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ABSTRACT

For a graph G, let f (G) denote the connectivity κ(G), or the edge-

connectivity κ ′(G), or the minimum degree δ(G) of G, and define f (G) =
max{f (H) : H is a subgraph of G}. Matula in [K-components, clusters, and slic-
ings in graphs, SIAM J. Appl. Math. 22 (1972), pp. 459–480] proved twomin-

imax theorems related to δ(G) and κ ′(G), and obtained polynomial algo-
rithms to determine δ(G), κ ′(G) and κ(G). The restricted edge-connectivity
of G, denoted by λ2(G), is the minimum size of a restricted edge-cut of
G. We define λ2(G) = max{λ2(H) : H ⊆ G}. For a digraph D, let κ(D), λ(D),
δ−(D) and δ+(D) denote the strong connectivity, arc-strong connectiv-
ity, minimum in-degree and out-degree of D, respectively. For each f ∈

{κ , λ, δ−, δ+}, define f (D) = max{f (H) : H is a subdigraphofD}. In this paper,
we obtain analogous minmax duality results, which are applied to yield

polynomial algorithms to determine δ
+
(D), δ

−
(D), λ(D) and κ(D) for a

digraph D and λ2(G) for a graph G.
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1. Introduction

We consider finite simple graphs and simple digraphs. Usually, we use G to denote a graph and D a
digraph. Undefined terms and notations will follow [5] for graphs and [3] for digraphs. For graphs
H and G, we denote H ⊆ G when H is a subgraph of G. Similarly, for digraphs H and D, H ⊆ D
when H is a subdigraph of D. In particular, κ(G), κ ′(G) and δ(G) denote the connectivity, the edge-
connectivity and the minimum degree of a graph G, respectively; κ(D) and λ(D) denote the strong
connectivity and the arc-strong connectivity of a digraphD, respectively. A digraphD is strong ifD is
strongly connected. A strong component of a digraphD is a maximal strong subdigraph ofD. A strong
component H of D is nontrivial if |A(H)| > 0. Following [5], a digraph D is strict if D has no loops
nor parallel arcs. Throughout this paper, we use the notation (u, v) to denote an arc oriented from u
to v in a digraph, and [u, v] to denote an arc which is in {(u, v), (v, u)}. A digraph D is complete if D
is strict and for every pair u,v of distinct vertices of D, both (u, v) and (v, u) ∈ A(D). The complete
digraph on n vertices will be denoted by K∗n . It is known that (see [3, p. 16], for example) for any
integer n> 1, κ(K∗n) = n− 1.

Using the notation in [3,5], for any disjoint subsets X,Y ⊆ V(G), define

(X,Y)G = {xy ∈ E(G) : x ∈ X, y ∈ Y} and ∂G(X) = (X,V(G)− X)G.
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WhenX = {v}, we often use ∂G(v) for ∂G({v}). Likewise, for any disjoint subsetsX,Y ⊆ V(D), define

(X,Y)D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y}, ∂+D (X) = (X,V(D)− X)D

and ∂−D (X) = ∂+D (V(D)− X).

For each v ∈ V(D), we use ∂+D (v) for ∂+D ({v}) and ∂−D (v) for ∂−D ({v}). The out-degree (in-degree,
respectively) of v in D is d+D (v) = |∂+D (v)| (d−D (v) = |∂−D (v)|, respectively). We also define

N+D (v) = {u ∈ V(D) : (v, u) ∈ A(D)} and N−D (v) = {u ∈ V(D) : (u, v) ∈ A(D)}.

For a graphG, let f (G) denote the edge-connectivity κ ′(G) or the minimum degree δ(G) ofG, and
define f (G) = max{f (H) : H is a subgraph of G}. As indicated in [15], networks modelled as a graph
G with f (G) = f (G) are of particular interest of investigations. Matula first studied the quantities

κ ′(G) = max{κ ′(H) : H ⊆ G} and δ(G) = max{δ(H) : H ⊆ G}.

These graph invariants have drawn the attention of researchers as early as in the 1960s. Graphs G
with δ(G) ≤ k are called k-degenerate graphs and were first investigated in [18]. For any fixed integer
k> 0, the k-core of a graph G is the unique maximal subgraph H of G with δ(H) ≥ k, and can be
obtained from G by repeatedly deleting vertices of degree less than k. The k-cores are considered as
fundamental structures in graph theory, as seen in [6,7,20,25,28], among others. A weighted version
of k-cores is introduced in [14] to study the communities cooperation level in social science. Other
social network applications can be found in [27]. As commented in [16,20,24], both δ(G) and κ ′(G)

are related to graph colouring problems.
In order to compute κ ′(G) and δ(G), Matula defined slicings.

Definition 1.1: Let G be a graph with E(G) 6= ∅.

(i) A sequence of disjoint nonempty edge subsets Z = (J1, J2, . . . , Jm) is a slicing ofG if J1 is an edge-cut
of G, and for each i with 2 ≤ i ≤ m, Ji is an edge-cut of G−

⋃i−1
j=1 E(Jj).

(ii) If there exists a sequence v1, v2, . . . , vm of vertices of G such that J1 = ∂G(v1) and for i ≥ 2, Ji =
∂G−

⋃i−1
j=1 E(Jj)

(vi), then the slicing Z = (J1, J2, . . . , Jm) is a δ-slicing of G.

