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a b s t r a c t

For integers k, r > 0, a (k, r)-coloring of a graph G is a proper coloring c with at most k
colors such that for any vertex v with degree d(v), there are at least min{d(v), r} different
colors present at the neighborhoodof v. The r-hued chromatic number ofG,χr (G), is the least
integer k such that a (k, r)-coloring of G exists. The list r-hued chromatic number χL,r (G) of
G is similarly defined. Thus if∆(G) ≥ r , then χL,r (G) ≥ χr (G) ≥ r+1.We present examples
to show that, for any sufficiently large integer r , there exist graphs with maximum average
degree less than 3 that cannot be (r +1, r)-colored. We prove that, for any fraction q < 14

5 ,
there exists an integer R = R(q) such that for each r ≥ R, every graph G with maximum
average degree q is list (r + 1, r)-colorable. We present examples to show that for some r
there exist graphswithmaximumaverage degree less than 4 that cannot be r-hued colored
with less than 3r

2 colors. We prove that, for any sufficiently small real number ϵ > 0, there
exists an integer h = h(ϵ) such that every graph G with maximum average degree 4 − ϵ

satisfies χL,r (G) ≤ r + h(ϵ). These results extend former results in Bonamy et al. (2014).
© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terms and notation will follow [4]. Thus for a graph G, ∆(G), δ(G),
and χ (G) denote the maximum degree, the minimum degree, and chromatic number of G, respectively. For v ∈ V (G), let
NG(v) denote the set of vertices adjacent to v in G, NG[v] = NG(v)

⋃
{v}, and dG(v) = |NG(v)|. When G is understood from

the context, the subscript G is often omitted. For a graph Gwhich is not a forest, the girth of G, denoted g(G), is the length of
a shortest cycle in G.

Let k, r be positive integers, and define k̄ ={1, 2, . . . , k}. If c : V (G) ↦→ k̄, and if V ′
⊆ V (G), then define c(V ′) = {c(v)|v ∈

V ′
}. A (k, r)-coloring of a graph G is a mapping c : V (G) ↦→ k̄ satisfying both the following:

(C1) c(u) ̸= c(v) for every edge uv ∈ E(G);
(C2) |c(NG(v))| ≥ min{dG(v), r} for any v ∈ V (G).
Such a (k, r)-coloring is also called as an r-hued coloring using atmost k colors. For a fixed integer r > 0, the r-hued chromatic
number of G, denoted by χr (G), is the smallest k such that G has a (k, r)-coloring. It is easy to extend the concept to its list
coloring version. The list r-hued chromatic number χL,r (G) of a graph G is similarly defined. The r-hued coloring was first
introduced in [19] and [16], where χ2(G) was called the dynamic chromatic number of G. Its research can be traced much
earlier, as the square coloring is the special case when r = ∆. Many have investigated r-hued colorings and list r-hued
colorings, as seen in [1,2,7–9,12–17,19,20,22], among others.
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By definition, for any integer h > 0 and for any graph G with ∆(G) = ∆, we have χ∆+h(G) = χ∆(G). If a graph G satisfies
∆(G) ≥ r , then by (C2), we must have χr (G) ≥ r + 1. It is natural to seek when a graph G would satisfy χr (G) ≥ r + C , for
some given constant C . The case when C = 1 is of particular interest. In [23], Wang and Lih conjectured that for any integer
k ≥ 5, there exists an integerN(k) such that every planar graph Gwith g(G) ≥ k and∆(G) ≥ N(k) satisfies χ∆(G) = ∆(G)+1.
It is shown in [5,6,10,11] that Wang and Lih’s conjecture holds for k ≥ 7 and fails for k ∈ {5, 6}. Wegner [24] conjectured
the case when r = ∆(G) in Conjecture 1.1.

Conjecture 1.1 ([20]). Let G be a planar graph. Then

χr (G) ≤

⎧⎨⎩
r + 3, if 1 ≤ r ≤ 2
r + 5, if 3 ≤ r ≤ 7;
⌊3r/2⌋ + 1, if r ≥ 8.

Recently, it is proved in [22] that for r ≥ 3, any planar graph Gwith girth at least 6 satisfies χr (G) ≤ r + 5. In [18,22], this
conjecture is verified for graphs without a minor isomorphic to K4.

Themaximum average degree of a graph is defined as

mad(G) = max
{∑

v∈V (H) dH (v)

|V (H)|
: H is a subgraph of G

}
.

By definition, any forest is of maximum average degree at most 2. It is proved in [15] that all forests are (r + 1, r)-colorable.
Bonamy et al. [3] proved the following results:

Theorem1.2 (Bonamy et al. [3]). There exists a function f such that for a small enough ϵ > 0, every graphwithmad(G) < 14/5−ϵ

and ∆(G) ≥ f (ϵ) satisfies χ∆(G) ≤ ∆ + 1.

Theorem 1.3 (Bonamy et al. [3]). For any sufficiently small real number ϵ > 0, there exists an integer h(ϵ) such that every graph
G with mad(G) < 4 − ϵ satisfies χL,∆(G) ≤ ∆(G) + h(ϵ).

Motivated by Theorems 1.2, 1.3, Conjecture 1.1 and the results mentioned above, we consider the following problems.

