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a b s t r a c t

Let λ(D) be the arc strong-connectivity of a digraph D, and k > 0 be an integer, and α, β

be rational numbers. A strong digraph D is locally (α, β)+-arc-connected if ∀v ∈ V (D),
λ(D[N+(v)]) ≥ α|N+(v)| + β . A locally (0, k)+-arc-connected digraph is also called k+-
locally-arc-connected. We show that for any integer k, a strong, k+-locally-arc-connected
digraph may not be supereulerian, and we also show that every locally ( 23 , 0)+-arc-
connected strong digraph is supereulerian.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs and finite digraphs without loops and parallel arcs (called simple digraphs in the paper).
Usually, we use G to denote a graph and D to denote a digraph. Undefined terms and notations will follow [8] for graphs
and [4] for digraphs. For a digraph D, let G(D) denote underlying undirected graph of D, obtained from D by erasing the
directions on each arc of D. In particular, λ(D) denotes the arc-strong connectivity of a digraph D, c(D) denotes the number
of components of G(D). We use the notation (u, v) to denote an arc oriented from u to v in a digraph; For graphs H and G, by
H ⊆ Gwe mean that H is a subgraph of G. Similarly, for digraphs H and D, by H ⊆ Dwe mean that H is a subdigraph of D. If
X ⊆ V (D) or X ⊆ A(D), then D[X] denotes the subdigraph induced by X . For a subdigraph S of a digraph D, and for subsets
X ⊆ A(S) and Y ⊆ A(D) − A(S), we use H − X + Y to denote D[(A(S) − X) ∪ Y ], the subdigraph induced by the arc subset
(A(S) − X) ∪ Y .

A digraph D is strong if λ(D) > 0. For X, Y ⊆ V (D), define

(X, Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y },

and

∂+

D (X) = (X, V (D) − X)D and ∂−

D (X) = (V (D) − X, X)D.

For any vertex v ∈ V (D), we define the out neighbors of v byN+(v) = {u : u ∈ V (D) and (v, u) ∈ A(D)}, the in neighbors of v
byN−(v) = {u : u ∈ V (D) and (u, v) ∈ A(D)} and the neighbors of v byN(v) = N+(v)∪N−(v). Accordingly, d+

D (v) = |∂+

D ({v})|
and d−

D (v) = |∂−

D ({v})| are the out-degree and the in-degree of v in D, respectively. Let

∂D({v}) = ∂+

D ({v}) ∪ ∂−

D ({v}), and dD(v) = d+

D (v) + d−

D (v).
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When the digraph D is understood from the context, we often omit the subscript D. By the definition of λ(D) in [4], we note
that for any integer k ≥ 0 and a digraph D,

λ(D) ≥ k if and only if for any ∅ ̸= X ⊂ V (D), |∂+

D (X)| ≥ k. (1)

Following the definition in [4] (page 11), for a subdigraph H of a digraph D, an (x, y)-path P is an (H,H)-path if x, y ∈ V (H)
and V (P) ∩ V (H) = {x, y}.

Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [7] in 1977 proposed the supereulerian problem,
which seeks to characterize graphs that have spanning Eulerian subgraphs, and they [7] indicated that this problemwould be
very difficult. Pulleyblank [20] later in 1979 proved that determining whether a graph is supereulerian, even within planar
graphs, is NP-complete. Since then, there have been lots of researches on this topic. Catlin [10] in 1992 presented the first
survey on supereulerian graphs. Later Chen et al. [11] gave an update in 1995, specifically on the reductionmethod associated
with the supereulerian problem. A recent survey on supereulerian graphs can be found in [18].

A natural problem to consider is to investigate supereulerian digraphs. A strong digraph D is eulerian if for any v ∈ V (D),
d+

D (v) = d−

D (v). A digraph D is supereulerian if D contains a spanning eulerian subdigraph. The main problem under
consideration is to characterize supereulerian digraphs. Several efforts have been made. The earlier studies were done by
Gutin [13,14]. Recently, quite a few researches have been done on this topic, as seen in [1–3,5,16,17], among others. In
particular, the following have been obtained.

