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a b s t r a c t

For positive integers k and r , a (k, r)-coloring of a graph G is a proper k-coloring of the
vertices such that every vertex of degree d is adjacent to vertices with at least min{d, r}
different colors. The r-hued chromatic number of a graph G, denoted by χr (G), is the
smallest integer k such thatGhas a (k, r)-coloring. In Song et al. (2014), it is conjectured that
if r ≥ 8, then every planar graph G satisfies χr (G) ≤ ⌈

3r
2 ⌉ + 1. Wegner in 1977 conjectured

that the above-mentioned conjecture holdswhen r = ∆(G). This conjecture, if valid, would
be best possible in some sense. In this paper, we prove that, if G is a planar graph and r ≥ 8,
then χr (G) ≤ 2r + 16.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terminology and notation are referred to [1]. For v ∈ V (G), let
NG(v) denote the set of vertices adjacent to v in G, and dG(v) = |NG(v)|, the degree of v in G. A vertex v with dG(v) = h′,
a cycle of length h′′ and a face of degree h′′′ are often referred to as an h′-vertex, an h′′-cycle and an h′′′-face, respectively.
Let k, r be positive integer. Throughout this paper, define k̄ = {1, 2, . . . , k}. If c : V (G) ↦→ k̄, and if S ⊆ V (G), then define
c(S) = {c(u)|u ∈ S}. A (k, r)-coloring of a graph G is a map c : V (G) ↦→ k̄ satisfying both the following.
(C1) c(u) ̸= c(v) for every edge uv ∈ E(G);
(C2) |c(NG(v))| ≥ min{dG(v), r} for any v ∈ V (G).
For a fixed integer r > 0, the r-hued chromatic number ofG, denoted byχr (G), is the smallest k such thatGhas a (k, r)-coloring.
As observed in [5], we have

χ (G) ≤ χ2(G) ≤ · · · χr−1(G) ≤ χr (G) ≤ · · · ≤ χ∆(G)(G) = χ∆(G)+1(G) = · · ·

The notion was first introduced in [10] and [6]. When r = 2, χ2(G) is often called the dynamic chromatic number of
G. In [7], it was shown that (3,2)-colorability remains NP-complete even when restricted to planar bipartite graphs with
maximum degree at most 3 and with arbitrarily high girth. This differs considerably from the well-known result that the
classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3. Nevertheless, there have been
quite a few studies on the upper bounds of r-hued chromatic number of planar graphs. For any planar graph G, it is proved
that χ2(G) ≤ 5 in [2] without using the 4-Color Theorem. Utilizing the 4-Color Theorem, Kim et al. in [4] showed that 5-cycle
is the only planar graph with 2-hued chromatic number being 5. More recently, Loeb et al. in [9] proved that χ3(G) ≤ 10.
In [12], Song et al. proved that any planar graph G with girth at least 6 satisfies χr (G) ≤ r + 5 when r ≥ 3. A conjecture
on the upper bound of r-hued-chromatic number of planar graphs is stated below. Wegner [13] conjectured the case when
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r = ∆(G) in Conjecture 1.1. Song et al. generalizedWegner’s conjecture in [11]. As commented in [11], the conjecture below
is best possible in some sense.

Conjecture 1.1. Let G be a planar graph. Then

χr (G) ≤

⎧⎨⎩
r + 3, if 1 ≤ r ≤ 2
r + 5, if 3 ≤ r ≤ 7;
⌊3r/2⌋ + 1, if r ≥ 8.

A graph H is a minor of a graph G if G has a subgraph contractible to H; G is said to be H-minor free if G does not have H
as a minor. Define

K (r) =

{
r + 3, if 2 ≤ r ≤ 3;
⌊3r/2⌋ + 1, if r ≥ 4.

Lih et al. [8] proved that, for any K4-minor free graph G, χ∆(G) ≤ K (∆(G)). Song et al. extended it to χr (G) ≤ K (r) for any
K4-minor free graph G in [11]. Heuvel et al. [3] proved that, for any planar graph G, χ∆(G) ≤ 2∆(G) + 25. The main result of
this paper are the following.

Theorem 1.2. If G is a planar graph and r ≥ 8, then χr (G) ≤ 2r + 16.

In the next section, we derive some structural properties of planar graphs. These properties will be applied in Section 3
to prove Theorem 1.2.

2. The structure of planar graphs

Throughout this section, we assume that G is a simple plane graph with a fixed embedding on the plane. If v ∈ V (G),
define

EG(v) = {e ∈ E(G) |e is incident with v in G}.

When the graph G is understood from the context, we often use Ev for EG(v). Let F (G) denote the collection of faces of G. For
each face f ∈ F (G), let d(f ) denote the number of edges belonging to f , where cut-edges are counted twice. For any element
x ∈ V (G) ∪ E(G), define ϵ(x) be the number of 3-faces incident with x. If v ∈ V (G) is an h-vertex, we assign an ordering ⪯,
called the difficulty-increasing order on the set NG(v) = {v1, v2, . . . , vh} as follows: define vi ⪯ vj if either d(vi) < d(vj), or
both d(vi) = d(vj) and ϵ(vvi) ≥ ϵ(vvj). The main result of this section is the following structural lemma.

