Note

Connectivity keeping stars or double-stars in 2-connected graphs

Yingzhi Tian ${ }^{\text {a,* }}$, Jixiang Meng ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$, Liqiong Xu ${ }^{\text {c }}$
${ }^{\text {a }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
c School of Science, Jimei University, Xiamen, Fujian 361021, PR China

ARTICLE INFO

Article history:

Received 4 July 2017
Received in revised form 10 October 2017
Accepted 14 October 2017
Available online 10 November 2017

Keywords:

2-Connected graphs
Stars
Double-stars
Mader's conjecture

Abstract

In Mader (2010), Mader conjectured that for every positive integer k and every finite tree T with order m, every k-connected, finite graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor+m-1$ contains a subtree T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is k-connected. In the same paper, Mader proved that the conjecture is true when T is a path. Diwan and Tholiya (2009) verified the conjecture when $k=1$. In this paper, we will prove that Mader's conjecture is true when T is a star or double-star and $k=2$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graph always means a finite, undirected graph without multiple edges and without loops. For graphtheoretical terminologies and notation not defined here, we follow [1]. For a graph G, the vertex set, the edge set, the minimum degree and the connectivity number of G are denoted by $V(G), E(G), \delta(G)$ and $\kappa(G)$, respectively. The order of a graph G is the cardinality of its vertex set, denoted by $|G| . k$ and m always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.
Theorem 1.1 ([2]). Every k-connected graph G of minimum degree $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor$ has a vertex u with $\kappa(G-u) \geq k$.
Fujita and Kawarabayashi proved in [4] that every k-connected graph G with minimum degree at least $\left\lfloor\frac{3}{2} k\right\rfloor+2$ has an edge $e=u v$ such that $G-\{u, v\}$ is still k-connected. They conjectured that there are similar results for the existence of connected subgraphs of prescribed order $m \geq 3$ keeping the connectivity.

Conjecture 1 ([4]). For all positive integers k, m, there is a (least) non-negative integer $f_{k}(m)$ such that every k-connected graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor-1+f_{k}(m)$ contains a connected subgraph W of exact order m such that $G-V(W)$ is still k-connected.

They also gave examples in [4] showing that $f_{k}(m)$ must be at least m for all positive integers k, m. In [5], Mader proved that $f_{k}(m)$ exists and $f_{k}(m)=m$ holds for all k, m.

Theorem 1.2 ([5]). Every k-connected graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor+m-1$ for positive integers k, m contains a path P of order m such that $G-V(P)$ remains k-connected.

[^0]In the same paper, Mader [5] asked whether the result is true for any other tree T instead of a path, and gave the following conjecture.

Conjecture 2 ([5]). For every positive integer k and every finite tree T, there is a least non-negative integer $t_{k}(T)$, such that every k-connected, finite graph G with $\delta(G) \geq\left\lfloor\frac{3}{2} k\right\rfloor-1+t_{k}(T)$ contains a subgraph $T^{\prime} \cong T$ with $\kappa\left(G-V\left(T^{\prime}\right)\right) \geq k$.

Mader showed that $t_{k}(T)$ exists in [6].
Theorem 1.3 ([6]). Let G be a k-connected graph with $\delta(G) \geq 2(k-1+m)^{2}+m-1$ and let T be a tree of order m for positive integers k, m. Then there is a tree $T^{\prime} \subseteq G$ isomorphic to T such that $G-V\left(T^{\prime}\right)$ remains k-connected.

Mader further conjectured that $t_{k}(T)=|T|$.
Conjecture 3 ([5]). For every positive integer k and every tree $T, t_{k}(T)=|T|$ holds.
Theorem 1.2 showed that Conjecture 3 is true when T is a path. Diwan and Tholiya [3] proved that the conjecture holds when $k=1$. In the next section, we will verify that Conjecture 3 is true when T is a star and $k=2$. It is proved in the last section that Conjecture 3 is true when T is a double-star and $k=2$.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note that any block of a connected graph of order at least two is 2-connected or isomorphic to K_{2}.

For a vertex subset U of a graph $G, G[U]$ denotes the subgraph induced by U and $G-U$ is the subgraph induced by $V(G)-U$. The neighborhood $N_{G}(U)$ of U is the set of vertices in $V(G)-U$ which are adjacent to some vertex in U. If $U=\{u\}$, we also use $G-u$ and $N_{G}(u)$ for $G-\{u\}$ and $N_{G}(\{u\})$, respectively. The degree $d_{G}(u)$ of u is $\left|N_{G}(u)\right|$. If H is a subgraph of G, we often use H for $V(H)$. For example, $N_{G}(H), H \cap G$ and $H \cap U$ mean $N_{G}(V(H)), V(H) \cap V(G)$ and $V(H) \cap U$, respectively. If there is no confusion, we always delete the subscript, for example, $d(u)$ for $d_{G}(u), N(u)$ for $N_{G}(u), N(U)$ for $N_{G}(U)$ and so on. A tree is a connected graph without cycles. A star is a tree that has exact one vertex with degree greater than one. A double-star is a tree that has exact two vertices with degree greater than one.

2. Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let G be a 2-connected graph with minimum degree $\delta(G) \geq m+2$, where m is a positive integer. Then for a star T with order m, G contains a star T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is 2-connected.

Proof. If $m \leq 3$, then T is a path, and the theorem holds by Theorem 1.2. Thus we assume $m \geq 4$ in the following.
Since $\delta(G) \geq m+2$, there is a star $T^{\prime} \subseteq G$ with $T^{\prime} \cong T$. Assume $V\left(T^{\prime}\right)=\left\{u, v_{1}, \ldots, v_{m-1}\right\}$ and $E\left(T^{\prime}\right)=\left\{u v_{i} \mid 1 \leq i \leq m-1\right\}$. We say T^{\prime} is a star rooted at u or with root u. Let $G^{\prime}=G-T^{\prime}$. Let B be a maximum block in G^{\prime} and let l be the number of components of $G^{\prime}-B$. If $l=0$, then $B=G^{\prime}$ is 2 -connected. So we may assume that $l \geq 1$. Let H_{1}, \ldots, H_{l} be the components of $G^{\prime}-B$ with $\left|H_{1}\right| \geq \cdots \geq\left|H_{l}\right|$.

Take such a star T^{\prime} so that
(P 1) $|B|$ is as large as possible,
(P2) ($\left.\left|H_{1}\right|, \ldots,\left|H_{l}\right|\right)$ is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.
Claim 1. $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ and $\left|N\left(H_{i}\right) \cap V\left(T^{\prime}\right)\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.
Since B is a block of G^{\prime}, we have $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ for each $i \in\{1, \ldots, l\}$. Since G is 2-connected, $\left|N\left(H_{i}\right) \cap V\left(T^{\prime}\right)\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.

Claim 2. $l=1$.
Assume $l \geq 2$. By Claim 1, there is an edge th between T^{\prime} and H_{1}, where $t \in T^{\prime}$ and $h \in H_{1}$. Choose a vertex $x \in H_{l}$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{l}\right) \cap B\right| \leq 1$ (by Claim 1), we have $|N(x) \backslash(B \cup\{t\})| \geq m+2-1-1=m$. Thus we can choose a star $T^{\prime \prime} \cong T$ with root x such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But then either there is a larger block than B in $G-T^{\prime \prime}$, or $G-T^{\prime \prime}-B$ contains a larger component than $H_{1}\left(H_{1} \cup\{t\}\right.$ is contained in a component of $\left.G-T^{\prime \prime}-B\right)$, which contradicts to (P1) or (P2).

Claim 3. $|N(t) \cap B| \leq 1$ and $\left|N(t) \cap H_{1}\right| \geq 2$ for any vertex $t \in V\left(T^{\prime}\right)$.
Assume $|N(t) \cap B| \geq 2$. Choose a vertex $x \in H_{1}$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $|N(x) \backslash(B \cup\{t\})| \geq$ $m+2-1-1=m$. Thus we can choose a star $T^{\prime \prime} \cong T$ with root x such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But $G-T^{\prime \prime}$ has a block containing $B \cup\{t\}$ as a subset, which contradicts to (P1). Thus $|N(t) \cap B| \leq 1$ holds. By $d(t) \geq m+2$ and $|N(t) \cap B| \leq 1$, we have $\left|N(t) \cap H_{1}\right|=d(t)-|N(t) \cap B|-\left|N(t) \cap T^{\prime}\right| \geq m+2-1-(m-1)=2$.

Claim 4. For any edge $t_{1} t_{2} \in E\left(T^{\prime}\right),\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \leq 1$ holds.

