G 

′ / ∈ { L k n , M 

k 
n } , we must have 3 ≤ s ≤ k − 1 . 

For any vertex u ∈ V ( H ), since | A G ′ (C) | = s and A G ′ (C) ⊆ N G ′ (u ) , we have d H (u ) = k − s . By Theorem 2.4 , H has a cycle

C 1 with q = | C 1 | ≥ k − s + 1 . Let C 1 = x 1 x 2 · · · x q x 1 . For any pair of distinct vertices x i and x j on C 1 with i  = j , we use x i C 1 x j

( x i 
← −
C 1 x j ) to denote the subpath x i x i +1 · · · x j ( x i x i −1 · · · x j+1 x j ) on C 1 , where the subscripts are taken modulo q . 

In the rest of the proof of this theorem, we denote V (H − C 1 ) = { y 1 , y 2 , · · · , y k −q −1 } and C − F = { u s +1 , u s +2 , · · · u n −k +1 } . 
To obtain a contradiction, we are to show that a Hamiltonian (v , w ) -path always exists in G 

′ for any v , w ∈ V (G 

′ ) . If

v , w ∈ F , then without loss of generality, we assume that v = u 1 and w = u s . If | C 1 | = q ≥ k − s + 2 , then k − q ≤ s − 2 , and

so u 1 y 1 u 2 y 2 · · · u k −q −1 y k −q −1 u k −q x 1 P x q u k −q +1 · · · u s −1 u s +1 · · · u n −k +1 u s is a Hamiltonian (v , w ) -path. 

Hence we may assume that | C 1 | = q = k − s + 1 , or equivalently, k − q = s − 1 . If there exists no edge in G 

′ linking a

vertex in V ( C ) to a vertex V (H − C ) , then E(H − C )  = ∅ . By symmetry, we assume that y y ∈ E(H − C ) . In this case,
1 1 1 1 2 1 



246 J. Wei et al. / Applied Mathematics and Computation 340 (2019) 242–250 

Table 1 

The existence of a Hamiltonian (v , w ) -path. 

Cases v w Hamiltonian (v , w ) -path in G ′ 

v , w ∈ V (C 1 ) x i x j x i C 1 x j−1 u 1 y 1 · · · u k −q −1 u k −q · · · u s −1 

u s +1 · · · u n −k +1 u s x i −1 

← −
C 1 x j 

v ∈ V (C 1 ) , w ∈ F x 1 u 1 x 1 C 1 x q u s u s +1 · · · u n −k +1 u k −q · · · u s −1 y k −q −1 

u k −q −1 · · · y 2 u 2 y 1 u 1 
v ∈ V (C 1 ) , w ∈ V (H − C 1 ) x 1 y 1 x 1 C 1 x q u s u s +1 · · · u n −k +1 u k −q · · · u s −1 u k −q −1 

y k −q −1 · · · u 2 y 2 u 1 y 1 
v ∈ V (C 1 ) , w ∈ C − F x 1 u n −k +1 x 1 C 1 x q u 1 y 1 u 2 y 2 · · · u k −q −1 y k −q −1 u k −q · · · u s −1 u s 

u s +1 · · · u n −k +1 

v ∈ F, w ∈ C − F u 1 u n −k +1 u 1 y 1 u 2 y 2 · · · u k −q −1 y k −q −1 u k −q · · · u s −1 x 1 C 1 x q 
u s u s +1 · · · u n −k +1 

v ∈ F, w ∈ V (H − C 1 ) u 1 y 1 y 1 u 2 y 2 u 3 y 3 · · · u k −q −1 y k −q −1 u k −q · · · u s −1 x 1 C 1 x q 
u s u s +1 · · · u n −k +1 u 1 

v ∈ V (H − C 1 ) , w ∈ V (H − C 1 ) y 1 y k −q −1 y 1 u 1 y 2 u 2 · · · y k −q −2 u k −q −2 u k −q · · · u s −1 x 1 C 1 x q 
u s · · · u n −k +1 u k −q −1 y k −q −1 