Lemma 2.1. Let G be a simple plane graph. Then there exists a k-vertex v with its neighbors v1 ⪯ v2 ⪯, . . . ,⪯ vk such that one
of the following is true:
(i) k ≤ 2.
(ii) k = 3 with⎧⎨⎩

d(v1) ≤ 5 if ϵ(v) = 0,
d(v1) ≤ 8 if ϵ(v) = 1,
d(v1) ≤ 11 if ϵ(v) ≥ 2.

(iii) k = 4 with⎧⎨⎩
d(v1) ≤ 6 and d(v1) + d(v2) ≤ 13 if ϵ(v) ≤ 1,
d(v1) ≤ 6 and d(v1) + d(v2) ≤ 17 if ϵ(v) ≥ 2 and ϵ(vv1) = 0,
d(v1) ≤ 7 and d(v1) + d(v2) ≤ 17 if ϵ(v) ≥ 2 and ϵ(vv1) ≥ 1.

(iv) k = 5 with⎧⎪⎪⎨⎪⎪⎩
d(v1) + d(v2) ≤ 9 and d(v1) + d(v2) + d(v3) ≤ 14 if ϵ(v) ≤ 1,
d(v1) + d(v2) ≤ 11 and d(v1) + d(v2) + d(v3) ≤ 17 if ϵ(v) = 2,
d(v1) ≤ 5, d(v1) + d(v2) ≤ 13 and d(v1) + d(v2) + d(v3) ≤ 21 if ϵ(v) ≥ 3 and ϵ(vv1) = 0,
d(v1) + d(v2) ≤ 13 and d(v1) + d(v2) + d(v3) ≤ 21 if ϵ(v) ≥ 3 and ϵ(vv1) ≥ 1.

Proof. By contradiction, we assume that there exists a simple plane graph such that none of the conclusions listed above
holds. We assume that

G is a counterexample with |V (G)| minimized. (1)
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As G is a counterexample,

none of the conclusions in Lemma 2.1 (i)–(iv) holds. (2)

In particular, Lemma 2.1(i) does not hold. Hence by (1), we observed that

G is connected, δ(G) ≥ 3 and k ≥ 3. (3)

We first assign to each edge e of G an initial charge ch0(e). We then will apply certain recharge rules to obtain new charges
ch2(e) to reach a contradiction.

For each edge e = uv ∈ E(G) incident with two distinct faces f , g ∈ F (G), we define the initial charge of e by

ch0(e) =
d(u) − 4
d(u)

+
d(v) − 4
d(v)

+
d(f ) − 4
d(f )

+
d(g) − 4
d(g)

. (4)

If e is incident with only one face f ∈ F (G), then we view f = g and use (4) again to define ch0(e). By Euler’s formula, we
have ∑

v∈V (G)

(d(v) − 4) +

∑
f∈F (G)

(d(f ) − 4) = −8. (5)

It follows from (4) and (5) that

∑
v∈V (G)

∑
e∈Ev

ch0(e) = 2

⎡⎣ ∑
v∈V (G)

(d(v) − 4) +

∑
f∈F (G)

(d(f ) − 4)

⎤⎦ = −16. (6)

We now recharge the edges of G in the following order:

(Step 1) For each 3-face with vertices u, x, y satisfying 3 ≤ d(u) ≤ 5, d(x) ≥ 6 and d(y) ≥ 6, transfer a charge of 1
2 (

d(y)−4
d(y) −

1
3 )

from xy to ux, and a charge of 1
2 (

d(x)−4
d(x) −

1
3 ) from xy to uy.

(Step 2) For each triple of vertices u, v, v′ in V (G) satisfying uv, uv′
∈ Eu, d(u) = 5, d(v) ≥ 6, d(v′) ≥ 6, ϵ(uv) = 2 and

ϵ(uv′) = 0, transfer a charge of 1
6 from uv′ to uv.

For each edge e ∈ E(G), we denote the charge of e after Step 1 by ch1(e) and the charge of e after Step 2 by ch2(e). As no
new charges is introduced and no charge is lost, it follows by (6) that∑

v∈V (G)

∑
e∈Ev

ch2(e) =

∑
v∈V (G)

∑
e∈Ev

ch1(e) =

∑
v∈V (G)

∑
e∈Ev

ch0(e) = −16. (7)

The proposition below, follows immediately from the definition of the charge rules.