By contradiction, assume $\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \geq 2$. Because $\left|N\left(t_{1}\right) \cap B\right| \leq 1$ and $\left|N\left(t_{2}\right) \cap B\right| \leq 1$, we can assume that there are two distinct vertices $b_{1}, b_{2} \in B$ such that $t_{1} b_{1}, t_{2} b_{2} \in E(G)$. Choose a vertex $x \in H_{1}$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $\left|N(x) \backslash\left(B \cup\left\{t_{1}, t_{2}\right\}\right)\right| \geq m+2-1-2=m-1$. Thus we can choose a star $T^{\prime \prime} \cong T$ with root x such that $V\left(T^{\prime \prime}\right) \cap\left(B \cup\left\{t_{1}, t_{2}\right\}\right)=\emptyset$. But then $G-T^{\prime \prime}$ has a block containing $B \cup\left\{t_{1}, t_{2}\right\}$ as a subset, which contradicts to (P1).

Because $\left|N\left(H_{1}\right) \cap B\right| \leq 1$ and G is 2-connected, we have $\left|N\left(T^{\prime}\right) \cap B\right| \geq 1$. The following claim further shows that $\left|N\left(T^{\prime}\right) \cap B\right|=1$.

Claim 5. $\left|N\left(T^{\prime}\right) \cap B\right|=1$.
By contradiction, assume $\left|N\left(T^{\prime}\right) \cap B\right| \geq 2$. If $N(u) \cap B \neq \emptyset$, say $N(u) \cap B=\left\{u^{\prime}\right\}$, then we have $N\left(\left\{v_{1}, \ldots, v_{m-1}\right\}\right) \cap B \subseteq\left\{u^{\prime}\right\}$ by Claim 4. That is, $N\left(T^{\prime}\right) \cap B=\left\{u^{\prime}\right\}$, a contradiction. Thus $N(u) \cap B=\emptyset$. Assume, without loss of generality, that there are two distinct vertices w and w^{\prime} in B such that $v_{1} w, v_{2} w^{\prime} \in E(G)$. If $N\left(v_{3}\right) \cap B=\emptyset$ or $\left|N\left(v_{3}\right) \cap\left\{v_{1}, v_{2}\right\}\right| \leq 1$, then we can choose a star $T^{\prime \prime}$ with order m and root v_{3} such that $V\left(T^{\prime \prime}\right) \cap\left(B \cup\left\{u, v_{1}, v_{2}\right\}\right)=\emptyset$. But then $B \cup\left\{u, v_{1}, v_{2}\right\}$ is contained in a block of $G-T^{\prime \prime}$, contradicting to (P 1). Thus we assume v_{3} is adjacent to a vertex y in B and is adjacent to both v_{1} and v_{2}. Without loss of generality, assume y is distinct from w. Then we can choose a star $T^{\prime \prime}$ with order m and root u such that $V\left(T^{\prime \prime}\right) \cap\left(B \cup\left\{v_{1}, v_{3}\right\}\right)=\emptyset$. But $B \cup\left\{v_{1}, v_{3}\right\}$ is contained in a block of $G-T^{\prime \prime}$, contradicting to (P 1). Thus $\left|N\left(T^{\prime}\right) \cap B\right|=1$.

By Claim $5,\left|N\left(T^{\prime}\right) \cap B\right|=1$. Assume $N\left(T^{\prime}\right) \cap B=\{w\}$. Since G is 2 -connected, we have $\left|N\left(H_{1}\right) \cap B\right| \geq 1$. By Claim 1, $\left|N\left(H_{1}\right) \cap B\right|=1$. Assume $N\left(H_{1}\right) \cap B=\{z\}$. Let P be a shortest path from z to w going through H_{1} and T^{\prime}. Assume $P:=p_{1} p_{2} \cdots p_{q-1} p_{q}$, where $p_{1}=z, p_{q}=w$ and $p_{i} \in H_{1} \cup T^{\prime}$ for each $i \in\{2, \ldots, q-1\}$. Since P is a shortest path, $\left|N\left(p_{i}\right) \cap P\right|=2$ for each $2 \leq i \leq q-1$. By $N\left(T^{\prime}\right) \cap B=\{w\}$ and $N\left(H_{1}\right) \cap B=\{z\}, N\left(p_{i}\right) \cap B \subseteq\{w, z\} \subseteq V(P)$ for each $2 \leq i \leq q-1$. Thus $\left|N\left(p_{i}\right) \cap(B \cup P)\right|=2$ and $\left|N\left(p_{i}\right) \cap(V(G) \backslash(B \cup P))\right| \geq m$ for each $2 \leq i \leq q-1$. This implies $G-(B \cup P)$ is not empty. For any vertex x in $G-(B \cup P)$, we have $|N(x) \cap P| \leq 3$. For otherwise, we can find a path P^{\prime} containing x from z to w going through H_{1} and T^{\prime} shorter than P, a contradiction. By $\delta(G) \geq m+2,|N(x) \cap(G-(B \cup P))| \geq m+2-3=m-1$. Then we can find a star $T^{\prime \prime} \cong T$ with root x such that $T^{\prime \prime} \cap(B \cup P)=\emptyset$. But then $B \cup P$ is contained in a block of $G-T^{\prime \prime}$, a contradiction. The proof is thus complete.

