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a b s t r a c t

In Mader (2010), Mader conjectured that for every positive integer k and every finite tree
T with order m, every k-connected, finite graph G with δ(G) ≥ ⌊

3
2 k⌋ + m − 1 contains a

subtree T ′ isomorphic to T such that G − V (T ′) is k-connected. In the same paper, Mader
proved that the conjecture is true when T is a path. Diwan and Tholiya (2009) verified the
conjecture when k = 1. In this paper, we will prove that Mader’s conjecture is true when
T is a star or double-star and k = 2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graph always means a finite, undirected graph without multiple edges and without loops. For graph-
theoretical terminologies and notation not defined here, we follow [1]. For a graph G, the vertex set, the edge set, the
minimum degree and the connectivity number of G are denoted by V (G), E(G), δ(G) and κ(G), respectively. The order of a
graph G is the cardinality of its vertex set, denoted by |G|. k and m always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.

Theorem 1.1 ([2]). Every k-connected graph G of minimum degree δ(G) ≥ ⌊
3
2k⌋ has a vertex u with κ(G − u) ≥ k.

Fujita and Kawarabayashi proved in [4] that every k-connected graph G with minimum degree at least ⌊
3
2k⌋ + 2 has an

edge e = uv such that G − {u, v} is still k-connected. They conjectured that there are similar results for the existence of
connected subgraphs of prescribed orderm ≥ 3 keeping the connectivity.

Conjecture 1 ([4]). For all positive integers k,m, there is a (least) non-negative integer fk(m) such that every k-connected graph
G with δ(G) ≥ ⌊

3
2k⌋ − 1 + fk(m) contains a connected subgraph W of exact order m such that G − V (W ) is still k-connected.

They also gave examples in [4] showing that fk(m) must be at least m for all positive integers k,m. In [5], Mader proved
that fk(m) exists and fk(m) = m holds for all k,m.

Theorem 1.2 ([5]). Every k-connected graph G with δ(G) ≥ ⌊
3
2k⌋ + m − 1 for positive integers k,m contains a path P of order

m such that G − V (P) remains k-connected.
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In the same paper, Mader [5] askedwhether the result is true for any other tree T instead of a path, and gave the following
conjecture.

Conjecture 2 ([5]). For every positive integer k and every finite tree T , there is a least non-negative integer tk(T ), such that every
k-connected, finite graph G with δ(G) ≥ ⌊

3
2k⌋ − 1 + tk(T ) contains a subgraph T ′ ∼= T with κ(G − V (T ′)) ≥ k.

Mader showed that tk(T ) exists in [6].

Theorem 1.3 ([6]). Let G be a k-connected graph with δ(G) ≥ 2(k − 1 + m)2 + m − 1 and let T be a tree of order m for positive
integers k,m. Then there is a tree T ′

⊆ G isomorphic to T such that G − V (T ′) remains k-connected.

Mader further conjectured that tk(T ) = |T |.

Conjecture 3 ([5]). For every positive integer k and every tree T , tk(T ) = |T | holds.

Theorem 1.2 showed that Conjecture 3 is true when T is a path. Diwan and Tholiya [3] proved that the conjecture holds
when k = 1. In the next section, we will verify that Conjecture 3 is true when T is a star and k = 2. It is proved in the last
section that Conjecture 3 is true when T is a double-star and k = 2.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note that any block of a connected
graph of order at least two is 2-connected or isomorphic to K2.

For a vertex subsetU of a graphG,G[U] denotes the subgraph induced byU andG−U is the subgraph induced by V (G)−U .
The neighborhood NG(U) of U is the set of vertices in V (G) − U which are adjacent to some vertex in U . If U = {u}, we also
use G − u and NG(u) for G − {u} and NG({u}), respectively. The degree dG(u) of u is |NG(u)|. If H is a subgraph of G, we often
use H for V (H). For example, NG(H), H ∩ G and H ∩ U mean NG(V (H)), V (H) ∩ V (G) and V (H) ∩ U , respectively. If there is
no confusion, we always delete the subscript, for example, d(u) for dG(u), N(u) for NG(u), N(U) for NG(U) and so on. A tree is
a connected graph without cycles. A star is a tree that has exact one vertex with degree greater than one. A double-star is a
tree that has exact two vertices with degree greater than one.

2. Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let G be a 2-connected graph with minimum degree δ(G) ≥ m + 2, where m is a positive integer. Then for a star
T with order m, G contains a star T ′ isomorphic to T such that G − V (T ′) is 2-connected.

Proof. If m ≤ 3, then T is a path, and the theorem holds by Theorem 1.2. Thus we assumem ≥ 4 in the following.
Since δ(G) ≥ m+2, there is a star T ′

⊆ Gwith T ′ ∼= T . Assume V (T ′) = {u, v1, . . . , vm−1} and E(T ′) = {uvi|1 ≤ i ≤ m−1}.
We say T ′ is a star rooted at u or with root u. Let G′

= G − T ′. Let B be a maximum block in G′ and let l be the number of
components of G′

− B. If l = 0, then B = G′ is 2-connected. So we may assume that l ≥ 1. Let H1, . . . ,Hl be the components
of G′

− Bwith |H1| ≥ · · · ≥ |Hl|.
Take such a star T ′ so that
(P1) |B| is as large as possible,
(P2) (|H1|, . . . , |Hl|) is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.

Claim 1. |N(Hi) ∩ B| ≤ 1 and |N(Hi) ∩ V (T ′)| ≥ 1 for each i ∈ {1, . . . , l}.

Since B is a block of G′, we have |N(Hi) ∩ B| ≤ 1 for each i ∈ {1, . . . , l}. Since G is 2-connected, |N(Hi) ∩ V (T ′)| ≥ 1 for
each i ∈ {1, . . . , l}.

Claim 2. l = 1.

Assume l ≥ 2. By Claim 1, there is an edge th between T ′ and H1, where t ∈ T ′ and h ∈ H1. Choose a vertex x ∈ Hl. Since
δ(G) ≥ m + 2 and |N(Hl) ∩ B| ≤ 1 (by Claim 1), we have |N(x) \ (B ∪ {t})| ≥ m + 2 − 1 − 1 = m. Thus we can choose a star
T ′′ ∼= T with root x such that V (T ′′) ∩ (B ∪ {t}) = ∅. But then either there is a larger block than B in G − T ′′, or G − T ′′

− B
contains a larger component than H1 (H1 ∪ {t} is contained in a component of G− T ′′

− B), which contradicts to (P1) or (P2).

Claim 3. |N(t) ∩ B| ≤ 1 and |N(t) ∩ H1| ≥ 2 for any vertex t ∈ V (T ′).

Assume |N(t) ∩ B| ≥ 2. Choose a vertex x ∈ H1. Since δ(G) ≥ m + 2 and |N(H1) ∩ B| ≤ 1, we have |N(x) \ (B ∪ {t})| ≥

m + 2 − 1 − 1 = m. Thus we can choose a star T ′′ ∼= T with root x such that V (T ′′) ∩ (B ∪ {t}) = ∅. But G − T ′′ has a block
containing B ∪ {t} as a subset, which contradicts to (P1). Thus |N(t) ∩ B| ≤ 1 holds. By d(t) ≥ m + 2 and |N(t) ∩ B| ≤ 1, we
have |N(t) ∩ H1| = d(t) − |N(t) ∩ B| − |N(t) ∩ T ′

| ≥ m + 2 − 1 − (m − 1) = 2.