Proposition 2.2. Let e = uv ∈ E(G) be an edge of G.
(i) If ch0(e) < 0, then ch2(e) ≥ ch0(e) and either d(u) ≤ 5 or d(v) ≤ 5;
(ii) If ch0(e) ≥ 0, then ch2(e) ≥ 0;
(iii) If d(v) ≤ 5,

∑
e∈Ev

ch2(e) is not increasing when ϵ(v) increases;
(iv) If ch2(e) < 0, then ch2(e) ≥ ch0(e).

For each vertex u ∈ V (G) and a specified vertex x1 ∈ NG(u), the fixed planar embedding of G places edges in EG(u)
clockwise around u, yielding an ordering ux1, ux2, . . . , uxd(u). For eachw ∈ NG(u), ifw = xi for some i, then definew−

= xi−1

and w+
= xi+1, where the superscripts are counted modulo dG(u).

By (7), there exists such a vertex v ∈ V (G) with∑
e∈Ev

ch2(e) < 0. (8)

To obtain a contradiction, we start with a vertex v ∈ V (G) satisfying (8) with d(v) = k and N(v) = {v1, . . . , vk} such that
v1 ⪯ v2 ⪯, . . . ,⪯ vk.

Claim 2.3. k ̸= 3.

Proof. Suppose k = 3. As Lemma 2.1(ii) does not hold, we must have either d(v1) ≥ 6 when ϵ(v) = 0, or d(v1) ≥ 9
when ϵ(v) = 1, or d(v1) ≥ 12 when ϵ(v) ≥ 2. But when any one of these cases occurs, by the recharging rules, we
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have ∑
e∈Ev

ch2(e) ≥ d(v) − 4 +

k∑
i=1

(
d(vi) − 4
d(vi)

) − ϵ(v) ×
2
3

+ ϵ(v)(
d(v1) − 4
d(v1)

−
1
3
)

≥ −1 − ϵ(v) + (3 + ϵ(v)) ×
d(v1) − 4
d(v1)

≥ 0,

contrary to (8). Thus if k = 3, then Lemma 2.1(ii) must hold, contrary to (2). □

By (3) and Claim 2.3, d(v) = k > 3. If d(v) ∈ {4, 5} and d(v1) ≤ 3, then Lemma 2.1(i) or (ii) holds, violating (2). Hence we
assume that

if d(v) ∈ {4, 5}, then d(v1) ≥ 4. (9)

Claim 2.4. k ̸= 4.

Proof. Suppose that k = 4. By (9), d(v1) ≥ 4. By (2), Lemma 2.1(iii) does not hold. We first show that

If ϵ(v) ≤ 2, then d(v1) ≤ 5; if ϵ(v) = 3, then d(v1) ≤ 6 and if ϵ(v) = 4, then d(v1) ≤ 7. (10)

If (10) fails, then we may assume that d(v1) ≥ 6 when ϵ(v) ≤ 2, or d(v1) ≥ 7 when ϵ(v) = 3, or d(v1) ≥ 8 when ϵ(v) = 4.
By the recharging rules, we have∑

e∈Ev

ch2(e) ≥ d(v) − 4 +

k∑
i=1

(
d(vi) − 4
d(vi)

) − ϵ(v) ×
2
3

+ ϵ(v)(
d(v1) − 4
d(v1)

−
1
3
)

≥ 0 − ϵ(v) + (4 + ϵ(v)) ×
d(v1) − 4
d(v1)

≥ 0,

contrary to (8). Hence (10) must hold. We now justify Lemma 2.1(iii).

A. If ϵ(v) ≤ 2, then by (9) and (10), we have 4 ≤ d(v1) ≤ 5. As Lemma 2.1(iii) does not hold, we must have d(v2) ≥ 9, and so∑
e∈Ev

ch2(e) ≥ d(v) − 4 +
d(v1)−4
d(v1)

+
∑k

i=2(
d(vi)−4
d(vi)

) − 2 ×
2
3 ≥ 0 + 0 + 3 ×

5
9 − 2 ×

2
3 ≥ 0, contrary to (8).

B. If ϵ(v) = 3, then ϵ(vv1) ≥ 1. As Lemma 2.1(iii) does not hold, by (10), we have d(v2) ≥ 12. This, together with (9), we
observe that

∑
e∈Ev

ch2(e) ≥ d(v) − 4 +
d(v1)−4
d(v1)

+
∑k

i=2(
d(vi)−4
d(vi)

) − 3 ×
2
3 + ( d(v2)−4

d(v2)
−

1
3 ) ≥ 0 + 0 + 3 ×

8
12 − 3 ×

2
3 +

1
3 ≥ 0,

contrary to (8).

C. If ϵ(v) = 4, then ϵ(vv1) = 2. As Lemma 2.1(iii) does not hold, by (9) and (10), we note that either d(v2) ≥ 13 when
4 ≤ d(v1) ≤ 5; or d(v2) ≥ 11 when 6 ≤ d(v1) ≤ 7.