Theorem 1.1 (Hong et al. [16]). Let D be a strong simple digraph on n vertices. If δ+(D) + δ−(D) ≥ n − 4, then either D is
supereulerian, or D belongs to a class of well characterized digraphs.

Theorem 1.2 (Hong et al. [17]). Let D be a strong simple digraph on n ≥ 11 vertices. If δ+(x) + δ−(y) ≥ n − 4 for any pair of
vertices {x, y} such that (x, y) ̸∈ A(D), then either D is supereulerian, or D belongs to a class of well characterized digraphs.

Theorem 1.3 (J. Bang-Jensen and A. Maddaloni [5]). Let D be a strong simple digraph on n vertices. If d(x) + d(y) ≥ 2n − 3 for
any pair of non adjacent vertices x and y, then D is supereulerian.

Following [8], we use α(H) and α′(H) to denote the independence number and maximum size of a matching of a graph
H; and define α(D) = α(G(D)) and α′(D) = α′(G(D)).

Thomassen in [21] suggested that it is natural to consider if some of the theorems concerning hamiltonicity in graphs can
be extended to digraphs. He considered to extend the following Chvátal–Erdös Theorem to digraphs.

Theorem 1.4 (Chvátal and Erdös [12]). If κ(G) ≥ α(G), then G is hamiltonian.

There have been many studies to investigate the Chvatal–Erdos type sufficient conditions for supereulerian graphs, as
seen in [15,19,22,23], among others. Thomassen [21] presented examples to show that Theorem 1.4 cannot be extended to
digraphs. This motivated Bang-Jensen and S. Thomass’e to propose the following conjecture.

Conjecture 1.5 (J. Bang-Jensen and Thomassé, [6], see also [5]). If λ(D) ≥ α(D), then D is supereulerian.

Towards this direction, the following have been obtained.

Theorem 1.6 (Theorem (2.4) of J. Bang-Jensen and A. Maddaloni [5]). Let D be a digraph. If λ(D) ≥ α(D), then D has a spanning
subdigraph H such that for any v ∈ V (H), d+

H (v) = d−

H (v).

Theorem 1.7 (Algefari and Lai [2]). Let D be a digraph. If λ(D) ≥ α′(D), then D is supereulerian.

A graph G is locally connected if for every vertex v ∈ V (G), the vertices adjacent to v induce a connected subgraph in G.
A vertex v ∈ V (D) is k+-locally-arc-connected, (or k−-locally-arc-connected, or k-locally-arc-connected, respectively) if
λ(D[N+(v)]) ≥ k (λ(D[N−(v)]) ≥ k, or λ(D[N(v)]) ≥ k, respectively). A digraph D is k+-locally-arc-connected, (or k−-locally-
arc-connected, or k-locally-arc-connected, respectively) if every vertex of D is k+-locally-arc-connected, (or k−-locally-arc-
connected, or k-locally-arc-connected, respectively).

It is well known (for example, Corollary 1 of [9]) that every connected, locally-connected graph other than K2 is
supereulerian. The problem investigated in this paper is whether strong and locally strong digraphs will behave similarly,
and how local structure in digraph will warrant the existence of a spanning eulerian subdigraph. In the next section, we
shall show that for any integer k > 0, there exists an infinite family of strong, k+-locally-arc-connected non-supereulerian
digraphs. This family is also an infinite family of strong, k-locally-arc-connected non-supereulerian digraphs. These suggest
that local connectivity may not be sufficient for supereulerian digraphs. This motivates us to seek sufficient locally dense
conditions for supereulerian digraphs.

For rational numbers α and β , define a strong digraph D to be locally (α, β)+-dense if ∀v ∈ V (D), dD[N+(v)](u) ≥

α|N+(v)| + β , ∀u ∈ N+(v); and D is locally (α, β)+-arc-connected if ∀v ∈ V (D), λ(D[N+(v)]) ≥ α|N+(v)| + β; as well
as ; D is locally (α, β)-dense if ∀v ∈ V (D), dD[N(v)](u) ≥ α|N(v)| + β , ∀u ∈ N(v); and D is locally (α, β)-arc-connected if
∀v ∈ V (D), λ(D[N(v)]) ≥ α|N(v)| + β . In Section 3, we will prove the following main results in this paper.
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Fig. 1. The digraph D = D(n1, n2, l), with n1, n2 ≥ k + 2, and l > (k + 1)2 .

