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a b s t r a c t

In 1984, Bauer proposed the problems of determining best possible sufficient conditions
on the vertex degrees of a simple graph (or a simple bipartite graph, or a simple triangle-
free graph, respectively) G to ensure that its line graph L(G) is hamiltonian. We investigate
the problems of determining best possible sufficient conditions on the vertex degrees of a
simple graph G to ensure that its line graph L(G) is hamiltonian-connected, and prove the
following.
(i) For any real numbers a, b with 0 < a < 1, there exists a finite family F(a, b) such that
for any connected simple graphG on n vertices, if dG(u)+dG(v) ≥ an+b for any u, v ∈ V (G)
with uv ̸∈ E(G), then either L(G) is hamiltonian-connected, or κ(L(G)) ≤ 2, or L(G) is not
hamiltonian-connected, κ(L(G)) ≥ 3 and G is contractible to a member in F(a, b).
(ii) Let G be a connected simple graph on n vertices. If dG(u) + dG(v) ≥

n
4 − 2 for any

u, v ∈ V (G) with uv ̸∈ E(G), then for sufficiently large n, either L(G) is hamiltonian-
connected, or κ(L(G)) ≤ 2, or L(G) is not hamiltonian-connected, κ(L(G)) ≥ 3 and G is
contractible toW8, the Wagner graph.
(iii) Let G be a connected simple triangle-free (or bipartite) graph on n vertices. If dG(u) +

dG(v) ≥
n
8 for any u, v ∈ V (G) with uv ̸∈ E(G), then for sufficiently large n, either L(G) is

hamiltonian-connected, or κ(L(G)) ≤ 2, or L(G) is not hamiltonian-connected, κ(L(G)) ≥ 3
and G is contractible toW8, the Wagner graph.

© 2018 Elsevier B.V. All rights reserved.

1. The problem

Weconsider finite loopless graphs butmultiple edges are permitted and follow [4] for undefined terms and notation. As in
[4], κ(G) and κ ′(G) denote the connectivity and edge-connectivity of a graph G, respectively. We define κ ′(K1) = ∞. An edge
cut with size k is called a k-edge-cut. For an integer i ≥ 0, we define Vi(G) = {v ∈ V (G) | dG(v) = i} and di(G) = |Vi(G)|. For
verticesu, v ∈ V (G), a (u, v)-path (a (u, v)-trail, respectively) is a path (a trail, respectively) fromu to v. A graph is hamiltonian
if it has a spanning cycle, and ishamiltonian-connected if for any distinct vertices u and v,G contains a spanning (u, v)-path.
It is well known that every hamiltonian-connected graphmust be 3-connected. The line graph of a graph G, denoted by L(G),
has E(G) as its vertex set, where two vertices in L(G) are adjacent if and only if the corresponding edges in G have at least one
vertex in common.

If X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then
deleting the resulting loops.We defineG/∅ = G. IfH is a subgraph ofG, wewriteG/H forG/E(H). IfH is a connected subgraph
of G and vH is the vertex in G/H onto which H is contracted, then H is the preimage of vH and is denoted by PIG(vH ).
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(a) P(10) − uv. (b) P(10) − uv. (c) W8 .

Fig. 1. Wagner graph and related graphs.

In [1,2], Bauer proposed the problems of determining best possible sufficient conditions on the vertex degrees of a simple
graph (or a simple bipartite graph, or a simple triangle-free graph, respectively) G to ensure that its line graph L(G) is
hamiltonian. These problems have been settled by Catlin [6] and Lai [15]. Similar problems are considered in this paper.
We seek best possible sufficient degree conditions of a simple graph G to assure that L(G) is hamiltonian-connected. The
graphW8 depicted in Fig. 1(c) is called theWagner graph. Our main results in this paper are the following.

Theorem 1.1. Let n ≥ 3 be an integer. For any real numbers a, b with 0 < a < 1, there exists a family F(a, b) of finitely many
graphs each of which has a non-hamiltonian-connected line graph, such that for any connected simple graph G on n vertices, if

dG(u) + dG(v) ≥ an + b for any u, v ∈ V (G) with uv ̸∈ E(G), (1.1)

then exactly one of the following must hold:
(i) L(G) is hamiltonian-connected;
(ii) κ(L(G)) ≤ 2;
(iii) L(G) is not hamiltonian-connected, κ(L(G)) ≥ 3 and G is contractible to a member in F(a, b).

Theorem 1.2. Let n ≥ 3 be an integer, and G be a connected simple graph on n vertices. If

dG(u) + dG(v) ≥
n
4

− 2 for any u, v ∈ V (G) with uv ̸∈ E(G), (1.2)

then for sufficiently large n, exactly one of the following must hold:
(i) L(G) is hamiltonian-connected;
(ii) κ(L(G)) ≤ 2;
(iii) L(G) is not hamiltonian-connected, κ(L(G)) ≥ 3 and G is contractible to W8.

Theorem 1.3. Let G be a connected simple triangle-free (or bipartite) graph on n vertices. If

dG(u) + dG(v) ≥
n
8
for any u, v ∈ V (G) with uv ̸∈ E(G), (1.3)

then for sufficiently large n, exactly one of the following must hold:
(i) L(G) is hamiltonian-connected;
(ii) κ(L(G)) ≤ 2;
(iii) L(G) is not hamiltonian-connected, κ(L(G)) ≥ 3 and G is contractible to W8.

In the next section, we present our associate results and develop some needed tools. In Section 3, we assume the truth
of the associate results to prove our main results on hamiltonian-connected line graphs. The proofs for our associate results
will be given in the last section.

2. Strongly spanning trailable graphs

For a graph G, let O(G) denote the set of odd degree vertices in G. A graph G is eulerian if G is connected with O(G) = ∅,
and is supereulerian if G has a spanning eulerian subgraph. Supereulerian graphs are first introduced by Boesch, Suffel,
and Tindell in [3], and are closely related to the study of hamiltonian line graphs. Catlin [7] presented the first survey on
supereulerian graphs. Supplemented or updated surveys on supereulerian graphs can be found in [11,16].

A graph G is collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph H such
that O(H) = R. If G is collapsible, then by definition with R = ∅, G is supereulerian and so κ ′(G) ≥ 2. In [6], Catlin showed
that for any graph G, every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G′,
is obtained from G by contracting all nontrivial maximal collapsible subgraphs of G. A graph is reduced if it is the reduction
of some graph. As shown in [6], a reduced graph is simple.
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For u, v ∈ V (G), a (u, v)-trail is a trail of G from u to v. Thus a (u, u)-trail is an eulerian subgraph of G. For e, e′
∈ E(G), an

(e, e′)-trail is a trail of G having end-edges e and e′. An (e, e′)-trail T is dominating if each edge of G is incident with at least
one internal vertex of T ; and T is spanning if T is a dominating trail with V (T ) = V (G). A graph G is spanning trailable if for
each pair of edges e1 and e2, G has a spanning (e1, e2)-trail.

Suppose that e = u1v1 and e′
= u2v2 are two edges of G. If e ̸= e′, then the graph G(e, e′) is obtained from G by replacing

e = u1v1 with a path u1vev1 and by replacing e′
= u2v2 with a path u2ve′v2, where ve, ve′ are two new vertices not in V (G).

If e = e′, then G(e, e′), also denoted by G(e), is obtained from G by replacing e = u1v1 with a path u1vev1. For the recovering
operation, we let ce(G(e, e′)) be the graph obtained from G(e, e′) by replacing the path u1vev1 with the edge e = u1v1. Thus,
ce′ (ce(G(e, e′))) = G.

For a graph G and an integer k > 0, a k-edge-cut X of G is an essential k-edge-cut of G if each side of G−X has at least one
edge. If a connected graph G does not have an essential k′-edge-cut for any k′ < k, then G is essentially k-edge-connected.
Thus when L(G) is not a complete graph, L(G) is k-connected if and only if G is essentially k-edge-connected. The largest
integer k such that G is essentially k-edge-connected is denoted by ess′(G).

As defined in [19], a graph G is strongly spanning trailable if for any e, e′
∈ E(G), G(e, e′) has a (ve, ve′ )-trail T with

V (G) = V (T ) − {ve, ve′}. Since e = e′ is possible, strongly spanning trailable graphs are both spanning trailable and
supereulerian. The theorem below indicates that the study of strongly spanning trailable graphs should be focused on graphs
with edge-connectivity less than 4.

Theorem 2.1 (Luo et al. [20], see also Theorem 4 of [9]). If κ ′(G) ≥ 4, then G is strongly spanning trailable.

As theWagner graphW8 is spanning trailable but not strongly spanning trailable [23], strongly spanning trailable graphs
and spanning trailable graphs are not equivalent.

2.1. Associate results on strongly spanning trailable graphs

Harary and Nash-Williams showed that there is a close relationship between a graph and its line graph concerning
Hamilton cycles.

Theorem 2.2 (Harary and Nash-Williams, [13]). Let G be a graph with |E(G)| ≥ 3. Then L(G) is hamiltonian if and only if G has
an eulerian subgraph H with E(G − V (H)) = ∅.

Let G be a graph such that κ(L(G)) ≥ 3 and G ̸= K1,n−1. The core of this graph G, denoted by G0, is obtained from G−V1(G)
by contracting exactly one edge xy or yz for each path xyz in G with dG(y) = 2. Lemma 2.3(iii) is proved by using a similar
argument in the proof of Theorem 2.2.

Lemma 2.3 (Shao, [22]). Let G be a connected nontrivial graph such that κ(L(G)) ≥ 3, and let G0 denote the core of G.
(i) G0 is uniquely determined by G with κ ′(G0) ≥ 3.
(ii) (see also Lemma 2.9 of [17]) If for any e, e′

∈ E(G0), G0(e, e′) has a spanning (ve, ve′ )-trail, then L(G) is hamiltonian-connected.
(iii) (see also Proposition 2.2 of [17]) L(G) is hamiltonian-connected if and only if for any pair of edges e, e′

∈ E(G), G has a
dominating (e, e′)-trail.

Lemma 2.3 indicates that the study of hamiltonian-connected line graphs is closely related to the study of strongly
spanning trailable graphs. For an integer B > 0, define

S0(B) = {G : G is reduced with |V (G)| ≤ B and with vertices u, v ∈ V (G) (2.1)
such that G has no spanning (u, v)-trails}.

Since a reduced graph is simple, the number of reduced graphs with at most B vertices is finite, and so S0(B) is a finite family.
Let ve and ve′ be the two vertices in G(e, e′) obtained by subdividing the edges e, e′ in G, respectively. Let G(e, e′)′ be the

reduction of G(e, e′). Define

c(G(e, e′)′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(e, e′)′ if ve, ve′ ̸∈ V (G(e, e′)′),

ce(G(e, e′)′) if ve ∈ V (G(e, e′)′), ve′ ̸∈ V (G(e, e′)′),

ce′ (G(e, e′)′) if ve′ ∈ V (G(e, e′)′), ve ̸∈ V (G(e, e′)′),

ce(ce′ (G(e, e′)′)) if {ve, ve′} ⊂ V (G(e, e′)′).

Let N ={G: G is not a strongly spanning trailable graph}, and define

S(B) = {Γ : Γ = c(G(e, e′)′), for some G ∈ N and e, e′
∈ E(G), G(e, e′)′ ∈ S0(B)}. (2.2)

Since G(e, e′)′ ∈ S0(B) and since S0(B) is a finite family, S(B) is also finite. In order to prove our main results in this paper,
we shall prove the following associate results on strongly spanning trailable graphs.
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Theorem 2.4. Let G be a connected simple graph on n vertices with κ ′(G) ≥ 2, ess′(G) ≥ 3 and |V2(G)| ≤ 1. For any real numbers
a and b with 0 < a < 1, there exists an integer B = max{⌈ 12−b

a ⌉, ⌈
−(b+2)(a+2)

a2
⌉, ⌈19+

6
a ⌉, 5} such that if (1.1) holds, then either

G is strongly spanning trailable or G is contractible to a member in S(B).