Suppose first that 4 ≤ d(v1) ≤ 5 and d(v2) ≥ 13. Direct computation yields
∑

e∈Ev
ch2(e) ≥ d(v) − 4 +

∑k
i=1(

d(vi)−4
d(vi)

) −

4 ×
2
3 + 2 × ( d(v2)−4

d(v2)
−

1
3 ) ≥ 0 + 0 + 3 ×

9
13 −

8
3 + 2 × ( 9

13 −
1
3 ) ≥ 0, contrary to (8).

Therefore, we assume that 6 ≤ d(v1) ≤ 7 and d(v2) ≥ 11. Direct computation yields
∑

e∈Ev
ch2(e) ≥ d(v) − 4 +∑k

i=1(
d(vi)−4
d(vi)

) − 4 ×
2
3 +

∑k
i=1(

d(vi)−4
d(vi)

−
1
3 ) ≥ 0 + 2 ×

2
6 + 6 ×

7
11 − 4 ≥ 0, contrary to (8). This justifies the claim. □

Claim 2.5. k ̸= 5.

Proof. Suppose k = 5. We first show that

d(v1) = 4 when ϵ(v) ≤ 3; 4 ≤ d(v1) ≤ 5 when ϵ(v) = 4; 4 ≤ d(v1) ≤ 6 when ϵ(v) = 5. (11)

By (9), d(v1) ≥ 4. If d(v1) ≥ 5when ϵ(v) ≤ 3, then
∑

e∈Ev
ch2(e) ≥ d(v)−4+

∑k
i=1(

d(vi)−4
d(vi)

)−ϵ(v)× 2
3 ≥ 1+5×

1
5 −3×

2
3 = 0;

if d(v1) ≥ 6when ϵ(v) = 4, then
∑

e∈Ev
ch2(e) ≥ d(v)−4+

∑k
i=1(

d(vi)−4
d(vi)

)−ϵ(v)× 2
3 ≥ 1+5×

2
6 −4×

2
3 = 0; if d(v1) ≥ 7when

ϵ(v) = 5, then
∑

e∈Ev
ch2(e) ≥ d(v)− 4+

∑k
i=1(

d(vi)−4
d(vi)

)− ϵ(v)× 2
3 + ϵ(v)( d(v1)−4

d(v1)
−

1
3 ) ≥ 1− ϵ(v)+ (5+ ϵ(v))× d(v1)−4

d(v1)
≥ 0.

So if (11) fails, we always have
∑

e∈Ev
ch2(e) ≥ 0, contrary to (8).

Subclaim 2.5.1. Each of the following holds.
(A) If ϵ(v) ≤ 3, then d(v1) + d(v2) ≤ 9.
(B) If ϵ(v) = 4, then d(v1) + d(v2) ≤ 11.
(C) If ϵ(v) = 5, then d(v1) + d(v2) ≤ 12.

By (11), it suffices to check that each of the following cases which will always lead to a contradiction to (8).

A. Suppose that ϵ(v) ≤ 3. By (11), d(v1) = 4. If Subclaim 2.5.1(A) does not hold, then d(v2) ≥ 6. In this case, we have∑
e∈Ev

ch2(e) ≥ d(v) − 4 +
∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 ≥ 1 + 0 + 4 ×

2
6 − 3 ×

2
3 ≥ 0.
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B. Suppose that ϵ(v) = 4. By (11), 4 ≤ d(v1) ≤ 5. If Subclaim 2.5A(B) does not hold, then d(v2) ≥ 7. Thus we have∑
e∈Ev

ch2(e) ≥ d(v) − 4 +
∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 + 2 × ( d(v2)−4

d(v2)
−

1
3 ) ≥ 1 + 0 + 4 ×

3
7 − 4 ×

2
3 + 2 × ( 37 −

1
3 ) ≥ 0.

C. Suppose that ϵ(v) = 5. By (11), 4 ≤ d(v1) ≤ 6. Assume that Subclaim 2.5.1(C) does not hold. If 4 ≤ d(v1) ≤ 5, then d(v2) ≥

8,whencewehave
∑

e∈Ev
ch2(e) ≥ d(v)−4+

∑k
i=1(

d(vi)−4
d(vi)

)−ϵ(v)× 2
3+3×( d(v2)−4

d(v2)
−

1
3 ) ≥ 1+0+4×

4
8−5×

2
3+3×( 48−

1
3 ) ≥ 0.

Hence we have d(v1) = 6, forcing d(v2) ≥ 7. In this case,
∑

e∈Ev
ch2(e) ≥ d(v)−4+

∑k
i=1(

d(vi)−4
d(vi)

)−ϵ(v)× 2
3 +

∑k
i=2(

d(vi)−4
d(vi)

−

1
3 ) ≥ 1 +

2
6 + 4 ×

3
7 − 5 ×

2
3 + 4 × ( 37 −

1
3 ) ≥ 0. This completes the proof of Subclaim 2.5.1.

