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Available online 4 October 2017 sub-hypergraphs of H. Let e(H) = ming cp,1)&(7r ). Then e(H) > 0 with equality holds if and

only if H is a union of k edge-disjoint spanning hypertrees. The parameter ¢(H) is used to

Is(g;vr?irr?;.hypertrees measure how close H is being from a union of k edge-disjoint spanning hypertrees.

Partition connectivity We prove that if H is a simple uniform hypergraph with |[E(H)| = k(|V(H)| — 1) and

Uniformly dense g(H) > 0, then there exist e € E(H) and ¢ € E(H®) such that ¢(H — e +€') < &(H).
This generalizes a former result, which settles a conjecture of Payan. The result iteratively
defines a finite e-decreasing sequence of uniform hypergraphs Hy, Hy, Ha, ..., Hy such

that Hy = H, Hy, is the union of k edge-disjoint spanning hypertrees, and such that two
consecutive hypergraphs in the sequence differ by exactly one hyperedge.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs and finite hypergraphs. Definitions will be introduced in Section 2. Throughout the paper, let
k > 1 be an integer, H denotes a hypergraph, c(H) denotes the number of maximal partition-connected sub-hypergraphs
of H, and w(H) denotes the number of connected components of H. By definition, for a graph G, partition-connectedness
is equivalent to connectedness, and so c(G) = w(G). For a hypergraph H, as mentioned in [2], partition-connectedness is
a stronger property than connectedness and so w(H) and c(H) are different in general. For X C E(H), H(X) denotes the
spanning sub-hypergraph of H with edge set X, whereas H[X] denotes the sub-hypergraph of H induced by X.If H = (V, E)
is an r-uniform hypergraph, then the complement of H, denoted by H¢, is an r-uniform hypergraph with V(H®) = V(H) and
E(H®) = VU1 — E(H).

In [7], Payan considered the following problem. Let G be a connected simple graph on n > 2 vertices and k(n — 1) edges.
Payan introduced an integral function £(G) to measure how the graph G is closed to having k edge-disjoint spanning trees in
such a way that G has k edge-disjoint spanning tree if and only if ¢(G) = 0. Payan asked the question whether it is always
possible to make a finite number of edge exchanges between edges in G and edges not in G so that the corresponding values
of ¢ will be strictly decreasing until it becomes zero. Payan [7] conjectured that the problem has an affirmative answer
(confirmed in [4]). In this paper, we study the corresponding problem in hypergraphs.
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Suppose that H is a simple uniform hypergraph satisfying |[E(H)| = k(|V(H)| — 1). A k-partition 7 = (X1, X2, ..., X)) of
E(H) such that |X;| = |[V(H)| — 1for 1 < i < ks called a uniform k-partition. Let Pi(H) be the collection of all uniform
k-partitions of E(H). We define

k
e(m) =) c(HX) — k.
i=1
and
e(H)= min e&(m).
wePy(H)
By definition, e(H) > 0. By Corollary 2.6 of [2] or Theorem 2.2(i), e(H) = 0 if and only if forevery 1 < i < k, H(X;) is a
spanning hypertree of H. Thus ¢(H) = 0 if and only if H has k edge-disjoint spanning hypertrees.
The following result was conjectured by Payan [7] and proved in [4].

Theorem 1.1 ([4]). If G is a simple graph with |E(G)| = k(|V(G)| — 1) and &(G) > 0, then there exist e € E(G) and ¢’ € E(G°)
such that (G — e + €') < ¢(G).

Note that a simple graph is a 2-uniform hypergraph. The main purpose of this note is to extend Theorem 1.1 to all uniform
hypergraphs.

Theorem 1.2. If H is a simple uniform hypergraph with |E(H)| = k(|V(H)| — 1) and e(H) > 0, then there exist e € E(H) and
e € E(H®)such that e(H — e + €') < e(H).

Remark. (1) The parameter ¢(H), first introduced by Payan in [7] for graphs, can be considered as a measurement that
how close H is from being an edge-disjoint union of k spanning hypertrees. Theorem 1.2 iteratively defines a finite &-
decreasing sequence of uniform hypergraphs Hq, Hq, Ha, ..., Hy such that Hy = H, Hy; is the union of k edge-disjoint
spanning hypertrees, and such that any two consecutive hypergraphs in the sequence differ by exactly one hyperedge.

