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a b s t r a c t

For a graph G, the supereulerian width µ′(G) of a graph G is the largest integer s such
that G has a spanning (k; u, v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any
u, v ∈ V (G) with u ̸= v. Thusµ′(G) ≥ 2 implies that G is supereulerian, and so graphs with
higher supereulerianwidth are natural generalizations of supereulerian graphs. Settling an
open problem of Bauer, Catlin (1988) proved that if a simple graph G on n ≥ 17 vertices
satisfy δ(G) ≥

n
4 − 1, then µ′(G) ≥ 2. In this paper, we show that for any real numbers a, b

with 0 < a < 1 and any integer s > 0, there exists a finite graph family F = F(a, b, s)
such that for a simple graph G with n = |V (G)|, if for any u, v ∈ V (G) with uv ̸∈ E(G),
max{dG(u), dG(v)} ≥ an + b, then either µ′(G) ≥ s + 1 or G is contractible to a member in
F . When a =

1
4 , b = −

3
2 , we show that if n is sufficiently large, K3,3 is the only obstacle for

a 3-edge-connected graph G to satisfy µ′(G) ≥ 3.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite and may have multiple edges but no loops. Terminology and notations not defined here
are referred to [4]. In particular, for a graph G, δ(G), α(G), κ(G) and κ ′(G) represent theminimum degree, the stability number
(also called the independence number), the connectivity and the edge connectivity of the graph G, respectively. A trail with
initial vertex u and terminal vertex v will be referred as a (u, v)-trail. We use O(G) to denote the set of all odd degree vertices
in G. A graph G is Eulerian if it is connected and O(G) = ∅, and is supereulerian if G has a Eulerian subgraph H with
V (H) = V (G). The study of supereulerian graphs was first raised by Boesch, Suffel and Tindel in [3]. Pulleyblank [15] showed
that the problem to determine if a graph is supereulerian, even within planar graphs, is NP-complete.

Motivated by the Menger Theorem, a generalization of supereulerian graphs has been considered in the literature
(see [12], for example). For a graph G and an integer s > 0 and for u, v ∈ V (G) with u ̸= v, an (s; u, v)-trail-system of
G is a subgraph H consisting of s edge-disjoint (u, v)-trails. The supereulerian widthµ′(G) of a graph G is the largest integer
s such that G has a spanning (k; u, v)-trail-system, for any integer k with 1 ≤ k ≤ s. For any u, v ∈ V (G) with u ̸= v, Luo
et al. in [14] defined graphs with µ′(G) ≥ 1 as Eulerian-connected graphs. They also investigated, for a given integer r > 0,
the minimum value ψ(r) such that if G is a ψ(r)-edge-connected graph, then for any X ⊆ E(G) with |X | ≤ r , µ′(G − X) ≥ 2.
An open problem on ψ(r) is raised in [14] and is settled in [17]. By definition, µ′(G) ≥ 2 implies that G is supereulerian.
Supereulerian graphs have been intensively studied, as seen in surveys [5,8,10], among others.

* Corresponding author.
E-mail addresses: xingheng-1985@163.com (W. Xiong), hzxjq@126.com (J. Xu), zkmiao@jsnu.edu.cn (Z. Miao), ygwu@mix.wvu.edu (Y. Wu),

hjlai@math.wvu.edu (H.-J. Lai).

http://dx.doi.org/10.1016/j.disc.2017.07.015
0012-365X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disc.2017.07.015
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2017.07.015&domain=pdf
mailto:xingheng-1985@163.com
mailto:hzxjq@126.com
mailto:zkmiao@jsnu.edu.cn
mailto:ygwu@mix.wvu.edu
mailto:hjlai@math.wvu.edu
http://dx.doi.org/10.1016/j.disc.2017.07.015


2996 W. Xiong et al. / Discrete Mathematics 340 (2017) 2995–3001

The concept of µ′(G) is formally introduced in [12], as a natural generalization of supereulerian graphs. Related studies
can be found in [7] and [16]. One of the main problems in the study on the supereulerian width of graphs is to determine
µ′(G) for a given graph G. As shown in [12], every collapsible graph (to be defined in Section 2) has supereulerian width at
least 2. Settling an open problem of Bauer [1,2], Catlin prove Theorem 1.1(i) below, which was recently extended by Li et al.
in [12].

Theorem 1.1. Let G be a simple graph on n vertices.
(i) (Catlin, Theorem 9(ii) of [5]) If n ≥ 17 and δ(G) ≥

n
4 − 1, then µ′(G) ≥ 2.