Theorem 2.5. Let G be a connected simple graph on n ≥ 217 vertices with κ ′(G) ≥ 2, ess′(G) ≥ 3 and |V2(G)| ≤ 1. If (1.2) holds,
then either G is strongly spanning trailable or G is contractible to W8 with n ≡ 0 (mod 8) in such a way that the preimage of
every vertex of W8 is the complete graph K n

8
or K n

8
− e for some e ∈ E(K n

8
).

Theorem 2.6. Let G be a connected simple triangle-free (or bipartite) graph on n ≥ 577 vertices with κ ′(G) ≥ 2, ess′(G) ≥ 3 and
|V2(G)| ≤ 1. If (1.3) holds, then either G is strongly spanning trailable or G is contractible to W8 with n ≡ 0 (mod 16) in such a
way that the preimage of every vertex of W8 is the complete bipartite graph K n

16 , n
16

or K n
16 , n

16
− e for some e ∈ E(K n

16 , n
16
).

2.2. Some tools

Let F (G) be the minimum number of additional edges that must be added to G such that the resulting graph has two
edge-disjoint spanning trees. We use the symbols P(10) and P(10)(e) to denote the Petersen graph and the graph obtained
from P(10) by subdividing an edge, respectively. The following lemma summarizes some properties of collapsible graphs
and reduced graphs.

Lemma 2.7. Let G be a connected graph and G′ be the reduction of G. For integer k ≥ 2, let Ck denote a cycle on k vertices. Then
each of the following holds.
(i) [6] The graph C2 is collapsible. Moreover, if n = 1 or n ≥ 3, then the complete graph Kn is also collapsible.
(ii) (Lemma 1 of [5]) Every subdivision of K4 with at most 6 vertices is collapsible. Particularly, K−

3,3 is collapsible, where K−

3,3 is
the graph obtained from K3,3 by deleting an edge.
(iii) (Theorem 3 and 8 of [6]) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G/H is collapsible. Particularly,
G is collapsible if and only if G′

= K1.
(iv) (Lemma 2.3 of [8]) If G is reduced, then F (G) = 2|V (G)| − |E(G)| − 2.
(v) (Theorem 1.3 of [8]) If F (G) ≤ 2, then G′

∈ {K1, K2} ∪ {K2,t : t ≥ 1}.
(vi) [23] Let G be a connected simple graph with n (n ≤ 12) vertices, d1(G) = 0 and d2(G) ≤ 1. Then either G′

∈ {K1, K2,

K1,2, K2,3, K+

2,3, P(10), P(10)(e)} or G is a supereulerian graph on 12 vertices, where K+

2,3 is a graph obtained from K2,3 by adding
a pendant edge to a vertex with degree 2 of K2,3.
(vii) [18] Let G be a connected simple graph with |V (G)| ≤ 8, V1(G) = ∅ and |V2(G)| ≤ 2. Then the reduction of G is K1 or K2.

Lemma 2.8 (Lemma 2.2 of [18]). If G is collapsible, then for any u, v ∈ V (G), G has a spanning (u, v)-trail.

Lemma 2.9 (Lemma 2.5 of [19], see also [23]). Let e, e′
∈ E(G), H be a collapsible subgraph of G(e, e′) and vH denote the vertex

in G(e, e′)/H onto which H is contracted. Define

v′

e =

{
ve if ve ̸∈ V (H),
vH if ve ∈ V (H),

and v′

e′ =

{
ve′ if ve′ ̸∈ V (H),
vH if ve′ ∈ V (H).

(2.3)

If G(e, e′)/H has a spanning (v′
e, v

′

e′ )-trail, then G(e, e′) has a spanning (ve, ve′ )-trail.

Lemma 2.10 ([23]). If κ ′(G) ≥ 3 and if G is not strongly spanning trailable, then |V (G)| ≥ 8, and |V (G)| = 8 if and only if
G ∼= W8.

Lemma 2.11. Let G be a connected simple graph with κ ′(G) ≥ 2, ess′(G) ≥ 3 and |V2(G)| ≤ 1. Let e, e′
∈ E(G) and G(e, e′)′ be

the reduction of G(e, e′). Denote di = |Vi(G(e, e′)′)|. Then each of the following holds.
(i) 2F (G(e, e′)′) = 4|V (G(e, e′)′)| − 2|E(G(e, e′)′)| − 4 =

∑
i≥2(4 − i)di − 4.

(ii) If G(e, e′) has no spanning (ve, ve′ )-trails, then F (G(e, e′)′) ≥ 3 and 2d2 + d3 ≥ 10 +
∑

i≥5(i − 4)di.

Proof. As d1 = 0 follows from κ ′(G) ≥ 2, we have |V (G(e, e′)′)| =
∑

i≥2di and 2|E(G(e, e′)′)| =
∑

i≥2idi. By Lemma 2.7(iv),
(i) holds immediately.

Assume that G(e, e′) has no spanning (ve, ve′ )-trails. Now we show that F (G(e, e′)′) ≥ 3. By Lemma 2.7(v), it suffices to
show that G(e, e′)′ ̸∈ {K1, K2} ∪ {K2,t : t ≥ 1}. If G(e, e′)′ = K1, then by Lemma 2.7(iii), G(e, e′) is collapsible. Then by
Lemma 2.8, G(e, e′) has a spanning (ve, ve′ )-trail, contrary to the assumption. Hence G(e, e′)′ ̸= K1.

Since κ ′(G) ≥ 2, we have κ ′(G(e, e′)′) ≥ 2 and so G(e, e′)′ ̸∈ {K2, K2,1}. Since ess′(G) ≥ 3 and |V2(G)| ≤ 1, G(e, e′)′ has at
most three vertices of degree 2. Hence G(e, e′)′ ̸∈ {K2,t : t ≥ 1, t ̸= 3}. If G(e, e′)′ = K2,3, then for any u, v ∈ V2(G(e, e′)′),
G(e, e′)′ has a spanning (u, v)-trail. It follows by Lemma 2.9 that G(e, e′) has a spanning (ve, ve′ )-trail, a contradiction. Hence
F (G(e, e′)′) ≥ 3. This completes the proof of Lemma 2.11. ■
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Fig. 2. Some graphs in Definition 2.13 with small parameters.

Lemma 2.12. Suppose that G is a simple graph with |V (G)| ≤ 10 and κ ′(G) ≥ 3. For any e0 ∈ E(G), if G(e0) is not collapsible,
then G(e0) = P(10)(e0).

Proof. Suppose that G and G(e0) are the graphs satisfying the conditions of Lemma 2.12. Then |V (G(e0))| ≤ 11, d1(G(e0)) = 0
and d2(G(e0)) = 1. Let H be the reduction of G(e0). By Lemma 2.7(vi), H ∈ {K1, K2, K1,2, K2,3, K+

2,3, P(10), P(10)(e0)}. Since
G(e0) is not collapsible, H ̸= K1. By κ ′(G) ≥ 3, we have κ ′(G(e0)) ≥ 2 and κ ′(H) ≥ 2. Hence H ̸∈ {K2, K1,2, K+

2,3}. Since κ ′(G) ≥

3, G(e0) has a unique 2-edge-cut, and then H has at most one 2-edge-cut. Thus H ̸= K2,3 and so H ∈ {P(10), P(10)(e0)}.
If G(e0) ̸= H , then as every collapsible simple graph has at least 3 vertices, |V (H)| ≤ |V (G(e0))| − 2 = 9. This forces that
G(e0) = H = P(10)(e0). ■

Definition 2.13 ([12]). Let s1, s2, s3,m, l, t be natural numbers withm, l, t ≥ 1.
(i) LetM ∼= K1,3 with center a and ends a1, a2, a3. Define K1,3(s1, s2, s3) to be the graph obtained fromM by adding si vertices
with neighbors {ai, ai+1}, where i ≡ 1, 2, 3 (mod 3);
(ii) Let K2,t (u, u′) be a K2,t with u, u′ being the nonadjacent vertices of degree t . Let K ′

2,t (u, u
′, u′′) be the graph obtained from

a K2,t (u, u′) by adding a new vertex u′′ that joins to u′ only. Hence u′′ has degree 1 and u has degree t in K ′

2,t (u, u
′, u′′);

(iii) Let K ′′

2,t (u, u
′, u′′) be the graph obtained from a K2,t (u, u′) by adding a new vertex u′′ that joins to a vertex of degree 2 of

K2,t . Hence u′′ has degree 1 and both u and u′ have degree t in K ′′

2,t (u, u
′, u′′). We shall use K ′

2,t and K ′′

2,t for a K
′

2,t (u, u
′, u′′) and

a K ′′

2,t (u, u
′, u′′), respectively;

(iv) Let S(m, l) be the graph obtained from a K2,m(u, u′) and a K ′

2,l(w, w′, w′′) by identifying uwith w, and w′′ with u′;
(v) Let J(m, l) denote the graph obtained from a K2,m+1 and a K ′

2,l(w, w′, w′′) by identifying w with u, and w′′ with v, where
uv ∈ E(K2,m+1), dK2,m+1 (u) = 2 and dK2,m+1 (v) = m + 1;
(vi) Let J ′(m, l) denote the graph obtained fromaK2,m+2 and aK ′

2,l(w, w′, w′′) by identifyingw, w′′ with two vertices of degree
2 in K2,m+2, respectively.

In Fig. 2, we depict some graphs in Definition 2.13 with small parameters. Let F0 = {K1, K2, P(10)}∪ {K2,t , K ′

2,t , K
′′

2,t : t ≥

1} ∪{K1,3(s1, s2, s3) : s1, s2, s3 ≥ 0} ∪{S(m, l), J(m, l), J ′(m, l) : m, l ≥ 1}.

Lemma 2.14 ([12]). If G is a connected reduced graph with |V (G)| ≤ 11 and F (G) ≤ 3, then G ∈ F0.

Lemma 2.15. Let G be a connected simple graph with κ ′(G) ≥ 2 and |V2(G)| = 1. Let G(e, e′)′ be the reduction of G(e, e′). If
7 ≤ |V (G(e, e′)′)| ≤ 9, |V2(G(e, e′)′)| = 3 and F (G(e, e′)′) = 3, then G(e, e′)′ ∈ {J ′(1, 2), J ′(1, 1), K1,3(1, 1, 1)}.

Proof. Suppose that G is a graph satisfying the conditions of Lemma 2.15 and G(e, e′)′ be the reduction of G(e, e′). Since
7 ≤ |V (G(e, e′)′)| ≤ 9 and F (G(e, e′)′) = 3, by Lemmas 2.14 and 2.7(v), G(e, e′)′ ∈ {K ′

2,t , K
′′

2,t : t ≥ 1} ∪{K1,3(s1, s2, s3) :

s1, s2, s3 ≥ 0} ∪{S(m, l), J(m, l), J ′(m, l) : m, l ≥ 1}. Since κ ′(G) ≥ 2, we have κ ′(G(e, e′)′) ≥ 2, which implies that
G(e, e′)′ ̸∈ {K ′

2,t , K
′′

2,t : t ≥ 1}. Hence G(e, e′)′ ∈ {K1,3(s1, s2, s3) : s1, s2, s3 ≥ 0} ∪{S(m, l), J(m, l), J ′(m, l) : m, l ≥ 1}.
Since |V2(G(e, e′)′)| = 3, it is routine to verify that G(e, e′)′ ∈ {J ′(1, 2), J ′(1, 1), K1,3(1, 1, 1)} (see Fig. 3 and the Appendix). ■
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Fig. 3. The graphs in Lemma 2.15.

3. Applications of Theorems 2.4–2.6

In this section, we assume the validity of Theorems 2.4–2.6 to prove our main results stated in Theorems 1.1–1.3. Let a
and b be real numbers with a > 0. Define a family of connected simple graphs as follows:

G(a, b) = {G: G satisfying (1.1) with n = |V (G)| ≥ max{
5 − b
a

, 5} and κ(L(G)) ≥ 3}.