(iii) If Z = (J1, J2, . . . , Jm) is a slicing of G, then the width of Z is

w(Z) = max{|Ji| : 1 ≤ i ≤ m}.

In [22], Matula discovered some minimax results involving κ ′(G) and δ(G).

Theorem 1.2 ([22]): For any graph G with |E(G)| ≥ 1, each of the following holds.

(i) κ ′(G) = max{κ ′(H) : H ⊆ G} = min{w(Z) : Z is a slicing of G}.
(ii) δ(G) = max{δ(H) : H ⊆ G} = min{w(Z) : Z is a δ-slicing of G}.

While the parameters δ(G), κ ′(G) and κ(G) have been intensively studied, to the best of our knowl-
edge, the related problem on the other network reliability measures and the corresponding measures
of digraphs have rarely been investigated. The purpose of this paper is to investigate whether digraphs
will have similar behaviours, and to seek if Theorem 1.2 can be extended to other graph reliabil-
ity measures. As in [3], the minimum out-degree and the minimum in-degree of a digraph D are
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δ+(D) = min{d+D (v) : v ∈ V(D)} and δ−(D) = min{d−D (v) : v ∈ V(D)}, respectively. Naturally, for
a digraph D, we define

λ(D) = max{λ(H) : H ⊆ D}, δ
+
(D) = max{δ+(H) : H ⊆ D}

and δ
−
(D) = max{δ−(H) : H ⊆ D}.

Some of the recent studies on λ(D) and λ(D) focused on extremal properties and the relationship
with arc disjoint spanning arborescences, as seen in [1,2,17,19], among others. By the definition of
λ(D), we observe that λ(D) = 0 if and only ifD does not contain a directed cycle. That is,D is acyclic.
Therefore, throughout this paper, when discussing λ(D), we always assume that λ(D) > 0.

A natural model for digraph slicing will be a sequence of disjoint nonempty arc subsets in the
form ∂+Di

(X) for some subdigraph Di of D. Similarly, δ
+-slicings (δ−-slicings, respectively) will be

sequences of disjoint nonempty arc subsets in the form ∂+Di
(v) (∂−Di

(v), respectively). We observe that
in a nontrivial graph G, every edge lies in an edge-cut of the connected component of G containing
the edge. But in a nontrivial digraph D, not every arc is lying in a directed cut of a strong component
of D. Therefore, we would need to modify the definition of a graph slicing to define a digraph slicing
to accommodate this difference, and the proving arguments would also be altered accordingly. In
their studies of fault tolerance networks, Esfahanian [8] and Esfahanian and Hakimi [9] introduced
restricted edge-connectivity of a graph. An edge-cut X of a graph G is restricted if for any v ∈ V(G),
∂G(v)− X 6= ∅. The restricted edge-connectivity of a graph G, denoted by λ2(G), is the minimum
size of a restricted edge-cut of G. The concept of different slicing will be formally defined in the next
section. Our main result on digraphs is stated below.

Theorem 1.3: Let D be a digraph with A(D) 6= ∅. Let S(D) be the collection of all slicings of D and let
S+(D), S−(D) be the collection of all δ+-slicings of D and all δ−-slicings of D, respectively. Each of the
following holds.

(i) Assume that λ(D) > 0. Then max{min{|∂+H (X)| : ∅ 6= X ⊂ V(H)} : H ⊆ D} = min{max{|Ji| :
1 ≤ i ≤ m} : S = (J1, J2, . . . , Jm) ∈ S(D)}.

(ii) max{min{d+H(v) : v ∈ V(H)} : H ⊆ D} = min{max{|Ji| : 1 ≤ i ≤ m} : S = (J1, J2, . . . , Jm) ∈

S+(D)}.
(iii) max{min{d−H(v) : v ∈ V(H)} : H ⊆ D} = min{max{|Ji| : 1 ≤ i ≤ m} : S = (J1, J2, . . . , Jm) ∈

S−(D)}.

Likewise, we define κ(D) = max{κ(H) : H ⊆ D}. Related properties on κ(D) are also discussed.
In the next section, we present the proofs for these minimax relations stated in Theorem 1.3, as well

as discussions of other related properties. In Section 3, we explain that these quantities δ
+
(D), δ

−
(D),

λ(D) and κ(D) can be computationally determined in polynomial time. In the last section, we will
develop the concept of λ2-slicing ofG and prove an analogousminimax duality result that determines
the value of λ2(G) = max{λ2(H) : H ⊆ G}.

Our approaches to the digraph generalization of Theorem 1.2 are motivated by and similar to the
work of Matula [20–23]. The minimax theorem on the restricted edge-connectivity of graph is also
motivated by these results. We believe that there might be a more general theorem that can cover all
these as special cases, and we have not yet found this general result yet.

2. Minimax theorems in some subdigraph density measures

Let k ≥ 0 be an integer. A digraph D is k-arc-strong if λ(D) ≥ k, or equivalently, for any proper
nonempty subset ∅ 6= X ⊂ V(D), we always have |∂+D (X)| ≥ k. Thus in this sense, every digraphD is
0-arc-strong, and λ(D) = 0 if and only ifD is not 1-arc-strong. LetD be a digraph and letD1 andD2 be
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two subdigraphs ofD. DefineD1 ∪ D2 to be the subdigraph ofDwithV(D1 ∪ D2) = V(D1) ∪ V(D2)

and A(D1 ∪ D2) = A(D1) ∪ A(D2). We start with some elementary properties. Proposition 2.1
follows by an argument similar to that by Matula [20,21]

Proposition 2.1 ([1]): Let D1,D2, . . . ,Dn be subdigraphs of a digraph D such that
⋃n

i=1 Di is strongly
connected. Then λ(

⋃n
i=1 Di) ≥ min1≤i≤n λ(Di).