3. Connectivity keeping double-stars in 2-connected graphs

Lemma 3.1. Let G be a graph and T be a double-star with order m. If there is an edge $e=u v \in E(G)$ such that $|N(u) \backslash v| \geq\left\lfloor\frac{m}{2}\right\rfloor-1$, $|N(v) \backslash u| \geq m-3$ and $|(N(u) \cup N(v)) \backslash\{u, v\}| \geq m-2$, then there is a double-star $T^{\prime} \subseteq G$ isomorphic to T.

Proof. Since T is a double-star, we have $m \geq 4$. Assume the double-star T is constructed from an edge $e^{\prime}=u^{\prime} v^{\prime}$ by adding r leaves to u^{\prime} and s leaves to v^{\prime}, where $1 \leq r \leq s$ and $r+s=m-2$. Then $1 \leq r \leq\left\lfloor\frac{m}{2}\right\rfloor-1$ and $\left\lceil\frac{m}{2}\right\rceil-1 \leq s \leq m-3$. Since $|N(u) \backslash v| \geq\left\lfloor\frac{m}{2}\right\rfloor-1,|N(v) \backslash u| \geq m-3$ and $|(N(u) \cup N(v)) \backslash\{u, v\}| \geq m-2$, we can find a double-star $T^{\prime} \cong T$ in G with center-edge $e=u v$, where u is adjacent to r leaves and v is adjacent to s leaves.

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 2.1, with much more complicated and different details.

Theorem 3.2. Let T be a double-star with order m and G be a 2-connected graph with minimum degree $\delta(G) \geq m+2$. Then G contains a double-star T^{\prime} isomorphic to T such that $G-V\left(T^{\prime}\right)$ is 2-connected.

Proof. Since T is a double-star, we have $m \geq 4$. If $m=4$, then T is a path, and the theorem holds by Theorem 1.2. Thus we assume $m \geq 5$ in the following.

Since $\delta(G) \geq m+2$, there is a double-star $T^{\prime} \subseteq G$ with $T^{\prime} \cong T$. Assume $V\left(T^{\prime}\right)=\left\{u, v, u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right\}$ and $E\left(T^{\prime}\right)=\{u v\} \cup\left\{u u_{i} \mid 1 \leq i \leq r\right\} \cup\left\{v v_{j} \mid 1 \leq j \leq s\right\}$, where $1 \leq r \leq s$ and $r+s=m-2$. We say T^{\prime} is a double-star with center-edge $u v$. Let $G^{\prime}=G-T^{\prime}$. Let B be a maximum block in G^{\prime} and let l be the number of components of $G^{\prime}-B$. If $l=0$, then $B=G^{\prime}$ is 2 -connected. So we may assume that $l \geq 1$. Let H_{1}, \ldots, H_{l} be the components of $G^{\prime}-B$ with $\left|H_{1}\right| \geq \cdots \geq\left|H_{l}\right|$.

Take such a double-star T^{\prime} so that
(P1) $|B|$ is as large as possible,
(P2) ($\left.\left|H_{1}\right|, \ldots,\left|H_{l}\right|\right)$ is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.
Claim 1. $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ and $\left|N\left(H_{i}\right) \cap T^{\prime}\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.
Since B is a block of G^{\prime}, we have $\left|N\left(H_{i}\right) \cap B\right| \leq 1$ for each $i \in\{1, \ldots, l\}$. Since G is 2-connected, $\left|N\left(H_{i}\right) \cap T^{\prime}\right| \geq 1$ for each $i \in\{1, \ldots, l\}$.

Claim 2. $\left|H_{i}\right| \geq 2$ for each $i \in\{1, \ldots, l\}$.
This claim holds because $\left|N\left(h_{i}\right) \cap H_{i}\right|=d\left(h_{i}\right)-\left|N\left(h_{i}\right) \cap T^{\prime}\right|-\left|N\left(h_{i}\right) \cap B\right| \geq m+2-m-1=1$ for any vertex $h_{i} \in H_{i}$, where $1 \leq i \leq l$.

