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Bermond et al. (1984) [2] introduced a generalized product of graphs to model and 
construct large reliable networks under optimal conditions. This model includes the 
generalized prisms (also known as the permutation graphs). Piazza and Ringeisen (1991) 
[13] studied the optimal connectivity of generalized prisms and Lai (1995) [8] investigated 
the maximum subgraph connectivity of the generalized prisms. Li et al. extended these 
results to generalized products of trees. In this paper, we investigate the maximum 
subgraph connectivity of generalized product of graphs, which extends the previous 
results mentioned above, and obtain sufficient conditions to warrant the construction 
of large survivable networks via generalized products. Sharpness of our results are 
addressed.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

We follow Bondy and Murty [1] for undefined notation 
and terminology, and consider only finite loopless graphs 
in this note. For a graph G , κ(G), κ ′(G) and δ(G) de-
note the connectivity, the edge-connectivity and the min-
imum degree of G , respectively. For an integer n > 0, de-
fine n = {1, 2, ..., n}, and following [7], let A(n) denote the 
group of permutations on n. When n is understood from 
the context, we often use Sn for A(n). Let G be a graph 
with V (G) = {x1, x2, ..., xn} and G1 and G2 be two copies 
of G with V (G j) = {x j

1, x
j
2, ..., x

j
n}, 1 ≤ j ≤ 2. If α ∈ Sn , 

then the α-generalized prism over G , denoted by α(G), 
is the graph obtained from the disjoint union of G1 and 
G2 together with the additional edges {x1

i x2
α(i) | 1 ≤ i ≤ n}. 
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Let U (G) = min{|S| + |V (C)|}, where the minimum is 
taken over all vertex-cuts S of G and all nonempty com-
ponents C of G − S . The following have been proved.

Theorem 1.1. Let G be a connected graph of order n > 1. Each 
of the following holds for any permutation α ∈ Sn.
(i) (Piazza and Ringeisen [12,13]) min{2κ(G), U (G)} ≤
κ(α(G)) ≤ U (G).
(ii) ([8]) min{2κ(G), δ(G) + 1} ≤ κ(α(G)) ≤ δ(G) + 1.
(iii) (Formula (2) in [8]) U (G) = δ(G) + 1.

Theorem 1.2. Let G be a connected graph of order n > 1. Each 
of the following holds.
(i) (Piazza and Ringeisen [12,13]) If κ(G) = δ(G), then
κ(α(G)) = δ(α(G)) for any α ∈ Sn.
(ii) (Piazza and Ringeisen [12,13]) If κ ′(G) = δ(G), then
κ ′(α(G)) = δ(α(G)) for any α ∈ Sn.
(iii) (Corollary 2.2 in [8]) κ(α(G)) = δ(α(G)), if and only if 
2κ(G) ≥ δ(G) + 1 for any α ∈ Sn.
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(iv) (Corollary 2.2 in [8]) κ ′(α(G)) = δ(α(G)), if and only if 
2κ ′(G) ≥ δ(G) + 1 for any α ∈ Sn.

Let ϕ(G) denote a graphical function and define ϕ(G)

to be the maximum value of ϕ(H) taken over all subgraphs 
H of G . As indicated in [6], for certain network reliability 
measures ϕ , networks G with ϕ(G) = ϕ(G) are important 
for network survivability, and so the study of ϕ(G) is of 
interest. Mader [10] and Matula [11] first studied κ(G) and 
κ ′(G) for a graph G . A permutation graph version is proved 
in [8].

Theorem 1.3. (Corollary 2.3 in [8]) Let G be a connected graph 
with n vertices. Then each of the following holds.
(i) If κ(G) = δ(G), then κ(α(G)) = δ(α(G)) for any α ∈ Sn.
(ii) If κ ′(G) = δ(G), then κ ′(α(G)) = δ(α(G)) for any α ∈ Sn.

Bermond et al. in [2] introduced the generalized prod-
uct of graphs, which extends the notion of generalized 
prisms.