(ii) (Li et al., Theorem 5.3(i) of [12]) For any positive integers p and s with p ≥ 2, there exists an integer N = N(s, p) and
a finite family F0 of graphs with supereulerian width at most s such that if δ(G) ≥

n
p − 1, then either µ′(G) ≥ s + 1, or G is

contractible to a member in F0.

These motivate the current research. The main goal of this paper is to prove Theorems 1.2 and 1.3 below. When a =
1
p

and b = −1, if δ(G) ≥
n
p − 1, then for any u, v ∈ V (G) with uv ̸∈ E(G), max{dG(u), dG(v)} ≥ δ(G) ≥ an + b. Thus the

hypothesis of Theorem 1.1(ii) implies a special case of the hypothesis of Theorem 1.2. Computationally, it takes the same
order of computational complexity to examine finitely many graphs. In this sense, Theorem 1.2 extends Theorem 1.1(ii).

Theorem 1.2. For any real numbers a, b with 0 < a < 1 and any integer s > 0, there exists a finite family F = F(a, b, s) such
that for any simple graph G with n = |V (G)|, if for any pair of nonadjacent vertices u and v, max{dG(u), dG(v)} ≥ an + b, then
µ′(G) ≥ s + 1 if and only if G is not contractible to a member in F .

Theorem 1.3. For a simple graph G with |V (G)| = n ≥ 141 and κ ′(G) ≥ 3, if for any pair of nonadjacent vertices u and v,
max{dG(u), dG(v)} ≥

n
4 −

3
2 , then µ

′(G) ≥ 3 if and only if G is not contractible to K3,3.

The next section is devoted to a reduction method which will be employed in our study. Theorem 1.2 will be proved in
the subsequent section. Section 4 is devoted to the proof of Theorem 1.3.

2. Reductions and s -collapsible graphs

Throughout this paper, we shall adopt the convention that any graph G is 0-edge-connected, and always assume that
s ≥ 1 is an integer. The maximum number of edge-disjoint spanning trees in a graph G is denoted by τ (G).

Definition 2.1. A graph G is s-collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning subgraph ΓR
such that
(i) both O(ΓR) = R and κ ′(ΓR) ≥ s − 1, and
(ii) G − E(ΓR) is connected.

Catlin [5] first introduced collapsible graphs,which are exactly the 1-collapsible graphs definedhere. A spanning subgraph
ΓR of G satisfying Definition 2.1(i) and (ii) is an (s, R)-subgraph of G. Let Cs denote the collection of all s-collapsible graphs.
Then C1 is the collection of all collapsible graphs [5]. By definition, for s ≥ 1, any (s + 1, R)-subgraph of G is also an (s, R)-
subgraph of G. Thus Cs+1 ⊆ Cs for any positive integer s.

For a graph G, and for X ⊆ E(G), the contraction G/X is obtained from G by identifying the two ends of each edge in X
and then by deleting the resulting loops. If H is a subgraph of G, then we write G/H for G/E(H). If H is a connected induced
subgraph of G and z is the vertex in G/X onto which H is contracted, then we call H the (contraction) preimage of z, and
define PIG(z) = H . A vertex z ∈ V (G/X) with PIG(z) ∼= K1 is often referred as a trivial vertex under the contraction. The
following are known.

Proposition 2.2 (Li [11], Corollary 2.4 of [12]). Let s ≥ 1 be an integer. Then Cs satisfies the following.
(C1) K1 ∈ Cs
(C2) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs.
(C3) If H is a subgraph of G and if H,G/H ∈ Cs, then G ∈ Cs.

Lemma 2.3 (Li [11], Corollary 2.5 of [12]). Let s ≥ 1 be an integer. If a graph G ∈ Cs, then µ′(G) ≥ s + 1.

A graph is Cs-reduced if it contains no nontrivial subgraph in Cs. It is shown in [12] that every graph G has a unique
collection of maximally s-collapsible subgraphs H1,H2, . . . ,Hc , and the graph G′

s = G/(∪c
i=1E(Hi)) is Cs-reduced, which is

called the Cs-reduction of G. By the definition of Cs-reduction and by Proposition 2.2, the Cs-reduction of a graph is always
Cs-reduced.

Lemma 2.4 (Li [11], Corollary 2.9 of [12]). Let s ≥ 1 be an integer, G be a graph and H be a subgraph of G such that H ∈ Cs. Each
of the following holds.