Claim 3. $l=1$.
Assume $l \geq 2$. By Claim 1, there is an edge th between T^{\prime} and H_{1}, where $t \in T^{\prime}$ and $h \in H_{1}$. By Claim 2, we can choose an edge $x y \in E\left(H_{l}\right)$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{l}\right) \cap B\right| \leq 1$ (by Claim 1), we have $|N(x) \backslash(B \cup\{y, t\})| \geq m+2-1-2=m-1$ and $|N(y) \backslash(B \cup\{x, t\})| \geq m+2-1-2=m-1$. Thus, by Lemma 3.1, we can choose a double-star $T^{\prime \prime} \cong T$ with center-edge $x y$ such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But then either there is a larger block than B in $G-T^{\prime \prime}$, or $G-T^{\prime \prime}-B$ contains a larger component than $H_{1}\left(H_{1} \cup\{t\}\right.$ is contained in a component of $\left.G-T^{\prime \prime}-B\right)$, which contradicts to (P1) or (P2).

Claim 4. $|N(t) \cap B| \leq 1$ and $\left|N(t) \cap H_{1}\right| \geq 2$ for any vertex $t \in V\left(T^{\prime}\right)$.
Assume $|N(t) \cap B| \geq 2$. Choose an edge $x y \in E\left(H_{1}\right)$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $|N(x) \backslash(B \cup\{y, t\})| \geq$ $m+2-1-2=m-1$ and $|N(y) \backslash(B \cup\{x, t\})| \geq m+2-1-2=m-1$. Thus, by Lemma 3.1, we can choose a double-star $T^{\prime \prime} \cong T$ with center-edge $x y$ such that $V\left(T^{\prime \prime}\right) \cap(B \cup\{t\})=\emptyset$. But then $B \cup\{t\}$ is contained in a block of $G-T^{\prime \prime}$, which contradicts to (P1). Thus $|N(t) \cap B| \leq 1$ holds for any vertex $t \in V\left(T^{\prime}\right)$. By $d(t) \geq m+2$ and $|N(t) \cap B| \leq 1$, we have $\left|N(t) \cap H_{1}\right|=d(t)-|N(t) \cap B|-\left|N(t) \cap T^{\prime}\right| \geq m+2-1-(m-1)=2$.

Claim 5. For any edge $t_{1} t_{2} \in E\left(T^{\prime}\right),\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \leq 1$ holds.
By contradiction, assume $\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \geq 2$. Because $\left|N\left(t_{1}\right) \cap B\right| \leq 1$ and $\left|N\left(t_{2}\right) \cap B\right| \leq 1$, we can assume that there are two distinct vertices $b_{1}, b_{2} \in B$ such that $t_{1} b_{1}, t_{2} b_{2} \in E(G)$. Choose an edge $x y \in E\left(H_{1}\right)$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $\left|N(x) \backslash\left(B \cup\left\{y, t_{1}, t_{2}\right\}\right)\right| \geq m+2-1-3=m-2$ and $\left|N(y) \backslash\left(B \cup\left\{x, t_{1}, t_{2}\right\}\right)\right| \geq m+2-1-3=m-2$. Thus, by Lemma 3.1, we can choose a double-star $T^{\prime \prime} \cong T$ with center-edge $x y$ such that $V\left(T^{\prime \prime}\right) \cap\left(B \cup\left\{t_{1}, t_{2}\right\}\right)=\emptyset$. But then $G-T^{\prime \prime}$ has a block containing $B \cup\left\{t_{1}, t_{2}\right\}$ as a subset, which contradicts to (P1).

Claim 6. For any 3-path $t_{1} t_{2} t_{3}$ in $T^{\prime},\left|N\left(\left\{t_{1}, t_{2}, t_{3}\right\}\right) \cap B\right| \leq 1$ holds.
By contradiction, assume $\left|N\left(\left\{t_{1}, t_{2}, t_{3}\right\}\right) \cap B\right| \geq 2$. Then we have $\left|N\left(t_{2}\right) \cap B\right|=0$. For otherwise, if $\left|N\left(t_{2}\right) \cap B\right|=1$, then we have $\left|N\left(\left\{t_{1}, t_{2}, t_{3}\right\}\right) \cap B\right| \leq 1$ by $\left|N\left(\left\{t_{1}, t_{2}\right\}\right) \cap B\right| \leq 1$ and $\left|N\left(\left\{t_{2}, t_{3}\right\}\right) \cap B\right| \leq 1$, a contradiction. Because $\left|N\left(t_{1}\right) \cap B\right| \leq 1$ and $\left|N\left(t_{3}\right) \cap B\right| \leq 1$, we can assume that there are two distinct vertices $b_{1}, b_{3} \in B$ such that $t_{1} b_{1}, t_{3} b_{3} \in E(G)$. Choose any edge $x y \in E\left(H_{1}\right)$. Since $\delta(G) \geq m+2$ and $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we have $\left|N(x) \backslash\left(B \cup\left\{y, t_{1}, t_{2}, t_{3}\right\}\right)\right| \geq m+2-1-4=m-3>\left\lfloor\frac{m}{2}\right\rfloor-1$ (by $m \geq 5$) and $\left|N(y) \backslash\left(B \cup\left\{x, t_{1}, t_{2}, t_{3}\right\}\right)\right| \geq m+2-1-4=m-3$.

