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a b s t r a c t

Suppose that H is a simple uniform hypergraph satisfying |E(H)| = k(|V (H)| − 1). A k-
partition π = (X1, X2, . . . , Xk) of E(H) such that |Xi| = |V (H)| − 1 for 1 ≤ i ≤ k is a
uniform k-partition. Let Pk(H) be the collection of all uniform k-partitions of E(H) and define
ε(π ) =

∑k
i=1c(H(Xi))−k, where c(H) denotes the number of maximal partition-connected

sub-hypergraphs ofH . Let ε(H) = minπ∈Pk(H)ε(π ). Then ε(H) ≥ 0with equality holds if and
only if H is a union of k edge-disjoint spanning hypertrees. The parameter ε(H) is used to
measure how close H is being from a union of k edge-disjoint spanning hypertrees.

We prove that if H is a simple uniform hypergraph with |E(H)| = k(|V (H)| − 1) and
ε(H) > 0, then there exist e ∈ E(H) and e′

∈ E(Hc ) such that ε(H − e + e′) < ε(H).
This generalizes a former result, which settles a conjecture of Payan. The result iteratively
defines a finite ε-decreasing sequence of uniform hypergraphs H0,H1,H2, . . . ,Hm such
that H0 = H , Hm is the union of k edge-disjoint spanning hypertrees, and such that two
consecutive hypergraphs in the sequence differ by exactly one hyperedge.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs and finite hypergraphs. Definitions will be introduced in Section 2. Throughout the paper, let
k ≥ 1 be an integer, H denotes a hypergraph, c(H) denotes the number of maximal partition-connected sub-hypergraphs
of H , and ω(H) denotes the number of connected components of H . By definition, for a graph G, partition-connectedness
is equivalent to connectedness, and so c(G) = ω(G). For a hypergraph H , as mentioned in [2], partition-connectedness is
a stronger property than connectedness and so ω(H) and c(H) are different in general. For X ⊆ E(H), H(X) denotes the
spanning sub-hypergraph of H with edge set X , whereas H[X] denotes the sub-hypergraph of H induced by X . If H = (V , E)
is an r-uniform hypergraph, then the complement of H , denoted by Hc , is an r-uniform hypergraph with V (Hc) = V (H) and
E(Hc) = V [r]

− E(H).
In [7], Payan considered the following problem. Let G be a connected simple graph on n ≥ 2 vertices and k(n − 1) edges.

Payan introduced an integral function ε(G) to measure how the graph G is closed to having k edge-disjoint spanning trees in
such a way that G has k edge-disjoint spanning tree if and only if ε(G) = 0. Payan asked the question whether it is always
possible to make a finite number of edge exchanges between edges in G and edges not in G so that the corresponding values
of ε will be strictly decreasing until it becomes zero. Payan [7] conjectured that the problem has an affirmative answer
(confirmed in [4]). In this paper, we study the corresponding problem in hypergraphs.
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Suppose that H is a simple uniform hypergraph satisfying |E(H)| = k(|V (H)| − 1). A k-partition π = (X1, X2, . . . , Xk) of
E(H) such that |Xi| = |V (H)| − 1 for 1 ≤ i ≤ k is called a uniform k-partition. Let Pk(H) be the collection of all uniform
k-partitions of E(H). We define

ε(π ) =

k∑
i=1

c(H(Xi)) − k,

and

ε(H) = min
π∈Pk(H)

ε(π ).

By definition, ε(H) ≥ 0. By Corollary 2.6 of [2] or Theorem 2.2(i), ε(H) = 0 if and only if for every 1 ≤ i ≤ k, H(Xi) is a
spanning hypertree of H . Thus ε(H) = 0 if and only if H has k edge-disjoint spanning hypertrees.

The following result was conjectured by Payan [7] and proved in [4].

Theorem 1.1 ([4]). If G is a simple graph with |E(G)| = k(|V (G)| − 1) and ε(G) > 0, then there exist e ∈ E(G) and e′
∈ E(Gc)

such that ε(G − e + e′) < ε(G).

Note that a simple graph is a 2-uniform hypergraph. Themain purpose of this note is to extend Theorem 1.1 to all uniform
hypergraphs.

Theorem 1.2. If H is a simple uniform hypergraph with |E(H)| = k(|V (H)| − 1) and ε(H) > 0, then there exist e ∈ E(H) and
e′

∈ E(Hc) such that ε(H − e + e′) < ε(H).