(i) G ∈ Cs if and only if G/H ∈ Cs.
(ii) µ′(G) ≥ s + 1 if and only if µ′(G/H) ≥ s + 1. In particular, if G′ is the Cs-reduction of G, then µ′(G) ≥ s + 1 if and only

if µ′(G′) ≥ s + 1.
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Let F (G, s) denote theminimumnumber of additional edges that must be added to G to result in a graph Γ with τ (Γ ) ≥ s.
The value of F (G, s) has been determined in [13], whose matroidal versions are proved in [9] and [11].

Theorem 2.5. Let G be a connected nontrivial graph, and s ≥ 1 be an integer.
(i) (Li [11], Theorem 2.11 of [12]) If F (G, s + 1) ≤ 1, then G ∈ Cs if and only if κ ′(G) ≥ s + 1.
(ii) (Catlin, Han and Lai, Theorem 1.3 of [6]) If F (G, 2) ≤ 2, then G is 1-collapsible if and only if the C1-reduction of G is not

in {K2, K2,t : t ≥ 1}.

Lemma 2.6 (Li [11], Corollary 2.13 of [12]). Let G be a connected nontrivial graph, and s ≥ 1 be an integer.
(i) If τ (G) ≥ s + 1, then G ∈ Cs.
(ii) If G is Cs-reduced, then for any nontrivial subgraph H of G, |E(H)|

|V (H)|−1 < s + 1.
(iii) If κ ′(G) ≥ s + 1 and G is Cs-reduced, then

F (G, s + 1) = (s + 1)(|V (G)| − 1) − |E(G)| ≥ 2.

Let ℓ > 0 be an integer and define ℓK2 to be the graphwith two vertices and ℓ edges connecting the two vertices. Catlin [5]
showed that ℓK2 ∈ C1 if and only if ℓ ≥ 2 and Kn ∈ C1 if and only if n ≥ 3. Li et al. present the following characterization for
larger values of s.

Lemma 2.7 (Li et al., Corollary 3.1 and Theorem 3.3 of [12]). Let ℓ, n be integers with ℓ ≥ 1 and n ≥ s ≥ 2. Each of the following
holds.

(i) ℓK2 ∈ Cs if and only if ℓ ≥ s + 1.
(ii) Kn ∈ Cs if and only if n ≥ s + 3;

Lemma 2.8 (Li et al., Corollary 2.4 and 2.9 of [12]). Let s > 0 be an integer. Each of the following holds.
(i) µ′(K1) ≥ s + 1.
(ii) If e ∈ E(G), then µ′(G/e) ≥ µ′(G). In particular, if µ′(G) ≥ s + 1 and e ∈ E(G), then µ′(G/e) ≥ s + 1.

3. Proof of Theorem 1.2

Following [4], if V ′
⊆ V (G) (or X ⊆ E(G), respectively), then G[V ′

] (or G[X]) is the subgraph of G induced by V ′ (by X ,
respectively). If v ∈ V (G), let NG(v) be the vertices of G adjacent to v in G. If H is a graph and Z is a set of edges such that the
end vertices of each edge in Z are in V (H), then H + Z denotes the graph with vertex set V (H) and edge set E(H)

⋃
Z . For

an integer i ≥ 0, let Di(G) be the set of all vertices of degree i in G, and di(G) = |Di(G)|. By Lemma 2.6(iii) and with algebraic
manipulations, we obtain the following lemma.

Lemma 3.1. If G′ is Cs-reduced and κ ′(G′) ≥ s + 1, then |E(G′)| ≤ (s + 1)(|V (G′)| − 1) − 2 and
2s+1∑
i=s+1

(2s + 2 − i)di ≥

∑
i≥2s+3

(i − 2s − 2)di + 2s + 4. (1)

Proof. By Lemma 2.6, for a Cs-reduced graph H , we have

2(s + 1)
∑
i≥1

di(H) ≥

∑
i≥1

idi(H) + 2s + 4. (2)

Hence

2(s + 1)
s∑

i=1

di(H) + 2(s + 1)
2s+1∑
i=s+1

di(H) + 2(s + 1)d2s+2(H) + 2(s + 1)
∑

i≥2s+3

di(H)

≥

s∑
i=1

idi(H) +

2s+1∑
i=s+1

idi(H) + (2s + 2)d2s+2(H) +

∑
i≥2s+3

di(H) + 2s + 4.