Claim 4. For any edge t1t2 ∈ E(T ′), |N({t1, t2}) ∩ B| ≤ 1 holds.
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By contradiction, assume |N({t1, t2}) ∩ B| ≥ 2. Because |N(t1) ∩ B| ≤ 1 and |N(t2) ∩ B| ≤ 1, we can assume that there are
two distinct vertices b1, b2 ∈ B such that t1b1, t2b2 ∈ E(G). Choose a vertex x ∈ H1. Since δ(G) ≥ m + 2 and |N(H1) ∩ B| ≤ 1,
we have |N(x) \ (B ∪ {t1, t2})| ≥ m + 2 − 1 − 2 = m − 1. Thus we can choose a star T ′′ ∼= T with root x such that
V (T ′′) ∩ (B ∪ {t1, t2}) = ∅. But then G − T ′′ has a block containing B ∪ {t1, t2} as a subset, which contradicts to (P1).

Because |N(H1) ∩ B| ≤ 1 and G is 2-connected, we have |N(T ′) ∩ B| ≥ 1. The following claim further shows that
|N(T ′) ∩ B| = 1.

Claim 5. |N(T ′) ∩ B| = 1.

By contradiction, assume |N(T ′)∩B| ≥ 2. If N(u)∩B ̸= Ø, say N(u)∩B = {u′
}, then we have N({v1, . . . , vm−1})∩B ⊆ {u′

}

by Claim 4. That is, N(T ′) ∩ B = {u′
}, a contradiction. Thus N(u) ∩ B = Ø. Assume, without loss of generality, that there

are two distinct vertices w and w′ in B such that v1w, v2w
′

∈ E(G). If N(v3) ∩ B = Ø or |N(v3) ∩ {v1, v2}| ≤ 1, then we
can choose a star T ′′ with order m and root v3 such that V (T ′′) ∩ (B ∪ {u, v1, v2}) = Ø. But then B ∪ {u, v1, v2} is contained
in a block of G − T ′′, contradicting to (P1). Thus we assume v3 is adjacent to a vertex y in B and is adjacent to both v1 and
v2. Without loss of generality, assume y is distinct from w. Then we can choose a star T ′′ with order m and root u such that
V (T ′′) ∩ (B ∪ {v1, v3}) = Ø. But B ∪ {v1, v3} is contained in a block of G − T ′′, contradicting to (P1). Thus |N(T ′) ∩ B| = 1.

By Claim 5, |N(T ′) ∩ B| = 1. Assume N(T ′) ∩ B = {w}. Since G is 2-connected, we have |N(H1) ∩ B| ≥ 1. By Claim 1,
|N(H1) ∩ B| = 1. Assume N(H1) ∩ B = {z}. Let P be a shortest path from z to w going through H1 and T ′. Assume
P := p1p2 · · · pq−1pq, where p1 = z, pq = w and pi ∈ H1 ∪ T ′ for each i ∈ {2, . . . , q − 1}. Since P is a shortest path,
|N(pi) ∩ P| = 2 for each 2 ≤ i ≤ q − 1. By N(T ′) ∩ B = {w} and N(H1) ∩ B = {z}, N(pi) ∩ B ⊆ {w, z} ⊆ V (P) for each
2 ≤ i ≤ q− 1. Thus |N(pi)∩ (B∪ P)| = 2 and |N(pi)∩ (V (G) \ (B∪ P))| ≥ m for each 2 ≤ i ≤ q− 1. This implies G− (B∪ P) is
not empty. For any vertex x in G − (B ∪ P), we have |N(x) ∩ P| ≤ 3. For otherwise, we can find a path P ′ containing x from z
to w going through H1 and T ′ shorter than P , a contradiction. By δ(G) ≥ m + 2, |N(x) ∩ (G − (B ∪ P))| ≥ m + 2 − 3 = m − 1.
Then we can find a star T ′′ ∼= T with root x such that T ′′

∩ (B ∪ P) = Ø. But then B ∪ P is contained in a block of G − T ′′, a
contradiction. The proof is thus complete. □

3. Connectivity keeping double-stars in 2-connected graphs

Lemma3.1. Let G be a graph and T be a double-starwith order m. If there is an edge e = uv ∈ E(G) such that |N(u)\v| ≥ ⌊
m
2 ⌋−1,

|N(v) \ u| ≥ m − 3 and |(N(u) ∪ N(v)) \ {u, v}| ≥ m − 2, then there is a double-star T ′
⊆ G isomorphic to T .