Problem 1.4. For any real number x > 0, is there a smallest integer f (x) such that, when r ≥ f (x), every graph G with
mad(G) < x satisfies χr (G) ≤ r + 1?

Problem 1.5. Determine the set X of positive real numbers such that x ∈ X if and only if there exists a smallest integer h(x)
such that every graph Gwith mad(G) < x satisfies χr (G) ≤ r + h(x), for all sufficiently large r .

In Section 2, we present examples to show that for certain values of x, f (x) in Problem 1.4 may not exist, and that in
Problem 1.5, sup{x ∈ X } ≤ 4. The main purposes of this paper are, within reasonable ranges of the parameters, to extend
Theorems 1.2 and 1.3 to r-hued colorings for arbitrary values of r . The main results of the paper are presented below.
Theorem 1.6 shows the existence of f (x) for any x ∈ [0, 14

5 ) and Theorem 1.7 shows that sup{x ∈ X } = 4.

Theorem 1.6. For any sufficiently small real number ϵ > 0, there exists an integer f (ϵ) such that every graph G with
mad(G) < 14/5 − ϵ and r ≥ f (ϵ) satisfies χr (G) ≤ r + 1.

Theorem 1.7. For any sufficiently small real number ϵ > 0, there exists an integer h(ϵ) such that every graph G with
mad(G) < 4 − ϵ satisfies χr (G) ≤ r + h(ϵ).

In Section 3, we introduce the necessary notations and present some basics that are useful in our arguments. The proofs
for the main results are in the subsequent sections.

2. Examples

We in this sectionwill present two families of examples that are related to Problems 1.4 and 1.5. In particular, Example 2.1
shows that in Problem 1.4, f (x) does not exist for any x ≥ 3. Example 2.2 suggests that sup{x ∈ X } ≤ 4.

Example 2.1 ([21]). There exists an infinite fractional sequence qr with 7
3 ≤ qr < 3 and limr→∞qr = 3, such that for any

integer r ≥ 3, there exists a graph G satisfying thatmad(G) ≤ qr ,∆(G) ≥ r andχr (G) ≥ r+2. Such graphs can be constructed
as follows. Let s ≥ 1 and t ≥ 1 be integers. For i = 1, . . . , s, let Ji be a graph with

V (Ji) = {wi
1, w

i
2, w

i
3, w

i
4, x

i
1, x

i
2, . . . , x

i
t , y

i
1, y

i
2, . . . , y

i
t},

and

E(Ji) = {wi
1w

i
3, w

i
2w

i
3, w

i
1w

i
4, w

i
2w

i
4} ∪ {wi

1x
i
j, x

i
jy

i
j, y

i
jw

i
2 : 1 ≤ j ≤ t}.
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Obtain a graph G(s, t) from the disjoint union of J1, J2, . . . , Js by identifyingw1
1, w

2
1, . . . , w

s
1 into one vertexw1. Thenwe have

the following observations which justify the conclusions stated in this example.
(i) ∆(G(s, t)) = s(t + 2);
(ii) 7

3 ≤ mad(G(s, t)) =
2s(3t+4)
s(2t+3)+1 < 3;

(iii) If r = t + 2, then χr (G(s, t)) ≥ r + 2.

Fig. 1. Example 2.2, G(p, 1) with r = 2p, mad(G(p, 1)) = 4 −
2
p and χr (G(p, 1)) =

3r
2 .

Example 2.2. There exists an infinite fractional sequence q′
r with 3 ≤ q′

r < 4 and limr→∞q′
r = 4, such that for any even

integer r > 0, there exists a graph G satisfying thatmad(G) ≤ q′
r , ∆(G) ≥ r and χr (G) ≥

3r
2 .

We will construct such graphs. Let s ≥ 1 and p ≥ 2 be integers. For i = 1, . . . , s, let Ji be a graph with

V (Ji) = {ui
1, v

i
1, w

i
1, u

i
2, u

i
3, . . . , u

i
p, v

i
2, v

i
3, . . . , v

i
p, w

i
2, w

i
3, . . . , w

i
p},

and

E(Ji) = {ui
1v

i
1, v

i
1w

i
1, w

i
1u

i
1} ∪ {ui

1u
i
j, u

i
1v

i
j, v

i
1u

i
j, v

i
1w

i
j, w

i
1w

i
j, w

i
1v

i
j : 2 ≤ j ≤ p}.

Obtain a graph G(p, s) from the disjoint union of J1, J2, . . . , Js by identifying w1
p, w

2
p, . . . , w

s
p into one vertex wp. See Fig. 1 for

an example of G(p, 1). Then we have the following observations which justify the conclusions stated in this example.
(i) ∆(G(p, s)) = max{2p, 2s}.
(ii) 4 −

2
p ≤ mad(G(p, s)) < 4.

(iii) If r = 2p, then χr (G(p, s)) ≥
3r
2 .

Proof. Direct computation yields Example 2.2(i) and that the average degree of G(p, s) is
2|E(G(p, s))|
|V (G(p, s))|

=
2s(6p − 3)

s(3p − 1) + 1
,

which is an increasing function in p as well as in s. As p ≥ 2 and s ≥ 1, with q′
s =

2s(6p−3)
s(3p−1)+1 , Example 2.2(ii) follows from the

fact that

3 ≤ 4 −
2
p

≤
2s(6p − 3)

s(3p − 1) + 1
≤

2s(6p − 3)
s(3p − 1)

=
2(6p − 3)
(3p − 1)

<
2(6p − 2)
3p − 1

= 4.