Theorem 1.8. Every locally ( 43 ,
−7
3 )+-dense strong simple digraph is supereulerian.

Corollary 1.9. Every locally ( 23 , 0)
+-arc-connected strong simple digraph is supereulerian.

In the next section, we will present examples to show that there exist infinitely many strong, locally strong digraphs
that may not be supereulerian. We will also present examples to show that for some fractional numbers α and β , there
exist strong simple nonsupereulerian digraphs D satisfying the condition that for any v ∈ V (D), it holds that dD[N+(v)](u) ≥

α|N+(v)| + β − 1, ∀u ∈ N+(v). This shows that the main result Theorem 1.8 is best possible in some sense.

2. Examples

In this section, we shall first show that for any integer k > 0, a strong, k+-locally-arc-connected digraph and a strong,
k-locally-arc-connected digraph may not be supereulerian. For this purpose, we shall display a necessary condition for
supereulerian digraphs, established in [16].

Let D be a strong digraph and U ⊂ V (D). Then in D[U], the digraph induced by U , we can find some ditrails P1, . . . , Pt
such that

⋃t
i=1V (Pi) = U and A(Pi) ∩ A(Pj) = ∅ for any i ̸= j. Let τ (U) be the minimum value of such t . Then c(G(D[U])) ≤

τ (U) ≤ |U |, where c(G(D[U])) is the number of components of the underlying graph of D[U]. For any A ⊆ V (D) − U , denote
B := V (D) − U − A and let

h(U, A) : = min{|∂+

D (A)|, |∂−

D (A)|} + min{|(U, B)D|, |(B,U)D|} − τ (U), and (2)
h(U) : = min{h(U, A) : A ∩ U = ∅}.

In [16], Hong et al. give the following proposition, and use it to find some classes of digraphs which are not supereulerian.

Proposition 2.1 (Proposition (2.1) of Hong et al. [16]). If D has a spanning eulerian subdigraph, then for any U ⊂ V (D), h(U) ≥ 0.

This proposition can be applied to show that there exists a family of strong and locally k+-arc-connected non-
supereulerian digraphs which is also locally k-arc-connected non-supereulerian digraphs.

Example 2.2. Let k > 0, l > (k + 1)2 and n1 ≥ n2 ≥ k + 2 be integers, D1 and D2 be two vertex disjoint complete digraphs
on n1 and n2 vertices, respectively, X ⊂ V (D1) and Y ⊂ V (D2) with |X | = |Y | = k + 1 and let U be a set of independent
vertices disjoint from V (D1) ∪ V (D2) with |U | = l. Let D(k, l) denote the family of digraphs such that D ∈ D(k, l) if and only
if D is the digraph obtained from the disjoint union D1 ∪ D2 ∪ U by adding all arcs directed from every vertex in U and D2 to
every vertex in D1, and all arcs directed from every vertex in D2 to every vertex in U , and then by adding (k + 1)2 arcs from
X to Y . (See Fig. 1.) We shall justify that D is a locally k+-arc-connected digraph below. Let A = V (D1). Then

h(U, A) = |∂+

D (A)| + |(U, V (D) − U − A)D| − τ (U) = (k + 1)2 + 0 − l < 0.

By Proposition 2.1, D is not supereulerian. D is strong because for any two vertices v, z ∈ V (D), there exists a (v, z)-dipath.

Let h = (k + 1)2. We will verify our claims above that D is both a locally k+-arc-connected digraph and a locally k-arc-
connected digraph. The observations below follow from the definition of D.

Observation 2.3. Let V1 = V (D1) and V2 = V (D2).
(i) |(V1, V2)D| = (k + 1)2 and |(V2, V1)D| = n1n2 ≥ (k + 2)2.
(ii) |(V1,U)D| = 0 and |(U, V1)D| = ln1.
(iii) |(V2,U)D| = ln2 and |(U, V2)D| = 0.
(iv) If v ∈ V2, then N+(v) = V (D) − {v}.
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(v) If v ∈ V1 ∪ U − X, then N+(v) = V1 − {v}; if v ∈ X, then N+(v) = V1 ∪ Y − {v}.
(vi) If v ∈ V1 ∪ V2, then N(v) = V (D) − {v}; if v ∈ U, then N(v) = V1 ∪ V2.
(vii) If two vertices r and s are contained in a complete subdigraph K with |V (K )| ≥ k + 1, then K has k arc-disjoint

(r, s)-dipaths.