Proof. Since T is a double-star, we havem ≥ 4. Assume the double-star T is constructed from an edge e′
= u′v′ by adding r

leaves to u′ and s leaves to v′, where 1 ≤ r ≤ s and r + s = m − 2. Then 1 ≤ r ≤ ⌊
m
2 ⌋ − 1 and ⌈

m
2 ⌉ − 1 ≤ s ≤ m − 3. Since

|N(u) \ v| ≥ ⌊
m
2 ⌋ − 1, |N(v) \ u| ≥ m − 3 and |(N(u) ∪ N(v)) \ {u, v}| ≥ m − 2, we can find a double-star T ′ ∼= T in G with

center-edge e = uv, where u is adjacent to r leaves and v is adjacent to s leaves. □

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 2.1, with much more complicated and different
details.

Theorem 3.2. Let T be a double-star with order m and G be a 2-connected graph with minimum degree δ(G) ≥ m + 2. Then G
contains a double-star T ′ isomorphic to T such that G − V (T ′) is 2-connected.

Proof. Since T is a double-star, we have m ≥ 4. If m = 4, then T is a path, and the theorem holds by Theorem 1.2. Thus we
assume m ≥ 5 in the following.

Since δ(G) ≥ m + 2, there is a double-star T ′
⊆ G with T ′ ∼= T . Assume V (T ′) = {u, v, u1, . . . , ur , v1, . . . , vs} and

E(T ′) = {uv} ∪ {uui|1 ≤ i ≤ r} ∪ {vvj|1 ≤ j ≤ s}, where 1 ≤ r ≤ s and r + s = m − 2. We say T ′ is a double-star with
center-edge uv. Let G′

= G − T ′. Let B be a maximum block in G′ and let l be the number of components of G′
− B. If l = 0,

then B = G′ is 2-connected. So wemay assume that l ≥ 1. Let H1, . . . ,Hl be the components of G′
−Bwith |H1| ≥ · · · ≥ |Hl|.

Take such a double-star T ′ so that
(P1) |B| is as large as possible,
(P2) (|H1|, . . . , |Hl|) is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.

Claim 1. |N(Hi) ∩ B| ≤ 1 and |N(Hi) ∩ T ′
| ≥ 1 for each i ∈ {1, . . . , l}.

Since B is a block of G′, we have |N(Hi) ∩ B| ≤ 1 for each i ∈ {1, . . . , l}. Since G is 2-connected, |N(Hi) ∩ T ′
| ≥ 1 for each

i ∈ {1, . . . , l}.

Claim 2. |Hi| ≥ 2 for each i ∈ {1, . . . , l}.

This claim holds because |N(hi) ∩ Hi| = d(hi) − |N(hi) ∩ T ′
| − |N(hi) ∩ B| ≥ m + 2 − m − 1 = 1 for any vertex hi ∈ Hi,

where 1 ≤ i ≤ l.
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Claim 3. l = 1.

Assume l ≥ 2. By Claim 1, there is an edge th between T ′ and H1, where t ∈ T ′ and h ∈ H1. By Claim 2, we can choose an
edge xy ∈ E(Hl). Since δ(G) ≥ m+ 2 and |N(Hl)∩ B| ≤ 1 (by Claim 1), we have |N(x) \ (B∪ {y, t})| ≥ m+ 2− 1− 2 = m− 1
and |N(y)\ (B∪{x, t})| ≥ m+2−1−2 = m−1. Thus, by Lemma 3.1, we can choose a double-star T ′′ ∼= T with center-edge
xy such that V (T ′′) ∩ (B ∪ {t}) = ∅. But then either there is a larger block than B in G − T ′′, or G − T ′′

− B contains a larger
component than H1 (H1 ∪ {t} is contained in a component of G − T ′′

− B), which contradicts to (P1) or (P2).