It remains to justify Example 2.2(iii). Let r ≥ 2p. Suppose that G(p, s) has a (k, r)-coloring c : V (G(p, s)) ↦→ k = {1, 2, . . . , k}.
Let G = G(p, s). Since NG(u1

1) = {v1
1, w

1
1, u

1
2, u

1
3, . . . , u

1
p , v

1
2, v

1
3, . . . , v

1
p}, it follows by r ≥ 2p that |c(NG(u1

1))| = 2p. Similarly,
|c(NG(v1

1))| = |c(NG(w1
1))| = 2p. It follows that |c(V (J1))| = |V (J1)| = 3p, and so k ≥ |c(V (J1))| = 3p =

3r
2 . □

3. Preliminaries and reductions

For an integer i ≥ 0 and a graph G, let Di(G) = {v ∈ V (G) : dG(v) = i}, and D≥i(G) = ∪j≥iDj(G). A vertex v is a
k-vertex, (k+-vertex, k−-vertex, respectively) of G if v ∈ Dk(G) (v ∈ D≥k(G), v ∈ V (G) − D≥k+1(G), respectively). We define
ni(v) = |Di(G) ∩ NG(v)|. For an integer p ≥ 1 and u, w ∈ V (G), a (u, w)-path P = uv1v2 · · · vpw of G is internally divalent in
G if for every i with 1 ≤ i ≤ p, vi ∈ D2(G). An internally divalent (u, w)-path of length p + 1 is also called as a p-link. When
such a p-link P exists, the two end vertices u and w are said to be p-linked.

Let V ′
⊆ V (G) be a vertex subset of a graph G. As in [4], G[V ′

] is the subgraph of G induced by V ′. A mapping c : V ′
↦→ k̄

is a partial (k, r)-coloring of G if c is a (k, r)-coloring of G[V ′
]. The subset V ′, denoted by S(c), is the support of c. If c1, c2 are

two partial (k, r)-colorings of G such that S(c1) ⊆ S(c2) and such that for any v ∈ S(c1), c1(v) = c2(v), then we say that c2
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is an extension of c1. Given a partial (k, r)-coloring c on V ′
⊂ V (G), for each v ∈ V − V ′, define {c(v)} = ∅; and for every

vertex v ∈ V , we extend the definition of c(NG(v)) by setting c(NG(v)) = ∪z∈NG(v){c(z)}, and define

c[v] =

{
{c(v)}, if |c(NG(v))| ≥ r;
{c(v)} ∪ c(NG(v)), otherwise.

(1)

By (1), |c[v]| ≤ r .
For any vertex v ∈ V (G), to count the number of vertices in NG[v] which affects the color choices of its uncolored

neighbors, we define themodified degree d′(v) of v as follows.

d′(v) =

{
d(v), if d(v) ≤ r;
1, if d(v) ≥ r + 1.

(2)

Observations 3.1 and 3.2 follow from (1) and (2) immediately.

Observation 3.1. Let c be a partial (k, r)-coloring of G with support S(c). For any u ̸∈ S(c), and for any v ∈ NG(u), by the
definition of c[v], we have |c[v]| ≤ min{d(v), r} and c[v] represents the colors that cannot be used as c(u) if one wants to extend
c to include u in the support. As the condition (C2) should hold for u under such an extension of c, the colors in k̄ −

⋃
v∈NG(u)

c[v]

are available colors to define c(u) in extending the support of c from S(c) to S(c) ∪ {u} so that the extended c remains a partial
(k, r)-coloring of G.

Observation 3.2. A partial (k, r)-coloring c of G is given. If v has only one uncolored neighbor, then |c[v]| ≤ d′(v).

To build some tools to be applied in our arguments, we present a few lemmas in this section. Lemma 3.3 follows from the
definition immediately.

Lemma 3.3. Let G be a graph with components G1,G2, . . . ,Gc . Then χr (G) ≤ k if and only if for every i, χr (Gi) ≤ k.

Lemma 3.4 (Lemma 3.2 of [22]). Let v ∈ D2(G) with NG(v) = {u, w}, and c be a partial (k, r)-coloring of G with v ̸∈ S(c),
u, w ∈ S(c) such that c(u) ̸= c(w). If |c[u]

⋃
c[w]| < k, then G has a partial (k, r)-coloring c ′ such that S(c) ∪ {v} ⊆ S(c ′) and

that for any z ∈ S(c), c(z) = c ′(z).