If $\left|N(x) \backslash\left(B \cup\left\{y, t_{1}, t_{2}, t_{3}\right\}\right)\right|>m-3$ or $\left|N(y) \backslash\left(B \cup\left\{x, t_{1}, t_{2}, t_{3}\right\}\right)\right|>m-3$, then by Lemma 3.1, we can choose a double-star $T^{\prime \prime} \cong T$ with center-edge $x y$ such that $V\left(T^{\prime \prime}\right) \cap\left(B \cup\left\{t_{1}, t_{2}, t_{3}\right\}\right)=\emptyset$. But then $G-T^{\prime \prime}$ has a block containing $B \cup\left\{t_{1}, t_{2}, t_{3}\right\}$ as a subset, which contradicts to (P1). Thus we assume $\left|N(x) \backslash\left(B \cup\left\{y, t_{1}, t_{2}, t_{3}\right\}\right)\right|=m-3$ and $\left|N(y) \backslash\left(B \cup\left\{x, t_{1}, t_{2}, t_{3}\right\}\right)\right|=m-3$, which imply $|N(x) \cap B|=1$ and $|N(y) \cap B|=1$. Since $\left|N\left(H_{1}\right) \cap B\right| \leq 1$, we can assume $N(x) \cap B=N(y) \cap B=\{z\}$. Without loss of generality, assume $z \neq b_{1}$.

If $N(x) \backslash y \neq N(y) \backslash x$, then $\left|(N(x) \cup N(y)) \backslash\left(B \cup\left\{x, y, t_{1}, t_{2}, t_{3}\right\}\right)\right| \geq m-2$. So we can choose a double-star $T^{\prime \prime} \cong T$ with centeredge $x y$ disjoint from $B \cup\left\{t_{1}, t_{2}, t_{3}\right\}$. But then $G-T^{\prime \prime}$ contains a larger block than B, a contradiction. Thus $N(x) \backslash y=N(y) \backslash x$. Because we choose the edge $x y$ in H_{1} arbitrarily, we conclude that H_{1} is a complete graph and each vertex not in H_{1} is adjacent to all vertices in H_{1} if it is adjacent to one vertex in H_{1}. In particular, every vertex t in T^{\prime} is adjacent to all vertices in H_{1} by Claim 4 and the vertex z in B is adjacent to all vertices in H_{1}.

Let $t_{4} h_{4}$ be an edge of graph G, where $t_{4} \in V\left(T^{\prime}\right) \backslash\left\{t_{1}, t_{2}, t_{3}\right\}$ and $h_{4} \in V\left(H_{1}\right)$. Let h_{1} be a vertex in H_{1} distinct from h_{4}. Then $t_{1} h_{1}, h_{1} z \in E(G)$. Thus we can choose a double-star $T^{\prime \prime} \cong T$ with center-edge $t_{4} h_{4}$ disjoint from $B \cup\left\{t_{1}, h_{1}\right\}$. But then $B \cup\left\{t_{1}, h_{1}\right\}$ is contained in a block of $G-T^{\prime \prime}$, contradicting to (P1).

Because $\left|N\left(H_{1}\right) \cap B\right| \leq 1$ and G is 2-connected, we have $\left|N\left(T^{\prime}\right) \cap B\right| \geq 1$. The following claim further shows that $\left|N\left(T^{\prime}\right) \cap B\right|=1$.

Claim 7. $\left|N\left(T^{\prime}\right) \cap B\right|=1$.
By contradiction, assume $\left|N\left(T^{\prime}\right) \cap B\right| \geq 2$. If $N(u) \cap B \neq \emptyset$, say $N(u) \cap B=\left\{u^{\prime}\right\}$, then we have $N\left(\left\{u_{1}, \ldots, u_{r}, v\right\}\right) \cap B \subseteq\left\{u^{\prime}\right\}$ by Claim 5 and $N\left(\left\{v_{1}, \ldots, v_{s}\right\}\right) \cap B \subseteq\left\{u^{\prime}\right\}$ by Claim 6. That is, $N\left(T^{\prime}\right) \cap B=\left\{u^{\prime}\right\}$, a contradiction. Thus $N(u) \cap B=\emptyset$. Similarly, we have $N(v) \cap B=\emptyset$. Since $\left|N\left(\left\{u_{1}, \ldots, u_{r}\right\}\right) \cap B\right| \leq 1$ and $\left|N\left(\left\{v_{1}, \ldots, v_{s}\right\}\right) \cap B\right| \leq 1$ (by Claim 6), we have $\left|N\left(T^{\prime}\right) \cap B\right|=2$. Assume, without loss of generality, that there are two distinct vertices w and w^{\prime} in B such that $u_{1} w, v_{1} w^{\prime} \in E(G)$.