v ∈ V (H − C 1 ) , w ∈ C − F y 1 u n −k +1 y 1 u 1 y 2 u 2 · · · y k −q −1 u k −q −1 u k −q · · · u s −1 x 1 C 1 x q 
u s · · · u n −k +1 

v ∈ C − F, w ∈ C − F u s +1 u n −k +1 u s +1 u 1 y 1 u 2 y 2 · · · u k −q −1 y k −q −1 u k −q · · · u s −1 

x 1 Px q u s u s +2 · · · u n −k +1 

Fig. 1. The underlying graph to constructing P i (i = 1 , . . . , 10) . 

 

 

 

 

 

 

u s · · · u n −k +1 u s −1 x 1 C 1 x q u k −q −1 y k −q −1 · · · u 2 y 2 y 1 u 1 is a Hamiltonian (v , w ) -path. Hence we assume that there exists an edge

x 1 y 1 (say) linking V ( C 1 ) to V (H − C 1 ) . Then u s · · · u n −k +1 u s −1 y 1 x 1 C 1 x q u k −q −1 y k −q −1 · · · u 2 y 2 u 1 is a Hamiltonian (v , w ) -path. 

Therefore, in the discussions below, we assume that |{ v , w } ∩ F | ≤ 1 . As V ( G ) is partitioned into F , C − F , V ( C 1 ) and V (H −
C 1 ) , Table 1 indicates that for any other choices of v , w ∈ V (G 

′ ) , by symmetry, G 

′ always have a Hamiltonian (v , w ) -path

( Fig. 1 ). 

As for any v , w ∈ V (G 

′ ) , we have shown that G 

′ always has a Hamiltonian (v , w ) -path, leading to contradiction to the

assumption that G 

′ is not Hamilton-connected. This contradiction completes the proof of the theorem. �

3. Spectral radius and Hamilton-connected graphs 

The goal of this section is to show a relationship between the spectral radius of a graph G and the Hamilton-

connectedness of G . 

Given two distinct vertices u, v in a graph G , obtain a new graph G 

′ = G 

′ (u, v ) by replacing all edges v w by uw for each

w ∈ N G (v ) \ (N G (u ) ∪ { u } ) . This operation is called the Kelmans transformation [11] . We start with some lemmas. 

Lemma 3.1. (Hong et al. [10] , and Nikiforov [12] ) Let G be a graph of order n with the minimum degree δ ≥ k. Then 

λ(G ) ≤ k − 1 + 

√ 

(k + 1) 
2 + 4(2 e (G ) − nk ) 

2 

. 

Lemma 3.2. (Csikvári [4] ) Let G be a graph and G 

′ be the graph obtained from G by some Kelmans transformation. Then 

λ(G ) ≤ λ(G 

′ ) . 

Since K n −k +1 is a proper subgraph of both L k n and M 

k 
n , it follows that λ(L k n ) > λ(K n −k +1 ) = n − k and λ(M 

k 
n ) > λ(K n −k +1 ) =

n − k . Motivated by the ideas in [13] and [9] , we establish the following theorem. 

Theorem 3.1. Let G be a graph of order n ≥ max { 6 k, 1 2 k 
3 − 1 

2 k 
2 + k + 4 } with the minimum degree δ ≥ k ≥ 3 . 

(i) If G is a subgraph of L k n , then λ(G ) < n − k if and only if G  = L k n . 
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Fig. 2. The graphs obtained from L k n by deleting one edge. 

 

 

 

 

 

 

 

 

 

(ii) If G is a subgraph of M 

k 
n , then λ(G ) < n − k if and only if G  = M 

k 
n . 

Proof. As we have observed above, both λ(L k n ) > λ(K n −k +1 ) = n − k and λ(M 

k 
n ) > λ(K n −k +1 ) = n − k, it suffices to assume

that G  = L k n to prove λ(G ) < n − k in (i); and that G  = M 

k 
n to prove λ(G ) < n − k in (ii). 