It follows from the definitions that for any strong digraph D,

κ(D) ≤ λ(D) ≤ min{δ+(D), δ−(D)}. (1)

Proposition 2.2: Let D be a strong digraph. Then κ(D) ≤ λ(D) ≤ min{δ
+
(D), δ

−
(D)}.

Proof: Let L ⊆ D such that κ(D) = κ(L). By Equation (1), κ(D) = κ(L) ≤ λ(L) ≤ λ(D). To show

that λ(D) ≤ min{δ
+
(D), δ

−
(D)}, we now take a subdigraph H ⊆ D such that λ(D) = λ(H). Let v ∈

H such that d+H(v) = δ+(H). AsD− ∂+H (v) is not strong, we have λ(D) = λ(H) ≤ δ+(H) ≤ δ
+
(D).

Similarly, we also have λ(D) ≤ δ
−
(D). �

2.1. Slicing and proof of Theorem 1.3(i)

Throughout this subsection, we assume thatD is a digraph with λ(D) > 0. An arc subsetW of D is a
direct cut ofD if there exists a nonempty proper vertex subsetX such thatW = (X,V(D)− X)D with
W 6= ∅. We present a formal definition of digraph slicing below.

Definition 2.3: Let D be a digraph with λ(D) > 0. Set D1 = D.

(i) A slicing of D is a sequence S = (J1, J2, . . . , Js) of arcs subsets of D with s ≥ 2 such that each of the
following holds.

(i-1) J1 is a direct cut of D1.
(i-2) Define D2 = D− J1. For i = 2, 3, . . . , s− 1, Di is not acyclic, Ji is a nonempty direct cut of

Di and set Di+1 = Di − Ji.
(i-3) Ds = D−

⋃s−1
i=1 Ji is acyclic.

(ii) If for each i with 1 ≤ i ≤ s− 1, Ji is a minimum direct cut of a nontrivial strong component of Di,
then the slicing S = (J1, J2, . . . , Js) is a narrow slicing.

(iii) The width of a slicing S = (J1, J2, . . . , Js) is w(S) = max{|Ji|, 1 ≤ i ≤ s− 1}.
(iv) The collection of all slicings of D is denoted by S(D).

Proof of Theorem 1.3(i): Let k = λ(D) and k′ = min{w(S) : S ∈ S(D)}. By the assumption of
Theorem 1.3(i), we have k> 0.

Suppose first thatH is a subdigraph ofDwith k = λ(H). Let S = (J1, J2, . . . , Jm) be a slicing ofD. By
the definition of a slicing,Dm = D−

⋃m−1
i=1 Ji is acyclic. Since λ(H) = k ≥ 1,H is not a subdigraph of

Dm. Hence there must be a smallest index ℓ with 1 ≤ ℓ < m such that the arc subset Jℓ ∩ A(H) 6= ∅.
It follows that Jℓ ∩ A(H) is a direct cut of H, and so w(S) ≥ |Jℓ| ≥ |Jℓ ∩ A(H)| ≥ λ(H) = k. Since S
was arbitrary, we have k′ = min{w(S) : S ∈ S(D)} ≥ k = λ(D).

Conversely, let k′′ = min{w(S) : S is a narrow slicing of D}. Then as the collection of all narrow
slicings of D is a subset of S(D), it follows by definition that k′′ ≥ k′. We are to show that k ≥ k′′,
which implies the desired k ≥ k′. Arguing by contradiction, we assume that k′′ > k. Thus there exists
a narrow slicing S = (J1, J2, . . . , Jm) such that k′′ = w(S) ≥ k+ 1. Hence there exists a smallest iwith
1 ≤ i ≤ m such that |Ji| = w(S) ≥ k+ 1. Since S is a narrow slicing, by Definition 2.3(ii), Ji is a mini-
mumdirect cut of a strong component L ofDi. It follows that λ(Di) = |Ji| = w(S) ≥ k+ 1 > λ(D) ≥

λ(Di). This contradiction implies thatwemust have k ≥ k′′ ≥ k′. This establishes Theorem1.3(i). �
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The argument deployed in the proof of Theorem 1.3(i) suggests some computational useful ways
of determining λ(D), as stated in the following result.

Lemma 2.4: Let D be a digraph with A(D) 6= ∅. If S = (J1, J2, . . . , Js) is a narrow slicing of D, then
λ(D) = max1≤i≤s{|Ji|}.