We first show that any vertex x in $\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right\} \backslash\left\{u_{1}, v_{1}\right\}$ has no neighbors in B. By contradiction, assume there is a vertex in $\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right\} \backslash\left\{u_{1}, v_{1}\right\}$, say v_{j} for some $j \in\{2, \ldots, s\}$ (the case u_{i} for some $i \in\{2, \ldots, r\}$ can be proved similarly), such that $N\left(v_{j}\right) \cap B=\left\{w^{\prime}\right\}$. If v_{j} is adjacent to u (or u_{1}), then for any edge $v v^{\prime}\left(v^{\prime}\right.$ is a neighbor of v in H_{1}), we have $\left|N(v) \backslash\left(B \cup\left\{u, u_{1}, v_{j}, v^{\prime}\right\}\right)\right| \geq m+2-4=m-2\left(\right.$ or $\left.\left|N(v) \backslash\left(B \cup\left\{u_{1}, v_{j}, v^{\prime}\right\}\right)\right| \geq m+2-3=m-1\right)$ and $\left|N\left(v^{\prime}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{j}\right\}\right)\right| \geq m+2-1-4=m-3\left(\right.$ or $\left.\left|N\left(v^{\prime}\right) \backslash\left(B \cup\left\{v, u_{1}, v_{j}\right\}\right)\right| \geq m+2-1-3=m-2\right)$. By Lemma 3.1, we can find a double-star $T^{\prime \prime} \cong T$ with center-edge $v v^{\prime}$ such that $T^{\prime \prime}$ is disjoint from $B \cup\left\{u, u_{1}, v_{j}\right\}$ (or $B \cup\left\{u_{1}, v_{j}\right\}$). But then $G-T^{\prime \prime}$ contains a larger block than B, a contradiction. Thus neither u nor u_{1} is adjacent to v_{j}. Choose a neighbor v_{j}^{\prime} of v_{j} in H_{1}. Since $\left|N\left(v_{j}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{1}, v_{j}^{\prime}\right\}\right)\right| \geq m+2-1-3=m-2$ and $\left|N\left(v_{j}^{\prime}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{1}, v_{j}\right\}\right)\right| \geq m+2-1-5=m-4 \geq\left\lfloor\frac{m}{2}\right\rfloor-1$ (by $m \geq 5$), we can find a double-star $T^{\prime \prime} \cong T$ with center-edge $v_{j} v_{j}^{\prime}$ such that $T^{\prime \prime}$ is disjoint from $B \cup\left\{u, v, u_{1}, v_{1}\right\}$. But then $G-T^{\prime \prime}$ contains a larger block than B, a contradiction. Thus we have $N\left(\left\{u_{1}, \ldots, u_{r}, v_{1}, \ldots, v_{s}\right\} \backslash\left\{u_{1}, v_{1}\right\}\right) \cap B=\emptyset$.