Claim 4. |N(t) ∩ B| ≤ 1 and |N(t) ∩ H1| ≥ 2 for any vertex t ∈ V (T ′).

Assume |N(t)∩B| ≥ 2. Choose an edge xy ∈ E(H1). Since δ(G) ≥ m+2 and |N(H1)∩B| ≤ 1, we have |N(x)\ (B∪{y, t})| ≥

m + 2 − 1 − 2 = m − 1 and |N(y) \ (B ∪ {x, t})| ≥ m + 2 − 1 − 2 = m − 1. Thus, by Lemma 3.1, we can choose a
double-star T ′′ ∼= T with center-edge xy such that V (T ′′) ∩ (B ∪ {t}) = ∅. But then B ∪ {t} is contained in a block of G − T ′′,
which contradicts to (P1). Thus |N(t) ∩ B| ≤ 1 holds for any vertex t ∈ V (T ′). By d(t) ≥ m + 2 and |N(t) ∩ B| ≤ 1, we have
|N(t) ∩ H1| = d(t) − |N(t) ∩ B| − |N(t) ∩ T ′

| ≥ m + 2 − 1 − (m − 1) = 2.

Claim 5. For any edge t1t2 ∈ E(T ′), |N({t1, t2}) ∩ B| ≤ 1 holds.

By contradiction, assume |N({t1, t2}) ∩ B| ≥ 2. Because |N(t1) ∩ B| ≤ 1 and |N(t2) ∩ B| ≤ 1, we can assume that there are
twodistinct vertices b1, b2 ∈ B such that t1b1, t2b2 ∈ E(G). Choose an edge xy ∈ E(H1). Since δ(G) ≥ m+2 and |N(H1)∩B| ≤ 1,
we have |N(x) \ (B ∪ {y, t1, t2})| ≥ m + 2 − 1 − 3 = m − 2 and |N(y) \ (B ∪ {x, t1, t2})| ≥ m + 2 − 1 − 3 = m − 2. Thus, by
Lemma 3.1, we can choose a double-star T ′′ ∼= T with center-edge xy such that V (T ′′) ∩ (B ∪ {t1, t2}) = ∅. But then G − T ′′

has a block containing B ∪ {t1, t2} as a subset, which contradicts to (P1).

Claim 6. For any 3-path t1t2t3 in T ′, |N({t1, t2, t3}) ∩ B| ≤ 1 holds.

By contradiction, assume |N({t1, t2, t3})∩ B| ≥ 2. Then we have |N(t2)∩ B| = 0. For otherwise, if |N(t2)∩ B| = 1, then we
have |N({t1, t2, t3}) ∩ B| ≤ 1 by |N({t1, t2}) ∩ B| ≤ 1 and |N({t2, t3}) ∩ B| ≤ 1, a contradiction. Because |N(t1) ∩ B| ≤ 1 and
|N(t3) ∩ B| ≤ 1, we can assume that there are two distinct vertices b1, b3 ∈ B such that t1b1, t3b3 ∈ E(G). Choose any edge
xy ∈ E(H1). Since δ(G) ≥ m+2 and |N(H1)∩B| ≤ 1, we have |N(x) \ (B∪{y, t1, t2, t3})| ≥ m+2−1−4 = m−3 > ⌊

m
2 ⌋−1

(bym ≥ 5) and |N(y) \ (B ∪ {x, t1, t2, t3})| ≥ m + 2 − 1 − 4 = m − 3.
If |N(x)\(B∪{y, t1, t2, t3})| > m−3 or |N(y)\(B∪{x, t1, t2, t3})| > m−3, then by Lemma 3.1, we can choose a double-star

T ′′ ∼= T with center-edge xy such that V (T ′′)∩ (B∪ {t1, t2, t3}) = ∅. But then G− T ′′ has a block containing B∪ {t1, t2, t3} as a
subset, which contradicts to (P1). Thus we assume |N(x)\ (B∪{y, t1, t2, t3})| = m−3 and |N(y)\ (B∪{x, t1, t2, t3})| = m−3,
which imply |N(x) ∩ B| = 1 and |N(y) ∩ B| = 1. Since |N(H1) ∩ B| ≤ 1, we can assume N(x) ∩ B = N(y) ∩ B = {z}. Without
loss of generality, assume z ̸= b1.