Proof: Let S = (J1, J2, . . . , Js) be a narrow slicing ofD. Since a narrow slicing is a slicing, it follows by
Theorem 1.3(i) that λ(D) ≤ max1≤i≤s{|Ji|}. Conversely, let ℓ be an integer with 1 ≤ ℓ ≤ s satisfying
|Jℓ| = max1≤i≤s{|Ji|}. By the definition of a narrow slicing, there exists a subdigraph Dℓ of D such
that Jℓ is a direct cut of Dℓ with |Jℓ| = λ(Dℓ). It follows that λ(D) = max{min{|∂+H (X)| : ∅ 6= X ⊂
V(H)} : H ⊆ D} ≥ λ(Dℓ) = |Jℓ| = max1≤i≤s{|Ji|}. �

2.2. δ
+-slicing, δ−-slicing and proof of Theorem 1.3(ii) and (iii)

Throughout this subsection, we assume thatD is a digraph withA(D) 6= ∅. For a digraphD, letG(D),
called the underlying graph ofD, be the graph obtained fromD by erasing all the orientation of the arcs
ofD. A digraphD isweakly connected ifG(D) is connected. A subdigraphH ofD is aweak component
of D if G(H) is a component of G(D) with |A(H)| > 0. (Thus, an isolated vertex of D is not a weak
component.) Like in Section 2.1, we start with a formal definition of a δ+-slicing, as well as one of a
δ−-slicing.

Definition 2.5: Let D be a digraph with A(D) 6= ∅.

(i) A sequence of disjoint arc subsets S = (J1, J2, . . . , Js) of D is a δ+-slicing (or δ−-slicing,
respectively) of D if each Ji 6= ∅, 1 ≤ i ≤ s, and if each of the following holds:
(i-1) Let D1 = D. There exists a vertex v1 ∈ V(D1) such that J1 = ∂+D1

(v1) (J1 = ∂−D1
(v1),

respectively).
(i-2) For i = 2, . . . , s, set Di = Di−1 − Ji−1, and there exists a vertex vi ∈ V(Di) such that Ji =

∂+Di
(vi) (Ji = ∂−Di

(vi), respectively).
(i-3) A(Ds)− Js = ∅.

(ii) A δ+-slicing (or a δ−-slicing, respectively) S = (J1, J2, . . . , Js) is minimal if for each i with
1 ≤ i ≤ s, there exists a weak component Li of Di such that |Ji| = δ+(Li) (or |Ji| = δ−(Li),
respectively).

(iii) Let S+(D) and S−(D) denote the collections of all δ+-slicings and all δ−-slicings of D, respectively.

By Definition 2.5, if S = (J1, J2, . . . , Jm) is a δ+-slicing of D, then for each i = 1, 2, . . . ,m,

there exists a weak component D′i of Di and a vertex vi ∈ V(D′i) such that Ji = ∂+
D′i

(vi). (2)

Proof of Theorem 1.3(ii) and (iii): By symmetry, it suffices to prove Theorem 1.3(ii). By

Definition 2.5, there exists a subdigraph H ⊆ D such that δ
+
(D) = δ+(H).

Let S = (J1, J2, . . . , Js) ∈ S(D) be an arbitrary δ+-slicing ofD. By Equation (2), there exist a vertex
z ∈ V(H) and an index jwith 1 ≤ j ≤ s such that Jj ∩ A(H) = ∂+H (z). It follows thatmax1≤i≤m{|Ji|} ≥

|Jj| ≥ |Jj ∩ A(H)| ≥ δ+(H) = δ
+
(D). Since S = (J1, J2, . . . , Js) ∈ S(D) is arbitrary, we have

h = min{max{|Ji| : 1 ≤ i ≤ s} : S = (J1, J2, . . . , Js) ∈ S(D)} ≥ δ
+
(D).

Conversely, let h′ = min{max{|Ji| : 1 ≤ i ≤ s} : S = (J1, J2, . . . , Js) ∈ S(D) be a minimal δ+-slicing

of D}. Thus by definition, we have h ≥ h′. We are to show that h′ ≤ δ
+
(D), which would imply the

needed h ≤ h′ ≤ δ
+
(D) to complete the proof. Let S = (J1, J2, . . . , Js) be an arbitrary minimal δ

+-
slicing of D. By Definition 2.5(i-3), A(D)−

⋃s
i=1 Ji = A(Ds)− Js = ∅. As H 6= ∅, we observe that
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A(H) ⊆
⋃s

i=1 Ji, and so there exists a smallest integer j such that Jj ∩ A(H) 6= ∅. By Equation (2),
for each i with 1 ≤ i ≤ m, there exists a weak component Li of Di and a vertex vi ∈ V(Li) such that

|Ji| = δ+Li (vi) ≤ δ
+
(D). It follows that max{|Ji| : 1 ≤ i ≤ m} ≤ δ

+
(D), and so

h′ = min{max{|Ji| : 1 ≤ i ≤ s} : S = (J1, J2, . . . , Js) ∈ S
+(D) is a minimal slicing of D} ≤ δ

+
(D).

This proves that Theorem 1.3(ii) must hold. The proof for Theorem 1.3(iii) is similar and will be
omitted. �

The arguments deployed in the proof of Theorem 1.3(ii) and (iii) also suggest some computational

useful ways of determining δ
+
(D) and δ

−
(D), as stated in the following results.

Lemma 2.6: Let D be a digraph with A(D) 6= ∅.

(i) If S = (J1, J2, . . . , Js) is a minimal δ
+-slicing of D, then

δ
+
(D) = max

1≤i≤s
{|Ji|}.

(ii) If S = (J1, J2, . . . , Js) is a minimal δ
−-slicing of D, then

δ
−
(D) = max

1≤i≤s
{|Ji|}.