Definition 1.4. ([2]) Let G and L be connected graphs with n =
|V (G)|, D = D(L) be an orientation of L, and f : A(D) → Sn

be a mapping from the arc set A(D) to the permutation group. 
We define the generalized product of G and L, as follows.
(1) Denote V (D) = {u1, u2, · · · um}, and A(D) = {e1, e2, · · · ,

e�}. Following [1], an arc e ∈ A(D) oriented from a vertex us to 
a vertex ut is denoted by (us, ut).
(2) Denote V (G) = {v1, v2, · · · , vn}, and let G1, G2, · · · , Gm
be vertex-disjoint copies of G such that for each j with 1 ≤ j ≤
m, V (G j) = {v j

1, v
j
2, · · · , v j

n} and the mapping vi �→ v j
i is a 

graph isomorphism between G and G j . For each ui ∈ V (D), we 
use Gi to denote the copy of G corresponding to the vertex ui .
(3) For the mapping f : A(D) → Sn, if e = (ui, u j) ∈ A(D), and 
if α = f (e) ∈ Sn, then define

Eij = E f
i j = {vi

t v j
α(t) : 1 ≤ t ≤ n}.

For notational convenience in the proofs of the main results, we 
also use f (vi

t) to denote v j
α(t) .

(4) The generalized permutation graph G D, f is the graph with 
vertex set V (G D, f ) = ⋃m

j=1 V (G j) and edge set

E(G D, f ) = (

m⋃

j=1

E(G j))
⋃

(
⋃

(ui ,u j)∈A(D)

Eij).

When L = K2, A(D) = {(u1, u2)} and f (A(D)) = {α}, we 
have G D, f = α(G) (called a permutation graph in [5]) and 
as defined in [13]. The following observation follows im-
mediately from Definition 1.4.

Observation 1.5. Let D ′ be an orientation of L obtained from D
by reversing an oriented edge e = (ui, u j), and let α = f (e). 
Define f ′ : A(D) �→ Sn to be a map that agrees with f on 
A(D) − {e} and f ′(e) = α−1 . Then G D, f = G D ′, f ′

.

By Observation 1.5, when the orientation D is under-
stood from the context or not emphasized, we shall use 
G L, f without specifically indicating the orientation D .
Lemma 1.6. (Bermond, Delorme and Farhi [2]) Let G be a con-
nected graph and for any orientation D of L, f : A(D) �→ Sn be 
a map. Then δ(G L, f ) = δ(G) + δ(L).

The relationship between the connectivity and edge 
connectivity of G D, f and graph invariants of G have been 
studied in [3,9].

Theorem 1.7. (Balbuena, Garcia-Vazquez and X. Marcote [3]) If 
G and L are two connected graphs, then for any orientation D
of L and any f : A(D) �→ Sn,

min{|V (G)|κ(L), (δ(L) + 1)κ(G), δ(G) + δ(L)}
≤ κ(G L, f ) ≤ δ(G) + δ(L).

Theorem 1.8. (Li, Li and Li [9]) If G is a connected graph with 
n = |V (G)| and L is a tree with m = |V (L)|, then for any orien-
tation D of L and any f : A(D) �→ Sn,

min{mκ ′(G), δ(G) + 1} ≤ κ ′(G L, f ) ≤ δ(G) + 1.

The current research is motivated by the theorems 
listed above. The purpose of this note is to extend Theo-
rems 1.2 and 1.3 to the generalized products of graphs, as 
recalled in Definition 1.4. Our main results are presented 
below.

Theorem 1.9. Let G and L be two connected graphs with 
|V (G)| = n and |V (L)| = m, and for any orientation D of L, 
f : A(D) �→ Sn be an arbitrary mapping. Each of the following 
holds.
(i) If κ(G) = δ(G) and κ(L) = δ(L), then κ(G L, f ) = δ(G L, f ).
(ii) If κ ′(G) = δ(G) and κ ′(L) = δ(L), then κ ′(G L, f ) = δ(G L, f ).
(iii) Suppose that κ ′(L) = δ(L). Then for any f : A(D) �→ Sn

and any orientation D of L, κ ′(G L, f ) = δ(G L, f ) if and only if 
mκ ′(G) ≥ δ(G) + κ ′(L).