Therefore

(2s + 2 − i)
s∑

i=1

di(H) + (2s + 2 − i)
2s+1∑
i=s+1

di(H) ≥

∑
i≥2s+3

(i − 2s − 2)di(H) + 2s + 4.

As κ ′(G′) ≥ s+ 1, we have
∑s

i=1di(H) = 0, and so we have (2s+ 2− i)
∑2s+1

i=s+1di(H) ≥
∑

i≥2s+3(i− 2s− 2)di(H)+ 2s+ 4. □
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Throughout the rest of this section, we assume that a, b are given real numbers with 0 < a < 1, s is a fixed positive
integer, and G is a simple graph on n vertices. Define

W = Wa,b(G) = {v ∈ V (G)|dG(v) < an + b}. (3)

Let G′ denote the Cs-reduction of G and let n′
= |V (G′)|. Then by definition, G′ is Cs-reduced. Define

W ′
= {z ∈ V (G′)|PIG(z) ∩ W ̸= ∅}. (4)

Let c = 2s + 2 be a real number. Define

X ′

c = {z ∈ V (G′)|dG′ (z) < c} and X ′′

c = {z ∈ X ′

c |PIG(z) ̸= K1}. (5)

Let N1 = 1+max{s+ 1, c−b
a + 1, −(a+2)(b+1)

a2
, (2s+ 3)(⌈ 1

a ⌉+ s+ 2)− 2s− 4} be an integer. Define S(a, b) to be the family
of simple graphs such that a graph G is in S(a, b) if and only if G satisfies the following:

for any u, v ∈ V (G) with uv ̸∈ E(G), max{dG(u), dG(v)} ≥ an + b. (6)

For a graph G ∈ S(a, b), recall that G′ is the Cs-reduction of G. As N1 is completely determined by the values of a, b and s, N1
is a finite number when a, b and s are given. Let F = F(a, b, s) = {G′

|G ∈ S(a, b), µ′(G′) ≤ s and |V (G′)| ≤ N1} to be the
family of all Cs-reductions with order at most N1 of graphs in S(a, b) with supereulerian width at most s. Thus a graph H ∈ F
if and only if H is the Cs-reduction of a graph G in S(a, b), such that µ′(G′) ≤ s and |V (G′)| ≤ N1. We have the following
observations.

Proposition 3.2. Each of the following holds.
(i) If a graph G is contractible to a member in F , then µ′(G) ≤ s.
(ii) F contains only finitely many graphs.
(iii) If κ ′(G) ≤ s, then G is contractible to a member in F .

Proof. As (i) follows from Lemma 2.8 (ii), we start our proofs of (ii). By definition, every graph in F has at most N1 vertices.
By Lemma 2.7(i), if G ∈ F , every edge of G has multiplicity at most s. Thus there are finitely many members in F and so (ii)
holds.

By definition, κ ′(H) ≥ µ′(H) for any graph H . In particular, for any integer ℓ > 0, µ′(ℓK2) ≤ ℓ and so as N1 ≥ s + 2, we
have ℓK2 ∈ F , for all 1 ≤ ℓ ≤ s. By definition, a connected graph G satisfies κ ′(G) = ℓ > 0 if and only if G can be contracted
to a ℓK2. Thus (iii) must hold. □

Necessity of Theorem 1.2. Let G ∈ S(a, b). If G is contractible to a member in F , then by Proposition 3.2(i) and by the
definition of F , we have µ′(G) ≤ s.

Sufficiency of Theorem 1.2. We assume that G ∈ S(a, b) and that

G cannot be contracted to a member of F , (7)

to show that µ′(G) ≥ s + 1. By (7) and by Proposition 3.2(iii), we in the rest of the proof will assume that

κ ′(G) ≥ s + 1 and n = |V (G)| ≥ N1. . (8)

Pick any z ∈ X ′′
c −W ′ and let Hz = PIG(z). For each v ∈ V (Hz), by (6), we have |V (Hz)| ≥ 1+ dG(v)− dG′ (z) ≥ an+ b+ 1− c .

We claim that

there must be a vertex v′
∈ V (Hz) such that NG(v′) ∩ [V (G) − V (Hz)] = ∅ for any z ∈ X ′′

c − W ′. (9)

If (9) does not hold, then every vertex in Hz is adjacent to at least one vertex which is not in Hz . Let |V (Hz)| = k. Since
dG′ (z) < c , we have k ≤ dG′ (z) ≤ c − 1. Since n ≥ N1 ≥

c−b
a + 1, we have an+ b ≥ c + 1. This, together with the assumption

that z ∈ X ′′
c − W ′, implies dG(v) ≥ c + 1 for any v ∈ Hz .