Proof: By symmetry, it suffices to prove Lemma 2.6(i). Let S = (J1, J2, . . . , Js) be aminimal δ
+-slicing

of D. Since a minimal δ+-slicing is also a δ+-slicing, it follows from Theorem 1.3(ii) that

δ
+
(D) = max{min{d+H(v) : v ∈ V(H)} : H ⊆ D} ≤ max

1≤i≤s
{|Ji|}.

On the other hand, there exists an ℓ with 1 ≤ ℓ ≤ s such that |Jℓ| = max1≤i≤s{|Ji|}. By
Definition 2.5(ii), there exists a subdigraph Lℓ of D such that |Jℓ| = δ+(Lℓ). It follows that

δ
+
(D) = max{min{d+H(v) : v ∈ V(H)} : H ⊆ D} ≥ δ+(Lℓ) = |Jℓ| = max

1≤i≤s
{|Ji|}.

This justifies Lemma 2.6(i). The proof for Lemma 2.6(ii) is similar and will be omitted. �

2.3. Maximum subdigraph strong connectivity

Throughout this subsection, we assume that D is a digraph which is not spanned by a complete
digraph. If X ⊆ V(D) is a subset, then D[X] denotes the subdigraph of D induced by X. Following
[3], for a pair of distinct vertices u, v ∈ V(D), a vertex subset S ⊂ V(D)− {u, v} is an (u, v)-separator
if D−S contains no directed (u, v)-paths. A subset S ⊂ V(D) is an (u, v)-separator of D if for some
u, v ∈ V(D), S is an (u, v)-separator. A separator of a strong digraphD isminimum if |S| is the smallest
among all separators of D. Thus by definition, for a strong digraph D, κ(D) = |S| for any minimum
separator of D.

Lemma 2.7: Let D be a strongly connected digraph which is not spanned by a complete digraph, and
S ⊂ V(D) be a minimum separator of D. Let H1,H2, . . . ,Hc be the strong components of D−S. Then
c ≥ 2 and

κ(D) = max

{

|S|, max
1≤i≤c

{κ(D[V(Hi) ∪ S])}

}

. (3)
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Proof: SinceD is a strong connected digraph and S is a separator, we have c ≥ 2. Since S is aminimum
separator ofD, we have |S| = κ(D), and so by the definition of κ(D), and as for each iwith 1 ≤ i ≤ c,
D[V(Hi) ∪ S] ⊆ D, we have

κ(D) ≥ max

{

|S|, max
1≤i≤c

{κ(D[V(Hi) ∪ S])}

}

. (4)

Conversely, let H be a subdigraph of D such that κ(D) = κ(H). If for some i with 1 ≤ i ≤ c,
we have V(H) ⊆ V(Hi) ∪ S, then H ⊆ D[V(Hi) ∪ S]. In this case, κ(D) = κ(D[V(Hi) ∪ S]) ≤
max1≤i≤c{κ(D[V(Hi) ∪ S])}. Now assume that for any i with 1 ≤ i ≤ c, V(H) ⊆ V(Hi) ∪ S does not
hold. This implies that there exists some distinct i and jwith 1 ≤ i < j ≤ c such thatV(H) ∩ V(Hi) 6=

∅ and V(H) ∩ V(Hj) 6= ∅. Thus S contains a separator ofH, and so in this case, |S| ≥ κ(H) = κ(D).
Hence we have proved that, in any case,

κ(D) ≤ max

{

|S|, max
1≤i≤c

{κ(D[V(Hi) ∪ S])}

}

.

Thus, together with Equation (4), Lemma 2.7 follows. �

3. Applications

In [23], Matula indicated that contrasting with the situation that computing the maximum clique of
a graph is an NP-complete problem, the values δ(G), κ ′(G) and κ(G) of a graph G are polynomi-
ally determinable. In this section, we shall show that the corresponding computational problems in
digraph also have polynomial time solutions. Throughout this section, we always assume that D is
a digraph on n vertices and m edges, for some positive integers m and n. The main results stated in

Section 2 can be applied to computationally determine the parameters δ
+
(D), δ

−
(D), λ(D) and κ(D).

To generate an arc subset of the form ∂+D (v) for a vertex v satisfying d+D (v) = δ+(D), it takes n steps
of vertex scanning, and such a procedure is referred to as a minimum out-degree search. It takes at

most n−1minimumout-degree search to generate aminimal δ
+
-slicing. Thus by Lemma 2.6, it takes

O(n2) time to determine δ
+
(D). Similarly, determining δ

−
(D) also takes O(n2) time.

In [4], an (O(|E(G)|)-time algorithm is presented that, for any input graphG, and any integer k, the
vertices in G that are contained in a subgraph H ⊆ G with δ(H) ≥ k. Therefore, this also effectively
determines the value δ(G). This algorithm can be adopted and modified in a straightforward way to

determine, for an input digraph D, both δ
+
(D) and δ

−
(D), which is better than the algorithm we

presented above for sparse digraphs.
The efficiency of computing κ ′(G) is not so straightforward. In [22,23], Matula showed that

utilizing the Ford–Fulkerson network flow algorithm, κ ′(G) can be determined in O(|V(G)|5/3

|E(G)|)-time. For sparse graphs, this can be improved to O(|V(G)| · |E(G)|2)-time. For digraphs,
Schnorr [26] showed that λ(D) can be computed in by O(|V(D)|) maximum flow calculations. It
is known, with the shortest augmentation path algorithm, each maximum flow calculation runs
O(|V(D)|2|A(D)|) time and outputs a minimum direct cut J = ∂+D (X) for some nonempty proper
subset X with |J| = λ(D). Thus a narrow slicing ofD can be found inO(|V(D)|4|A(D)|) time, and so
by Lemma 2.4, λ(D) can be computationally determined in O(|V(D)|4|A(D)|) time.