Lemma 3.5. Let ℓ, r > 0 be integers with ℓ > r and G be a graph. Each of the following holds.
(i) Suppose that G has a vertex v ∈ D1(G). If χr (G − v) ≤ ℓ, then χr (G) ≤ ℓ.
(ii) Suppose that G has a vertex w1 with d′(w1) ≤ ℓ − 2 which is 2-linked to a vertex w2 via an internally divalent path
P = w1u1u2w2 with d′(w2) ≤ ℓ − 3. If χr (G − {u1, u2}) ≤ ℓ, then χr (G) ≤ ℓ.
(iii) Suppose that G has a vertex u with dG(u) ≤ 6 which is 1-linked to a vertex w1 with d′(w1) ≤ 13 via a divalent path uvw1,
and that

∑
x∈NG(u)\{v}

d′(x) ≤ ℓ − 2. If ℓ ≥ 20 and χr (G − v) ≤ ℓ, then χr (G) ≤ ℓ.
(iv) Suppose for some integer p ≥ 2, that G has a set of vertices {ai}, where the subscripts are taken modulo p, such that for every i,
d(ai) ≤ r and ai is 3-linked via an internally divalent path aib2icib2i+1ai+1 to ai+1. Let H = G− {b0, b1, . . . , b2p−1, c0, . . . , cp−1}.
If ℓ ≥ 5 and χr (H) ≤ ℓ, then χr (G) ≤ ℓ.

Proof. (i) Suppose G has a vertex v ∈ D1(G) and G− v has an (ℓ, r)-coloring c. Let u be the only neighbor of v. For |c[u]| ≤ r ,
we extend c to an (ℓ, r)-coloring of G by letting c(v) ∈ ℓ − c[u].
(ii) Suppose that G − {u1, u2} has an (ℓ, r)-coloring c . As |c[w1]

⋃
{c(w2)}| ≤ d′(w1) + 1 ≤ ℓ − 1, c can be extended to c1

by letting c1(u1) ∈ ℓ − c[w1]
⋃

{c(w2)}. Thus c1 is a partial (ℓ, r)-coloring with S(c1) = V (G) − {u2} and c1(u1) ̸= c1(w2).
As |c1[u1]

⋃
c1[w2]| ≤ d(u1) + d′(w2) ≤ 2 + d′(w2) < ℓ, it follows by Lemma 3.4 that c1 can be further extended to an

(ℓ, r)-coloring c2 of G. This proves (ii).
(iii) Suppose that G − {v} has an (ℓ, r)-coloring c. Let c0 be the restriction of c to V (G) − {v, u}. By Observation 3.2,
|
⋃

x∈NG(u)
c0[x]| ≤ 1+

∑
x∈NG(u),x̸=vd

′(x) ≤ 1+ (ℓ−2) < ℓ, and so c0 can be extended to c1 by taking c1(u) ∈ ℓ−
⋃

x∈NG(u)
c0[x].

Then c1 is an (ℓ, r)-coloring of V (G) − {v} with c1(u) ̸= c1(w1). As |c1[w1]
⋃

c1[u]| ≤ 13 + 6 < 20 ≤ ℓ, it follows by
Lemma 3.4 that c1 can be extended to an (ℓ, r)-coloring c2 of G. This proves (iii).
(iv) Let c be an (ℓ, r)-coloring of H . Since for every i with 0 ≤ i ≤ p − 1, we have |c[ai]| ≤ d(ai) − 1 ≤ r − 1 ≤ ℓ − 2, it
follows that for any i with 0 ≤ i ≤ p − 1, there are at least two colors in ℓ − c[ai] available for coloring b2i−1 and b2i. Hence
coloring the set {b0, b1, . . . , b2p−1} is equivalent to 2-list-coloring an even cycle. Thus we can extend c to an (ℓ, r)-coloring
c1 of V (G) − {c0, . . . , cp−1} satisfying c1(b2i) ̸= c1(b2i+1) for any 0 ≤ i ≤ p − 1, where the subscripts are taken modulo 2p.
For ℓ ≥ 5, by Lemma 3.4, c1 can be extended to an (ℓ, r)-coloring of G. This proves (iv). □

4. Proof of Theorem 1.6

Throughout this section, let 1
20 ≥ ϵ > 0 and define f (ϵ) =

16
5ϵ + 2. We will show that for any integer r ≥ f (ϵ) ≥ 66,

any graph with maximum average degree less than 14/5− ϵ has an (r + 1, r)-coloring. We shall argue by contradiction and
assume that

G is a counterexample to Theorem 1.6 such that |V (G)| + |E(G)| is minimized. (3)
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By the assumption, we have mad(G) < 14
5 − ϵ and for some integer r ≥ f (ϵ), G has no (r + 1, r)-colorings, but for any

non-empty proper subset S ⊂ V (G)∪E(G), G−S has an (r +1, r)-coloring. In the following, we first investigate the structure
of such a minimum counterexample G, and then use charge and discharge method to obtain a contradiction to complete the
proof.

Fig. 2. Forbidden configurations for Theorem 1.6.

Lemma 4.1. Each of the following holds for this graph G and the integer r.
(i) G is connected and δ(G) ≥ 2.
(ii) G does not have a vertex w1 with d′(w1) ≤ r − 1 which is 2-linked to a vertex w2 with d′(w2) ≤ r − 2. (See Fig. 2 (C2)).
(iii) G does not have a vertex u with dG(u) ≤ 6, that is, 1-linked to a vertex of modified degree at most 13, and such that the sum
of the modified degrees of its neighbors is at most r + 1. (See Fig. 2 (C3)).
(iv) p ≥ 2, and G does not have a set of vertices {ai}, such that for any i, where i is taken modulo p, ai is 3-linked to ai+1. (See Fig. 2
(C4)).
(v) G does not have a 4-link, and no link can be a cycle. Furthermore, if two vertices u, v are 3-linked in G, then u, v ∈ Dr (G).