Let x = (x 1 , x 2 , . . . , x n ) 
T be a positive unit eigenvector of λ( G ). By Rayleigh’s quotient inequality [5] , 

λ(G ) = x 

T A (G ) x = 〈 A (G ) x , x 〉 . 
Throughout the rest of the proof, we often use λ for λ( G ), when G is understood from the context. 

We argue by contradiction to prove (i), and assume that 

λ(G ) ≥ n − k and G  = L k n . (3.5)

Then G is a proper subgraph of L k n . Clearly, we only need to consider G with the maximum spectral radius which can be

obtained from L k n by deleting one edge. By symmetry, there are only three such graphs: G 1 = L k n − v n −1 v n , G 2 = L k n − v 1 v n −1

and G 3 = L k n − v 1 v 2 . 
We claim that λ( G 1 ) ≤λ( G 2 ) ≤λ( G 3 ). Using the notation in Fig. 2 , let u = v n , v = v 1 in G 1 . Thus N G (v ) \ (N G (u ) ∪ { u } ) =

{ v n −1 } . Let G 

′ 
1 = G 

′ 
1 (u, v ) be a Kelmans transformation of G 1 . Then G 

′ 
1 = G 2 . By Lemma 3.2 , λ(G 1 ) ≤ λ(G 

′ 
1 ) = λ(G 2 ) . Now let

u = v n −1 , v = v 2 in G 2 . We have N G 2 
(v ) \ (N G 2 

(u ) ∪ { u } ) = { v 1 } . Then the Kelmans transformation G 

′ 
2 

= G 

′ 
2 
(u, v ) is isomorphic

to G 3 , and so Lemma 3.2 , λ(G 2 ) ≤ λ(G 

′ 
2 
) = λ(G 3 ) . This justifies the claim. 

Define Z = { v ∈ V (L k n ) : d L k n 
(v ) = n − 1 } , X = { v ∈ V (L k n ) : d L k n 

(v ) = n − k } , and Y = { v ∈ V (L k n ) : d L k n 
(v ) = k } . Hence, it suf-

fices to assume G = L k n − u v for some edge u v with { u, v } ⊂ X to prove (i). Therefore, in the rest of the proof for (i), we

shall have such an assumption. Let x = (x 1 , x 2 , . . . , x n ) 
T denote a positive unit eigenvector of λ( G ), and define 

x = x i , v i ∈ X \ { u, v } , 
y = x j , v j ∈ Y, 

z = x k , v k ∈ Z, 

s = x u = x v . 

Then the n eigenequations of G can be reduced to the following four equations: 

λx = (n − k − 4) x + 2 z + 2 s, 

λy = (k − 2) y + 2 z, 

λz = (n − k − 3) x + (k − 1) y + z + 2 s, 

λs = (n − k − 3) x + 2 z. 

It follows from algebraic manipulations that 

y = 

2 

λ − k + 2 

z, 

x = 

(
1 − 2(k − 1) 

(λ + 1)(λ − k + 2) 

)
z, 

s = 

λ + 1 

λ + 2 

(
1 − 2(k − 1) 

(λ + 1)(λ − k + 2) 

)
z. 

By the definition of G , we have 

G − { yz : y ∈ Y and z ∈ Z} + u v ∼= 

K n −k +1 + K k −1 . 
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Let x ′ be the restriction of x to K n −k +1 , then 

〈 A (K n −k +1 ) x 

′ , x 

′ 〉 = 〈 A (G ) x , x 〉 + 2 s 2 − 4(k − 1) yz − (k − 1)(k − 2) y 2 

= λ + 2 s 2 − 4(k − 1) yz − (k − 1)(k − 2) y 2 . 

By Rayleigh’s quotient inequality, 

〈 A (K n −k +1 ) x 

′ , x 

′ 〉 
‖ x 

′ ‖ 

2 
< λ(K n −k +1 ) = n − k. 