Lemma 3.1. If G ∈ G(a, b), then ess′(G) ≥ 3 and |V1(G) ∪ V2(G)| ≤ 1.

Proof. Since κ(L(G)) ≥ 3, we have ess′(G) ≥ 3. As n ≥ 4 and κ(L(G)) ≥ 3, V1(G) ∪ V2(G) is an independent set of G. By
contradiction, assume first that V1(G) ∪ V2(G) contains two vertices u and v. By (1.1), 4 ≥ dG(u) + dG(v) ≥ an + b, implying
n ≤

4−b
a , contrary to the assumption that n ≥ max{ 5−b

a , 5}. Hence we must have |V1(G) ∪ V2(G)| ≤ 1. ■

Lemma 3.1 motivates the following definition.

Definition 3.2. Let G = {G ∈ G(a, b) : V1(G) = ∅ and |V2(G)| = 1}. For each G ∈ G, we assume that z ∈ V2(G) with
NG(z) = {z ′, z ′′

}. Define

G1 = {G : G ∈ G and z ′z ′′
̸∈ E(G)},

G2 = {G : G ∈ G, z ′z ′′
∈ E(G) and ess′(G − z) ≥ 3},

G3 = {G : G ∈ G, z ′z ′′
∈ E(G), ess′(G − z) ≤ 2, and z ′z ′′ is not in any 3-cycle of G − z},

G4 = {G : G ∈ G, z ′z ′′
∈ E(G), ess′(G − z) ≤ 2, and z ′z ′′ is in a 3-cycle of G − z}.

If G ∈ G(a, b) with V1(G) ̸= ∅ or if G ∈ G1 ∪ G2 ∪ G3, then define

G1 = G − V1(G) if V1(G) ̸= ∅;

G2 =

⎧⎪⎨⎪⎩
G/zz ′′ if G ∈ G1,

G − z if G ∈ G2,

G/{zz ′, zz ′′, z ′z ′′
} if G ∈ G3.

(3.1)

The following Lemma 3.3 can be proved by using a similar argument in the proof of Lemma 2.6 of [19] (see also Lemma
3.2.3 of [23]).

Lemma 3.3. Let G be a graph with κ ′(G) ≥ 2 and ess′(G) ≥ 3, and let G1,G2, . . . ,Gk be the blocks of G. Then the following are
equivalent.
(i) G is strongly spanning trailable.
(ii) For every i ∈ {1, 2, . . . , k}, Gi is strongly spanning trailable.

Lemma 3.4. Let G ∈ G, and let z, z ′, z ′′ be defined as in Definition 3.2. Each of the following holds.
(A) If z ′z ′′

∈ E(G) and ess′(G − z) ≤ 2, then G must have the structure as depicted in Fig. 4(a).
(B) If G ∈ G4, then there exist connected subgraphs H1,H2 of G such that E(G) = E(H1) ∪ E(H2) and V (H1) ∩ V (H2) = {z ′

} (as
depicted in Fig. 4(c)). Moreover, each of the following holds.

(i) For each 1 ≤ i ≤ 2,

dHi (u) + dHi (v) ≥ a|V (Hi)| + b for any u, v ∈ V (Hi) with uv ̸∈ E(Hi). (3.2)

(ii) If G is not strongly spanning trailable, then there exists Hi (1 ≤ i ≤ 2) such that Hi is not strongly spanning trailable.
(iii) Fix i ∈ {1, 2}. Then κ ′(Hi) ≥ 2, ess′(Hi) ≥ 3 and |V2(Hi)| ≤ 1; and if Hi is contractible to a graph Γ , then G is also

contractible to Γ .
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Fig. 4. Graphs in G3 and G4 .

Proof. (A) We use the notation in Definition 3.2. If z ′z ′′
∈ E(G) and ess′(G − z) ≤ 2, then as ess′(G) ≥ 3, there exists an

essential edge cut X in G − z such that |X | = 2 and z ′z ′′
∈ X , and so Lemma 3.4(A) holds.

(B) Assume that G ∈ G4, and so z ′z ′′ lies in a 3-cycle C ′ of G − z. As ess′(G) ≥ 3 and ess′(G − z) ≤ 2, G − z must have an
essential 2-edge-cut containing z ′z ′′, and so z ′ or z ′′ (say z ′) must be a cut vertex of G, as depicted in Fig. 4(b). Hence there
exist connected subgraphs H1,H2 of G such that E(G) = E(H1) ∪ E(H2) and V (H1) ∩ V (H2) = {z ′

}. For 1 ≤ i ≤ 2, to prove Hi
satisfies (3.2), it is sufficient to show that for any

u ∈ V (Hi) with uz ′
̸∈ E(Hi),

dHi (u) + dHi (z
′) ≥ a|V (Hi)| + b.

As for any u ∈ V (Hi) with uz ′
̸∈ E(Hi), we have uz ̸∈ E(G). It follows from (1.1) that dG(u) + dG(z) ≥ a|V (G)| + b, whence

we have dHi (u) = dG(u) ≥ a|V (G)| + b − 2. Since z ′ is a cut vertex of G and by ess′(G) ≥ 3, we have dHi (z
′) ≥ 3, and so (3.2)

holds. This proves Lemma 3.4(B)(i).
As Lemma 3.4(B)(ii) follows from Lemma 3.3, and Lemma 3.4(B)(iii) follows from the definition of contractions and from

the assumption that |V2(G)| ≤ 1, Lemma 3.4 is proved. ■

Lemma 3.5. Let G ∈ G(a, b) with V1(G) ̸= ∅ or G ∈ G1 ∪ G2 ∪ G3, and let G1 and G2 be defined in (3.1). Each of the following
holds.
(i) κ ′(G1) ≥ 2, ess′(G1) ≥ 3, |V2(G1)| = 0 and for any distinct nonadjacent vertices u, v ∈ V (G1),

dG1 (u) + dG1 (v) ≥ a|V (G1)| + b.

(ii) κ ′(G2) ≥ 2, ess′(G2) ≥ 3, |V2(G2)| ≤ 1 and for any distinct nonadjacent vertices u, v ∈ V (G2),

dG2 (u) + dG2 (v) ≥ a|V (G2)| + b.

Proof. Let G ∈ G(a, b). By Lemma 3.1, we have ess′(G) ≥ 3 and |V1(G) ∪ V2(G)| ≤ 1.
(i) Suppose that V1(G) ̸= ∅. We may assume that V1(G) ∪ V2(G) = V1(G) = {v1}, and then G1 = G − V1(G). Since ess′(G) ≥ 3,
the degree of the unique vertex adjacent to v1 is no less than 4. Hence |V (G1)| = n − 1, |V1(G1) ∪ V2(G1)| = 0, κ ′(G1) ≥ 2
and ess′(G1) ≥ ess′(G) ≥ 3. Let u, v ∈ V (G1) be two nonadjacent vertices. Then we may assume that uv1 ̸∈ E(G). By (1.1),
dG1 (u) = dG(u) ≥ an+b−dG(v1) = an+b−1. It follows that dG1 (u)+dG1 (v) ≥ an+b−1+dG1 (v) ≥ an+b−1+3 > a(n−1)+b.
As |V (G1)| = n − 1, this proves (i).
(ii) Suppose that V2(G) ̸= ∅. We may assume that V1(G) ∪ V2(G) = V2(G) = {z}. By (3.1), we have κ ′(G2) ≥ 2. We shall show
that in any case,

both ess′(G2) ≥ 3 and |V2(G2)| ≤ 1. (3.3)

If G ∈ G1, then G2 = G/zz ′′, and so (3.3) must hold. Therefore, assume that G ∈ G2 ∪ G3. We claim that |V3(G) ∩ {z ′, z ′′
}| ≤ 1.

Assume, by contradiction, that |V3(G) ∩ {z ′, z ′′
}| = 2 and there exist vertices u′, u′′ with NG(z ′) = {z, z ′′, u′

} and NG(z ′′) =

{z, z ′, u′′
}. Then {z ′u′, z ′′u′′

} is an essential 2-edge-cut of G, contrary to ess′(G) ≥ 3. Hence |V3(G) ∩ {z ′, z ′′
}| ≤ 1. If G ∈ G2,

then by (3.1), G2 = G− z. Thus |V (G2)| = n− 1, ess′(G2) = ess′(G− z) ≥ 3 and |V2(G2)| = |V3(G)∩ {z ′, z ′′
}| ≤ 1, and so (3.3)

holds also. If G ∈ G3, then by (3.1), G2 = G/{zz ′, zz ′′, z ′z ′′
}. Thus |V (G2)| = n − 2, ess′(G2) = ess′(G/{zz ′, zz ′′, z ′z ′′

}) ≥ 3 and
|V2(G2)| = 0, and so (3.3) holds also.

To complete the proof of (ii), let u, v ∈ V (G2) with uv ̸∈ E(G2). By the definition of G2, wemay conclude that uz ̸∈ E(G). By
(1.1), dG2 (u) = dG(u) ≥ an+b−dG(z) = an+b−2. As dG2 (v) ≥ κ ′(G2) ≥ 2, we have dG2 (u)+dG2 (v) ≥ an+b−2+dG2 (v) ≥

an + b > a(n − 1) + b > a(n − 2) + b. This, together with (3.3), proves (ii). ■

Lemma 3.6. Let G1 and G2 be the graphs defined in (3.1) and G0 be the core of G. Then G0 is strongly spanning trailable if one of
the following holds:
(i) |V1(G)| = 1 and G1 is strongly spanning trailable, or
(ii) |V2(G)| = 1 and G2 is strongly spanning trailable.
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Proof. By Definition 3.2 and Lemma 3.1, we observe that if |V1(G)| = 1, then G0 = G1, and so if G1 is strongly spanning
trailable, then G0 is strongly spanning trailable. Assume that V2(G) = {z} with NG(z) = {z ′, z ′′

}. If z ′z ′′
∈ E(G), then let e′, e′′

denote the two parallel edges of G0 with ends z ′ and z ′′. By (3.1),

G2 =

⎧⎪⎨⎪⎩
G0 if G ∈ G1,

G0 − e′′ if G ∈ G2,

G0/{e′, e′′
} if G ∈ G3.

Hence when G ∈ G1, if G2 is strongly spanning trailable, then G0 is strongly spanning trailable.
Assume from now on that G ∈ G2 ∪ G3. Then G0[{e′, e′′

}] is a 2-cycle. By contradiction, we assume further that

there exist edges e1, e2 ∈ E(G0) such that G0(e1, e2) does not have a spanning (ve1 , ve2 ) − trail. (3.4)

Case 1. G ∈ G2.
If |{e1, e2} ∩ {e′, e′′

}| ≤ 1, then any spanning (ve1 , ve2 )-trail of G2(e1, e2) is a spanning (ve1 , ve2 )-trail of G0(e1, e2). Assume
now that {e1, e2} = {e′, e′′

}. Pick an edge f = uz ′
∈ E(G2) for some u ̸= z ′′. As G2 is strongly spanning trailable, G2(f , e′) has

a spanning (vf , ve′ )-trail T ′

1. Thus exactly one of vf u, vf z ′ is in T ′

1. Define

T1 =

{
G0[(E(T ′

1) − {vf z ′
}) ∪ {ve′′z ′

}] if vf z ′
∈ E(T ′

1),

G0[(E(T ′

1) − {vf u}) ∪ {ve′′z ′, f }] if vf u ∈ E(T ′

1).

Then T1 is a spanning (ve′ , ve′′ )-trail of G0(e1, e2), contrary to (3.4). This proves Case 1.