IfN(x)\y ̸= N(y)\x, then |(N(x)∪N(y))\(B∪{x, y, t1, t2, t3})| ≥ m−2. Sowe can choose a double-star T ′′ ∼= T with center-
edge xy disjoint from B∪ {t1, t2, t3}. But then G− T ′′ contains a larger block than B, a contradiction. Thus N(x) \ y = N(y) \ x.
Becausewe choose the edge xy inH1 arbitrarily, we conclude thatH1 is a complete graph and each vertex not inH1 is adjacent
to all vertices in H1 if it is adjacent to one vertex in H1. In particular, every vertex t in T ′ is adjacent to all vertices in H1 by
Claim 4 and the vertex z in B is adjacent to all vertices in H1.

Let t4h4 be an edge of graph G, where t4 ∈ V (T ′) \ {t1, t2, t3} and h4 ∈ V (H1). Let h1 be a vertex in H1 distinct from h4.
Then t1h1, h1z ∈ E(G). Thus we can choose a double-star T ′′ ∼= T with center-edge t4h4 disjoint from B ∪ {t1, h1}. But then
B ∪ {t1, h1} is contained in a block of G − T ′′, contradicting to (P1).

Because |N(H1) ∩ B| ≤ 1 and G is 2-connected, we have |N(T ′) ∩ B| ≥ 1. The following claim further shows that
|N(T ′) ∩ B| = 1.

Claim 7. |N(T ′) ∩ B| = 1.

By contradiction, assume |N(T ′)∩ B| ≥ 2. If N(u)∩ B ̸= Ø, say N(u)∩ B = {u′
}, then we have N({u1, . . . , ur , v})∩ B ⊆ {u′

}

by Claim 5 and N({v1, . . . , vs})∩ B ⊆ {u′
} by Claim 6. That is, N(T ′)∩ B = {u′

}, a contradiction. Thus N(u)∩ B = Ø. Similarly,
we have N(v) ∩ B = Ø. Since |N({u1, . . . , ur}) ∩ B| ≤ 1 and |N({v1, . . . , vs}) ∩ B| ≤ 1 (by Claim 6), we have |N(T ′) ∩ B| = 2.
Assume, without loss of generality, that there are two distinct vertices w and w′ in B such that u1w, v1w

′
∈ E(G).

We first show that any vertex x in {u1, . . . , ur , v1, . . . , vs} \ {u1, v1} has no neighbors in B. By contradiction, assume there
is a vertex in {u1, . . . , ur , v1, . . . , vs} \ {u1, v1}, say vj for some j ∈ {2, . . . , s} (the case ui for some i ∈ {2, . . . , r} can be
proved similarly), such that N(vj) ∩ B = {w′

}. If vj is adjacent to u (or u1), then for any edge vv′ (v′ is a neighbor of v in
H1), we have |N(v) \ (B ∪ {u, u1, vj, v

′
})| ≥ m + 2 − 4 = m − 2 (or |N(v) \ (B ∪ {u1, vj, v

′
})| ≥ m + 2 − 3 = m − 1) and

|N(v′)\ (B∪{u, v, u1, vj})| ≥ m+2−1−4 = m−3 (or |N(v′)\ (B∪{v, u1, vj})| ≥ m+2−1−3 = m−2). By Lemma 3.1, we
can find a double-star T ′′ ∼= T with center-edge vv′ such that T ′′ is disjoint from B∪{u, u1, vj} (or B∪{u1, vj}). But then G−T ′′