By (3.5) , λ ≥ n − k . This, together with ‖ x ′ ‖ 2 = ‖ x ‖ 2 − (k − 1) y 2 , implies that 

2 s 2 + λ(k − 1) y 2 < 4(k − 1) yz + (k − 1)(k − 2) y 2 . (3.6) 

Since k ≥ 3 and λ ≥ n − k ≥ 5 k > k − 2 , we have 

s 2 = 

(
λ + 1 

λ + 2 

)2 (
1 − 2(k − 1) 

(λ + 1)(λ − k + 2) 

)2 

z 2 

> 

(
1 − 2 

λ + 2 

)(
1 − 4(k − 1) 

(λ + 1)(λ − k + 2) 

)
z 2 

> 

(
1 − 2 

λ + 2 

− 4(k − 1) 

(λ + 1)(λ − k + 2) 

)
z 2 

> 

(
1 − 2 

λ − k + 2 

− 1 

λ − k + 2 

)
z 2 = 

(
λ − k − 1 

λ − k + 2 

)
z 2 

> 

(
4 k − 4 

λ − k + 2 

)
z 2 = 2(k − 1) yz, 

and λ(k − 1) y 2 > (k − 1)(k − 2) y 2 . It follows that 

2 s 2 + λ(k − 1) y 2 > 4(k − 1) yz + (k − 1)(k − 2) y 2 , 

contrary to (3.6) . This completes the proof of (i). 

The proof for (ii) follows a similar proving strategy as in that of (i), and so we also argue by contradiction. Assume that

λ(G ) ≥ n − k and G  = M 

k 
n . (3.7) 

Then G is a proper subgraph of M 

k 
n . 

Define Z = { v ∈ V (M 

k 
n ) : d M 

k 
n 
(v ) = n − 1 } , X = { v ∈ V (M 

k 
n ) : d M 

k 
n 
(v ) = n − k } , and Y = { v ∈ V (M 

k 
n ) : d M 

k 
n 
(v ) = k } . 

As in the proof of (i), we only need to consider the case that G = M 

k 
n − u v for an edge u v with { u, v } ⊂ X . Let x =

(x 1 , x 2 , . . . , x n ) 
T denote a positive unit eigenvector of λ( G ), and define 

x = x i , v i ∈ X \ { u, v } , 
y = x j , v j ∈ Y, 

z = x k , v k ∈ Z, 

s = x u = x v . 

Then the n eigenequations of G can be reduced to the following four equations: 

λx = (n − 2 k − 2) x + kz + 2 s, 

λy = kz, 

λz = (n − 2 k − 1) x + (k − 1) y + (k − 1) z + 2 s, 

λs = (n − 2 k − 1) x + kz. 

It follows by algebraic manipulations that 

y = 

k 

λ
z, 

x = 

(
1 − k (k − 1) 

λ(λ + 1) 

)
z, 

s = 

λ + 1 

λ + 2 

(
1 − k (k − 1) 

λ(λ + 1) 

)
z. 
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By the definition of G , we have 

G − { yz : y ∈ Y and z ∈ Z} + u v ∼= 

K n −k +1 + (k − 1) K 1 . 

Let x ′ be the restriction of x to K n −k +1 , then ‖ x ′ ‖ 2 = ‖ x ‖ 2 − (k − 1) y 2 = 1 − (k − 1) y 2 . By Rayleigh’s quotient inequality, 

〈 A (K n −k +1 ) x 

′ , x 

′ 〉 
‖ x 

′ ‖ 

2 
< λ(K n −k +1 ) = n − k. 