Remark. (1) The parameter ε(H), first introduced by Payan in [7] for graphs, can be considered as a measurement that
how close H is from being an edge-disjoint union of k spanning hypertrees. Theorem 1.2 iteratively defines a finite ε-
decreasing sequence of uniform hypergraphs H0,H1,H2, . . . ,Hm such that H0 = H , Hm is the union of k edge-disjoint
spanning hypertrees, and such that any two consecutive hypergraphs in the sequence differ by exactly one hyperedge.
(2) This problem is related to connectivity augmentation problems for a network (modeled as a graph or hypergraph). The
traditional connectivity augmentation problem is, adding some edges to increase the connectivity (or edge connectivity,
partition connectivity, etc.) of a network. Here a kind of ‘‘dynamic augmentation’’ is considered, i.e.,

• The number of edges in the network does not change.
• In each stage, one edge is deleted and another edge is added from outside, where the two edges are called an edge pair.
• In each stage, partition connectivity augmentation happens, which is so-called ‘‘dynamic augmentation’’.

In this paper, the existence of such edge pairs to augment partition connectivity of a uniform hypergraph is confirmed. It
is still interesting to design algorithms to locate those edge pairs.

2. Preliminaries

A hypergraph H is a pair (V , E) where V is the vertex set of H and E is a collection of not necessarily distinct nonempty
subsets of V , called hyperedges or simply edges of H . A loop is a hyperedge that consists of a single vertex. A hypergraph
H is nontrivial if E(H) ̸= ∅. A hypergraph H is simple if for any e1, e2 ∈ E(H), e1 ̸⊆ e2. For an integer r > 0, and a set V ,
let V [r] denote the family of all r-subsets of V . A simple hypergraph H = (V , E) is r-uniform if E ⊆ V [r]. If H = (V , E) is
an r-uniform hypergraph, then the complement of H , denoted by Hc , is an r-uniform hypergraph with V (Hc) = V (H) and
E(Hc) = V [r]

− E(H).
If W ⊆ V (H), the hypergraph (W , EW ), where EW = {e ∈ E(H) : e ⊆ W } is a sub-hypergraph induced by the vertex

subsetW , and is denoted by H[W ]. If X ⊆ E(H) and VX = ∪e∈Xe, then (VX , X) is defined as the sub-hypergraph induced by
the edge subset X and is denoted by H[X].

A hypergraph H is connected if there is a hyperedge intersecting bothW and V −W for every non-empty proper subset
W of V (H). A connected component of a hypergraph H is a maximal connected sub-hypergraph of H . A hypergraph H is
k-partition-connected if ∥P∥ ≥ k(|P|−1) for every partition P of V (H), where |P| denotes the number of classes in P and ∥P∥

denotes the number of edges intersecting at least two classes of P . Equivalently, H is k-partition-connected if, for any subset
X ⊆ E(H), |X | ≥ k(ω(H−X)−1). A 1-partition-connected hypergraph is also referred as a partition-connected hypergraph.
It follows from definition that a graph is partition-connected if and only if it is connected. In general, partition-connected
hypergraphs must be connected, but a connected hypergraph may not be partition-connected. The partition connectivity
of H is the maximum k such that H is k-partition-connected.

A hypergraph H is a hyperforest if for every nonempty subset U ⊆ V (H), |E(H[U])| ≤ |U | − 1. A hyperforest T is called
a hypertree if |E(T )| = |V (T )| − 1. By a hypercircuit, we mean a hypergraph C with |E(C)| = |V (C)| but |X | < |V (C[X])| for
any proper subset X ⊂ E(C). For a hypergraph H , let τ (H) be the maximum number of edge-disjoint spanning hypertrees in
H and a(H) be the minimum number of edge-disjoint hyperforests whose union is E(H). For a graph G, τ (G) is the spanning
tree packing number of G and a(G) is the arboricity of G.
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The following theorem of Nash-Williams and Tutte shows that the k-partition-connectedness of a graphG is equivalent to
the property that G has k edge-disjoint spanning trees. Nash-Williams then published a dual theorem, characterizing graphs
that can be decomposed to at most k forests.

Theorem 2.1. Let G be a graph.
(i) (Nash-Williams [5], Tutte [8]). τ (G) ≥ k if and only if for any X ⊆ E(G), |X | ≥ k(ω(G − X) − 1).
(ii) (Nash-Williams [6]). a(G) ≤ k if and only if for any subgraph S, |E(S)| ≤ k(|V (S)| − 1).

Frank, Király and Kriesell [2] extended both results to hypergraphs.