Claim 1. For any v ∈ V (D), and for any two vertices r, s ∈ V (D) − {v}, D − {v} has k arc-disjoint (r, s)-dipaths.

Assume first that r ∈ V1 ∪ U . Since D1 ∼= K ∗
n1 with n1 ≥ k + 2, it follows by Observation 2.3(vii) that |{r, s} ∩ V1| ≤ 1.

If |{r, s, v} ∩ X | ≤ 1, then since |X | = |Y | = k + 1, there exist distinct vertices x1, x2, . . . , xk ∈ X − {r, s, v} and
y1, y2, . . . , yk ∈ Y − {v} such that if s ∈ Y , then yk = s. Since |(X, Y )D| = (k + 1)2 and by Observation 2.3(i)–(iii), if
yk ̸= s, then the dipaths rxiyis, (1 ≤ i ≤ k), are k arc-disjoint (r, s)-dipaths in D − {v}; if yk = s, then the dipaths rxis,
(1 ≤ i ≤ k), are k arc-disjoint (r, s)-dipaths in D − {v}. Since |(X, Y )D| = (k + 1)2 and by Observation 2.3(i), (iii), (vii), if
r, v ∈ X , then for distinct vertices y1, y2, . . . , yk ∈ Y −{s}, ryis, are k arc-disjoint (r, s)-dipaths in D−{v}. Since |V1| ≥ k+ 2,
there exist distinct vertices h1, h2, . . . , hk ∈ V1 − {r, s, v}. Thus by Observation 2.3 (ii), (vii), if s, v ∈ X , rhis, (1 ≤ i ≤ k), are
k arc-disjoint (r, s)-dipaths in D − {v}.

Therefore, we assume that r ∈ V2. Since D2 ∼= K ∗
n2 with n2 ≥ k + 2, it follows by Observation 2.3(vii) that s ∈ V (D) − V2.

Since |V2| ⩾ k+ 2, there exist distinct vertices d1, d2, . . . , dk ∈ V2 − {r, v}. Thus by Observation 2.3(i), the dipaths rdis, are k
arc-disjoint (r, s)-dipaths in D − {v}. This proves Claim 1.

Claim 2. D is locally k+-arc-connected.

We shall show that for any vertex v ∈ V (D), and for any two vertices r, s ∈ N+(v), D[N+(v)] contains k arc-disjoint
(r, s)-dipaths. By Observation 2.3(vii), we may assume that

D[N+(v)] has no complete subdigraphs K with |V (K )| ≥ k + 1 and r, s ∈ V (K ). (3)

By Observation 2.3(v), if v ∈ V2, then N+(v) = V (D) − {v}. By Claim 1, there are k arc-disjoint (r, s)-dipaths in D[N+(v)].
Hence we may assume that v ∈ V1 ∪ U . By Observation 2.3(v), if v ∈ V1 ∪ U − X , then N+(v) = V1 − {v}; if v ∈ X , then
N+(v) = V1 ∪ Y − {v}.

Therefore by (3), we may assume that v ∈ X , N+(v) = V1 ∪ Y − {v}. As |(X, Y )D| = (k + 1)2 and by Observation 2.3,
D[X ∪ Y − {v}] is a complete digraph with 2k + 1 vertices. By (3), we must have |(V1 − X) ∩ {r, s}| = |Y ∩ {r, s}| = 1 and
X ∩ {r, s} = ∅. Since |X | = k + 1, |(X, Y )D| = (k + 1)2 and since X ∩ {r, s} = ∅, we have r ∈ (V1 − X) ∪ Y and there exist
distinct vertices x1, x2, . . . , xk ∈ X − {v} such that rxis, 1 ≤ i ≤ k, are k arc-disjoint (r, s)-dipaths in D[N+(v)]. This proves
Claim 2.