We are now to show that Lemma 2.1(iv) must hold to complete the proof of Claim 2.5. This will be done after we justify
the following subclaim.

Subclaim 2.5.2. Each of the following holds.
(A) If ϵ(v) ≤ 3, then d(v3) ≤ 5, and so d(v1) + d(v2) + d(v3) ≤ 14.
(B) If ϵ(v) = 4, then d(v3) ≤ 10, and so d(v1) + d(v2) + d(v3) ≤ 21.
(C) If ϵ(v) = 5, then either d(v1) + d(v2) ≤ 10 and d(v3) ≤ 11; or 11 ≤ d(v1) + d(v2) ≤ 12 and d(v3) ≤ 9. In either case, we
have d(v1) + d(v2) + d(v3) ≤ 21.

We assume that Subclaim 2.5.2 does not hold to show that each case of a violation to Subclaim 2.5.2 will lead to a
contradiction to (8).

A. Suppose that ϵ(v) ≤ 3 and d(v3) ≥ 6. By Subclaim 2.5.1, d(v1) + d(v2) ≤ 9. Then we have
∑

e∈Ev
ch2(e) ≥ d(v) − 4 +∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 ≥ 1 + 0 + 0 + 3 ×

2
6 − 3 ×

2
3 = 0.

B. Suppose that ϵ(v) = 4 and d(v3) ≥ 11. By Subclaim 2.5.1, d(v1) + d(v2) ≤ 11. It follows that then
∑

e∈Ev
ch2(e) ≥

d(v) − 4 +
∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 ≥ 1 + 0 + 0 + 3 ×

7
11 −

8
3 ≥ 0.

C. Suppose that ϵ(v) = 5. By Subclaim 2.5.1, d(v1) + d(v2) ≤ 12. Assume first that d(v1) + d(v2) ≤ 10 but d(v3) ≥ 12. Then
we have

∑
e∈Ev

ch2(e) ≥ d(v) − 4 +
∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 + ( d(v3)−4

d(v3)
−

1
3 ) ≥ 1 + 0 + 0 + 3 ×

8
12 −

10
3 + ( 8

12 −
1
3 ) ≥ 0.

Now assume that 11 ≤ d(v1) + d(v2) ≤ 12 but d(v3) ≥ 10. By (11), we must have d(v2) ≥ 6. Hence
∑

e∈Ev
ch2(e) ≥

d(v) − 4 +
∑k

i=1(
d(vi)−4
d(vi)

) − ϵ(v) ×
2
3 + 2 × ( d(v3)−4

d(v3)
−

1
3 ) ≥ 1 + 0 +

2
6 + 3 ×

6
10 −

10
3 + 2 × ( 6

10 −
1
3 ) ≥ 0.

Thus Subclaim 2.5.2 is justified, and so Claim 2.5 is proved. □

Claim 2.6. k ≥ 8.

Proof. By contradiction, we assume that k ≤ 7. By the previous claims, we may assume that k ∈ {6, 7}. Since G is a
counterexample to Lemma 2.1, Lemma 2.1 (i) does not hold, and so d(vi) ≥ 3 for any 1 ≤ i ≤ k. To justify the claim,
we shall show that for each edge vvi ∈ E(v), we always have ch2(vvi) ≥ 0, which leads to a contradiction to (8). To this aim,
we suppose that for some iwith 1 ≤ i ≤ k, we have ch2(vvi) < 0. Note that, by Proposition 2.2 (iv), ch2(vvi) ≥ ch0(vvi) when
ch2(vvi) < 0. Then we fix this index i and make the following claims.

A. 4 ≤ dG(vi) ≤ 5.
If d(vi) ≥ 6, then 0 > ch2(vvi) ≥ ch0(vvi) ≥ 2×

2
6 − 2×

1
3 = 0, a contradiction. Next, assume that d(vi) = 3. If ϵ(vi) > 0,

then Lemma 2.1(ii) would holdwith vi takes the place of v. Hence ϵ(vi) = 0, and so 0 > ch2(vvi) ≥ ch0(vvi) ≥
2
6 −

1
3 +0+0 ≥

0, another contradiction again.

B. dG(vi) ̸= 4.
Assume that d(vi) = 4. If ϵ(vvi) ≤ 1, then by the recharging rules, 0 > ch2(vvi) ≥ ch0(vvi) ≥

2
6 + 0 −

1
3 + 0 ≥ 0, a

contradiction. Thus as each edge has two faces, we assume that ϵ(vvi) = 2.
If v is not of the least difficulty-increasing order in N(vi), then there exists a vertex w ∈ N(vi) such that d(w) < d(v). So

d(v)+d(w) ≤ 13 and Lemma 2.1(iii) must holdwith vi taking the place of v. Hence v must be of the least difficulty-increasing
order in N(vi). As Lemma 2.1(iii) does not hold with vi replacing v, we must have

min{d(v−

i ), d(v+

i )} ≥

{
12 if k = 6
11 if k = 7

,

and accordingly,

ch2(vvi) ≥

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
6

+ 0 −
2
3

+
1
2
(
d(v−

i ) − 4
d(v−

i )
−

1
3
) +

1
2
(
d(v+

i ) − 4
d(v+

i )
−

1
3
) ≥ 0 if k = 6

3
7

+ 0 −
2
3

+
1
2
(
d(v−

i ) − 4
d(v−

i )
−

1
3
) +

1
2
(
d(v+

i ) − 4
d(v+

i )
−

1
3
) ≥ 0 if k = 7

,



H. Song, H.-J. Lai / Discrete Applied Mathematics 243 (2018) 262–269 267

contrary to the choice of vvi.