Theorem 2.2 (Frank, Király and Kriesell [2]). Let H be a hypergraph.
(i) τ (H) ≥ k if and only if for every X ⊆ E(H), |X | ≥ k(ω(H − X) − 1) (or, equivalently, H is k-partition-connected).
(ii) a(H) ≤ k if and only if for any sub-hypergraph S, |E(S)| ≤ k(|V (S)| − 1).

By Theorem 2.2(i), τ (H) is the partition connectivity of H and a hypertree is a minimal partition-connected hypergraph.
Let e be a hyperedge in a hypergraphH (notice that e is also a subset of V (H)). ByH/ewe denote the hypergraph obtained

from H by contracting the hyperedge e into a new vertex v0 and by removing resulting loops if there are any. That is,
V (H/e) = (V (H) − e) ∪ {v0} and a hyperedge e′

∈ E(H/e) if and only if either e′
= e′′ for some e′′

∈ E(H) with e′′
∩ e = ∅

or e′
= (e′′

− e) ∪ {v0} for some e′′
∈ E(H) \ {e} with e′′

∩ e ̸= ∅. If X ⊆ E(H), then H/X is a hypergraph obtained from H by
contracting all hyperedges in X . If S is a sub-hypergraph of H , then H/S denotes H/E(S).

For any nonempty subset X ⊆ E(H), the density of X is defined to be

dH (X) =
|X |

|V (H[X])| − ω(H[X])
.

We often use d(H) for dH (E(H)). Following [1,3], the strength η(H) and the fractional arboricity γ (H) of a nontrivial
hypergraph H are defined, respectively, as

η(H) = min
{

|X |

ω(H − X) − ω(H)

}
and γ (H) = max {d(H[X])} ,

where the minimum and maximum are taken over all edge subsets X ⊆ E(H) so that the denominators are nonzero. It is
mentioned in [3] that, Theorem 2.2 shows that for a connected hypergraph H , τ (H) ≥ k if and only if η(H) ≥ k; and a(H) ≤ k
if and only if γ (H) ≤ k, which gives

τ (H) = ⌊η(H)⌋ and α(H) = ⌈γ (H)⌉ for a connected hypergraph H. (1)

Remark. There is also an equivalent definition for η(H), as below

η(H) = min
{

|E(H) − X |

|V (H/X)| − ω(H)

}
. (2)

Proof of the Remark. Let X ′
= E(H) − X . Each connected component of H − X ′ corresponds to a vertex of H/X , and thus

ω(H − X ′) = |V (H/X)|. Hence

min
{

|E(H) − X |

|V (H/X)| − ω(H)

}
= min

{
|X ′

|

ω(H − X ′) − ω(H)

}
,

where the minimums are taken over all edge subsets X ⊆ E(H) (or equivalently X ′
⊆ E(H)) so that the denominators are

nonzero, which finishes the proof of the remark.

It follows by definitions that for any nontrivial hypergraph H , η(H) ≤ d(H) ≤ γ (H). A hypergraph H is uniformly dense
if d(H) = γ (H). We have the following property.

Theorem 2.3 ([3]). For a hypergraph H, the following are equivalent.
(i) η(H) = γ (H).
(ii) η(H) = d(H).
(iii) d(H) = γ (H).

Theorem 2.3 generalizes the corresponding results in [1] from graphs to hypergraphs. Let Tk be the family of all k-
partition-connectedhypergraphs. By Theorem2.2(i),Tk is the family of all hypergraphs eachofwhich contains k edge-disjoint
spanning hypertrees.

Proposition 2.4 ([3]). Each of the following statements holds.
(C1) Tk ̸= ∅.
(C2) If e ∈ E(H) and H ∈ Tk, then H/e ∈ Tk.
(C3) If for some S ⊂ E(H), both S,H/S ∈ Tk, then H ∈ Tk.
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Lemma 2.5. Let H be a hypergraph with d(H) ≥ k > η(H). Then H has a connected sub-hypergraph S such that η(S) > k. In
particular, d(S) > k and τ (S) ≥ k.