Claim 3. D is locally k-arc-connected.

Again we shall show that for any vertex v ∈ V (D), and for any two vertices r, s ∈ N(v), D[N(v)] contains k arc-disjoint
(r, s)-dipaths. By Observation 2.3(vii), we may assume that

D[N(v)] has no complete subdigraphs K with |V (K )| ≥ k + 1 and r, s ∈ V (K ). (4)

If v ∈ V1 ∪ V2, then by Observation 2.3(vi), N(v) = V (D) − {v}, and so by Claim 1, there exist k arc-disjoint (r, s)-dipaths in
D[N(v)]. Hence we only need to show Claim 3 when v ∈ U . By Observation 2.3(vi), N(v) = V1 ∪ V2.

By (4), |V1 ∩ {r, s}| = |V2 ∩ {r, s}| = 1. Since |X | = |Y | = k + 1, there exist distinct vertices x1, x2, . . . , xk ∈ X − {r, s}
and y1, y2, . . . , yk ∈ Y − {r, s}. Since |(X, Y )D| = (k + 1)2 and by Observation 2.3(i)–(iii), the dipaths rxiyis, (1 ≤ i ≤ k), are
k arc-disjoint (r, s)-dipaths in D[N(v)]. This justifies Claim 3.

Remark 2.4. By Claims 2 and 3, we conclude that any D = D(n1, n2, l) with n1 ≥ n2 ≥ k + 2 and l > (k + 1)2 is locally
k+-arc-connected and locally k-arc-connected, but it is not supereulerian.

Next, we will present an example to address the sharpness of Theorem 1.8.

Example 2.5. We will first present a building block digraph, and then we will use the building block to build an infinite
family of digraphs to show that Theorem 1.8 is best possible in some sense.
(i) Let L be a digraph with V (L) = {v1, v2, v3, v4, v5, v6} and A(L) = {(v1, v2), (v2, v1), (v1, v4), (v3, v2), (v2, v4), (v3, v1),
(v4, v3), (v3, v6), (v3, v5), (v6, v4), (v5, v4), (v5, v6), (v6, v5)} as depicted in Fig. 2.
(ii) Using the notation in Fig. 2, we can fix the vertex set of one of the two K ∗

2 ’s in L, L[{v1, v2}] and L[{v5, v6}], and define it as
a distinguished pair. Let {a, b} be a distinguished pair of L, and denote L by L(a, b). Let L1(a′, b′) and L2(a′′, b′′) be two copies
of L(v1, v2). Obtain a new digraph L1 ⊕ L2 from L1 and L2 by identifying a′ and a′′ to form a new vertex a, and identifying b′

and b′′ to form a new vertex b. See Fig. 3 for a drawing of L1 ⊕ L2 with a = v1 and b = v2.
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Fig. 2. The graph L in Example 2.5.

Fig. 3. The digraph L1 ⊕ L2 in Example 2.5.

Observation 2.6. We make the following observations on the digraph L defined in Example 2.5.
(i) D is strong. This can be verified by observing that each of these subdigraphs D[{v1, v2}], D[{v2, v4, v3}], D[{v4, v3, v6}] and

D[{v5, v5}] is a directed circuit.
(ii) D is not supereulerian. This can be seen by letting U = {v1, v2} and A = {v4}. By (2), direct computation yields that

|∂+

D (A)| = 1, |(U, B)D| = 0 and τ (U) = 2. Thus h(U) < 0, and so by Proposition 2.1, D is not supereulerian.
(iii) For any i with i ∈ {1, 2, 4, 5, 6}, direct computation shows that ∀u ∈ N+(vi), dD[N+(vi)](u) ≥

4
3 |N

+(vi)| −
7
3 .

(iv) For i = 3, we have |N+(v3)| = 4. For any z ∈ N+(v3), we have dD[N+(v3)](z) = 2 =
4
3 |N

+(v3)| −
7
3 − 1.