C. dG(vi) ̸= 5.
Assume that d(vi) = 5. If ϵ(vvi) ≤ 1, then by the recharging rules, 0 > ch2(vvi) ≥ ch0(vvi) ≥

2
6 +

1
5 −

1
3 + 0 ≥ 0, a

contradiction. Thus we assume that ϵ(vvi) = 2.
If there exists a vertex v′

i ∈ N(vi) with d(v′

i ) ≥ 6 and ϵ(viv
′

i ) = 0, then by the recharging rules Step 2, vvi will receive a
charge of 1

6 from viv
′

i , and so ch2(vvi) ≥
k−4
k +

1
5 −

2
3 +

1
6 ≥ 0, contrary to the choice of vvi.

Therefore, we assume that for every v′

i ∈ N(vi) \ {v−

i , v, v+

i } with ϵ(viv
′

i ) = 0, we must have d(v′

i ) ≤ 5. If ϵ(vi) = 2,
suppose {v′

i , v
′′

i } ∈ N(vi) \ {v−

i , v, v+

i }, then d(v′

i ) ≤ 5 and d(v′′

i ) ≤ 5. As k ∈ {6, 7}, we have d(v) + d(v′

i ) + d(v′′

i ) ≤ 17, and
so Lemma 2.1(iv) must hold with vi replacing v, contrary to (2). We now assume that ϵ(vi) ≥ 3. By (2), Lemma 2.1(iv) does
not hold with vi in place of v. This implies that either min{d(v−

i ), d(v+

i )} ≥ 14 − k, whence by the recharging rules,

ch2(vvi) ≥
k − 4
k

+
1
5

−
2
3

+ (
10 − k
14 − k

−
1
3
) ≥ 0;

or both min{d(v−

i ), d(v+

i )} ≤ 13 − k and max{d(v−

i ), d(v+

i )} ≥ 22 − min{d(v−

i ), d(v+

i )} − k, whence

ch2(vvi) ≥
k − 4
k

+
1
5

−
2
3

+ max
{
1
2
(
min{d(v−

i ), d(v+

i )} − 4
min{d(v−

i ), d(v+

i )}
−

1
3
), 0

}
+

1
2

(
max{d(v−

i ), d(v+

i )} − 4
max{d(v−

i ), d(v+

i )}
−

1
3

)
≥ 0.

Thus a contradiction to the choice of vvi is obtained. This proves the claim. □

Claim 2.7. k ≥ 12.

Suppose that k ≤ 12. By Claim 2.6, we have 8 ≤ k ≤ 11. By (2), Lemma 2.1(i) does not hold. Hence we have d(vj) ≥ 3
for any 1 ≤ j ≤ k. Similar to the argument in the proof of Claim 2.6, we shall show that ch2(vvi) ≥ 0 holds for any
1 ≤ i ≤ k to obtain a contradiction to (8). Observe that for any 1 ≤ j ≤ k, if ϵ(vvj) = 0, then by Proposition 2.2, we
have ch2(vvj) ≥ min{ch0(vvj), 0} ≥ 0 where ch0(vvj) ≥

4
8 −

1
3 + 0 + 0 ≥ 0. Thus we assume that for some fixed i with

1 ≤ i ≤ k, we have ϵ(vvi) ≥ 1 and ch2(vvi) < 0. We make the following claims.

A. d(vi) ≤ 4.
Assume that d(vi) ≥ 5. Then by Proposition 2.2(iv), 0 > ch2(vvi) ≥ ch0(vvi) ≥

4
8 +

1
5 −

2
3 ≥ 0, a contradiction.

B. d(vi) ̸= 3.
Assume that d(vi) = 3. By (2), Lemma 2.1(ii) does not hold with vi in place of v. Hence

ϵ(vi)
{
= 0 if k = 8
≤ 1 k ≥ 9

.

By the choice of vvi, we have ϵ(vi) ≥ ϵ(vvi) ≥ 1. Thus we assume that k ≥ 9 and ϵ(vi) = ϵ(vvi) = 1. Let v′

i be a vertex
in the 3-face containing vi. If d(v′

i ) ≤ 8, then Lemma 2.1(ii) holds with vi replacing v, contrary to (2). Hence we must have
d(v′

i ) ≥ 9, and so by the recharge rules,

ch2(vvi) ≥
5
9

−
2
3

+ 0 +
1
2
(
d(v′

i ) − 4
d(v′

i )
−

1
3
) ≥ 0.