Case 2. G ∈ G3.
Then we use K3 to denote G[{z, z ′, z ′′

}] and {e0, z ′z ′′
} to denote an essential edge cut of G − z. If |{e1, e2} ∩ {e′, e′′

}| = 0,
G2(e1, e2) = G0(e1, e2)/C2. As C2 is collapsible, it follows by Lemma 2.9 that if G2(e1, e2) has a spanning (ve1 , ve2 )-trail, then
G0(e1, e2) has a spanning (ve1 , ve2 )-trail, contrary to (3.4). If |{e1, e2} ∩ {e′, e′′

}| = 1, then assume that e1 = e′ and, when
e1 ̸= e2, that e2 ̸∈ {e′, e′′

}. Assume first that e1 ̸= e2. Pick e3 = uz ′
∈ E(G2) − {e2}. By assumption, G2(e3, e2) has a spanning

(ve3 , ve2 )-trail T
′

2. Define

T2 =

{
G2(e2)[E(T ′

2 − uve3 ) ∪ {e3}] if uve3 ∈ E(T ′

2),

G2(e2)[E(T ′

2 − z ′ve3 )] if z ′ve3 ∈ E(T ′

2).

Then T2 is a spanning (z ′, ve2 )-trail of G2(e2). As G2(e2) = G0(e1, e2)/K3 and K3 is collapsible, it follows by Lemma 2.9 that
T2 can be lifted to a spanning (ve1 , ve2 )-trail of G0(e1, e2), contrary to (3.4). If e1 = e2 = e′, then by assumption, G2 has
a spanning eulerian subgraph L′

2. As G2 = G0/K3 and as e′
∈ E(K3), by Lemma 2.9, L′

2 can be lifted to a spanning eulerian
subgraph L2 ofG0(e1). This also leads to a contradiction of (3.4). Hencewe only need to prove the casewhen {e1, e2} = {e′, e′′

}.
By assumption, G2(e0) has a spanning closed trail, implying that G2 has a spanning trail T ′

3 containing e0. Since e0 ∈ E(T ′

3),
each of z ′ and z ′′ is of odd degree in G[E(T ′

3)]. It follows that T3 = G0(e1, e2)[E(T ′

3)∪ {ve′z ′, ve′′z ′′
}] is a spanning (ve′ , ve′′ )-trail

of G0(e1, e2), contrary to (3.4). This proves Case 2, as well as the lemma. ■

Lemma 3.7. Let G, G1, G2 be the graphs defined in (3.1). Each of the following holds.
(i) If G1 is contractible to a graph H, then G is also contractible to H.
(ii) If G ∈ G1 ∪ G3 and G2 is contractible to a graph H, then G is also contractible to H.
(iii) If G ∈ G2 and G2 is contractible to a graph H, then there is a graph H∗ with |V (H∗)| = |V (H)| + 1 such that G is contractible
to H∗.
(iv) If G1 or G2 is contractible to a member in a finite family S , then there is a finite family S ′ such that G is contractible to a
member in S ′.

Proof. By Definition 3.2, (i) and (ii) hold immediately, and (iv) follows from (i), (ii) and (iii). Suppose that G ∈ G2. By (3.1),
G2 = G − z. If G2 is contractible to a graph H , then there exists a subset XG ⊆ E(G) such that (G − z)/XG = H and so G/XG is
a graph with |V (H)| + 1 vertices. Thus (iii) holds as well. ■

Proof of Theorem 1.1. Let G be a graph satisfying the hypotheses of Theorem 1.1 with κ(L(G)) ≥ 3 and n = |V (G)|. We
assume that L(G) is not hamiltonian-connected to prove the existence of F . By Lemma 2.3, G0 is 3-edge-connected and not
strongly spanning trailable. By Lemma 2.3, G is not strongly spanning trailable.

Take B = max{ 5−b
a , 5}. If n < B, clearly there exists a finite family S such that G is contractible to a member in S. If

n ≥ max{ 5−b
a , 5}, then G ∈ G(a, b). We distinguish the following two cases.

Assume first that G ∈ G4. By Lemma 3.4, G has connected subgraphs H1 and H2 with E(G) = E(H1) ∪ E(H2) and
V (H1) ∩ V (H2) = {z ′

}. By Lemma 3.3, we may assume that H1 satisfies the conditions of Theorem 2.4 and is not strongly
spanning trailable. By Theorem 2.4, there exists a finite family S ′ such that H1 is contractible to a member in S ′. Since
H1 = G/H2, G is also contractible to a member in S ′.
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If G ̸∈ G4, let G1 and G2 be the graphs defined in (3.1). By (3.1), if V1(G) ̸= ∅, then G1 = G0; if V2(G) = {z} with
NG(z) = {z ′, z ′′

} and z ′z ′′
̸∈ E(G), then G2 = G0. For notational convenience, we redefine that G1 = G0 if |V2(G)| = 0. By

Lemma 3.6, either |V2(G)| = 0 and G1 is not strongly spanning trailable, or |V2(G)| = 1 and G2 is not strongly spanning
trailable. Fix i ∈ {1, 2}. By Lemma 3.5, Gi satisfies (1.1). By the assumption that Gi is not strongly spanning trailable, it
follows from Theorem 2.4 that there exists a finite family S i = S i(a, b) such that Gi is contractible to a member in S i. By
Lemma 3.7, if G ∈ G2, then G is contractible to a member in the finite family S ′

2 whose existence is warranted by Lemma 3.7;
otherwise, G is contractible to a member in the finite family S1 ∪S2. Hence G is contractible to a member in the finite family
F = S ∪ S ′

∪ S1 ∪ S2 ∪ S ′

2. This proves Theorem 1.1. ■

To proceed the following arguments, we need one more lemma.

Lemma3.8. Let H be a graphwith κ ′(H) ≥ 3which is not contractible toW8. Suppose that for some edges e1, e2 ∈ E(H), H(e1, e2)
does not have a spanning (ve1 , ve2 )-trail. Let H(e1, e2)′ be the reduction of H(e1, e2), n′

= |V (H(e1, e2)′)| and di = |Vi(H(e1, e2)′)|
for each i ≥ 2. Then n′

− d2 ≥ 9, d3 ≥ 6 and
∑5

i=3di ≥ 8.

Proof. As H(e1, e2) does not have a spanning (ve1 , ve2 )-trail, it follows by κ ′(H) ≥ 3 and by Lemma 2.11(ii),

2d2 + d3 ≥ 10 +

∑
i≥5

(i − 4)di. (3.5)

If n′
− d2 ≤ 8, then c(H(e1, e2)′) is a 3-edge-connected graph with at most 8 vertices. By Lemma 2.10, c(H(e1, e2)′) must

be isomorphic to W8. By definition, c(H(e1, e2)′) is a contraction of H , and so H is contractible to W8 as well, contrary to
the assumption of the lemma. Hence n′

− d2 ≥ 9. As d2 ≤ 2, by (3.5), d3 ≥ 6. If
∑5

i=3di ≤ 7, then as n′
− d2 ≥ 9,∑

i≥6di ≥ n′
−d2 −

∑5
i=3di ≥ 2. By (3.5), we have 2d2 +d3 ≥ 10+

∑
i≥6(i−4)di ≥ 14, and so d3 ≥ 14−2d2 ≥ 10, contrary

to
∑5

i=3di ≤ 7. Hence we always have d3 ≥ 6 and
∑5

i=3di ≥ 8. ■

Proof of Theorem 1.2. Let G be a graph satisfying the hypotheses of Theorem 1.2 with κ(L(G)) ≥ 3 and n = |V (G)| ≥ 219.
Thus G ∈ G(a, b) with a =

1
4 and b = −2. We shall assume that L(G) is not hamiltonian-connected to show that

Theorem 1.2(iii) must hold.

Case 1. G ∈ G4.
Let V2(G) = {z}withNG(z) = {z ′, z ′′

} and z ′z ′′
∈ E(G). By Lemma 3.4, wemay assume that G has two connected subgraphs

H1 and H2 such that E(G) = E(H1) ∪ E(H2) and V (H1) ∩ V (H2) = {z ′
}. Let G0 be the core of G. Then G0 = G/zz ′′. As G0 is a

contraction of G, for i ∈ {1, 2}, G0 has a subgraph H∗

i which is the contraction image of Hi. Thus E(G0) = E(H∗

1 ) ∪ E(H∗

2 ) with
V (H∗

1 ) ∩ V (H∗

2 ) = {z ′
}. By Lemma 2.3, G0 is not strongly spanning trailable and κ ′(G0) ≥ 3. By Lemma 3.3, we may assume

that H∗

1 is not strongly spanning trailable. If H∗

1 is contractible toW8, then as H∗

1 is a contraction of G, G is also contractible to
W8, and so Theorem 1.2(iii) must hold. Therefore, we assume that H∗

1 is not contractible toW8.
Choose a vertex u ∈ V (H1) − {z ′

} such that dH1 (u) = min{dH1 (v)|v ∈ V (H1) − {z ′
}}, and set d = dH1 (u). Pick a vertex

u′
∈ V (H2) − {z ′

}. Then by (1.2), we have

|V (H2)| ≥ dG(u′) + 1 ≥
n
4

− 1 − d, and so |V (H1)| = n + 1 − |V (H2)| ≤
3n
4

+ d + 2. (3.6)

Since H∗

1 is not strongly spanning trailable, there exist edges e1, e2 ∈ E(H∗

1 ) such that H∗

1 (e1, e2) has no spanning (ve1 , ve2 )-
trails. Let J be the reduction of H∗

1 (e1, e2), n
′
= |V (J)| and di = |Vi(J)| for each i ≥ 2. Hence by Lemma 3.8, n′

− d2 ≥ 9, d3 ≥ 6
and

∑5
i=3di ≥ 8. Since dG(z) = 2, by (1.2), for any v ∈ V (G) − {z, z ′, z ′′

},

dG(v) ≥
n
4

− 4 > 5. (3.7)

As J is a contraction of H1(e1, e2), there exist disjoint nontrivial connected subgraphs L∗

1, L
∗

2, . . . , L
∗

8 of H1(e1, e2) which are
contracted to vertices w′

1, w
′

2, . . . , w
′

8 ∈ ∪
5
i=3Vi(J), respectively. Thus there exist disjoint connected subgraphs L1, L2, . . . , L8

of ce1 (ce2 (H1(e1, e2))) = H1 such that Li is mapped into L∗

i in the process of mapping H1 onto H1(e1, e2), where 1 ≤ i ≤ 8.
If z ∈ V (H1), then d = 2 and we may assume that z ′, z ′′

̸∈ V (Li) for 1 ≤ i ≤ 6. For each iwith 1 ≤ i ≤ 6, pick a wi ∈ V (Li)
and so by (3.7), |V (Li)| ≥ 1+dG(wi)−dJ (w′

i) ≥
n
4−8. By (3.6),we have 3n

4 +4 ≥ |V (H1)| ≥
∑6

i=1|V (Li)| ≥ 6
( n
4 − 8

)
=

6n
4 −48,

and so n ≤ 69, contrary to the assumption that n ≥ 219.
If z ̸∈ V (H1), then z ′′

̸∈ V (H1) and so we may assume that z ′
̸∈ V (Li) for 1 ≤ i ≤ 7. For each i with 1 ≤ i ≤ 7, pick a

wi ∈ V (Li). Then by (3.7) and by dJ (w′

i) ≤ 5, we have |V (Li)| ≥ 1 + dG(wi) − dJ (w′

i) ≥
n
4 − 3 − dJ (w′

i) ≥
n
4 − 8. This, together

with d3 +d4 +d5 ≥ 8 and (3.6), implies that 3n
4 +d+2 ≥ |V (H1)| ≥

∑7
i=1|V (Li)| ≥ 7

( n
4 − 8

)
=

7n
4 −58, and so n ≤ d+60.

On the other hand, as u ∈ V (H1) − {z ′
}, we may assume that u ̸∈ V (Li) for 1 ≤ i ≤ 6. For each i with 1 ≤ i ≤ 6, since

dJ (w′

i) ≤ 5, we have |NG(u) ∩ V (Li)| ≤ 5 and so d = |NG(u)| ≤ |V (G) −
⋃6

i=1(V (Li) − NG(u))| ≤ n − 6
( n
4 − 8 − 5

)
= 78 −

n
2 .