Proof. (i)–(iv) follow from Lemma 3.5(i)–(iv) by setting ℓ = r + 1 respectively.
To prove (v), we first observe that by (ii), there is no 4-link in G. Suppose G has a p-link P = vv1v2...vpv which is a cycle.

Since G is simple, 2 ≤ p ≤ 3. If p = 2 and dG(v) ≥ r + 1, then by (3), G − {v1} has an (r + 1, r)-coloring c , which can be
extended to an (r + 1, r)-coloring of G by letting c(v1) ∈ r + 1 − {c(v), c(v2)}. If p = 2 and dG(v) ≤ r , then by (3), G − v1v2
has an (r+1, r)-coloring c which is also an (r+1, r)-coloring of G. In either case, a contradiction to (3) is obtained. Hence we
assume that p = 3. By (3), G−{v1, v2} has an (r + 1, r)-coloring c. If c[v] ̸= {c(v)}, then c(v3) ∈ c[v]. As |c[v]

⋃
{c(v3)}| ≤ r ,

there exist an η1 ∈ r + 1 − (c[v]
⋃

{c(v3)}) and η2 ∈ r + 1 − {c(v), c(v3), η1}. Let

c1(z) =

⎧⎨⎩
c(z) if z ∈ V (G) − {v1, v2}

η1 if z = v1

η2 if z = v2.

Then c1 is an (r + 1, r)-coloring of G, contradicts (3). Suppose u is 3-linked to v via an internally divalent path uv1v2v3v. u
and v must be distinct. And by (ii) and (2), d′

G(u) = dG(u) = r = d′

G(v) = dG(v). □

We shall use discharge method to find a contradiction to complete the proof. For each vertex x ∈ V (G), define the initial
charge of x as dG(x). Let p0 be a vertex not in V (G), viewed as a common pot of the charges, define its initial charge equal to 0.
The charge of a vertex will be renewed after every operation of charge transferring is done on it according to the following
rules (R1), (R2), (R3) and (Rg ) (see Fig. 3 for an illustration). Any 2-vertex can only be the receiver during the operations of
charge transferring. Now we list the rules from the point of view of the givers. Consider every vertex x ∈ D≥3(G) ∪ {p0}.
(R1) Suppose that 3 ≤ dG(x) ≤ 13. If no vertex in NG(x) ∩ D2(G) is adjacent to a vertex other than x of degree at most 13, x
gives nothing away.

For any vertex a ∈ NG(x) ∩ D2(G), let y ∈ NG(a) − {x}.
(R1.1) When dG(y) = 2, then x gives 3

5 to a;
(R1.2) When 3 ≤ dG(y) ≤ 13, then x gives 2

5 to a.
(R2) If 14 ≤ dG(x) ≤ r − 4, for any vertex a ∈ NG(x), x gives 4

5 to a.
(R3) Suppose that dG(x) ≥ r − 3. For any vertex a ∈ NG(x).

(R3.1) When dG(a) = 2 with y ∈ NG(a) − {x}, then x gives 4
5 − ϵ to a and 1

5 to y;
(R3.2) When dG(a) ≥ 3, then x gives 1 − ϵ to a.

(Rg ) If x ∈ D≥r (G), x gives additional 2
5 to p0; If x = p0, for any vertex a ∈ D2(G) which is adjacent to two vertices of degree 2,

x gives 2
5 to a.
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Fig. 3. Discharging rules R1 , R2 , R3 for Theorem 1.6.

In the rest of the discussion, we letw(x) denote the final charge of a vertex x, after all the recharging operations are complete
on it. Let P be the set of all maximal divalent paths of length at least 4. By Lemma 4.1(v), every P ∈ P has length 4, and the
two ends of P are in Dr (G). Let H = G[∪P∈PV (P)]− E(G[Dr (G)]). By Lemma 4.1(iv) and (v), the subgraph H of G is acyclic, and
so |Dr (G)| is not less than the number of vertices of degree 2 whose neighbors are of degree 2 in G. By Rg , we conclude that

w(p0) ≥ 0. (4)

By Lemma 4.1(i), δ(G) ≥ 2. We will show that, for any x ∈ V (G), w(x) ≥
14
5 − ϵ by justifying the following claims.

Claim 1. Let x ∈ D2(G). Then w(x) ≥
14
5 − ϵ.

Proof of Claim1. Since x ∈ D2(G), there exists amaximal internally divalent path P inG such that x ∈ V (P). Let p = |V (P)|−1.
By Lemma 4.1(v), P is not a cycle and 1 ≤ p ≤ 3. Let u, u′ be the two end vertices of the path P . Since P is maximal and by
Lemma 4.1(i), u, u′

∈ D≥3(G). We assume that d′(u) ≥ d′(u′).
Case 1 p = 1. Then NG(x) = {u, u′

}. If max{dG(u), dG(u′)} ≥ 14, then by R2 or R3.1, w(x) ≥ dG(x) +
4
5 − ϵ =

14
5 − ϵ. Hence we

assume that max{dG(u), dG(u′)} ≤ 13. Then by R1.2, x receives 2
5 from each of u and u′, and so w(x) = dG(x) + 2 ×

2
5 =

14
5 .