Theorem 1.10. Let G and L be two connected graphs with 
|V (G)| = n and |V (L)| = m, and for any orientation D of L, 
f : A(D) �→ Sn be an arbitrary mapping. Each of the following 
holds.
(i) If κ(G) = δ(G) and κ(L) = δ(L), then κ(G L, f ) = δ(G L, f ).
(ii) If κ ′(G) = δ(G) and κ ′(L) = δ(L), then κ ′(G L, f ) = δ(G L, f ).

Note that Theorem 1.9 and Theorem 1.10 present a 
model on constructing large network: for a graph L with 
property P , if a graph G satisfies property P , then G L, f

satisfies property P also. That is, G L, f inherits the prop-
erty P .

The proofs of the main theorems are presented in the 
next section.

2. Proof of the main results

Let G and L be two connected graphs with n = |V (G)|
and m = |V (L)|. Throughout this section, we shall use 
the notation in Definition 1.4. In particular, G1, G2, ..., Gm

are vertex-disjoint copies of G such that for each j with 
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1 ≤ j ≤ m, V (G j) = {v j
1, v

j
2, · · · , v j

n}. We use D(L) to de-
note an orientation of L. For two vertices x, y ∈ V (L), an 
(x, y)-path is a path of L with end vertices x and y, and 
an (x, y)-dipath is a directed path from x to y in D(L).

We first introduce some notations to be used in our 
arguments.

Let P = ui0 ei1 ui1 ei2 ui2 · · · uik−1 eik uik be a (ui0 , uik )-path 
of L. By Observation 1.5, we may assume that D(L) is 
taken so that, P is a (ui0 , uik )-dipath, and so for each 
t ∈ {1, 2, · · · , k}, eit = (uit−1 , uit ). Let αt = f (eit ). For any 
v ∈ V (Gi0 ), define

f 1(v) = f (v), and for k > 1, f k(v) = f ( f k−1(v)),

and f P (v) = f k(v) ∈ V (Gik ).
(1)

We use F P (v) to denote the path v f (v) f 2(v) · · · f k(v) in 
G L, f . If X ⊂ V (Gi0 ), then define f P (X) = { f P (x) : x ∈ X}. 
By Observation 1.5, if P is a (ui, u j)-path of L, and if 
X ⊂ V (Gi), then both f P (X) ⊂ V (G j) and the (undirected) 
path F P (v) are well defined, which are independent of the 
orientation of L. Let F P (X) denote the subgraph of G L, f , 
consisting of the |X | vertex disjoint paths {F P (v) : v ∈ X}.

Observation 2.1. Let P be a (ui, u j)-path in L and let X ⊂
V (Gi). For any E ′ ⊂ E(G L, f ) and S ⊂ V (G L, f ), if X and f P (X)

are in distinct components of G L, f − E ′ (or of G L, f − S, respec-
tively), then |E ′| ≥ |X | (or |S| ≥ |X |, respectively).

We first prove an auxiliary result, stated as Theorem 2.2
below, which extends Theorem 1.8 and Theorem 2.1(ii) 
of [8].

Theorem 2.2. Let G and L be two connected graphs with n =
|V (G)| and m = |V (L)|. For any mapping f : E(L) �→ Sn, each 
of the following holds.
(i) min{|V (L)|κ ′(G), δ(G) + κ ′(L)} ≤ κ ′(G L, f ) ≤ δ(G) + δ(L).
(ii) min{|V (L)|κ ′(G), δ(G) + κ ′(L)} ≤ κ ′(G L, f ) ≤ κ ′(G L, f ) ≤
δ(G) + δ(L).

Proof. (i) By Lemma 1.6, we have κ ′(G L, f ) ≤ δ(G L, f ) ≤
δ(G) +δ(L). It suffices to prove the lower bound of κ ′(G L, f )

in (i). Let E ′ ⊂ E(G L, f ) be an edge-cut of G L, f satisfy-
ing |E ′| = κ ′(G L, f ). For each i with 1 ≤ i ≤ m, define 
Ei = E ′ ∩ E(Gi).

If for every i with 1 ≤ i ≤ m, Gi − Ei is not connected, 
then each Ei is an edge-cut of Gi , and so |E ′| = ∑m

i=1 |Ei | ≥
mκ ′(G).