This, together with n ≤ d + 60, leading to n ≤ 92, contradicts the assumption that n ≥ 219.
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Case 2. G ̸∈ G4.
Let G1 and G2 be the graphs defined in (3.1). By (3.1), if V1(G) ̸= ∅, then G1 = G0; if V2(G) = {z} with NG(z) = {z ′, z ′′

}

and z ′z ′′
̸∈ E(G), then G2 = G0. For notational convenience, we redefine that G1 = G0 if |V2(G)| = 0. By Lemma 2.3, G0 is not

strongly spanning trailable. By Lemma 3.6, either |V2(G)| = 0 and G1 is not strongly spanning trailable, or |V2(G)| = 1 and
G2 is not strongly spanning trailable. Fix i ∈ {1, 2}. By Lemma 3.5, Gi satisfies (1.2). By (3.1), |V (Gi)| ≥ |V (G)| − 2 ≥ 217. By
Theorem 2.5, Gi is contractible toW8.

We claim that V1(G) ∪ V2(G) ̸= ∅ is impossible. Otherwise, there is a vertex z with dG(z) ≤ 2, and so by (1.2), dG(v) ≥
n
4 − 4 > 3 for any vertex v ̸∈ {z} ∪NG(z). Then there are at least 6 vertices ofW8 whose preimages are nontrivial graphs. Let
L1, L2, . . . , L6 be the preimages of these 6 vertices. Pick ui ∈ V (Li). Then |V (Li)| ≥ |NG(ui)∩V (Li)|+1 ≥

n
4 −4−3+1 =

n
4 −6.

It follows that n ≥
∑6

i=1|V (Li)| ≥ 6( n4 − 6), leading to a contradiction that 219 ≤ n ≤ 72. Hence V1(G) ∪ V2(G) = ∅, and so
G1 = G is contractible toW8. This completes the proof of Theorem 1.2. ■

Proof of Theorem 1.3. Let G be a graph satisfying the hypotheses of Theorem 1.3 with κ(L(G)) ≥ 3 and n = |V (G)| ≥ 578.
Thus G ∈ G(a, b) with a =

1
8 and b = 0. We assume that L(G) is not hamiltonian-connected to show that Theorem 1.3(iii)

must hold. As G is triangle-free, G ̸∈ G2 ∪ G3 ∪ G4. Hence |V2(G)| = 0 or G ∈ G1.
Let G1 be the graph defined in (3.1). By (3.1), if V1(G) ̸= ∅, then G1 = G0. For notational convenience, we redefine that

G1 = G0 if |V2(G)| = 0. By Lemma 2.3, G0 is not strongly spanning trailable. By Lemma 3.6, G1 is not strongly spanning
trailable. By Lemma 3.5, G1 satisfies (1.2). As |V (G1)| ≥ |V (G)| − 1 ≥ 577, by Theorem 2.6, G1 is contractible to W8, and G is
also contractible toW8.

If G ∈ G1, then ess′(G) ≥ 3 and κ ′(G) ≥ 2 and |V2(G)| = 1. Let V2(G) = {z} with e = zz ′, e′
= zz ′′

∈ E(G). It is easy to
see that G(e, e′) has no spanning (ve, ve′ )-trails, and so G is not strongly spanning trailable. As G satisfies (1.3) and n ≥ 578,
it follows by Theorem 2.6 that G is contractible toW8.

Nowwe show that it is impossible that |V1(G)| = 1orG ∈ G1. Otherwise, there is a vertex z ∈ V (G)with dG(z) ≤ 2. By (1.3),
for any vertex v ̸∈ {z} ∪NG(z), dG(v) ≥

n
8 − 2 > 3. Hence there are at least 6 vertices ofW8 whose preimages do not contain

the vertices in NG(z) and are nontrivial connected graphs. Let L1, L2, . . . , L6 be the preimages of these 6 vertices. Pick an edge
uiu′

i ∈ E(Li). SinceG is triangle-free,NG(ui)∩NG(u′

i) = ∅, and so |V (Li)| ≥ |NG(ui)∩V (Li)|+|NG(u′

i)∩V (Li)| ≥ 2( n8−2)−3 =
n
4−7.

It follows that n ≥
∑6

i=1|V (Li)| ≥ 6( n4 − 7), leading to a contradiction that 578 ≤ n ≤ 84. This completes the proof of
Theorem 1.3. ■

4. Strongly spanning trailable graphs

For any real numbers a, bwith 0 < a < 1, fix a graph G ∈ G(a, b). For e, e′
∈ E(G), let G(e, e′)′ be the reduction of G(e, e′).

Define

W = W(a,b) = {v ∈ V (G) : dG(v) <
1
2
(an + b)} (4.1)

and

Γ(a,b) =

⎧⎪⎨⎪⎩
G[W ] if e, e′

̸∈ E(G[W ]),

G[W ](x) if |{e, e′
} ∩ E(G[W ])| = 1 and {x} = {e, e′

} ∩ E(G[W ]),

G[W ](e, e′) if e, e′
∈ E(G[W ]).

(4.2)

Let Γ ′

(a,b) be the reduction of Γ(a,b) and w = |W |. We denote

W ∗
= {v′

∈ V (G(e, e′)′) : V (PIG(e,e′)(v′)) ∩ V (Γ(a,b)) ̸= ∅} and Γ ∗

(a,b) = G(e, e′)′[W ∗
]. (4.3)

For a vertex v ∈ V (G(e, e′)′), if PIG(e,e′)(v) = K1, then v is called a trivial vertex of G(e, e′)′. Otherwise, v is called a nontrivial
vertex. Thus if v is a trivial vertex of G(e, e′)′, then dG(e,e′)′ (v) = dG(e,e′)(v). Then the following result holds.

Lemma 4.1. For any real numbers a, b with 0 < a < 1, let Γ ∗

(a,b) be the graph defined in (4.3). Then each of the following holds.
(i) If w ≥ 4, Γ ∗

(a,b) = K1; if 1 ≤ w ≤ 3, Γ ∗

(a,b) ∈ {K1, K2, K1,2, C4, C5}.
(ii) Γ ∗

(a,b) has at most three trivial vertices v ∈ V (G(e, e′)′) − {ve, ve′} with 2 ≤ dG(e,e′)′ (v) < 1
2 (an + b).

Proof. Since G satisfies (1.1), G[W ] is a complete graph. Hence if 1 ≤ w ≤ 3, then Γ(a,b) ∈ {K1, K2, K2(x), K3, K3(x), K3(e, e′)};
if w ≥ 4, then Γ(a,b) ∈ {Kw, Kw(x), Kw(e, e′)}. Note that K1,2 = K2(x), C4 = K3(x), and C5 = K3(e, e′). By Lemma 2.7(i) and (ii),
K4, K4(e, e′) and K4(x) are collapsible. It follows that if w ≥ 4, Γ ′

(a,b) = K1.
Assume that 1 ≤ w ≤ 3. By definition, if Γ(a,b) ∈ {K1, K3}, then Γ ∗

(a,b) = K1. If Γ(a,b) = K2, then Γ ∗

(a,b) ∈ {K1, K2}.
Assume that Γ(a,b) = K1,2, and let v denote the only vertex in V2(Γ(a,b)) such that dG(e,e′)(v) = 2. Since collapsible graphs are
2-edge-connected, if there exists a nontrivial collapsible subgraph H of G(e, e′) with v ∈ V (H), then V (Γ(a,b)) ⊆ V (H) and
Γ ∗

(a,b) = K1. Thus if Γ(a,b) = K1,2, then Γ ∗

(a,b) ∈ {K1, K1,2}. Similarly, if Γ(a,b) = C4, then Γ ∗

(a,b) ∈ {K1, C4}; if Γ(a,b) = C5, then
Γ ∗

(a,b) ∈ {K1, C4, C5}. This completes the proof of (i), and (ii) follows immediately. ■
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In the following proof, we always assume thatG is a simple graphwith n vertices. IfG is not strongly spanning trailable, by
definition, there exists e, e′

∈ E(G) such that G(e, e′) has no spanning (ve, ve′ )-trails. Let G(e, e′)′ be the reduction of G(e, e′)
and n′

= |V (G(e, e′)′)|. Define v′
e and v′

e′ as in (2.3). Thus G(e, e′)′ has no spanning (v′
e, v

′

e′ )-trails. For any v ∈ V (G(e, e′)′),
define H(v) = V (PIG(e,e′)(v)) − {ve, ve′} and h(v) = |H(v)|.

For each integer i > 0, we define Vi = Vi(G(e, e′)′) = {v ∈ V (G(e, e′)′) | dG(e,e′)′ (v) = i} and di =| Vi(G(e, e′)′) |. Let

Ti = {v ∈ Vi − {ve, ve′} : PIG(e,e′)(v) = K1}, T i = Vi − Ti ∪ {ve, ve′}, ti = |Ti| and t i = |T i|. (4.4)

By ess′(G) ≥ 3 and d2(G) ≤ 1, we have t2 ≤ 1, t2 = 0 and t i = di − ti for i ≥ 3. Let T =
⋃6

i=2Ti, T =
⋃6

i=2T i, t = |T | =
∑6

i=2ti
and t = |T | =

∑6
i=2t i. Let v1, v2, . . . , vt be the nontrivial vertices in T such that h(v1) ≤ h(v2) ≤ · · · ≤ h(vt ).

Proof of Theorem 2.4. Let G be a simple graph satisfying the hypotheses of Theorem 2.4 and B = max{⌈ 12−b
a ⌉, ⌈

−(b+2)(a+2)
a2

⌉,

⌈19 +
6
a ⌉, 5}. Since nonstrongly spanning trailable graphs with at most B vertices can always be contractible to a member

in S(B), we assume that n = |V (G)| > B and G is not strongly spanning trailable. We shall show that G can be contracted to
S(B). Define W , Γ(a,b) and Γ ∗

(a,b) as those in (4.1)–(4.3). Let

X5 = {v ∈ V (G(e, e′)′) : dG(e,e′)′ (v) ≤ 5} and X ′

5 = {v ∈ X5 − V (Γ ∗

(a,b)) : PIG(e,e′)(v) ̸= K1}. (4.5)

Claim 1. For any v ∈ X ′

5, then h(v) ≥
1
2 (an + b) + 1.

Let v ∈ X ′

5 and xy ∈ E(G) be an arbitrary edge such that x ∈ V (PIG(e,e′)(v)) and y ̸∈ V (PIG(e,e′)(v)). As dG(e,e′)(ve) =

dG(e,e′)(ve′ ) = 2, if x ∈ {ve, ve′}, then κ ′(PIG(e,e′)(v)) = 1, contrary to the fact that PIG(e,e′)(v) is collapsible. Thus x ̸∈ {ve, ve′}.
Since n ≥ ⌈

12−b
a ⌉, we have 1

2 (an + b) ≥ 6. By (4.5), dG(e,e′)(x) = dG(x) ≥
1
2 (an + b) ≥ 6. Let N ′

x = NG(x) − V (PIG(e,e′)(v))
and N ′

= {w ∈ V (PIG(e,e′)(v)) : w is incident with an edge not in V (PIG(e,e′)(v))} − N ′
x. Since dG(e,e′)′ (v) ≤ 5, we have

|N ′
| + |N ′

x| ≤ 5 and there are at least 6 − |N ′
∪ {x}| ≥ 1 vertices z ∈ NG(x) ∩ V (PIG(e,e′)(v)) with NG(z) ⊆ H(v). Assume

that we have w ∈ {ve, ve′} ∩ V (PIG(e,e′)(v)) with w1, w2 being the two neighbors of w in PIG(e,e′). If |N ′
| ≥ 3, then we can

choose x ̸∈ {w1, w2}; if |N ′
| ≤ 2, then 6 − |N ′

∪ {x}| ≥ 3, we choose z ∈ NG(x) ∩ V (PIG(e,e′)(v)) − {ve, ve′}. Hence we can
always assume that z ̸∈ {ve, ve′} with NG(z) ⊆ H(v). It follows that h(v) ≥ dG(z) + 1 ≥

1
2 (an + b) + 1. This completes the

proof of Claim 1.
By Claim 1, |X ′

5|
( 1
2 (an + b) + 1

)
≤

∑
v∈X ′

5
h(v) ≤ n. Since n ≥ ⌈

−(b+2)(a+2)
a2

⌉, we have

|X ′

5| ≤
2n

an + b + 2
≤

2
a

+ 1. (4.6)

As n ≥
10−b

a , we have an+b
2 > 5, and so together with (4.5), X5 − X ′

5 = {v ∈ X5 : PIG(e,e′)(v) = K1} ∪ {v ∈ X5 : PIG(e,e′)(v) ̸= K1

and v ∈ V (Γ ∗

(a,b))} ⊆ V (Γ ∗

(a,b))
⋃

{ve, ve′}. By Lemma 4.1(i),

|X5 − X ′

5| ≤ |V (Γ ∗

(a,b))| + 2 ≤ 7. (4.7)

To show that n′ is a finite number, pick any v ∈ V (G(e, e′)′) − X5, we have dG(e,e′)′ (v) ≥ 6. Hence

6 | V (G(e, e′)′) − X5 |≤

∑
v∈V (G(e,e′)′)−X5

dG(e,e′)′ (v) ≤

∑
v∈V (G(e,e′)′)

dG(e,e′)′ (v) = 2 | E(G(e, e′)′) | .