Remark 2.7. By Observation 2.6, L is a strong nonsupereulerian digraph. Furthermore, for any v ∈ V (D), it holds that
dD[N+(v)](u) ≥

4
3 |N

+(v)| +
7
3 − 1 =

13
12 |N

+(v3)| −
7
3 , ∀u ∈ N+(v). Thus smaller value of 4

3 or 7
3 would not warrant the

existence of a spanning ditrail in D. To construct an infinite family of such digraphs, we can use the ⊕ operation to build
large strong but nonsupereulerian digraphs satisfying the same local density conditions. This shows that Theorem 1.8 is in
some sense, best possible. However, we do not have examples to show for any sufficiently small real numbers ϵ1 > 0 and
ϵ2 > 0, there exist strong non-supereulerian digraphs which are locally ( 43 − ϵ1,

−7
3 )+-dense or locally ( 43 ,

−7
3 − ϵ2)+-dense.

3. Proof of Theorem 1.8

We will present the proof of Theorem 1.8 in this section. Assume that

D is a locally
(
4
3
,
−7
3

)+

-dense strong simple digraph. (5)

Since D is strong, D must have an eulerian subdigraph. Let S be an eulerian subdigraph of D such that among all eulerian
subdigraphs of D

|V (S)| being maximized. (6)

If |V (S)| = |V (D)|, then S is a spanning eulerian subdigraph of D and we are done. Assume by contradiction that |V (D)| >

|V (S)| > 1. Hence V (D)− V (S) ̸= ∅. Since D is strong and S is a maximum eulerian subdigraph, there exists an (S, S)-path Q
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Fig. 4. Proof of Theorem 1.8.

on at least three vertices. Let Q be chosen so that:

the length of a shortest dipath P in S between the endpoints of Q is minimized. (7)

Assume that V (Q ) ∩ V (S) = {v, z} with (v, x) ∈ A(Q ). If (v, z) ∈ A(S), then S − (v, z) + A(Q ) is an eulerian subdigraph with
at least one more vertex than S, contrary to (6). Therefore, there must be a vertex y ∈ V (P) − {v, z} such that (v, y) ∈ A(P).
(See Fig. 4.) Let

X = N+(v) − ({x, y} ∪ V (S)) and Y = N+(v) ∩ (V (S) − {y}), (8)
and |X | = k, |Y | = h, |X | + |Y | = m = k + h, |N+(v)| = nv.

Wemake the following observations.

Claim 1. Each of the following holds.
(i) For each x′

∈ X with (x, x′), (x′, x) ∈ A(D), we must have |{(y, x′), (x′, y)} ∩ A(D)| = 0.
(ii) If h > 0, then for any y′

∈ Y , we cannot have {(y′, x), (x, y′)} ⊂ A(D).
(iii) {(x, y), (y, x)} ∩ A(D) = ∅.
We argue by contradiction to prove Claim 1(i), and assume that for some vertex x′

∈ X with (x, x′), (x′, x) ∈ A(D), either
(y, x′) ∈ A(D) or (x′, y) ∈ A(D). If (y, x′) ∈ A(D), then as D[(A(Q ) − {v, x}) ∪ {(y, x′), (x′, x)}] is a dipath of D intersecting S only
at y, z, and as the distance from y to z in S is shorter than that from v to z in S, a contradiction to (7) is obtained. If (x′, y) ∈ A(D),
then S − (v, y) + {(v, x′), (x′, y)} is an eulerian subdigraph of D with more vertices than S, contrary to (6). This proves (i).

We argue by contradiction to prove Claim 1(ii), and assume that for an y′
∈ Y , we have {(y′, x), (x, y′)} ⊂ A(D). Then

S + {(x, y′), (y′, x)} is an eulerian subdigraph of D with |V (S)| + 1 vertices, contrary to (6). This justifies Claim 1(ii).
To prove (iii), assume that either (x, y) ∈ A(D), whence S − (v, y) + {(v, x), (x, y)} is an eulerian subdigraph of D with more

vertices than S, contrary to (6); or (y, x) ∈ A(D), whence (7) is violated. Thus (iii) must hold.

Claim 2. If dD[N+(v)](x) ≥ 2k + h, then dD[N+(v)](y) ≤ 2h.
By contradiction, we assume that dD[N+(v)](x) ≥ 2k + h and dD[N+(v)](y) ≥ 2h + 1. By Claim 1(ii), |(x, Y )D ∪ (Y , x)D| ≤ h.