By (3.7) , λ ≥ n − k, and so, 

〈 A (K n −k +1 ) x 

′ , x 

′ 〉 < λ
(
1 − (k − 1) y 2 

)
. (3.8)

Since 

〈 A (K n −k +1 ) x 

′ , x 

′ 〉 = 〈 A (G ) x , x 〉 + 2 s 2 − 2 k (k − 1) yz = λ + 2 s 2 − 2 k (k − 1) yz, (3.9)

by (3.8) and (3.9) , 

s 2 + 

k − 1 

2 

λy 2 − k (k − 1) yz < 0 . (3.10)

Since λ ≥ n − k ≥ 1 
2 k 

3 − 1 
2 k 

2 + 4 , 

λ

(
s 2 + 

k − 1 

2 

λy 2 − k (k − 1) yz 

)

= 

(
λ + 1 

λ + 2 

)2 (
1 − k (k − 1) 

λ(λ + 1) 

)2 

λz 2 + 

k 2 (k − 1) 

2 

z 2 − k 2 (k − 1) z 2 

> 

(
1 − 2 

λ + 2 

)(
1 − 2 k (k − 1) 

λ(λ + 1) 

)
λz 2 − k 2 (k − 1) 

2 

z 2 

> 

(
λ − 2 λ

λ + 2 

− 2 k (k − 1) 

λ + 1 

− k 2 (k − 1) 

2 

)
z 2 

> 

(
λ − 2 − 2 k 2 

1 
2 

k 3 − 1 
2 

k 2 + 5 

− k 2 (k − 1) 

2 

)
z 2 

> 

(
1 

2 

k 3 − 1 

2 

k 2 + 2 − 2 k 2 

1 
2 

k 3 − 1 
2 

k 2 
− k 3 

2 

+ 

k 2 

2 

)
z 2 

= (2 − 4 

k − 1 

) z 2 . 

Let f (x ) = 2 − 4 

x − 1 
. It is routine to show that f ( x ) is increasing on x for all real numbers x ≥ 2. If k ≥ 3 and k is an integer,

then we have f (k ) ≥ f (3) = 0 . It follows that 

s 2 + 

k − 1 

2 

λy 2 − k (k − 1) yz > 0 , 

contrary to (3.10) . This completes the proof of (ii). �

Theorem 3.2. Let k ≥ 3 be an integer, and let G be a graph with order n ≥ max { 6 k, 1 2 k 
3 − 1 

2 k 
2 + k + 4 } , δ( G ) ≥ k and spectral

radius λ(G ) ≥ n − k . Then G is Hamilton-connected if and only if G / ∈ { L k n , M 

k 
n } . 

Proof. It routine to verify that if G ∈ { L k n , M 

k 
n } , then G is not Hamilton-connected. Therefore, in the rest of the proof, we

assume that G ∈ { L k n , M 

k 
n } to prove that G is Hamilton-connected. To the end of this section, we set λ = λ(G ) and δ = δ(G ) . 

Since λ ≥ n − k and by Lemma 3.1 , we have 

n − k ≤ λ ≤ k − 1 + 

√ 

(k + 1) 
2 + 4(2 e (G ) − nk ) 

2 

, 

which implies that 

e (G ) ≥ n 

2 − (2 k − 1) n + 2 k 2 − 2 k 

2 

. (3.11)

Since n ≥ max { 6 k, 
1 

2 
k 3 − 1 

2 
k 2 + k + 4 } ≥ k 2 + 5 k + 2 

2 
, it follows from (3.11) that 

e (G ) ≥ n 

2 − (2 k − 1) n + 2 k 2 − 2 k 

2 

≥
(

n − k 

2 

)
+ k ( k + 1) + 1 , (3.12)

where the equality in (3.12) holds if and only if n = 

k 2 +5 k +2 . 
2 
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Since n ≥ max { 6 k, 1 2 k 
3 − 1 

2 k 
2 + k + 4 } and since G / ∈ { L k n , M 

k 
n } , it follows by Theorem 2.5 (when n ≥ max { 6 k, 1 2 k 

3 − 1 
2 k 

2 +
k + 4 } ) or by Theorem 3.1 (when λ(G ) ≥ n − k ) then G is Hamilton-connected. The proof is complete. �
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