Case 2 p = 2. Let P = uvv′u′ with x ∈ {v, v′
} ⊆ D2(G). By Lemma4.1(ii), dG(u) ≥ d′(u) ≥ r−1. By R3.1,w(v) ≥ dG(v)+ 4

5 −ϵ =
14
5 − ϵ. By R3.1, R1.1 or R2, v′ receives 1

5 from u and at least 3
5 from u′. Thus w(v′) ≥ dG(v′) +

1
5 +

3
5 =

14
5 .

Case 3 p = 3. Let P = ua2a3a4u′ with x ∈ {a2, a3, a4} ⊆ D2(G). By Lemma4.1(v),u, u′
∈ Dr (G). ByR3.1,w(ai) = dG(ai)+ 4

5−ϵ =
14
5 − ϵ, for i ∈ {2, 4}. By R3.1 and Rg , a3 receives 1

5 from u and u′ and 2
5 from p0, and so w(a2) = dG(a2)+ 1

5 +
1
5 +

2
5 =

14
5 . □

Claim 2. Let x ∈ D3(G). Then w(x) ≥
14
5 − ϵ.

Proof of Claim 2. Let NG(x) = {x1, x2, x3}. Since r ≥ f (ϵ) ≥ 66 and by Lemma 4.1(iii), if {x1, x2, x3} ⊆ D2(G), then every one
xi is adjacent to a vertex of degree at least 14.
Case 1 NG(x) ∩ D2(G) contains two vertices (x1, x2, say) each of which is adjacent to a vertex of degree at most 13 other than
x. By Lemma 4.1(iii), dG(x3) ≥ d′(x3) ≥ r − 2. Hence by R3.2, x receives 1 − ϵ from x3, and by R1, gives away at most 2 ×

3
5 .

Thus w(x) ≥ dG(x) + 1 − ϵ −
6
5 =

14
5 − ϵ.

Case 2 NG(x) ∩ D2(G) contains just one vertex (x1, say) which is adjacent to a vertex of degree at most 13 other than x. As
r ≥ 66 and by Lemma 4.1(iii), we may assume that dG(x2) ≥ d′(x2) ≥ ⌈

r
2⌉ ≥ 33. Hence either dG(x2) ≤ r − 4, then

w(x) ≥ dG(x) +
4
5 −

3
5 ≥

14
5 − ϵ by R2 and R1; or dG(x2) ≥ r − 3 by R3.2 and R1, w(x) ≥ dG(x) + 1 − ϵ −

3
5 ≥

14
5 − ϵ.

Case 3No vertex inNG(x)∩D2(G) is adjacent to a vertex of degree atmost 13. As dG(x) ≤ 13, by R1,w(x) = dG(x) ≥
14
5 −ϵ. □

Claim 3. Let x ∈ Dd(G) for some integer d with 4 ≤ d ≤ 6. Then w(x) ≥
14
5 − ϵ.

Proof of Claim 3. If no vertex in NG(x) ∩ D2(G) is adjacent to a vertex of degree at most 13, then by R1, w(x) = d ≥
14
5 − ϵ.

Hence we assume that NG(x) ∩ D2(G) contains a vertex (x1, say) which is adjacent to a vertex of degree at most 13 other
than x. As r ≥ 66 and by Lemma 4.1(iii), NG(x) − D2(G) contains a vertex x2 such that dG(x2) ≥ d′(x2) ≥ ⌈

r
5⌉ ≥ 14. Hence

either dG(x2) ≤ r − 4 and by R2 and R1, w(x) ≥ d +
4
5 − (d − 1) ×

3
5 ≥

14
5 − ϵ; or dG(x2) ≥ r − 3 by R3.2 and R1,

w(x) ≥ d + 1 − ϵ − (d − 1) ×
3
5 ≥

14
5 − ϵ. □

Claim 4. Let x ∈ Dd(G) for some integer d ≥ 7. Then w(x) ≥
14
5 − ϵ.
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Proof of Claim 4. If 7 ≤ d ≤ 13, then by R1, w(x) ≥ d −
3d
5 ≥

2d
5 ≥

14
5 . If 14 ≤ d ≤ r − 4, then by R2,

w(x) = d −
4d
5 =

d
5 ≥

14
5 . Finally we assume that d ≥ r − 3. By R3, Rg and by d ≥ r − 3 ≥

16
5ϵ − 1, we have

w(x) ≥ d − d(1 − ϵ) −
2
5 = dϵ −

2
5 ≥ ϵ( 165ϵ − 1) −

2
5 =

14
5 − ϵ. □

By Claims 1–4 and by (4), we conclude that w(x) ≥
14
5 − ϵ for any x ∈ V (G) and w(p0) ≥ 0. It follows by the assumption

of Theorem 1.6 that

14
5

− ϵ ≤

∑
x∈V (G) w(x)

|V (G)|
≤

∑
x∈V (G) dG(x)

|V (G)|
≤ mad(G) <

14
5

− ϵ.

This contradiction justifies Theorem 1.6.
As remarked by Bonamy, Lévéque, and Pinlouin in [3], the limitation of this method lies in the configuration when a

vertex of degree 3 is 2-linked to two vertices of degree r , and is adjacent to a vertex of degree r . Assume that for some real
number α, every vertex has a new charge at least 2 + α after recharging. Then, vertices in D2(G) ∪ D3(G) need to receive at
least 4α − (1 − α) = 5α − 1. It means that if α ≥

4
5 , then a vertex v ∈ Dr (G) will have to be discharged at least 1 for each

such configuration it is adjacent to. However, the current hypothesis cannot forbid the existence of such configurations. This
indicates a barricade when attempting to improve the result in this direction.