In the rest, we explain how Lemma 2.7 can be applied to obtain a polynomial algorithm to
compute κ(D).

Gabow [12] found an algorithm to determine a separator S of D with |S| = κ(D) (this algorithm
will be referred to asGabow’s algorithmbelow). Gabow’s algorithm runs inO(|V(D)|5/2|A(D)|)-time.
Tarjan [29] presented an O(|V(D)| + |A(D)|)-algorithm (referred to as Tarjan’s algorithm below) to
determine the strong components of a digraph D on n vertices and m arcs. Thus by Lemma 2.7, a
polynomial algorithm to compute κ(D) can be found by utilizing Gabow’s algorithm and Tarjan’s
algorithm.
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An algorithm computing κ

Input: A digraph D with n = |V(D)| > 0 andm = |A(D)| > 0.
Output: κ(D)

(Step 1) Set k:= 0; apply Tarjan’s algorithm to determine the strong components of D; set L := {L is
a strong component of D with |V(L)| ≥ k+ 2}.
(Step 2) While L 6= ∅,
Find H ∈ L so that |V(H)| = max{|V(Hi)| : Hi ∈ L}.
(Step 2.1) If H is spanned by a complete digraph, then
(Step 2.1.1) updating k: set k := max{k, |V(H)| − 1}, and
(Step 2.1.2) updating L: set L := L− {H}.

(Step 2.2) If H is not spanned by a complete digraph, then run Gabow’s algorithm to determine a
minimum separator S ⊂ V(H) of H.

(Step 2.2.1) updating k: Set k := max{k, |S|}.
(Step 2.2.2) updating L: Apply Tarjan’s algorithm to determine the strong components H1,

H2, . . . , Hc′ of H−S. Set L := L− {H} ∪ {D[V(Hj) ∪ S]: |V(Hj) ∪ S| ≥ k+ 2, and 1 ≤ j ≤ c′}.

By the rule we update the value of k at Step 2.1.1 or Step 2.2.1, at any time, k ≤ κ(D). By Lemma
2.7, when the algorithm stops, it will output k = κ(D) for any digraph D. It suffices to show that the
algorithm will stop for any inputting digraph D. Define

h(L) =
∑

L∈L

(|V(L)| − (κ(D)+ 2)).

Thus h(L) ≤ |V(D)| − κ(D). By the rule that we update the value of L at Step 2.1.2 or Step 2.2.2,
after each iteration of Step 2, the value of h(L) is reduced by at least 1, and so it takes at most h(L) ≤

n− κ(D) iterations executing Step 2. This implies that the algorithm must stop.
At each Step 2 iteration, Gabow’s algorithm runs in O(n5/2m)-time, and Tarjan’s algorithm runs

inO(n+m)-time. As there will beO(n)-time Step 2 iterations, it follows that this algorithm will run
in O(n7/2m)-time.

The main purpose of this section is to indicate that there exist polynomial algorithms to compu-

tationally determine δ
+
(D), δ

−
(D), λ(D) and κ(D). Efforts have not been spent on finding the fastest

algorithms to compute these invariants. Improvement on computational complexity can be made
with further discussions. As examples, it is known [10,13] that given a digraph D with n vertices and
m edges, and an integer k, there exists an algorithm to determine if λ(D) ≥ k in O(knm) time. Using
matroid intersection and based on Edmonds branching theorem, Gabow [11] determines λ(D) in
O(λ(D)m log(n2/m)) time. These could be applied to improve the complexity of finding a narrow
slicing of a digraph D, thereby determining λ(D) by Lemma 2.4.

4. Aminimax theorem in restricted edge-connectivity

In their studies of fault tolerance networks, Esfahanian[8] and Esfahanian and Hakimi [8,9] intro-
duced restricted edge-connectivity of a graph. There has been intensive researches on restricted
edge-connectivity, as seen in the recent survey of Xu [30]. An edge-cutX of a graphG is restricted if for
any v ∈ V(G), ∂G(v)− X 6= ∅. With this definition, not every connected graphmay have a restricted
edge-cut. Let F be a family of connected graph such that a graph G is in F if and only if either G is
spanned by a K3, or G has a vertex v ∈ V(G) such that E(G− v) = ∅.

Lemma 4.1: Let G be a connected graph with |E(G)| > 0. Then G does not have a restricted edge-cut
if and only if G ∈ F .