Since dD[N+(v)](x) ≥ 2k + h, for each x′
∈ X, we must have both (x, x′).(x′x) ∈ A(D). Since dD[N+(v)](y) ≥ 2h + 1 and since

|(y, Y )D ∪ (Y , y)D| ≤ 2h, there must be an x′
∈ X such that |{(x′, y), (y, x′)} ∩ A(D)| ≥ 1, contrary to Claim 1(i). Hence Claim 2

must hold.

Claim 3. m ≥ 2.
If m = 0, then by (8), we have |N+(v)| = 2, and so by (5), dD[N+(v)](x) ≥

4(2)−7
3 =

1
3 . Thus dD[N+(v)](x) ≥ 1. Similarly,

dD[N+(v)](y) ≥ 1. Therefore either (x, y) or (y, x) must be in A(D), contrary to Claim 1(i), and so the case m = 0 is not possible.
Therefore, we must have m = 1. By Claim 1(iii), we may assume that {(x, y), (y, x)} ∩ A(D) = ∅. By (8), we have

|N+(v)| = 3, and so by (5), dD[N+(v)](x) ≥
4(3)−7

3 =
5
3 . Thus dD[N+(v)](x) ≥ 2. Similarly, dD[N+(v)](y) ≥ 2. As m = 1 and as

{(x, y), (y, x)} ∩ A(D) = ∅, either X = {x′
} and Y = ∅, whence {(y, x′), (x′, y)} ⊂ A(D), contrary to Claim 1(i); or X = ∅ and

Y = {y′
}, whence {(x, y′), (y′, x)} ⊂ A(D), contrary to Claim 1(ii). This completes the proof of Claim 3.

By Claim 3, we assume that m ≥ 2. For some integers s ≥ 1 and t with t ∈ {−1, 0, 1}, we write m = h + k = 3s + t . By
(8), nv = |N+(v)| = m + 2 = 3s + t + 2. By (5), for each z ∈ N+(v) dD[N+(v)](z) ≥

4(nv )−7
3 = 4s + t +

t+1
3 ≥ 4s + t .
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Case 1. s > k.

Then for some integer k′
≥ 1, s = k + k′. as h + k = m = 3(k + k′) + t , we have h = 2k + 3k′

+ t . By (5),
dD[N+(v)](x) ≥ 4s + t = 4k + 4k′

+ t = 2k + h + k′. Since |(x, X)D ∪ (X, x)D| ≤ 2k and as k′ > 0, it follows that for
some y′

∈ Y , both (x, y′) and (y′, x) are in A(D) or {(x, y), (y, x)} ∩ A(D) ̸= ∅, contrary to Claim 1(ii) or (iii). This proves that
Case 1 cannot occur.

Case 2. s = k.

As m = k + h, this is equivalent to h = 2k + t , and so 2k + h = 2h − t . By (8), nv = m + 2 = 3k + t + 2. By (5),
d[N+(v)](x) ≥

4(3k+t+2)−7
3 = 2k+ h+

t+1
3 . Similarly, d[N+(v)](y) ≥ 2h− t +

t+1
3 = 2h+

1−2t
3 . For t ∈ {−1, 0}, this is a violation

to Claim 2. And for t = 1, this is a violation to Claim 1(ii) or 1(iii). This proves that Case 2 cannot occur.

Case 3. s < k, and either k′′
≥ 2 or both k′′

= 1 and t ̸= 1.

Then for some integer k ≥ k′′
≥ 1, s = k − k′′. as h + k = m = 3(k − k′′) + t , we have h = 2k − 3k′′

+ t . By
(5), dD[N+(v)](y) ≥ 4s + t = 4k − 4k′′

+ t = (4k − 6k′′
+ 2t) + k′′

+ (k′′
− t) = 2h + k′′

+ (k′′
− t) ≥ 2h + k′′

+ 1; and
dD[N+(v)](x) ≥ 4s+t = 2k+(2k−3k′′

+t)−k′′
= 2k+h−k′′. Since |(y, Y )D∪(Y , y)D| ≤ 2h, and since dD[N+(v)](y) ≥ 2h+k′′