(2) This problem is related to connectivity augmentation problems for a network (modeled as a graph or hypergraph). The
traditional connectivity augmentation problem is, adding some edges to increase the connectivity (or edge connectivity,
partition connectivity, etc.) of a network. Here a kind of “dynamic augmentation” is considered, i.e.,

e The number of edges in the network does not change.
e Ineach stage, one edge is deleted and another edge is added from outside, where the two edges are called an edge pair.
e In each stage, partition connectivity augmentation happens, which is so-called “dynamic augmentation”.

In this paper, the existence of such edge pairs to augment partition connectivity of a uniform hypergraph is confirmed. It
is still interesting to design algorithms to locate those edge pairs.

2. Preliminaries

A hypergraph H is a pair (V, E) where V is the vertex set of H and E is a collection of not necessarily distinct nonempty
subsets of V, called hyperedges or simply edges of H. A loop is a hyperedge that consists of a single vertex. A hypergraph
H is nontrivial if E(H) # @. A hypergraph H is simple if for any e;, e, € E(H), e; € ey. For an integer r > 0, and a set V,
let VI' denote the family of all r-subsets of V. A simple hypergraph H = (V, E) is r-uniform if E € VI IfH = (V,E)is
an r—unifor[r]n hypergraph, then the complement of H, denoted by H¢, is an r-uniform hypergraph with V(H®) = V(H) and
E(H®) = V' — E(H).

If W C V(H), the hypergraph (W, Ey ), where Ey = {e € E(H) : e C W} is a sub-hypergraph induced by the vertex
subset W, and is denoted by H{W]. If X € E(H) and Vx = U,cxe, then (Vx, X) is defined as the sub-hypergraph induced by
the edge subset X and is denoted by H[X].

A hypergraph H is connected if there is a hyperedge intersecting both W and V — W for every non-empty proper subset
W of V(H). A connected component of a hypergraph H is a maximal connected sub-hypergraph of H. A hypergraph H is
k-partition-connected if || P|| > k(|P|— 1) for every partition P of V(H), where |P| denotes the number of classes in P and || P||
denotes the number of edges intersecting at least two classes of P. Equivalently, H is k-partition-connected if, for any subset
X C E(H), |X| = k(w(H—X)—1). A 1-partition-connected hypergraph is also referred as a partition-connected hypergraph.
It follows from definition that a graph is partition-connected if and only if it is connected. In general, partition-connected
hypergraphs must be connected, but a connected hypergraph may not be partition-connected. The partition connectivity
of H is the maximum k such that H is k-partition-connected.

A hypergraph H is a hyperforest if for every nonempty subset U C V(H), [E(H[U])| < |U| — 1. A hyperforest T is called
a hypertree if |[E(T)| = |V(T)| — 1. By a hypercircuit, we mean a hypergraph C with |[E(C)| = |V(C)| but |X| < |V(C[X])] for
any proper subset X C E(C). For a hypergraph H, let 7(H) be the maximum number of edge-disjoint spanning hypertrees in
H and a(H) be the minimum number of edge-disjoint hyperforests whose union is E(H). For a graph G, t(G) is the spanning
tree packing number of G and a(G) is the arboricity of G.
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The following theorem of Nash-Williams and Tutte shows that the k-partition-connectedness of a graph G is equivalent to
the property that G has k edge-disjoint spanning trees. Nash-Williams then published a dual theorem, characterizing graphs
that can be decomposed to at most k forests.

Theorem 2.1. Let G be a graph.
(i) (Nash-Williams [5], Tutte [8]). T(G) > kif and only if for any X C E(G), |X| > k(w(G — X) — 1).
(ii) (Nash-Williams [6]). a(G) < k if and only if for any subgraph S, |E(S)| < k(|]V(S)| — 1).

Frank, Kiraly and Kriesell [2] extended both results to hypergraphs.

Theorem 2.2 (Frank, Kirdly and Kriesell [2]). Let H be a hypergraph.
(i) T(H) > k if and only if for every X € E(H), |X| = k(w(H — X) — 1) (or, equivalently, H is k-partition-connected).
(ii) a(H) < kif and only if for any sub-hypergraph S, |E(S)| < k(|V(S)| — 1).

By Theorem 2.2(i), T(H) is the partition connectivity of H and a hypertree is a minimal partition-connected hypergraph.