contains a larger block than B, a contradiction. Thus neither u nor u1 is adjacent to vj. Choose a neighbor v′

j of vj in H1. Since
|N(vj)\(B∪{u, v, u1, v1, v

′

j})| ≥ m+2−1−3 = m−2 and |N(v′

j )\(B∪{u, v, u1, v1, vj})| ≥ m+2−1−5 = m−4 ≥ ⌊
m
2 ⌋−1

(by m ≥ 5), we can find a double-star T ′′ ∼= T with center-edge vjv
′

j such that T ′′ is disjoint from B ∪ {u, v, u1, v1}. But then
G − T ′′ contains a larger block than B, a contradiction. Thus we have N({u1, . . . , ur , v1, . . . , vs} \ {u1, v1}) ∩ B = Ø.
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Let v2v
′

2 ∈ E(G), where v′

2 is a neighbor of v2 in H1. Since δ(G) ≥ m + 2 and N(v2) ∩ B = Ø, we have |N(v2) \ (B ∪

{u, v, u1, v1, v
′

2})| ≥ m + 2 − 5 = m − 3 and |N(v′

2) \ (B ∪ {u, v, u1, v1, v2})| ≥ m + 2 − 1 − 5 = m − 4 ≥ ⌊
m
2 ⌋ − 1 (by

m ≥ 5). If |N(v2) \ (B ∪ {u, v, u1, v1, v
′

2})| ≥ m − 2, then, by Lemma 3.1, we can find a double-star T ′′ ∼= T with center-edge
v2v

′

2 such that T ′′ avoids B ∪ {u, v, u1, v1}. But then G − T ′′ contains a larger block than B, a contradiction. Thus assume
|N(v2) \ (B ∪ {u, v, u1, v1, v

′

2})| = m − 3, which implies v2 is adjacent to both u1 and v1. For the edge uv, we can verify that
|N(u) \ (B∪ {v, u1, v1, v2})| ≥ m+ 2− 4 = m− 2 and |N(v) \ (B∪ {u, u1, v1, v2})| ≥ m+ 2− 4 = m− 2. By Lemma 3.1, we
can find a double-star T ′′ ∼= T with center-edge uv such that T ′′ avoids B∪ {u1, v1, v2}. But then B∪ {u1, v1, v2} is contained
in a block of G − T ′′, contradicting to (P1). Thus Claim 7 holds.

By Claim 7, |N(T ′) ∩ B| = 1. Assume N(T ′) ∩ B = {w}. Since G is 2-connected, we have |N(H1) ∩ B| = 1 by Claim 1.
Let N(H1) ∩ B = {z}. Let P be a shortest path from z to w going through H1 and T ′′. Assume P := p1p2 · · · pq−1pq, where
p1 = z, pq = w and pi ∈ H1 ∪ T ′ for each i ∈ {2, . . . , q − 1}. Since P is a shortest path, N(pi) ∩ P = {pi−1, pi+1} for
2 ≤ i ≤ q − 1. Because δ(G) ≥ m + 2 and N(pi) ∩ B ⊆ {w, z} ⊆ P for each 2 ≤ i ≤ q − 1, we know pi has at least m
neighbors not in B∪ P , that is, G− (B∪ P) is not empty. For any vertex x in G− (B∪ P), we have |N(x)∩ P| ≤ 3. For otherwise,
we can find a path P ′ containing x from z to w going through H1 and T ′′ shorter than P , a contradiction. By δ(G) ≥ m + 2,
|N(x)∩(G−(B∪P))| ≥ m+2−3 = m−1. Choose an edge xy in G−(B∪P). Since |N(x)\(B∪P∪{y})| ≥ m+2−4 = m−2 and
|N(y) \ (B∪ P ∪{x})| ≥ m+2−4 = m−2, we can find a double-star T ′′ ∼= T with center-edge xy such that T ′′

∩ (B∪ P) = Ø.
But then B ∪ P is contained in a block of G − T ′′, a contradiction. The proof is thus complete. □
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