Proof. As d(H) ≥ k > η(H), by Theorem 2.3, γ (H) > k. By the definition of γ (H), there exists a connected sub-hypergraph
S such that d(S) = γ (H) > k. (We can always choose S to be connected, for otherwise if S contains s connected components
Si, 1 ≤ i ≤ s, we claim d(Si) = γ (H). First, by definition of γ (H), d(Si) ≤ d(S) = γ (H). Thus |E(Si)|

|V (Si)|−1 ≤ d(S), which
implies |E(Si)| ≤ d(S)(|V (Si)| − 1). If one of d(Si) is strictly less than d(S), then

∑
1≤i≤s|E(Si)| <

∑
1≤i≤sd(S)(|V (Si)| − 1) =

d(S)(
∑

1≤i≤s|V (Si)| − s). Thus d(S) =

∑
|E(Si)|∑

|V (Si)|−s < d(S), a contradiction. Thus d(Si) = d(S) = γ (H). In this case, we can choose
S to be any connected component.)

Thus d(S) ≤ γ (S) ≤ γ (H) = d(S), which implies that d(S) = γ (S). By Theorem 2.3, η(S) = d(S) = γ (S) > k. In particular,
τ (S) ≥ k. □

Lemma 2.6. Let C be a hypercircuit and e ∈ E(C). Then C − e is a hypertree (and thus partition-connected).

Proof. By the definition of a hypercircuit, for every nonempty subset U ⊆ V (C) = V (C − e), |E(C[U])| ≤ |U | − 1. Since
|E(C)| = |V (C)|, we have |E(C − e)| = |V (C)| − 1. By definition, C − e is a hypertree. □

3. The proof of Theorem 1.2

Let P ′

k(H) be the collection of all k-partitions of E(H), and define ε′(H) = minπ∈P ′
k(H)ε(π ).

Lemma 3.1. For any uniform hypergraph H with |E(H)| = k(|V (H)| − 1), ε(H) = ε′(H).

Proof. Since Pk(H) ⊆ P ′

k(H), it follows from definition that ε(H) ≥ ε′(H). Thus it suffices to show that ε(H) ≤ ε′(H).
Let n = |V (H)|. For each π = (X1, X2, . . . , Xk) ∈ P ′

k(H), define

ϕ(π ) =

k∑
i=1

max{|Xi| − n + 1, 0}.

Thus ϕ(π ) ≥ 0, and ϕ(π ) = 0 if and only if π ∈ Pk(H).
Choose a π = (X1, X2, . . . , Xk) ∈ P ′

k(H) such that ε(π ) = ε′(H) and such that ϕ(π ) is minimized. We claim that π ∈ Pk(H).
Assume that ϕ(π ) > 0, and without loss of generality, we may assume that |X1| > n − 1 and |X2| < n − 1. Thus H(X1) must
contain a hypercircuit C , and let e ∈ E(C). Define π ′

= (X ′

1, X
′

2, . . . , X
′

k) as below.

X ′

i :=

{X1 − {e}, if i = 1,
X2 ∪ {e}, if i = 2,
Xi, if i > 2.

Then π ′
∈ P ′

k(H). By Lemma 2.6, the removal of an edge in a hypercircuit does not affect the partition-connectedness, and so
we have c(H(X1)) = c(H(X ′

1)). We also have c(H(X2)) ≥ c(H(X ′

2)). Thus ε(π ′) ≤ ε(π ) = ε′(H), but ϕ(π ′) ≤ ϕ(π )−1, contrary
to the choice of π . Thus ϕ(π ) = 0, and so π ∈ Pk(H). Hence ε(H) ≤ ε(π ) = ε′(H), which completes the proof. □

In the rest of the paper, we prove Theorem 1.2. Lemma 3.1 suggests that by using ε′(H), we do not have to restrict our
discussion to uniform k-partitions, and so in the proof arguments below, all k-partitions may not be uniform.

Proof of Theorem 1.2. Throughout the proof, we assume that H is an r-uniform hypergraph for some integer r ≥ 2. Since
ε(H) > 0, H does not have k edge-disjoint spanning hypertrees, and so by (1), η(H) < k. Since |E(H)| = k(|V (H)| − 1), we
have d(H) = k. By Lemma 2.5, there exists a maximal connected sub-hypergraph S with d(S) > k and τ (S) ≥ k. In other
words, |E(S)| > k(|V (S)| − 1) and S has k edge-disjoint spanning hypertrees.

Claim 1. For any v ∈ V (H) − V (S), there exist w1, . . . , wr−1 ∈ V (S) such that {w1, . . . , wr−1, v} ̸∈ E(H).