This violation to the choice of vvi implies that d(vi) = 4.
If ϵ(vvi) ≤ 1, then by the recharge rules and Proposition 2.2, ch2(vvi) ≥ ch0(vvi) ≥

4
8 + 0 −

1
3 + 0 ≥ 0, contrary to the

choice of vvi, and so we must have ϵ(vvi) = 2. Note that ϵ(vi) ≥ 2 and ϵ(v) ≥ 2.
Let v′

i denote the vertex with the least difficulty-increasing order in N(vi). If d(v′

i ) ≥ 8, then min{d(v−

i ), k, d(v+

i )} ≥

d(v′

i ) ≥ 8; if d(v′

i ) = 7 and ϵ(viv
′

i ) = 0, then min{d(v−

i ), k, d(v+

i )} ≥ 8, otherwise one vertex w ∈ {v−

i , v+

i } with d(w) = d(v′

i )
must be of the least difficulty-increasing order in N(vi) instead of v′

i , for ϵ(viw) > ϵ(viv
′

i ) = 0; if d(v′

i ) = 7 and ϵ(viv
′

i ) ≥ 1,
or d(v′

i ) ≤ 6, then max{d(v−

i ), d(v+

i )} ≥ 11 and k ≥ 11, otherwise Lemma 2.1(iii) could hold for vi. In all cases above, we can
check that ch2(vvi) ≥ 0, which contradicts to the choice of vvi. □

We are to complete the proof of Lemma 2.1. By the claims above, we may assume that k ≥ 12. For any i with 1 ≤ i ≤ k,
by (2), Lemma 2.1(i) would not hold with vi replacing v, and so we have d(vi) ≥ 3. We again will show that for any j with
1 ≤ j ≤ k, ch2(vvi) ≥ 0 to obtain a contradiction to (8). If this does not hold, then there will be an iwith ch2(vvi) < 0. We fix
this i in the argument below.

If d(vi) ≥ 4, then by the recharge rules and Proposition 2.2, we have 0 > ch2(vvi) ≥ ch0(vvi) ≥
8
12 + 0 −

2
3 = 0, a

contradiction. Hence we must have d(vi) = 3 .
If ϵ(vvi) ≤ 1, then the recharge rules and Proposition 2.2, we have ch2(vvi) ≥ ch0(vvi) ≥

8
12 −

1
3 −

1
3 = 0, contrary to the

choice of vvi. Now assume that ϵ(vvi) = 2, then by (2), Lemma 2.1(ii) does not hold with vi taking the place of v, implying
that min{d(v−

i ), d(v+

i )} ≥ 12. This, together with the recharge rules, leads to ch2(vvi) ≥
8
12 −

1
3 −

2
3 + ( 8

12 −
1
3 ) = 0, contrary

to the choice of vvi. This completes the proof of the lemma. □
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3. Proof of Theorem 1.2

Let H be a subgraph of a graph G. A (k, r)-coloring c ′ of H is called a partial (k, r)-coloring of G with V (H) being the
domain of c ′. A (k, r)-coloring c of G is an extension of c ′ if for any v ∈ V (H), c(v) = c ′(v).

If H is a graph and if X is a set of edges joining vertices in V (H), then in this section, we use H + X to denote the graph
with vertex set V (H) and edge set E(H)∪ X . As an example, suppose that u, v ∈ V (H). If uv ̸∈ E(H), then H + uv is the graph
obtained from H by adding a new edge uv to H; if uv ∈ E(H), then H + uv = H .

Throughout this section, let k = 2r + 16. We argue by contradiction to prove Theorem 1.2. Assume that

G is a counterexample to Theorem 1.2 with |V (G)| + |E(G)| minimized. (12)

For each different case in the arguments below, we will obtain a new planar graph G′ (called a modified graph of G) by
making localmodifications ofG such that |V (G′)|+|E(G′)| < |V (G)|+|E(G)|. By (12),G′ has an (k, r)-coloring c ′ using colors in
k̄. Using the relationship between G′ and G, we will show that this (k, r)-coloring c ′ of G′ gives rise to a partial (k, r)-coloring
c of G. We then shall extend c to a (k, r)-coloring of G to obtain a contradiction to prove the theorem.

For every vertex v ∈ V (G), define c[v] as follows.

c[v] =

{
{c(v)}, if |c(NG(v))| ≥ r;
{c(v)} ∪ c(NG(v)), otherwise.

(13)

Thus c[v] consists of the set of forbidden colors for uncolored neighbors of v after c(v) is chosen. By (13), |c[v]| ≤ r for any
v; and if v has an uncolored neighbor, then |c[v]| ≤ d(v).