By Lemma 2.11, we have 2 | E(G(e, e′)′) |≤ 4n′
− 10, and so

| V (G(e, e′)′) − X5 |≤
2n′

− 5
3

. (4.8)

Combining (4.6), (4.7) and (4.8), we have

n′
= |X ′

5| + |X5 − X ′

5| + |V (G(e, e′)′) − X5| ≤
2
a

+ 8 +
2n′

− 5
3

.

Solving the inequality, we have n′
≤ 19 +

6
a ≤ B. Then G can be contracted to S(B). This completes the proof of

Theorem 2.4. ■

Since the proof of Theorem 2.6 (see Appendix) is similar to that of Theorem 2.5, we only prove Theorem 2.5 here.

Proof of Theorem 2.5. Suppose that G is a simple graph satisfying the hypotheses of Theorem 2.5, and G is not strongly
spanning trailable. We shall show that G can be contracted toW8. Let

W = W( 14 ,−2) = {v ∈ V (G) : dG(v) <
1
8
n − 1},
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w = |W | and define Γ = Γ( 14 ,−2) and Γ ∗
= Γ ∗

( 14 ,−2)
as those in (4.1)–(4.3). Then by Lemma 4.1(i),

if w ≥ 4, then Γ ∗
= K1. (4.9)

By Lemma 4.1(ii),

Γ ∗ has at most three trivial vertices v ∈ V (G(e, e′)′) − {ve, ve′} with 2 ≤ dG(e,e′)′ (v) <
n
8

− 1. (4.10)

We have the following claims.

Claim A. (i) If there is a vertex vi ∈ T such that h(vi) ≤ 6, then dG(v) ≤ 11 for any v ∈ H(vi), and 3 ≤ h(vi) ≤ 6.
(ii) For 2 ≤ i ≤ t, h(vi) ≥ 7.
(iii) For 1 ≤ i ≤ t, if h(vi) ≥ 7, then there is a vertex z ∈ H(vi) such that NG(z) ⊆ H(vi), and then

h(vi) ≥ dG(z) + 1 = dG(e,e′)(z) + 1.

Suppose that h(vi) ≤ 6. As dG(e,e′)′ (vi) ≤ 6, dG(v) ≤ 11 for any v ∈ H(vi). Since PIG(e,e′)(vi) is a simple collapsible graph, it
follows by Lemma 2.7(i) that 3 ≤ h(vi) ≤ 6. Hence Claim A(i) holds.

Suppose that h(v1) ≤ h(v2) < 7. As 11 < n
8 − 1, by Claim A(i), H(v1) ∪ H(v2) ⊆ W and so by Claim A(i),

w ≥ h(v1) + h(v2) ≥ 6. By (4.9), Γ ∗
= K1, a contradiction. Hence h(vi) ≥ 7 for 2 ≤ i ≤ t . Thus Claim A(ii) must hold.

Suppose that h(vi) ≥ 7. By the argument similar to that of Claim 1 in Theorem 2.4, there is a vertex z ∈ H(vi) such that
NG(z) ⊆ H(vi), and then h(vi) ≥ dG(z) + 1 = dG(e,e′)(z) + 1. Thus Claim A(iii) holds as well.

Claim B. Let vi, vj ∈ T . Then each of the following holds.
(i) If there is a vertex u ∈ T , then for any vi ∈ T , h(vi) ≥

n
4 − dG(e,e′)′ (u) − 1 ≥

n
4 − 7.

(ii) If 7 ≤ h(vi) ≤ h(vj), then h(vi) + h(vj) ≥
n
4 .

(iii) If 3 ≤ h(v1) ≤ 6 and vi ̸= v1, then h(v1) + h(vi) ≥
n
4 − dG(e,e′)′ (v1) ≥

n
4 − 6, and t ≤ 5.

Let vi ∈ T and u ∈ T . Then dG(e,e′)′ (vi) ≤ 6 and dG(e,e′)′ (u) = dG(e,e′)(u) = dG(u) ≤ 6. We first assume that 3 ≤ h(vi) ≤ 6. If
there is a vertex z ∈ H(vi) such that uz ̸∈ E(G), by Claim A(i) and (1.2), we have

17 = 11 + 6 ≥ dG(e,e′)(z) + dG(e,e′)(u) = dG(z) + dG(u) ≥
n
4

− 2,

contrary to n ≥ 217. Hence for any z ∈ H(vi), we have uz ∈ E(G). By 3 ≤ h(vi) ≤ 6 and (1.2), there are three
vertices z1, z2, z3 ∈ H(vi) such that G(e, e′)[{z1, z2, z3, u}] is K4, or the graph obtained from K4 by subdivided one edge,
or the graph obtained from K4 by subdivided two edges. By Lemma 2.7(ii), G(e, e′)[{z1, z2, z3, u}] is a collapsible graph,
contrary to the assumption. Hence h(vi) ≥ 7. By Claim A(iii), there is a vertex z ∈ H(vi) such that NG(z) ⊆ H(vi), and
then h(vi) ≥ dG(z) + 1 = dG(e,e′)(z) + 1. Since NG(z) ⊆ H(vi), we have zu ̸∈ E(G). By (1.2), h(vi) − 1 + dG(e,e′)′ (u) ≥

dG(e,e′)(z) + dG(e,e′)(u) = dG(z) + dG(u) ≥
n
4 − 2. As u ∈ T , dG(e,e′)′ (u) ≤ 6, and so h(vi) ≥ ⌈

n
4 − 1 − dG(e,e′)′ (u)⌉ ≥

n
4 − 7. This

proves Claim B(i).
Let vi, vj ∈ T and 7 ≤ h(vi) ≤ h(vj). By Claim A(iii), there is a vertex zi ∈ H(vi) such that NG(zi) ⊆ H(vi) and

h(vi) ≥ dG(zi) + 1. Similarly, there is a vertex zj ∈ H(vj) such that NG(zj) ⊆ H(vj) and h(vj) ≥ dG(zj) + 1. Since zizj ̸∈ E(G), by
(1.2), h(vi) + h(vj) ≥ dG(zi) + dG(zj) + 2 ≥

n
4 . Hence Claim B(ii) holds.

Suppose that 3 ≤ h(v1) ≤ 6 and vi ̸= v1. By Claim A(ii), h(vi) ≥ 7. By Claim A(iii), there is a vertex zi ∈ H(vi) such that
NG(zi) ⊆ H(vi) and h(vi) ≥ dG(zi) + 1. For any z1 ∈ H(v1), we have

h(v1) ≥ |NH(v1)(z1) ∪ {z1}| ≥ dG(z1) − dG(e,e′)′ (v1) + 1.

Since z1zi ̸∈ E(G), by (1.2),

h(v1) + h(vi) ≥ dG(z1) + dG(zi) − dG(e,e′)′ (v1) + 2 ≥
n
4

− dG(e,e′)′ (v1) ≥
n
4

− 6.

If t ≥ 6, by n ≥ 217, we have n ≥
∑t

i=1h(vi) ≥
∑6

i=2(h(v1)+h(vi))−4h(v1) ≥ 5( n4 −6)−24 =
5n
4 −54 > n, a contradiction.

Thus t ≤ 5. This proves Claim B(iii).

Claim C. (i) T ⊆ V (Γ ∗) and t ≤ 3.
(ii) If t ̸= 0, then t ≤ 4; if t = 0, then t ≤ 8.

Let v ∈ T . For n ≥ 217, we have dG(v) = dG(e,e′)′ (v) ≤ 6 < n
8 − 1 and then v ∈ V (Γ ∗). So T ⊆ V (Γ ∗) and by (4.10), t ≤ 3.

Suppose that t ̸= 0 and t ≥ 5. By Claim B(i), (ii) and as n ≥ 217, we have n ≥
∑t

i=1h(vi) ≥ 5( n4 − 7) > n, a contradiction.
It follows that t ≤ 4.

Now we assume that t = 0 and t ≥ 9. Since t ≥ 9, by Claim B(iii), for each 1 ≤ i ≤ t , h(vi) ≥ 7. By Claim B(ii) and
n ≥ 217, n ≥

∑t
i=1h(vi) ≥ 4 ·

n
4 + 7 > n, a contradiction. Therefore t ≤ 8. This completes the proof of Claim C.
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Table 1
The cases occurred in Case 3 of the proof of Theorem 2.5.

d2 t3 t3 t4 t4 t5 t5 t6 t6 n′

2 2 4 ≤1 0 0 0 0 0 ≤9
2 3 3 0 ≤1 0 0 0 0 ≤9
2 0 6 0 ≤2 0 0 0 0 ≤10

2 0 7 0 0 0 1 0 0 10

2 0 8 0 0 0 0 0 0 10

By Claim C, we have

t3 ≤ 3; (4.11)

if t3 ̸= 0, then t3 = d3 − t3 ≤ 4; if t3 = 0, then t3 = d3 ≤ 8. (4.12)

Since κ ′(G) ≥ 2, ess′(G) ≥ 3 and |V2(G)| ≤ 1, we have d1 = 0, d2 ∈ {0, 1, 2, 3} and n′
= |V (G(e, e′)′)| =

∑
i≥2di. By

Lemma 2.11(ii),

2d2 + d3 ≥

∑
i≥5

(i − 4)di + 10. (4.13)

In the following analysis, we will show that G is contractible toW8 in the desirable way in Case 3 below, and a contradiction
is obtained in all other cases.

Case 1 d2 = 0. By (4.13), d3 ≥ 10. By (4.11), if t3 ̸= 0, then t3 = d3 − t3 ≥ 7; if t3 = 0, then t3 = d3 ≥ 10, contrary to (4.12).

Case 2 d2 = 1. By (4.13), d3 ≥ 8. By (4.11), if t3 ̸= 0, then t3 ≥ 5; if t3 = 0, then t3 = d3 ≥ 8. By (4.12), (t3, t3) = (0, 8). By
Claim C(ii), we have t3 = t = 8 and so t = 0. Thus di = 0 for any i ≥ 4, forcing n′

= d2 + t3 = 9. Note that ess′(G(e, e′)′) ≥ 3,
d2 = 1 and G(e, e′)′ has no spanning (v′

e, v
′

e′ )-trails. By Lemma 2.12, we have G(e, e′)′ = P(10)(e), which contradicts n′
= 9.