If for every i with 1 ≤ i ≤ m, Gi − Ei is connected. 
Suppose Gi − Ei and G j − E j are in distinct components 
of G L, f − E ′ . Since L is connected, |E ′| ≥ κ ′(L)|V (G)|. 
Since δ(G) ≤ |V (G)| − 1 ≤ (|V (G)| − 1)κ ′(L), it follows that 
κ ′(G L, f ) = |E ′| ≥ κ ′(L)|V (G)| ≥ δ(G) + κ ′(L).

Hence we assume that for some distinct i, j ∈ {1, 2, ...,
k}, Ei is an edge-cut of Gi but G j − E j is connected. Let 
X, Y ⊂ V (Gi) denote the vertex subsets such that Gi[X]
and Gi[Y ] are the components of Gi − Ei , respectively.

Let t = κ ′(L). Then there are t edge-disjoint (ui, u j)-
paths, denoted P1, P2, · · · , Pt in L. Hence both ∪t

s=1 f Ps (X)

and ∪t
s=1 f Ps (Y ) are in V (G j − E j). Since G j − E j is con-

nected, either X and ∪t f Ps (X) are separated by E ′ − Ei , 
s=1
or Y and ∪t
s=1 f Ps (Y ) are separated by E ′ − Ei . In either 

case, |E ′| ≥ min{|Ei | + t|X |, |Ei| + t|Y |}. By Theorem 1.1(iii), 
|Ei | +|X | ≥ U (G) = δ(G) +1. As t ≥ 1, we have (t −1)(|X | −
1) ≥ 0, and so

|Ei | + t|X | = (Ei | + |X | + (t − 1)(|X | − 1) + (t − 1)

≥ δ(G) + 1 + (t − 1) = δ(G) + κ ′(L).

With a similar argument, we also have |Ei | + t|Y | ≥ δ(G) +
κ ′(L). This justifies the lower bound of (i), and so (i) must 
hold.

(ii) By Theorem 2.2(i), we have min{mκ ′(G), δ(G) +
κ ′(L)} ≤ κ ′(G L, f ). It remains to show that

κ ′(G L, f ) ≤ δ(G) + δ(L). (2)

Let H be a subgraph of G L, f with κ ′(G L, f ) = κ ′(H), and 
let Hi = H ∩ Gi , for each i with 1 ≤ i ≤ m.

In H , contracting each Hi in to a single vertex ui and 
deleting all the resulting loops and multiple edges, we get 
a subgraph of L, denote by L′ . We pick some ui such that 
the degree of ui as small as possible in L′ . In Hi , we 
pick a vertex v such that dHi (v) = δ(Hi). Then dH (v) ≤
δ(Hi) + δ(L′). Hence κ ′(G L, f ) = κ ′(H) ≤ δ(H) ≤ dH (v) ≤
δ(Hi) + δ(L′) ≤ δ(G) + δ(L). This completes the proof of 
Theorem 2.2. �
Proof of Theorem 1.9. (i) Since κ(G) = δ(G) and κ(L) =
δ(L), we have |V (G)|κ(L) = |V (G)|δ(L) ≥ (δ(G) + 1)δ(L) ≥
δ(G) +δ(L) and (δ(L) +1)κ(G) ≥ δ(L) +κ(G) = δ(G) +δ(L). 
Thus by Lemma 1.6, Theorem 1.7, δ(G L, f ) = δ(G) + δ(L) ≤
min{|V (G)|κ(L), (δ(L) +1)κ(G) ≤ κ(G L, f ) ≤ δ(G L, f ), which 
implies Theorem 1.9(i).

(ii) As κ ′(G) = δ(G) and κ ′(L) = δ(L), we have
|V (L)|κ ′(G) = |V (L)|δ(G) ≥ (δ(L) + 1)δ(G) ≥ δ(G) + δ(L)

and δ(G) + κ ′(L) = δ(G) + δ(L). Thus by Lemma 1.6 and 
Theorem 2.2(i), δ(G L, f ) = δ(G) + δ(L) ≤ min{|V (G)|κ ′(L),

(δ(L) + 1)κ ′(G) ≤ κ ′(G L, f ) ≤ δ(G L, f ), which implies Theo-
rem 1.9(ii).