5. Proof of Theorem 1.7

Let ϵ be a real number with 1 > ϵ > 0. DefineM =
8
ϵ

− 2 and h(ϵ) = 5M − 9. Thus

M − (4 − ϵ) = M × (1 −
ϵ

2
), and h(ϵ) ≥ 2M + 1. (5)

To prove Theorem 1.7 by contradiction, we assume the for some integer k ≥ r + h(ϵ) = r + 5M − 9, there exists a graph G
withmad(G) < 4 − ϵ such that G does not have a (k, r)-coloring and such that

|V (G)| + |E(G)| is minimized. (6)

A vertex v ∈ D2(G) ∪ D3(G) is weak if v has at most one neighbor of modified degree more than M . Some useful properties
of such a minimum counterexample Gwill be investigated in Lemma 5.1.

Lemma 5.1. For the integer k and a counterexample G satisfying (6), each of the following holds.
(i) G is connected and δ(G) ≥ 2.
(ii) If u ∈ V (G) with dG(u) ≤ M and with a weak vertex x ∈ NG(u), then either |{v ∈ NG(u) : d′(v) ≥ 4}| ≥ 4 or
|{v ∈ NG(u) : d′(v) > M}| ≥ 2.

Proof. (i) follows from Lemma 3.5(i) with ℓ = k.
(ii) Given a vertex u ∈ V (G) with dG(u) ≤ M and with a weak vertex x ∈ NG(u), let N ′

= {v ∈ NG(u) : d′(v) ≥ 4},
N ′′

= NG(u) − N ′, and N ′′′
= {v ∈ NG(u) : d′(v) > M}. By contradiction, we assume that both |N ′

| ≤ 3 and |N ′′′
| ≤ 1 (see

Fig. 4 C2). By (6),G−{ux}has a (k, r)-coloring c. Let c0 denote the restriction of c toV (G)−{u, x}. Since |N ′
|+|N ′′

| = dG(u) ≤ M
and since every v ∈ N ′′ satisfies d′(v) ≤ 3, we have

|

⋃
v∈NG(u)

c0[v]| ≤

∑
v∈N ′′′

|c0[v]| +

∑
v∈N ′−N ′′′

|c0[v]| +

∑
v∈N ′′−{x}

|c0[v]| + |c0[x]|

≤ r + 2M + 3(M − 4) + 2 = r + 5M − 10 ≤ k − 1.

Hence there exists η1 ∈ k−(∪v∈NG(u)c0[v]). Since x ∈ NG(u), we have η1 ̸∈ c0[x]. As dG(x) ≤ 3,we have |
⋃

v∈NG(x)
c0[v]∪{η1}| ≤

r + 2M + 1 < k, we can pick η2 ∈ k − (
⋃

v∈NG(x)
c0[v] ∪ {η1}). Define

c1(z) =

⎧⎨⎩
c(z) if z ∈ V (G) − {u, x}
η1 if z = u
η2 if z = x.

By definition, c1 is a (k, r)-coloring of G, contrary to (6). This proves (ii) and completes the proof of the lemma. □

To complete the proof of Theorem 1.7, we again apply charge and discharge method to obtain a contradiction. For every
x ∈ V (G), define the initial charge of x as dG(x). Let N1(x) = {v ∈ NG(x) : v is a weak vertex } and N2(x) = NG(x) − N1(x). The
rules to recharge x are given below. (See Fig. 5 for an illustration.)
(R1) If dG(x) > M , for each vertex x′

∈ NG(x), x gives (1 −
ϵ
2 ) to x′.

(R2) If dG(x) ≤ M , for each x′
∈ N1(x), x gives (1 −

ϵ
2 ) to x′.

Let w(u) denote the final charge of each u ∈ V (G) after all the operations of charge transferring are complete on it. We
shall show that, for any vertex u ∈ V (G), w(u) ≥ 4 − ϵ by justifying Claims 1 and 2. By Lemma 5.1(i), δ(G) ≥ 2.
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Fig. 4. Forbidden configurations for Theorem 1.7.

Fig. 5. Discharging rules R1 , R2 for Theorem 1.7.

Claim 1. If in the recharging process, u discharges some weight away, then w(u) ≥ 4 − ϵ.

Proof of Claim 1. If dG(u) > M , then by R1 and by definition ofM ,w(u) ≥ dG(u)−dG(u)(1−
ϵ
2 ) =

dG(u)ϵ
2 > M ϵ

2 = 4−ϵ. Hence
weassume thatdG(u) ≤ M . ByR2,udischarges if andonly if |N1(u)| > 0. By Lemma5.1(ii), either |{v ∈ NG(u) : d′(v) ≥ 4}| ≥ 4
or {v ∈ NG(u) : d′(v) > M}| ≥ 2. If v1, v2, v3, v4 ∈ {v ∈ NG(u) : d′(v) ≥ 4}, then as dG(vi) ≥ d′(vi) ≥ 4, for each i with
1 ≤ i ≤ 4, we have |N1(u)| ≤ |NG(u) − {v1, v2, v3, v4}| = dG(u) − 4. By R2, w(u) ≥ 4 + (d(u) − 4) × (1 −

ϵ
2 ) > 4 − ϵ.