Let e be a hyperedge in a hypergraph H (notice that e is also a subset of V(H)). By H /e we denote the hypergraph obtained
from H by contracting the hyperedge e into a new vertex vg and by removing resulting loops if there are any. That is,
V(H/e) = (V(H) — e) U {vo} and a hyperedge ¢’ € E(H/e) if and only if either & = e” for some e” € E(H) withe’ Ne = @
ore’ = (e” —e)U {vg} for some e” € E(H) \ {e} withe’ Ne # @.If X C E(H), then H/X is a hypergraph obtained from H by
contracting all hyperedges in X. If S is a sub-hypergraph of H, then H/S denotes H/E(S).

For any nonempty subset X C E(H), the density of X is defined to be

X
dy(X) = .
HX) = TV HIXD) = o(HIX])

We often use d(H) for dy(E(H)). Following [1,3], the strength n(H) and the fractional arboricity y(H) of a nontrivial
hypergraph H are defined, respectively, as

n(H) = min{L
w(H — X) — w(H)

where the minimum and maximum are taken over all edge subsets X C E(H) so that the denominators are nonzero. It is
mentioned in [3] that, Theorem 2.2 shows that for a connected hypergraph H, t(H) > kifand only if n(H) > k; and a(H) < k
if and only if y(H) < k, which gives

} and y(H) = max {d(H[X])},

T(H) = |n(H)] and a(H) = [y(H)] for a connected hypergraph H. (1)

Remark. There is also an equivalent definition for n(H), as below

E(H)—X
n(H):min{H)—|}. (2)
[V(H/X)| — o(H)
Proof of the Remark. Let X’ = E(H) — X. Each connected component of H — X’ corresponds to a vertex of H/X, and thus
w(H — X') = |V(H/X)|. Hence

{ |E(H) — X] }_ . { IX'] }

Ny ——————— =M ———— 1,

[V(H/X)| — w(H) w(H —X') — o(H)

where the minimums are taken over all edge subsets X C E(H) (or equivalently X’ C E(H)) so that the denominators are
nonzero, which finishes the proof of the remark.

It follows by definitions that for any nontrivial hypergraph H, n(H) < d(H) < y(H). A hypergraph H is uniformly dense
if d(H) = y(H). We have the following property.

Theorem 2.3 ([3]). For a hypergraph H, the following are equivalent.
(i) n(H) = y(H).

(ii) n(H) = d(H).

(iii) d(H) = y (H).

Theorem 2.3 generalizes the corresponding results in [1] from graphs to hypergraphs. Let 7; be the family of all k-
partition-connected hypergraphs. By Theorem 2.2(i), 7 is the family of all hypergraphs each of which contains k edge-disjoint
spanning hypertrees.

Proposition 2.4 ([3]). Each of the following statements holds.
(C1) T # 0.

(C2)Ifece E(H)and H € Ty, thenH/e € Tx.

(C3) If for some S C E(H), bothS,H/S € Ty, thenH € Ty.
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Lemma 2.5. Let H be a hypergraph with d(H) > k > n(H). Then H has a connected sub-hypergraph S such that n(S) > k. In
particular, d(S) > k and ©(S) > k.

Proof. Asd(H) > k > n(H), by Theorem 2.3, y(H) > k. By the definition of y(H), there exists a connected sub-hypergraph
S such that d(S) = y(H) > k.(We can always choose S to be connected, for otherwise if S contains s connected components
Si, 1 < i < s, we claim d(S;) = y(H). First, by definition of (H), d(S;) < d(S) = y(H). Thus W'(Egjﬂl < d(S), which
implies |E(S;)| < d(S)(IV(S;)| — 1). If one of d(S;) is strictly less than d(S), then Y, _;_|E(S)| < Y ;. dS)IV(S) — 1) =
d(S)(leiss|V(Si)| —5).Thus d(S) = ZZW‘(ES(I,S)"L < d(S), a contradiction. Thus d(S;) = d(S) = y(H). In this case, we can choose
S to be any connected component.)

Thus d(S) < y(S) < y(H) = d(S), which implies that d(S) = y(S). By Theorem 2.3, n(S) = d(S) = y(S) > k. In particular,
(S)>k O

Lemma 2.6. Let C be a hypercircuit and e € E(C). Then C — e is a hypertree (and thus partition-connected).