(iii) Suppose that κ ′(L) = δ(L). If mκ ′(G) ≥ δ(G) +κ ′(L), 
then by Theorem 2.2(i) and by κ ′(L) = δ(L), we have 
δ(G L, f ) ≥ κ ′(G L, f ) ≥ δ(G) + κ ′(L) = δ(G) + δ(L) = δ(G L, f ), 
and so equalities must hold everywhere above. Conversely, 
we assume that mκ ′(G) < δ(G) + κ ′(L) to show that for 
some f : E(L) �→ Sn , we cannot have κ ′(G L, f ) = δ(G L, f ). 
In fact. define f0 = identity, that is, f0 : E(L) �→ Sn is a 
map such that for every e ∈ E(L), α = f0(e) ∈ Sn is an 
identity permutation, then we have κ ′(G L, f0) ≤ mκ ′(G) <
δ(G) + κ ′(L) = δ(G) + δ(L) = δ(G L, f0). This proves Theo-
rem 1.9(iii). �
Proof of Theorem 1.10. The proof for Theorem 1.10(ii) is 
similar to that for Theorem 1.10(i), and so we just present 
the proof for Theorem 1.10(i).

Assume that κ(G) = δ(G) and κ(L) = δ(L). Then κ(G) =
δ(G) = δ(G) and κ(L) = δ(L) = δ(L). By Theorem 1.9(i), we 
have

δ(G L, f ) ≥ δ(G L, f ) ≥ κ(G L, f ) = δ(G L, f )

= δ(G) + δ(L) = δ(G) + δ(L).
(3)



40 X. Li et al. / Information Processing Letters 136 (2018) 37–40
Let H be the subgraph of G L, f with δ(H) = δ(G L, f ) and 
let Hi = H ∩ Gi , 1 ≤ i ≤ m. In H , contracting each Hi
into a single vertex ui (Hi is called the preimage of ui ) 
and deleting all the resulting loops and multiple edges, 
we get a subgraph of L, denote by LH . Choose a vertex 
ui with dLH (ui) = δ(LH ) and let Hi be the preimage of ui . 
In Hi , pick a vertex v such that dHi (v) = δ(Hi). Then we 
have δ(G L, f ) = δ(H) ≤ dH (v) ≤ dLH (ui) + dHi (v) = δ(Hi) +
δ(LH ) ≤ δ(G) + δ(L). This, together with (3), implies Theo-
rem 1.10(i). This completes the proof of Theorem 1.10. �
3. Sharpness of Theorem 2.2

The purpose of this section is to explain that the lower 
bound in Theorem 2.2 is sharp in the sense that for any 
nontrivial graph G there exists a map f : E(L) �→ Sn such 
that min{|V (L)|κ ′(G), δ(G) + κ ′(L)} = κ ′(G L, f ).

Theorem 3.1. Let G and L be two nontrivial graphs with 
κ ′(L) = δ(L). If f : E(L) �→ Sn is the map such that for ev-
ery e ∈ E(L), f (e) ∈ Sn is the identity permutation, then 
min{|V (L)|κ ′(G), δ(G) + κ ′(L)} = κ ′(G L, f ).

Proof. If |V (L)|κ ′(G) ≥ δ(G) +κ ′(L) = δ(G) + δ(L), then by 
Theorem 1.9(iii), κ ′(G L, f ) = δ(G L, f ) = δ(G) + δ(L) = δ(G) +
κ ′(L). Therefore assume that |V (L)|κ ′(G) < δ(G) + κ ′(L) =
δ(G) + δ(L). By Theorem 2.2, κ ′(G L, f ) ≥ |V (L)|κ ′(G). Let E
be a minimum edge-cut of G . In each copy of G , pick a 
minimum edge-cut corresponding to E , and let E ′ denote 
the union of these minimum edge-cuts. Since f : E(L) �→
Sn is a map such that for every e ∈ E(L), α = f (e) ∈ Sn
is an identity permutation, E ′ is an edge-cut of G L, f . 
Hence κ ′(G L, f ) ≤ |E ′| = |V (L)|κ ′(G). Therefore, we have 
κ ′(G L, f ) = |V (L)|κ ′(G). �
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