Let $v_{2} v_{2}^{\prime} \in E(G)$, where v_{2}^{\prime} is a neighbor of v_{2} in H_{1}. Since $\delta(G) \geq m+2$ and $N\left(v_{2}\right) \cap B=\varnothing$, we have $\mid N\left(v_{2}\right) \backslash(B \cup$ $\left.\left\{u, v, u_{1}, v_{1}, v_{2}^{\prime}\right\}\right) \mid \geq m+2-5=m-3$ and $\left|N\left(v_{2}^{\prime}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{1}, v_{2}\right\}\right)\right| \geq m+2-1-5=m-4 \geq\left\lfloor\frac{m}{2}\right\rfloor-1$ (by $m \geq 5)$. If $\left|N\left(v_{2}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{1}, v_{2}^{\prime}\right\}\right)\right| \geq m-2$, then, by Lemma 3.1, we can find a double-star $T^{\prime \prime} \cong T$ with center-edge $v_{2} v_{2}^{\prime}$ such that $T^{\prime \prime}$ avoids $B \cup\left\{u, v, u_{1}, v_{1}\right\}$. But then $G-T^{\prime \prime}$ contains a larger block than B, a contradiction. Thus assume $\left|N\left(v_{2}\right) \backslash\left(B \cup\left\{u, v, u_{1}, v_{1}, v_{2}^{\prime}\right\}\right)\right|=m-3$, which implies v_{2} is adjacent to both u_{1} and v_{1}. For the edge $u v$, we can verify that $\left|N(u) \backslash\left(B \cup\left\{v, u_{1}, v_{1}, v_{2}\right\}\right)\right| \geq m+2-4=m-2$ and $\left|N(v) \backslash\left(B \cup\left\{u, u_{1}, v_{1}, v_{2}\right\}\right)\right| \geq m+2-4=m-2$. By Lemma 3.1, we can find a double-star $T^{\prime \prime} \cong T$ with center-edge $u v$ such that $T^{\prime \prime}$ avoids $B \cup\left\{u_{1}, v_{1}, v_{2}\right\}$. But then $B \cup\left\{u_{1}, v_{1}, v_{2}\right\}$ is contained in a block of $G-T^{\prime \prime}$, contradicting to (P 1). Thus Claim 7 holds.

By Claim 7, $\left|N\left(T^{\prime}\right) \cap B\right|=1$. Assume $N\left(T^{\prime}\right) \cap B=\{w\}$. Since G is 2-connected, we have $\left|N\left(H_{1}\right) \cap B\right|=1$ by Claim 1 . Let $N\left(H_{1}\right) \cap B=\{z\}$. Let P be a shortest path from z to w going through H_{1} and $T^{\prime \prime}$. Assume $P:=p_{1} p_{2} \cdots p_{q-1} p_{q}$, where $p_{1}=z, p_{q}=w$ and $p_{i} \in H_{1} \cup T^{\prime}$ for each $i \in\{2, \ldots, q-1\}$. Since P is a shortest path, $N\left(p_{i}\right) \cap P=\left\{p_{i-1}, p_{i+1}\right\}$ for $2 \leq i \leq q-1$. Because $\delta(G) \geq m+2$ and $N\left(p_{i}\right) \cap B \subseteq\{w, z\} \subseteq P$ for each $2 \leq i \leq q-1$, we know p_{i} has at least m neighbors not in $B \cup P$, that is, $G-(B \cup P)$ is not empty. For any vertex x in $G-(B \cup P)$, we have $|N(x) \cap P| \leq 3$. For otherwise, we can find a path P^{\prime} containing x from z to w going through H_{1} and $T^{\prime \prime}$ shorter than P, a contradiction. By $\delta(G) \geq m+2$, $|N(x) \cap(G-(B \cup P))| \geq m+2-3=m-1$. Choose an edge $x y$ in $G-(B \cup P)$. Since $|N(x) \backslash(B \cup P \cup\{y\})| \geq m+2-4=m-2$ and $|N(y) \backslash(B \cup P \cup\{x\})| \geq m+2-4=m-2$, we can find a double-star $T^{\prime \prime} \cong T$ with center-edge $x y$ such that $T^{\prime \prime} \cap(B \cup P)=\emptyset$. But then $B \cup P$ is contained in a block of $G-T^{\prime \prime}$, a contradiction. The proof is thus complete.

Acknowledgments

We would like to thank the anonymous referees for their valuable suggestions which helped us a lot in improving the presentation of this paper.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, in: Graduate Texts in Mathematics, vol. 244, Springer, Berlin, 2008.
[2] G. Chartrand, A. Kaigars, D.R. Lick, Critically n-connected graphs, Proc. Amer. Math. Soc. 32 (1972) 63-68.
[3] A.A. Diwan, N.P. Tholiya, Non-separating trees in connected graphs, Discrete Math. 309 (2009) 5235-5237.
[4] S. Fujita, K. Kawarabayashi, Connectivity keeping edges in graphs with large minimum degree, J. Combin. Theory Ser. B 98 (2008) 805-811.
[5] W. Mader, Connectivity keeping paths in k-connected graphs, J. Graph Theory 65 (2010) 61-69.
[6] W. Mader, Connectivity keeping trees in k-connected graphs, J. Graph Theory 69 (2012) 324-329.

[^0]: * The research is supported by NSFC (Nos. 11401510, 11531011) and NSFXJ (No. 2015KL019).
 * Corresponding author.

 E-mail addresses: tianyzhxj@163.com (Y. Tian), mjx@xju.edu.cn (J. Meng), hjlai@math.wvu.edu (H.-J. Lai), 200661000016@jmu.edu.cn (L. Xu).