Proof: Let G be a connected graph with |E(G)| > 0 which does not have a restricted edge-cut. Since
every graph on two vertices must be in F , we assume that |V(G)| ≥ 3. Assume that |V(G)| = 3 and
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G is not spanned by a K3, then G has a cut vertex v, and so E(G− v) = ∅, whence G ∈ F . Thus we
assume that |V(G)| ≥ 4. If G has a path of length at least 3, then G has a restricted edge-cut. Hence
every longest path of G has length 2. Since |V(G)| ≥ 4, G cannot have a cycle of length at least 3. It
follows that Gmust be spanned by a K1,n−1, where n = |V(G)|. Since G contains no cycles of length
at least 3, if v ∈ V(G) has maximum degree in G, then E(G− v) = ∅, and so G ∈ F . Conversely, it
follows by definition that every member in F does not have a restricted edge-cut. �

Lemma 4.1 indicates that in order to define restricted edge-connectivity of a graph, we need to
define restricted edge-cuts of graphs in F . To facilitate the study of restricted edge-connectivity of
a graph, we further define that for any G ∈ F , we define an edge subset X ⊆ E(G) such that it is a
restricted edge-cut ofG if and only if |X| = |E(G)| − 1. The restricted edge-connectivity of a nontriv-
ial connected graphG, denoted by λ2(G), is the minimum size of a restricted edge-cut ofG. Note that
λ2(K2) = 0. If G = K1 or if G is not connected, it is natural to define that λ2(G) = 0. In this section,
we will develop the concept of λ2-slicing of G and prove an analogous minimax duality result that
determines the value of λ2(G) = max{λ2(H) : H ⊆ G}.

4.1. Restricted slicing of a graph

Let G be a connected graph such that G /∈ F . A restricted edge-cut S of G isminimal if it contains no
other restricted edge-cut of G. Thus if S is a minimal restricted edge-cut of G, then G−S has exactly
two nontrivial connected components G′,G′′. If G ∈ F , then for any restricted edge-cut S of G, G−S
has exactly one nontrivial component isomorphic to K2. We start with a lemma below.

Lemma4.2: Let G be a nontrivial connected graph such that G /∈ F . If S is aminimal restricted edge-cut
of G such that G−S has components G′,G′′, then

λ2(G) = max{|S|, λ2(G[E(G′) ∪ S]), λ2(G[E(G′′) ∪ S])}. (5)

Proof: By definition, there exists a connected subgraph H of G such that λ2(H) = λ2(G). Since S is
a minimal, by definition, we have H=G if and only if λ2(G) = |S|.

Assume first that H=G, or equivalently, λ2(G) = |S|. Then by definition of λ2(G), we have
λ2(G) ≥ max{λ2(G[E(G′) ∪ S]), λ2(G[E(G′′) ∪ S])}. Hence Equation (5) holds. Now assume that
H 6= G. Thus λ2(G) > |S|. IfH is a subgraph of G[E(G′) ∪ S], then λ2(G) = λ2(H) = λ2(G[E(G′) ∪
S]) ≥ max{|S|, λ2(G[E(G′′) ∪ S])}, whence Equation (5) holds. Thus it suffices to show that either
H ⊆ G[E(G′) ∪ S]) or H ⊆ G[E(G′′) ∪ S]).

By contradiction, we assume that H is not a subgraph of G[E(G′) ∪ S]) and H is a subgraph of
G[E(G′′) ∪ S]). These imply that E(H) ∩ E(G′) 6= ∅ and E(H) ∩ E(G′′) 6= ∅. It follows that S ∩ E(H)

is a restricted edge-cut of H, and so

λ2(G) > |S| ≥ |S ∩ E(H)| ≥ λ2(H) = λ2(G),

showing that a contradiction obtains. This contradiction justifies that either H ⊆ G[E(G′) ∪ S]) or
H ⊆ G[E(G′′) ∪ S]), and so Equation (5) must hold. �

We will define the λ2-slicing of a connected graph G. To do that, we introduce a subroutine as
follows.

Subroutine 8(Ŵ, S, F).
Input. A graph Ŵ with nontrivial connected componentsH1,H2, . . . ,Ht . Initially set S = ∅ and F =
{H1,H2, . . . ,Ht}.
(S1) Choose H ∈ F such that |E(H)| = max{E(Hj)| : 1 ≤ j ≤ t}. If |E(H)| ≤ 1, then set S = ∅

and stop.
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(S2) Assume that |E(H)| > 1.
(S2-1) If H ∈ F, then pick any eH ∈ E(H), set S = E(H)− {eH} and F := F − {H}.
(S2-2) If H 6∈ F, then find a restricted edge-cut S of G. Let G(1),G(2), . . . ,G(s) be the nontriv-

ial components of G−S. Define, for 1 ≤ i ≤ s, H′i = G[E(G(i)) ∪ S]. Set S:= S, F := (F − {H}) ∪
{H′1,H

′
2, . . . ,H

′
s}.

Output. An edge subset S of Ŵ such that either S = ∅, or S is a restricted edge-cut of G, as well as a
collection F of graphs, each of which is isomorphic to a subgraph of Ŵ. �

With Subroutine 8(Ŵ, S, F), we have the following algorithm that generate the λ2-slicings of G.
Given a connected graph G.

Algorithm Slicing. Let G be a connected graph with G /∈ {K1,K2}. Initially, we first set G0 = G, F0 =
{G0} and set σ to be the empty sequence.

Apply Subroutine8(G0, S1, F1). If the output S1 = ∅, then stop andwe conclude thatG ∈ {K1,K2},
and so λ2(G) = λ2(G) = 0. If S1 6= 0, the Subroutine 8(G0, S1, F1) outputs a restricted edge-cut S1
of G0 and a collection F1 of graphs such that each of which is isomorphic to a subgraph of G. Update
σ = (S1) as a one term sequence, and define G1 to be the graph whose connected components are
precisely those graphs in F1. Thus up to isomorphism, graphs in F1 are subgraphs of G.