Proof. By the definition of a hypercircuit, for every nonempty subset U € V(C) = V(C — e), |[E(C[U])| < |U| — 1. Since
|[E(C)| = |V(C)|, we have |[E(C — e)| = |V(C)| — 1. By definition, C — e is a hypertree. O

3. The proof of Theorem 1.2
Let P;(H) be the collection of all k-partitions of E(H), and define ¢'(H) = minnepl/((ms(n).
Lemma 3.1. For any uniform hypergraph H with |E(H)| = k(|V(H)| — 1), e(H) = &'(H).

Proof. Since P(H) C P;(H), it follows from definition that e(H) > ¢'(H). Thus it suffices to show that e(H) < &'(H).
Letn = |V(H)|. Foreach w = (X1, X;, ..., Xk) € P;(H), define
k
o(r) =Y max{|Xi| —n+1,0}.
i=1
Thus ¢(rr) > 0,and ¢(r) = 0 ifand only if 7 € Py(H).
Chooseanm = (Xy, Xy, ..., Xk) € P (H)suchthat e() = ¢'(H) and such that ¢(sr) is minimized. We claim that = € Py(H).

Assume that ¢(7r) > 0, and without loss of generality, we may assume that |X;| > n — 1and |X;| < n — 1. Thus H(X7) must
contain a hypercircuit C, and let e € E(C). Define n’ = (X1, X3, ..., X;) as below.

X1 —{e}, ifi=1,
X :=1{XUfe}, ifi=2,
X,‘ ifi > 2.
Then 7’ € Py(H). By Lemma 2.6, the removal of an edge in a hypercircuit does not affect the partition-connectedness, and so
we have c(H(X;)) = c(H(X7)). We also have c(H(X,)) > c(H(X;)). Thus e(7’) < e(m) = ¢'(H), but ¢(r") < () — 1, contrary
to the choice of 7r. Thus ¢(7r) = 0, and so = € Py(H). Hence ¢(H) < &(;r) = ¢'(H), which completes the proof. O

In the rest of the paper, we prove Theorem 1.2. Lemma 3.1 suggests that by using ¢'(H), we do not have to restrict our
discussion to uniform k-partitions, and so in the proof arguments below, all k-partitions may not be uniform.

Proof of Theorem 1.2. Throughout the proof, we assume that H is an r-uniform hypergraph for some integer r > 2. Since
e(H) > 0, H does not have k edge-disjoint spanning hypertrees, and so by (1), n(H) < k. Since |E(H)| = k(|V(H)| — 1), we
have d(H) = k. By Lemma 2.5, there exists a maximal connected sub-hypergraph S with d(S) > k and z(S) > k. In other
words, |E(S)| > k(]V(S)| — 1) and S has k edge-disjoint spanning hypertrees.

Claim 1. Forany v € V(H) — V(S), there exist w1, ..., wr_q € V(S) such that {w, ..., wy_1, v} & E(H).

Proof of Claim 1. If not, then v is adjacent to every (r — 1)-subset of V(S) in H. Let |V(S)| = s. Then there are at least ( f] )
hyperedges joining S and v. Since S is a simple r-uniform hypergraph, (?) > |E(S)| > k(s — 1).Then (,.* ) = (}) - === >
k- 221 > k. Thus |E(H[V(S) U {v}])] > |E(S)| + k, and so
d(HIV(S) U {}]) = [E(H[V(S) U {v}])] - |E(S)| + k - k(VESI -1 +k
V(S)U{v} -1 [V(S)l [V(S)l
Since H[V(S)U {v}]/S is a multigraph with two vertices and at least k edges, H[V(S)U {v}]/S is k-partition-connected. As S is

k-partition-connected, it follows by Proposition 2.4(C3) that H[V(S)U{v}] is k-partition-connected. Thus T (H[V(S)U{v}]) > k,
contrary to the maximality of S. This proves the claim.
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Since S has k edge-disjoint spanning hypertrees, E(S) has a k-partition (Y1, Y2, ..., Yi) such that each S(Y;) is a spanning
partition-connected sub-hypergraph of S for 1 < i < k. As |[E(S)| > k(]V(S)| — 1), one of these spanning partition-connected
sub-hypergraphs, (say S(Y7)), must contain a hypercircuit C. Let e € E(C).