Case 3 d2 = 2. By (4.13), t3 + t3 = d3 ≥ 6. Then by (4.11) and (4.12), t3 ̸= 1 and (t3, t3) ∈ {(2, 4), (3, 3), (3, 4), (0, 6),
(0, 7), (0, 8)}. By 2d2 + d3 ≤ 12 and (4.13), di = 0 for i ≥ 7. If (t3, t3) = (3, 4), by Claim C, d4 = d5 = d6 = 0. Then G(e, e′)′
has 7 vertices with odd degrees, which is impossible. For other cases, by (4.13) and Claim C(ii), it is routine to verify that
n′

≤ 10 (see Table 1).
Suppose that u and v are the two vertices with degree 2 in G(e, e′)′. We claim that {u, v} = {ve, ve′}. If {u, v} ̸= {ve, ve′},

then t2 = 1. By ClaimC, t3 ≤ 2 and t3 ≤ 4,which implies (t3, t3) ̸∈ {(3, 3), (3, 4), (0, 6), (0, 7), (0, 8)}, forcing (t3, t3) = (2, 4),
d4 = d5 = d6 = 0 and n′

= d2 + t3 + t3 = 8. As G(e, e′)′ is reduced, by Lemma 2.7(vii), G(e, e′)′ is K1 or K2, contrary to n′
= 8.

Hence {u, v} = {ve, ve′}.
Adding a new vertex w and two new edges wu, wv in G(e, e′)′, we get a new graph H with |V (H)| ≤ 11. As d2(H) = 1 and

G(e, e′)′ has no spanning (u, v)-trails, H is not supereulerian. By Lemma 2.12, H = P(10)(e), which implies d3 = 8. Hence
(t3, t3) = (0, 8). Since t3 = 8 > 5, by Claim B(iii), for each 1 ≤ i ≤ t = 8, h(vi) ≥ 7. By Claim B(ii), n ≥

∑8
i=1h(vi) ≥ 4·

n
4 = n.

Hence for any 1 ≤ i, j ≤ 8 and i ̸= j, h(vi) + h(vj) =
n
4 . It follows that for any 1 ≤ i ≤ 8, h(vi) =

n
8 . Since dG(e,e′)′ (vi) = 3, it

implies that G contains 3 edges which have exactly one end inH(vi). By (1.2), there are at least h(vi)−2 vertices inH(vi) with
degree n

8 − 1. Thus for 1 ≤ i ≤ 8, PIG(e,e′)(vi) is K n
8
or a graph obtained from K n

8
by deleting an edge. Furthermore, G(e, e′)′ is

the graph obtained from H = P(10)(e) by deleting w and the edges wu and wv, and so the graph is obtained from W8 (see
Fig. 1(c)) by subdividing two edges. That is, G(e, e′)′ = P(10) − uv (see Fig. 1(a) and (b)). Hence in this case, G is contractible
to W8 with the preimage of every vertex ofW8 being a K n

8
or a graph obtained from K n

8
by deleting an edge.

Case 4 d2 = 3. In this case, |V2(G)| = 1. Suppose that V2(G) = {z0} and NG(z0) = {z ′, z ′′
}. Then z0, ve and ve′ are the three

vertices with degree 2 in G(e, e′)′, which implies t2 = 1. By Claim C(i), t − t2 =
∑6

i=3ti ≤ 2. By Claim C(ii), t ≤ 4. By (4.13),
we have d3 ≥ 4. It follows that (t3, t3) ∈ {(0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}. Since 2d2 + d3 ≤ 12, by (4.13), di = 0
for any i ≥ 7. Hence n′

=
∑6

i=2di = 3 +
∑6

i=3di.
If (t3, t3) ∈ {(1, 4), (2, 3)}, by (4.13), d6 = 0 and d5 ≤ 1. Since the number of odd degree vertices is an even number and

d3 = t3 + t3 = 5, we have d5 = 1. If (t3, t3) = (1, 4), by t ≤ 4, we have t5 = 1 and t5 = 0. By
∑6

i=3ti ≤ 2 and t ≤ 4, d4 = 0.
Hence n′

= d2 + t3 + t3 + t5 = 3 + 1 + 4 + 1 = 9. If (t3, t3) = (2, 3), by
∑6

i=3ti ≤ 2 and t ≤ 4, we have t5 = 0, t5 = 1 and
d4 = 0. Hence n′

= d2 + t3 + t3 + t5 = 3 + 2 + 3 + 1 = 9. For other cases, it is routine to verify that 7 ≤ d2 + d3 ≤ n′
≤ 9

(see Table 2).
By Lemma 2.11(i), 2F (G(e, e′)′) =

∑
i≥2(4 − i)di − 4. Hence, if (t3, t3) ∈ {(0, 4), (1, 3), (1, 4), (2, 2), (2, 3)}, then

7 ≤ (d2 + d3) ≤ n′
≤ 9 and F (G(e, e′)′) = 3. By Lemma 2.15, G(e, e′)′ ∈ {J ′(1, 2), J ′(1, 1), K1,3(1, 1, 1)}. Then there exists

a spanning (ve, ve′ )-trail in G(e, e′)′ (see Fig. 3), contrary to the assumption. Hence (t3, t3) = (2, 4). By (1.2), for any vertex
w ∈ V (G) − {z0, z ′, z ′′

}, dG(w) = dG(e, e′)(w) ≥
n
4 − 4 > 3. Hence dG(z ′) = dG(z ′′) = 3 and z ′z ′′

∈ E(G). It follows that G has
an essential 2-edge-cut, contrary to the assumption ess′(G) ≥ 3. This completes the proof of Theorem 2.5. ■
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Table 2
The cases occurred in Case 4 of the proof of Theorem 2.5.

d2 t3 t3 t4 t4 t5 t5 t6 t6 n′

3 0 4 ≤2 0 0 0 0 0 ≤9
3 1 3 ≤1 ≤1 0 0 0 0 ≤9
3 2 2 0 ≤2 0 0 0 0 ≤9

3 1 4 0 0 1 0 0 0 9
3 2 3 0 0 0 1 0 0 9

3 2 4 0 0 0 0 0 0 9
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Appendix

Lemma 2.15. Let G be a simple graph with κ ′(G) ≥ 2 and |V2(G)| = 1. Let G(e, e′)′ be the reduction of G(e, e′). If 7 ≤

|V (G(e, e′)′)| ≤ 9, |V2(G(e, e′)′)| = 3 and F (G(e, e′)′) = 3, then G(e, e′)′ ∈ {J ′(1, 2), J ′(1, 1), K1,3(1, 1, 1)}.

Proof. Suppose that G is a graph satisfying the conditions of Lemma 2.15 and G(e, e′)′ be the reduction of G. Since
7 ≤ |V (G(e, e′)′)| ≤ 9 and F (G(e, e′)′) = 3, by Lemmas 2.14 and 2.7, G(e, e′)′ ∈ {K ′

2,t , K
′′

2,t : 1 ≤ t ≤ 7} ∪{K1,3(s1, s2, s3) :

s1 + s2 + s3 ≤ 5} ∪{S(m, l), J(m, l), J ′(m, l) : m, l ≥ 0 and m + l ≤ 5}. Since κ ′(G) ≥ 2, we have κ ′(G(e, e′)′) ≥ 2, and then
G(e, e′)′ ∈ {K1,3(s1, s2, s3) : s1 + s2 + s3 ≤ 5} ∪{S(m, l), J(m, l), J ′(m, l) : m, l ≥ 0 and m + l ≤ 5}. Now we distinguish four
cases.

Case 1 G(e, e′)′ ∼= K1,3(s1, s2, s3).
Without loss of generality, we suppose that s1 ≥ s2 ≥ s3. Since κ ′(G) ≥ 2, we have κ ′(G(e, e′)′) ≥ 2, which implies

s1 ≥ s2 ≥ 1. If (s1, s2, s3) ∈ {(1, 1, 0), (2, 1, 0)}, then |V2(K1,3(s1, s2, s3))| = 4; otherwise, |V2(K1,3(s1, s2, s3))| = s1 + s2 + s3.
By |V2(G(e, e′)′)| = 3, we have s1 = s2 = s3 = 1, and then G(e, e′)′ ∼= K1,3(1, 1, 1).

Case 2 G(e, e′)′ ∼= S(m, l).
Without loss of generality, we suppose that m ≥ l. If m ≥ l ≥ 2, then |V2(S(m, l))| = m + l ≥ 4; if l = 1 and m ≥ 2, then

|V2(S(m, l))| = m + l + 1 ≥ 4; ifm = l = 1, then |V2(S(m, l))| = 5. By |V2(G(e, e′)′)| = 3, G(e, e′)′ ̸∼= S(m, l).

Case 3 G(e, e′)′ ∼= J(m, l).
Suppose that m ≥ l. If m ≥ l ≥ 2, then |V2(J(m, l))| = m + l ≥ 4; if l = 1 and m ≥ 2, then |V2(J(m, l))| = m + l + 1 ≥ 4;

ifm = l = 1, then |V2(J(1, 1))| = 4. By |V2(G(e, e′)′)| = 3, G(e, e′)′ ̸∼= J(m, l).

Case 4 G(e, e′)′ ∼= J ′(m, l).
If l = 1, then |V2(J ′(m, l))| = m+ 2; if l ≥ 2, then |V2(J ′(m, l))| = m+ l. By |V2(G(e, e′)′)| = 3, G(e, e′)′ ∼= J ′(1, 2) or J ′(1, 1).

This completes the proof of Lemma 3.7. ■

Proof of Theorem 2.6. Suppose that G is a simple graph satisfying the hypotheses of Theorem 2.6, and that G is not strongly
spanning trailable. We will show that G can be contracted to W8. Let

W = W( 18 ,0) = {v ∈ V (G) : dG(v) <
1
16

n},

w = |W | and defineΓ = Γ( 18 ,0),Γ
∗

= Γ ∗

( 18 ,0)
as those in (4.1)–(4.3). As G[W ] ⊂ G is a complete graph, and G is a triangle-free

graph, it follows that 0 ≤ w ≤ 2. Since G is triangle-free, by Lemma 4.1,

|V (Γ ∗)| ≤ 3. Furthermore, if 1 ≤ w ≤ 2, Γ ∗
∈ {K1, K2, K1,2}. (A.1)
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Moreover,

Γ ∗ has at most 2 trivial vertices v ̸∈ {ve, ve′} with 2 ≤ dG(e,e′)′ (v) <
1
16

n. (A.2)

We make the following claims.

Claim D. Each of the following holds.
(i) For any 1 ≤ i ≤ t, h(vi) ≥ 7.
(ii) If there exists a trivial vertex u ∈ V (G(e, e′)′) − {ve, ve′}, then

h(vi) ≥
3n
16

− 12.

(iii) h(vi) ≥
n
8 − 6.

If there exists some vi with h(vi) ≤ 6, then as PIG(e,e′)(vi) is a simple collapsible graph, by Lemma 2.7(i), we have
3 ≤ h(vi) ≤ 6. As dG(e,e′)′ (vi) ≤ 6, dG(v) ≤ 11 for any v ∈ H(vi). By n ≥ 577, we have 11 < n

16 . It follows that H(vi) ⊆ W ,
contrary to w ≤ 2. Hence Claim D(i) holds.

Let vi ∈ T . Then h(vi) ≥ 7. Since w ≤ 2, there exists a vertex x ∈ H(vi) such that dG(x) ≥
n
16 . Since dG(x) ≥

n
16 ≥ 10

and dG(e,e′)′ (vi) ≤ 6, by the argument similar to that of Claim 1 in Theorem 2.4, there is a vertex z ∈ H(vi) such that
x ∈ NG(z) ⊆ H(vi). If u ̸∈ {ve, ve′} is a trivial vertex of G(e, e′)′, then dG(e,e′)′ (u) = dG(e,e′)(u) = dG(u) and zu ̸∈ E(G). By (1.3), it
follows that dG(z)+ dG(e,e′)′ (u) = dG(z)+ dG(u) ≥

n
8 . Thus dG(z) ≥

n
8 − 6. Since G is triangle-free, we have NG(z)∩NG(x) = ∅,

which implies

h(v) ≥ dG(x) + dG(z) − dG(e,e′)′ (vi) ≥
n
16

+ (
n
8

− 6) − 6 =
3n
16

− 12.