Inductively, assume that σ = (S1, S2, . . . , Sk) and the graph Gk are found. We then apply Sub-
routine 8(Gk, Sk+1, Fk+1). If the output Sk+1 = ∅, then stop, and we define the current value σ is a
λ2-slicing of G. Otherwise, Sk+1 6= ∅, and we update σ := (S1, S2, . . . , Sk, Sk+1), and define Gk+1 to
be the graph whose connected components are precisely those graphs in Fk+1.

We shall show that this algorithm terminates in finite time so that if a connected graph
G 6∈ {K1,K2}, then the algorithm will generate a λ2-slicing of G. For each current value F′ =
{H1,H2, . . . ,Ht}, we assume that |E(H1)| ≥ |E(H2)| ≥ · · · ≥ E(Ht). Let f (F

′) = {i : 1 ≤ i ≤ t} and
|E(Hi)| = max{|E(Hj)|, 1 ≤ j ≤ t}. After one application of8(G, S, F), without lose of generality, we
assume that H1 is picked by the subroutine. In the execution of (S2-1), H1 will be removed from the
output F; in the execution of (S2-2), as each of the new edge-induced subgraphs has number of edges
less than |E(H1)|, we conclude that f (F

′) > f (F). As f (F) is integral and as each time running the
subroutine 8(G, S, F), the output value f (F) is strictly less than the input value. The algorithm must
terminate in a finite time. For a connected graph G, let σ(G) denote the collection of all λ2-slicings
of G.

In the execution of Subroutine 8(G, S, F), we do not require, in Step (S2-2), that the restricted
edge-cut S to be a minimum one. We now define a similar Subroutine 8′(G, S, F) by additionally
requiring that in the execution of (S2-2) of the Subroutine8′(G, S, F), the restricted edge-cut Smust
be minimized. With this new subroutine 8′(G, S, F), we again run the algorithm described above to
generate λ2-slicing ofG. These slicings will be called the restricted narrow slicing or narrow λ2-slicing
of G. Let σ ′(G) denote the set of all narrow λ2-slicings of G.

Lemma 4.3: Let G be a connected graph not in {K1,K2} and let σ = (S1, S2, . . . , Ss) ∈ σ(G). If H is a
subgraph of G satisfying λ2(H) = λ2(G), then for some j with 1 ≤ j ≤ s, Sj is a restricted edge-cut of H.

Proof: We argue by induction on |V(G)− V(H)|. If V(G) = V(H), then G=H and so as S1 is a
restricted edge-cut of G, S1 is a restricted edge-cut of H. Let h be the smallest integer with 1 ≤ h ≤ s
such that Sh ∩ E(H) 6= ∅.

If Sh is a restricted edge-cut ofH, then the lemma is proved. Assume that Sh is not a restricted edge-
cut ofH. Then by Lemma 4.2 and by Algorithm Slicing, there must be a graphH′ ∈ Fh such thatH is
a subgraph ofH′, with |V(H′)| < |V(G)|. By induction, there must be an index j with h ≤ j ≤ s such
that Sj is a restricted edge-cut of H. �



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS: COMPUTER SYSTEMS THEORY 11

4.2. Aminimax theorem of restricted edge-connectivity

Throughout out this subsection, G is assumed to be a connected graph not in {K1,K2}. The main
result of this section is the following minimax result.

Theorem 4.4: Let G be a connected graph not in {K1,K2}. Then

λ2(G) = max
H⊆G

min{|X| : X is a restricted edge-cut of H}

= min
σ∈σ(G)

max{|Si| : 1 ≤ i ≤ s, σ = (S1, S2, . . . , Ss)}. (6)

Proof: Let ℓ = minσ∈σ(G) max{|Si| : 1 ≤ i ≤ s, σ = (S1, S2, . . . , Ss)}. We shall show that both
λ2(G) ≤ ℓ and λ2(G) ≥ ℓ. By definition, there exists a nontrivial subgraph H of G such that
λ2(G) = λ2(H).

For any σ = (S1, S2, . . . , Ss) ∈ σ(G), by Lemma 4.3, there must be an index jwith 1 ≤ j ≤ s, Sj is a
restricted edge-cut of H. It follows that max{|Si| : 1 ≤ i ≤ s, σ = (S1, S2, . . . , Ss)} ≥ |Sj| ≥ λ2(H) =

λ2(G). Since σ ∈ σ(G) is arbitrary, we must have ℓ ≥ λ2(G).
Conversely, let σ = (S1, S2, . . . , Ss) ∈ σ ′(G) be a narrow λ2-slicing. By Algorithm Slicing, in each

iteration, each graph H′ in the resulting collection of subgraphs Fi is isomorphic to a subgraph of
G. Thus by the definition of a narrow λ2-slicing, each Si is a minimum restricted edge-cut of some
subgraph of G, and so λ2(G) ≥ |Si| for each i with 1 ≤ i ≤ s. It follows that

λ2(G) ≥ min
σ∈σ ′(G)

max{|Si| : 1 ≤ i ≤ s, σ = (S1, S2, . . . , Ss)} ≥ ℓ.

This completes the proof of the theorem. �
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