Choose w = (X1,X2,...,Xk) € P,(H) such that () = ¢'(H). Define X = (X; — E(S))UYifor1 < i < kand
7 =X,X, X

Claim 2. c(H(X/)) < c(H(X;))for 1 <i<k.

Proof of Claim 2. It suffices to show that for any maximal partition-connected sub-hypergraph T of H(X;), the sub-
hypergraph T” induced by (E(T)—E(S))UY; is also partition-connected. Since T is partition-connected, by Proposition 2.4(C2),
T/S is partition-connected. Thus T'/Y; = T/S is partition-connected. As S(Y;) is partition-connected, by Proposition 2.4(C3),
T’ is partition-connected. This proves the claim.

By Claim 2, ¢/(H) < &(nn’) < e(m) = &/(H). Thus e(n’) = e() = &'(H). By Lemma 3.1, ¢’ (H) = e(H) > 0. Thus we
may assume that c(H (Xj’)) > 2 for some j. Since H (Xj’) has a partition-connected sub-hypergraph S(Y;), H (Xj/) has a maximal
partition-connected sub-hypergraph R containing S(Y;). Furthermore, H(X;) must have a vertex v € V(H) — V(S) such that v
isnotin R since c(H(Xj/)) > 2.By Claim 1, there are vertices wy, wy, ..., wy_q € V(S)suchthate’ = {wq, wo, ..., wr_1,v} &
E(H). Define the hyperedge subset

g | —fehude, ifi=j,
N S ifi .

Note that j = 11is possible and the hyperedge e is in X].
LetF =H —e+4e¢ . Thenn" = (X{,X),...,X]) € P,(F).

Claim 3. ¢(”) < e(n’).

Proof of Claim 3. When i # j, since e € E(C) € X, c(F(X{")) = c(H(X/)). When i = j, let R’ be the maximal partition-
connected sub-hypergraph of H (Xj/) that contains v. As (R+€’)/R = K; (a graph with two vertices and one edge) is partition-
connected, and R is partition-connected, by Proposition 2.4(C3), R+ €' is partition-connected. Also, (R+¢')UR’)/(R+€') = R’
is partition-connected. Again by Proposition 2.4(C3), (R+¢')UR’ is partition-connected in F(X;”). As Rand R’ are two maximal
partition-connected sub-hypergraphs in H(X]), it follows that c(F(X/")) < c(H(X])). By definition, &(7") < &(x’), completing
the proof of the claim.

By Lemma 3.1 and Claim 3, &(F) = &¢'(F) < &(n”) < e(x’) = &'(H) = &(H). This proves the theorem. O
Acknowledgments

The authors would like to thank anonymous referees for their valuable comments and suggestions to improve the
presentation of the article. The first author is partially supported by a grant from the Simons Foundation (No. 522728, XG).

References

[1] P.A.Catlin, J.W. Grossman, A.M. Hobbs, H.-J. Lai, Fractional arboricity, strength and principal partitions in graphs and matroids, Discrete Appl. Math. 40
(1992) 285-302.

[2] A.Frank, T. Kiraly, M. Kriesell, On decomposing a hypergraph into k connected sub-hypergraphs, Discrete Appl. Math. 131 (2003) 373-383.

[3] X.Gu, H.-]. Lai, Augmenting and preserving partition connectivity of a hypergraph, ]. Combin. 5 (2014) 271-289.

[4] H.-J.Lai, H. Lai, C. Payan, A property on edge-disjoint spanning trees, European J. Combin. 17 (1996) 447-450.

[5] C.St].A.Nash-williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36 (1961) 445-450.

[6] C.St].A. Nash-Williams, Decompositions of finite graphs into forests, J. Lond. Math. Soc. 39 (1964) 12.

[7] C.Payan, Graphes équilibrés et arboricité rationnelle, European ]. Combin. 7 (1986) 263-270.

[8] W.T. Tutte, On the problem of decomposing a graph into n factors, J. Lond. Math. Soc. 36 (1961) 221-230.


http://refhub.elsevier.com/S0012-365X(17)30317-5/sb1
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb1
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb1
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb2
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb3
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb4
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb5
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb6
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb7
http://refhub.elsevier.com/S0012-365X(17)30317-5/sb8

	A property on reinforcing edge-disjoint spanning hypertrees in uniform hypergraphs
	Introduction
	Preliminaries
	The proof of Theorem 1.2
	Acknowledgments
	References