By Lemma 2.1, there exists a k-vertex v with its neighbors v1 ⪯ v2 ⪯, . . . ,⪯ vk satisfying the property described in
Lemma 2.1. We shall justify the theorem by examining each possible values of k.

Case 1. k ≤ 2.
Suppose first that k = 1 and NG(v) = {x}. Let G′

= G − v. By (12), G′ has a (k, r)-coloring c which is also a partial
(k, r)-coloring of G. As |c[x]| ≤ r < k, we extend c by including v in the domain of c with c(v) ∈ k̄\c[x]. As c is a partial
(k, r)-coloring of G and by the choice of c(v), the extended c is a (k, r)-coloring of G, contrary to (12).

Hence we assume that k = 2 and denote NG(v) = {x, y}. Define G′
= G − v + xy. By (12), G′ has a (k, r)-coloring c , which

can also be viewed as a partial coloring of Gwith domain V (G − v). Since |c[x] ∪ c[y]| ≤ 2r < k, we extend the domain of c
to V (G) by choosing c(v) ∈ k̄\(c[x] ∪ c[y]). It is routine to verify that c is a (k, r)-coloring of G, contrary to (12). This proves
Case 1.

Case 2. k = 3.
By Lemma 2.1(ii), we have

d(v1) ≤

⎧⎨⎩
5 if ϵ(v) = 0
8 if ϵ(v) = 1
11 if ϵ(v) ≥ 2.

We define the modified graph G′ according to different conditions on ϵ(v), as below.
(A) If ϵ(v) = 0, then d(v1) ≤ 5. In this case we define G′

= G − v + v1v2 + v1v3.
(B) Assume that ϵ(v) = 1. If ϵ(vv1) = 1, then we may assume that v1v2 ∈ E(G) (similarly the case of v1v3 ∈ E(G)). In this
case we define G′

= G−v +v1v3. If ϵ(vv1) = 0, then vv2v3 is a triangle in G and d(v3) ≥ d(v2) > d(v1). In this case we define

G′
=

{
G − v + v1v2 + v1v3 if d(v1) ≤ r − 1
G − v2v3 if d(v1) ≥ r.

(C) Assume that ϵ(v) = 2. If {v1, v2, v3} contains two nonadjacent vertices in G, then obtain G′ from G− v by adding an edge
joining these two nonadjacent vertices; if G[{v1, v2, v3}] is a 3-cycle, then define G′

= G − v.
(D) If ϵ(v) = 3, let G′

= G − v.
Once G′ is defined, we argue by (12) to obtain a (k, r)-coloring c of G′. By the way we define G′, in any cases,

c(v1), c(v2), c(v3) are mutually distinct. Observe that in (B) when G′
= G − v2v3, c is also a (k, r)-coloring of G. In other

cases, as c is a partial (k, r)-coloring of G, and as we have |c[v1] ∪ c[v2] ∪ c[v3]| ≤ 2r + 11 < k. c can be extended to a
(k, r)-coloring of G by defining c(v) ∈ k̄\(c[v1] ∪ c[v2] ∪ c[v3]), contrary to (12).

Case 3. k = 4.
Thus Lemma 2.1(iii) holds. Define G′

= G − v + v1v2 + v1v3 + v1v4. As r ≥ 8, we have dG′ (v1) ≤ 8 ≤ r . By (12),
G′ has a (k, r)-coloring c , which is also a partial coloring of G. Since dG′ (v1) ≤ r and since v2, v3, v4 ∈ NG′ (v1), we have
|c({v1, v2, v3, v4})| = 4. Since |c[v1] ∪ c[v2] ∪ c[v3] ∪ c[v4]| ≤ 2r + d(v1) + d(v2) − 2ϵ(v) ≤ 2r + 13 < k , we can define
c(v) ∈ k̄\(c[v1] ∪ c[v2] ∪ c[v3] ∪ c[v4]), and so the extended c is a (k, r)-coloring of G, contrary to (12).

Case 4. k = 5.
Then Lemma 2.1(iv) holds. Therefore, as r ≥ 8. By Lemma 2.1(iv), we have either d(v1) ≤ 6 or both d(v1) ≤ 5 and

ϵ(vv1) = 0. DefineG′
= G−v+v1v2+v1v3+v1v4+v1v5, we can check that dG′ (v1) ≤ 8 ≤ r . By (12),G′ has a (k, r)-coloring c.
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Since dG′ (v1) ≤ r , we have |c({v1, . . . , v5})| = 5 inG′. Since |
⋃

w∈NG(v)
c[w]| ≤ 2r+d(v1)+d(v2)+d(v3)−2ϵ(v) ≤ 2r+15 < k,

we extend c by defining c(v) ∈ k̄ \ (
⋃

w∈NG(v)
c[w]), to result in a (k, r)-coloring of G, contrary to (12).

As each case leads to a contradiction, the theorem is proved. □
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