Hence we assume that u1, u2 ∈ {v ∈ NG(u) : d′(v) > M}, and so dG(u1) ≥ d′(u1) > M and dG(u2) ≥ d′(u2) > M .
By R1, each of u1 and u2 discharges 1 −

ϵ
2 to u. As |N1(u)| ≤ |NG(u) − {u1, u2}| = dG(u) − 2, by R1 and R2, we have

w(u) ≥ 2 + 2(1 −
ϵ
2 ) + (dG(u) − 2) × (1 −

ϵ
2 ) ≥ 4 − ϵ. □

Claim 2. If in the recharging process, u never discharges, then w(u) ≥ 4 − ϵ.

Proof of Claim 2. If dG(u) ≥ 4, then as u never discharges, we have w(u) ≥ dG(u) > 4 − ϵ. Hence we assume that
dG(u) ≤ 3 < M and NG(u) contains no weak vertices.

If u is a weak vertex, then u gives nothing away and receives 1−
ϵ
2 from each of its neighbors. By the definition of a weak

vertex, 2 ≤ dG(u) ≤ 3 and so w(u) ≥ dG(u) + dG(u)(1 −
ϵ
2 ) ≥ 2 + 2(1 −

ϵ
2 ) = 4 − ϵ. Hence we assume that u is not a

weak vertex. By the definition of weak vertices, there are at least two vertices u′, u′′
∈ NG(u) with dG(u′) ≥ d′(u′) > M and

dG(u′′) ≥ d′(u′′) > M . ByR1, bothu′ andu′′ discharge 1− ϵ
2 tou, and sow(u) ≥ dG(u)+dG(u)(1− ϵ

2 ) ≥ 2+2×(1− ϵ
2 ) = 4−ϵ. □

By Claims 1 and 2, every vertex u of G has a final charge w(u) at least 4 − ϵ. It follows that

4 − ϵ ≤

∑
u∈V (G) w(u)

|V (G)|
=

∑
u∈V (G) dG(u)

|V (G)|
≤ mad(G) < 4 − ϵ.

This contradiction establishes Theorem 1.7.

Remark. We choose to present a simple proof despite the fact that it means the function h is probably not best possible.
However, in some sense, it is optimal up to a constant factor as the graph family presented in Fig. 1 shows that the function
cannot be reduced to 2

ϵ
. Indeed, the family {G(p, 1)}p∈N∗ satisfies χr (G(p, 1)) ≥ r +

2
4−mad(G(p,1)) .
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[11] Z. Dvořák, D. Král, P. Nejedlý, R.S. Ǩrekovski, Distance constrained labelings of planar graphs with no short cycles, Discrete Appl. Math. 157 (2009)

2634–2645.
[12] L. Esperet, Dynamic list coloring of bipartite graphs, Discrete Appl. Math. 158 (2010) 1963–1965.
[13] R. Kang, T. Muller, D.B. West, On r-dynamic coloring of grids, Discrete Appl. Math. (2015).
[14] S.-J. Kim, S.-J. Lee, W.-J. Park, Dynamic coloring and list dynamic colorig of planar graph, Discrete Appl. Math. 161 (2013) 2207–2212.
[15] H.-J. Lai, J. Lin, B. Montgomery, T. Shui, S. Fan, Conditional colorings of graphs, Discrete Math. 306 (2006) 1997–2004.
[16] H.-J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193–201.
[17] X. Li, X. Yao, W. Zhou, H.J. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009) 320–324.
[18] K.-W. Lih, W.-F. Wang, X. Zhu, Coloring the square of a K4-minor free graph, Discrete Math. 269 (2003) 303–309.
[19] B. Montgomery, Ph.D. Dissertation, West Virginia University, 2001.
[20] H.M. Song, S. Fan, Y. Chen, L. Sun, H.-J. Lai, On r-hued coloring of K4-minor free graphs, Discrete Math. 315–316 (2014) 47–52.
[21] H.M. Song, H.-J. Lai, J.L. Wu, Sparse graphs with r-hued chromatic number at most r + 1, submitted for publication.
[22] H.M. Song, H.-J. Lai, J.L. Wu, On r-hued coloring of planar graphs with girth at least 6, Discrete Appl. Math. 198 (2016) 251–263.
[23] F.W. Wang, K.W. Lih, Labeling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math. 17 (2003) 264–275.
[24] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report, University of Dortmund, 1977.

http://refhub.elsevier.com/S0012-365X(18)30004-9/sb1
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb2
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb3
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb4
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb5
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb5
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb5
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb6
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb7
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb7
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb7
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb8
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb8
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb8
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb9
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb10
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb11
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb11
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb11
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb12
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb13
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb14
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb15
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb16
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb17
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb18
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb20
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb22
http://refhub.elsevier.com/S0012-365X(18)30004-9/sb23

	List r-hued chromatic number of graphs with bounded maximum average degrees 
	Introduction
	Examples
	Preliminaries and reductions
	Proof of Theorem 1.6
	Proof of Theorem 1.7
	Funding
	References