Hence Claim D(ii) holds as well.
For any vi ∈ T , Gi = G[V (PIG(e,e′)(vi)) − {ve, ve′}] is a triangle-free graph. Since w ≤ 2 and h(vi) ≥ 7, there exist two

vertices u1, u2 ∈ V (Gi) with dG(u1) ≥
n
16 , dG(u2) ≥

n
16 and NG(u1) ∩ NG(u2) = ∅. Since dG(e,e′)′ (vi) ≤ 6, it follows that

h(vi) ≥ 2 ·
n
16 − 6 =

n
8 − 6, justifying Claim D(iii).

Claim E. Each of the following holds.
(i) T ⊆ V (Γ ∗) and t ≤ 2.
(ii) If t ̸= 0, then t ≤ 5; otherwise, t ≤ 8.

Let v ∈ T . Since n ≥ 577, we have dG(v) = dG(e,e′)′ (v) ≤ 6 < n
16 − 1. Hence v ∈ Γ ∗, and so T ⊆ V (Γ ∗). By (A.2), t ≤ 2,

and so Claim E(i) holds.
Suppose that t ̸= 0 and t ≥ 6. By Claim D(ii) and n ≥ 577, n ≥

∑t
i=1h(vi) ≥ 6( 3n16 − 12) > n, a contradiction. It follows

that t ≤ 5. If t = 0 and t ≥ 9, by Claim D(iii) and n ≥ 577, we have n ≥
∑t

i=1h(vi) ≥ 9( n8 − 6) > n, a contradiction.
Therefore t ≤ 8. Thus Claim E(ii) must hold.

By Claim E, we have

t3 ≤ 2; (A.3)

if t3 ̸= 0, then t3 = d3 − t3 ≤ 5; if t3 = 0, then t3 = d3 ≤ 8. (A.4)

Since κ ′(G) ≥ 2, ess′(G) ≥ 3, |V2(G)| ≤ 1 and G(e, e′)′ is the reduction of G(e, e′), we have d1 = 0, d2 ∈ {0, 1, 2, 3} and
n′

= |V (G(e, e′)′)| =
∑

i≥2di. By Lemma 2.11(ii),

2d2 + d3 ≥

∑
i≥5

(i − 4)di + 10. (A.5)

In the following analysis,wewill show thatG is contractible toW8 in the desirableway inCase 3 below, and a contradiction
is obtained in all other cases.

Case 1 d2 = 0.
By (A.5), d3 ≥ 10. By (A.3), if t3 ̸= 0, then t3 = d3 − t3 ≥ 8; if t3 = 0, then t3 = d3 ≥ 10, contrary to (A.4).
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Table 3
The cases occurred in Case 3 of the proof of Theorem 2.6.

d2 t3 t3 t4 t4 t5 t5 t6 t6 n′

2 1 5 ≤1 0 0 0 0 0 ≤9
2 2 4 0 ≤1 0 0 0 0 ≤9
2 0 6 0 ≤2 0 0 0 0 ≤10

2 2 5 0 0 0 0 0 0 9
2 0 7 0 0 0 1 0 0 10

2 0 8 0 0 0 0 0 0 10

Case 2 d2 = 1.
By (A.5), d3 ≥ 8. By (A.3), if t3 ̸= 0, then t3 ≥ 6; if t3 = 0, then t3 = d3 ≥ 8. By (A.4), t3 = 0 and t3 = 8. By Claim E(ii),

we have t3 = t = 8 and so t = 0. Thus di = 0 for any i ≥ 4, forcing n′
= d2 + t3 = 9. Note that ess′(G(e, e′)′) ≥ 3, d2 = 1

and G(e, e′)′ has no spanning (v′
e, v

′

e′ )-trails. By Lemma 2.12, we have G(e, e′)′ = P(10)(e), which contradicts n′
= 9.

Case 3 d2 = 2.
By (A.5), we have d3 ≥ 6. By (A.3) and (A.4), (t3, t3) ∈ {(1, 5), (2, 4), (2, 5), (0, 6), (0, 7), (0, 8)}. As 2d2 + d3 ≤ 12 for

each case, by (A.5), di = 0 for any i ≥ 7. Hence n′
=

∑6
i=2di. If (t3, t3) = (0, 7), by (A.5), d5 ≤ 1 and d6 = 0. Since the number

of odd degree vertices is an even number, we have d5 = 1. By t3 = 7 > 5 and Claim E(ii), we have t4 = t5 = 0, t4 = 0 and
t5 = 1. Then n′

= d2 + t3 + t5 = 2 + 7 + 1 = 10. For other cases, it is routine to verify that n′
≤ 10 (see Table 3).

Suppose thatu and v are the twoverticeswith degree 2 inG(e, e′)′.We claim that {u, v} = {ve, ve′}. If |{u, v}∩{ve, ve′}| = 1,
then t2 = 1. By Claim E, t3 ≤ 1 and t3 ≤ 5, which implies (t3, t3) ̸∈ {(2, 4), (2, 5), (0, 6), (0, 7), (0, 8)}. Hence
(t3, t3) = (1, 5), d4 = d5 = d6 = 0 and n′

= d2 + t3 + t3 = 8. As G(e, e′)′ is reduced, by Lemma 2.7(vii), G(e, e′)′ is K1
or K2, contrary to n′

= 8. Hence {u, v} = {ve, ve′}.
Adding a new vertex w and two new edges wu, wv in G(e, e′)′, we get a new graph H with |V (H)| ≤ 11. As d2(H) = 1 and

G(e, e′)′ has no spanning (u, v)-trails, H is not supereulerian. By Lemma 2.12, H = P(10)(e), which implies d3 = 8. Hence
(t3, t3) = (0, 8). In this case, G(e, e′)′ is the graph obtained from H = P(10)(e) by deleting w and the edges wu and wv,
i.e., the graph obtained fromW8 (see Fig. 1) by subdividing two edges. Thus G is contractible toW8.

For any 1 ≤ i ≤ 8, let Hi be the preimage of vi in W8. By Claim D(i), h(vi) ≥ 7. Let N ′

i = {u ∈ V (Hi): u is incident
with an edge in E(G) − E(Hi)}. By w ≤ 2 and dW8 (vi) = 3, we have |V (Hi) − (W ∩ N ′

i )| ≥ 7 − (2 + 3) = 2. Thus there
exists a vertex u1 ∈ V (Hi) − (W ∩ N ′

i ) such that NG(u1) ⊆ V (Hi). Since u1 ̸∈ W and by the definition of W , we have
|NG(u1)| = dG(u1) ≥

n
16 ≥

577
16 > 5. It follows that there exists a vertex u2 ∈ NG(u1) − (W ∩ N ′

i ) such that NG(u2) ⊆ V (Hi).
By the definition of W and as u1, u2 ̸∈ W , we have dG(u1) ≥

n
16 and dG(u2) ≥

n
16 . Since G is a triangle-free graph and since

u1u2 ∈ E(G), we have NG(u1) ∩ NG(u2) = ∅. Hence h(vi) ≥ |NG(u1) ∩ NG(u2)| = |NG(u1)| + |NG(u2)| ≥
n
16 +

n
16 =

n
8 . Then

n =
∑8

i=1h(vi) ≥ 8 ·
n
8 = n, which implies that |V (Hi)| =

n
8 . It follows thatHi is a spanning subgraph of K n

16 , n
16
. Remembering

G[W ] ∈ {K1, K2} or w = 0, there are at most two vertices in Hi with degree n
16 − 1, and other vertices in Hi with degree n

16 .
Furthermore, those two vertices must be adjacent to vertices outside Hi. It implies that the preimage of every vertex of W8
is K n

16 , n
16

or a graph obtained from K n
16 , n

16
by deleting an edge.

Case 4 d2 = 3.
In this case, suppose that V2(G) = {z0} and NG(z0) = {z ′, z ′′

}. Then z0, ve and ve′ are the three vertices with degree 2 in
G(e, e′)′, and t2 = 1. By Claim E(i), t − t2 ≤ 1.

By (1.3), for any vertex u nonadjacent to z0, we have

dG(u) ≥
n
8

− dG(z0) ≥
n
8

− 2. (A.6)

Let v ∈ T . By n ≥ 577 and ClaimD(iii), we have h(v) ≥
n
8 −6 ≥ 66. As dG(z0) = 2, there are at least two vertices u1, u2 ∈ H(v)

such that u1u2 ∈ E(G), ui ̸∈ NG(z0) andNG(ui) ⊆ H(v) for any 1 ≤ i ≤ 2. Since G is a triangle-free graph,NG(u1)
⋂

NG(u2) = ∅.
Thus h(v) ≥ dG(u1) + dG(u2) + 2. By (A.6), h(v) ≥

n
4 − 2. If t ≥ 5, we have n ≥

∑t
i=1h(vi) ≥ 5( n4 − 2) > n, a contradiction.

Hence t ≤ 4.
By (A.5), we have d3 ≥ 4. As t−t2 ≤ 1 and t ≤ 4, (t3, t3) ∈ {(0, 4), (1, 3), (1, 4)}. If (t3, t3) = (1, 4), by (A.5), di = 0 for any

i ≥ 6 and d5 ≤ 1. By t−t2 ≤ 1 and t ≤ 4, we have d5 = 0. Then the number of odd degree vertices is an odd number, which is
impossible. Hence (t3, t3) ∈ {(0, 4), (1, 3)}. By (A.5), di = 0 for any i ≥ 5. Furthermore, if (t3, t3) = (0, 4), then t4 ≤ 1, t4 = 0
andn′

= d2+t3+t3+d4 ≤ 3+0+4+1 = 8; if (t3, t3) = (1, 3), then t4 = 0, t4 ≤ 1 andn′
= d2+t3+t3+d4 ≤ 3+1+3+1 = 8.

By Lemma 2.11(i), F (G(e, e′)′) = 3. Hence by Lemma 2.15, G(e, e′)′ ∈ {J ′(1, 2), J ′(1, 1), K1,3(1, 1, 1)}. Then G(e, e′)′ must be
one of the graphs depicted in Fig. 3. It is easy to see that for any case, there is a spanning (ve, ve′ )-trail in G(e, e′)′, contrary to
the assumption. This completes the proof of Theorem 2.6. ■

Lemma 3.3. Let G be a graph with κ ′(G) ≥ 2 and ess′(G) ≥ 3, and let G1,G2, · · · ,Gk be the blocks of G. Then the following are
equivalent.
(i) G is strongly spanning trailable.
(ii) For every i ∈ {1, 2, . . . , k}, Gi is strongly spanning trailable.
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Proof. Since each block of G is also 2-edge-connected and essentially 3-edge-connected, (i) implies (ii). To prove (ii) implies
(i), we argue by induction on k, the number of blocks of G. As (ii) trivially implies (i) when k = 1, we assume that k > 1 and
for any graph with fewer than k blocks, (ii) implies (i).

Since k ≥ 2, G has two connected subgraphs H and L and a vertex z0 such that E(G) = E(H)∪ E(L) and V (H)∩V (L) = {z0}.
Let e, e′

∈ E(G). If {e, e′
} ∩ E(L) = ∅, then by induction, H(e, e′) has a spanning (ve, ve′ )-trail Q1. By induction, for any edge

e′′
∈ E(L), L(e′′) has a spanning (ve′′ , ve′′ )-trial, and so L has a spanning closed trail Q2. It follows that Q = G[E(Q1)∪E(Q2)] is a

spanning (ve, ve′ )-trail of G. The proof for the case when {e, e′
} ⊆ E(L) is similar, and will be omitted. Hence we may assume

that e ∈ E(H) and e′
∈ E(L).

Since G is essentially 3-edge-connected, we have dH (z0) ≥ 3, and so H has an edge e′′
∈ EH (z0) − {e}. By induction, H has

a spanning (ve, ve′′ )-trail T ′

1. Assume that e′′
= z0w. Define

T1 =

{
T ′

1 − z0ve′′ if z0ve′′ is the last edge in T ′

1,

H[E(T ′

1 − ve′′ ) ∪ {e′′
}] if wve′′ is the last edge in T ′

1.

Thus T1 is a spanning (ve, z0)-trail of H . Similarly, L has a spanning (z0, ve′ )-trail T2. It follows that T = T1 ∪ T2 is a spanning
(ve, ve′ )-trail. ■
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