+1,
we have |(y, X)D ∪ (X, y)D| ≥ k′′

+ 1. By Claim 1(ii), |(x, Y )D ∪ (Y , x)D| ≤ h. As dD[N+(v)](x) ≥ 2k + h − k′′, we have
|(x, X)D ∪ (X, x)D| ≥ 2k − k′′. This implies that there are at least k − k′′ vertices x′

∈ X such that (x, x′), (x′, x) ∈ A(D).
As |(y, X)D ∪ (X, y)D| ≥ k′′

+ 1, there must be an x′
∈ X with (x, x′), (x′, x) ∈ A(D) such that |{(y, x′), (x′, y)} ∩ A(D)| ≥ 1,

contrary to Claim 1(i). Hence Case 3 does not hold.

Case 4. s = k − 1 andm = k + h = 3k − 2.

By (8), h + k = m = 3s + t = 3k − 2, and so h = 2k − 2. By (5), for each z ∈ N+(v) dD[N+(v)](z) ≥ 4s + t +
t+1
3 = 4k −

7
3 .

Since dD[N+(v)](z) is an integer, we have dD[N+(v)](z) ≥ 4k − 2. It follows that dD[N+(v)](x) ≥ 2k + (2k − 2) = 2k + h and
dD[N+(v)](y) ≥ 2(2k − 2) + 2 = 2h + 2, contrary to Claim 2. Thus Case 4 also leads to a contradiction.

As every case leads to a contradiction, this establishes the theorem. □

Proof of Corollary 1.9. Let D be a locally ( 23 , 0)
+-arc-connected strong simple digraph. Then by definition of locally

(α, β)+-arc-connected strong simple digraph Corollary 1.9 means that ∀v ∈ V (D), λ(D[N+(v)]) ≥
2
3 |N

+(v)| + 0 which
by (1) implies that ∀v ∈ V (D), d[N+(v)](u) ≥ 2( 23 )|N

+(v)| =
4
3 |N

+(v)| ≥
4
3 |N

+(v)| −
7
3 , ∀u ∈ N+(v). It follows that D is a

locally ( 43 ,
−7
3 )+-dense strong simple digraph. By Theorem 1.8, D is supereulerian. □

With similar arguments to those in the proof of Theorem 1.8, the following theorem can also be justified.

Theorem 3.1. Every locally ( 43 ,
−7
3 )-dense strong simple digraph is supereulerian.

Sketch of Proof. Assume that

D is a locally
(
4
3
,
−7
3

)
-dense strong simple digraph. (9)

Since D is strong, D must have an eulerian subdigraph. Let S be an eulerian subdigraph of D such that among all eulerian
subdigraphs of D

|V (S)| being maximized. (10)

If |V (S)| = |V (D)|, then S is a spanning eulerian subdigraph of D and we are done. Assume by contradiction that |V (D)| >

|V (S)| > 1. Hence V (D)− V (S) ̸= ∅. Since D is strong and S is a maximum eulerian subdigraph, there exists an (S, S)-path Q
on at least three vertices. Let Q be chosen so that:

the length of a shortest dipath P in S between the endpoints of Q is minimized. (11)

Assume that V (Q ) ∩ V (S) = {v, z} with (v, x) ∈ A(Q ). If (v, z) ∈ A(S), then S − (v, z) + A(Q ) is an eulerian subdigraph
with at least one more vertex than S, contrary to (10). Therefore, there must be a vertex y ∈ V (P) − {v, z} such that
(v, y) ∈ A(P). Let X = X+

∪ X− where X+
= N+(v) − ({x, y} ∪ V (S)) and X−

= N−(v) − V (S). Also let Y = Y+
∪ Y−

where Y+
= N+(v) ∩ (V (S) − {y}) and Y−

= N−(v) ∩ V (S). As in the proof of Theorem 1.8, denote such that

|X | = k, |Y | = h, |X | + |Y | = m = k + h, |N(v)| = nv. (12)

The rest of the proof will be identical to that of Theorem 1.8, using N(v) instead of N+(v). Therefore, these similar arguments
are omitted. □

The final corollary follows from Theorem 3.1.

Corollary 3.2. Every locally ( 23 , 0)-arc-connected strong simple digraph is supereulerian.
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