Proof of Claim 1. If not, then v is adjacent to every (r − 1)-subset of V (S) in H . Let |V (S)| = s. Then there are at least
( s
r−1

)
hyperedges joining S and v. Since S is a simple r-uniform hypergraph,

( s
r

)
≥ |E(S)| > k(s − 1). Then

( s
r−1

)
=

( s
r

)
·

r
s−r+1 >

k ·
r(s−1)
s−r+1 > k. Thus |E(H[V (S) ∪ {v}])| > |E(S)| + k, and so

d(H[V (S) ∪ {v}]) =
|E(H[V (S) ∪ {v}])|
|V (S) ∪ {v}| − 1

>
|E(S)| + k

|V (S)|
>

k(|V (S)| − 1) + k
|V (S)|

= k.

Since H[V (S)∪{v}]/S is a multigraph with two vertices and at least k edges, H[V (S)∪{v}]/S is k-partition-connected. As S is
k-partition-connected, it followsby Proposition 2.4(C3) thatH[V (S)∪{v}] is k-partition-connected. Thus τ (H[V (S)∪{v}]) ≥ k,
contrary to the maximality of S. This proves the claim.
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Since S has k edge-disjoint spanning hypertrees, E(S) has a k-partition (Y1, Y2, . . . , Yk) such that each S(Yi) is a spanning
partition-connected sub-hypergraph of S for 1 ≤ i ≤ k. As |E(S)| > k(|V (S)| − 1), one of these spanning partition-connected
sub-hypergraphs, (say S(Y1)), must contain a hypercircuit C . Let e ∈ E(C).

Choose π = (X1, X2, . . . , Xk) ∈ P ′

k(H) such that ε(π ) = ε′(H). Define X ′

i = (Xi − E(S)) ∪ Yi for 1 ≤ i ≤ k and
π ′

= (X ′

1, X
′

2, . . . , X
′

k).

Claim 2. c(H(X ′

i )) ≤ c(H(Xi)) for 1 ≤ i ≤ k.

Proof of Claim 2. It suffices to show that for any maximal partition-connected sub-hypergraph T of H(Xi), the sub-
hypergraph T ′ induced by (E(T )−E(S))∪Yi is also partition-connected. Since T is partition-connected, by Proposition 2.4(C2),
T/S is partition-connected. Thus T ′/Yi = T/S is partition-connected. As S(Yi) is partition-connected, by Proposition 2.4(C3),
T ′ is partition-connected. This proves the claim.

By Claim 2, ε′(H) ≤ ε(π ′) ≤ ε(π ) = ε′(H). Thus ε(π ′) = ε(π ) = ε′(H). By Lemma 3.1, ε′(H) = ε(H) > 0. Thus we
may assume that c(H(X ′

j )) ≥ 2 for some j. Since H(X ′

j ) has a partition-connected sub-hypergraph S(Yj), H(X ′

j ) has a maximal
partition-connected sub-hypergraph R containing S(Yj). Furthermore, H(X ′

j ) must have a vertex v ∈ V (H)− V (S) such that v

is not in R since c(H(X ′

j )) ≥ 2. By Claim 1, there are vertices w1, w2, . . . , wr−1 ∈ V (S) such that e′
= {w1, w2, . . . , wr−1, v} ̸∈

E(H). Define the hyperedge subset

X ′′

i :=

{
(X ′

i − {e}) ∪ {e′
}, if i = j,

X ′

i − {e}, if i ̸= j.

Note that j = 1 is possible and the hyperedge e is in X ′

1.
Let F = H − e + e′. Then π ′′

= (X ′′

1 , X ′′

2 , . . . , X ′′

k ) ∈ P ′

k(F ).

Claim 3. ε(π ′′) < ε(π ′).

Proof of Claim 3. When i ̸= j, since e ∈ E(C) ⊆ X ′

1, c(F (X
′′

i )) = c(H(X ′

i )). When i = j, let R′ be the maximal partition-
connected sub-hypergraph of H(X ′

j ) that contains v. As (R+ e′)/R = K2 (a graph with two vertices and one edge) is partition-
connected, and R is partition-connected, by Proposition 2.4(C3), R+e′ is partition-connected. Also, ((R+e′)∪R′)/(R+e′) = R′

is partition-connected. Again by Proposition 2.4(C3), (R+e′)∪R′ is partition-connected in F (X ′′

i ). As R and R′ are twomaximal
partition-connected sub-hypergraphs in H(X ′

i ), it follows that c(F (X ′′

i )) < c(H(X ′

i )). By definition, ε(π ′′) < ε(π ′), completing
the proof of the claim.

By Lemma 3.1 and Claim 3, ε(F ) = ε′(F ) ≤ ε(π ′′) < ε(π ′) = ε′(H) = ε(H). This proves the theorem. □
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