For any v ∈ Hz , let mv be the number of edges not in Hz but incident with v. If for any v ∈ V (Hz), we have mv >
c−1
k ,

then dG′ (z) =
∑

v∈Hz
mv > k ×

c−1
k = c − 1 which contradicts our assumption that dG′ (z) ≤ c − 1. Hence there must be a

vertex v0 ∈ Hz such thatmv0 ≤
c−1
k , and so we have k − 1 ≥ |NG(v0) ∩ V (Hz)| = dG(v0) − mv0 ≥ c + 1 −

c−1
k . Thus we have

k > c + 1 which contradicts k ≤ c − 1. Hence, it is impossible that every vertex in Hz is adjacent to a vertex which is not in
Hz , implying that (9) must hold.

By (9), it follows that |V (Hz)| ≥ 1 + dG(v′), and so we have

for any z ∈ X ′′

c − W ′, |V (PIG(z))| ≥ an + b + 1. (10)

Applying (10), we count the number of vertices contained in the preimages of vertices in X ′′
c − W ′ to get n ≥

∑
z∈X ′′

c −W ′

|V (PIG(z))| ≥ |X ′′
c − W ′

|(an + b + 1). It follows by n ≥ N1 >
−(a+2)(b+1)

a2
that |X ′′

c − W ′
| ≤

n
an+b+1 <

1
a +

1
2 , and so

|X ′′

c − W ′
| ≤ ⌈

1
a
⌉. (11)
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By (3) and (6), G[W ] is a complete subgraph of G. By Lemma 2.7 and (4), we conclude that

|W ′
| ≤ s + 2. (12)

By (5), we have X ′
c − X ′′

c ⊆ W ′. Since c = 2s + 2, we have |X ′
c | ≥

∑2s+1
i=s+1di. It now follows from (1) that

(2s + 2)|X ′

c | ≥ (2s + 2)
2s+1∑
i=s+1

di ≥

2s+1∑
i=s+1

(2s + 2 − i)di ≥

∑
i≥2s+3

(i − 2s − 2)di + 2s + 4

≥

∑
i≥2s+3

di + 2s + 4 = |V (G′)| − |X ′

c | + 2s + 4.

As X ′
c ⊆ W ′

∪ X ′′
c = W ′

∪ (X ′′
c − W ′), this, together with (11) and (12), implies

n′
≤ (2s + 3)|X ′

c | − 2s − 4 ≤ (2s + 3)(|W ′
| + |X ′′

c − W ′
|) − 2s − 4 ≤ (2s + 3)(⌈

1
a
⌉ + s + 2) − 2s − 4.

Hence |V (G′)| ≤ N1. By (7), we must have µ′(G′) ≥ s + 1. It follows by Lemma 2.4 that µ′(G) ≥ s + 1. This completes the
proof of the sufficiency of Theorem 1.2(i). □

4. The proof of Theorem 1.3

Throughout this section, we assume a =
1
4 , b = −

3
2 and s = 2 in our discussion. We will use the notation in the previous

section, set c = 2s + 2 = 6 andfollow (3)–(5) to define W , W ′, X ′
c and W ′′

c , respectively. The main goal of this section is to
prove Theorem 1.3. We will need the following lemmas in this section.

Lemma 4.1 (Theorem 4.4 of [12]). Let G be a 3-edge-connected graph on n ≤ 6 vertices. Then µ′(G) ≥ 3 if and only if G ̸∼= K3,3.

Lemma4.2 (Catlin [5], Corollary 1). Let G be a connected graph. If for any e ∈ E(G), G has a collapsible subgraphHe with e ∈ E(He),
then G is collapsible.

Lemma4.3. Let G be a graphwith |V (G)| = n ≥ 138 and κ ′(G) ≥ 3 and let G′ be the C2-reduced graph of G. If for any u, v ∈ V (G)
with uv ̸∈ E(G),

max{dG(u), dG(v)} ≥
n
4

−
3
2

(13)

then |V (G′)| ≤ 7.

Proof. By (13), the subgraph of G′ induced by vertices in W ′ must be a complete graph. Thus by Lemma 2.7 with s = 2, we
conclude that |W ′

| ≤ 4.
Let k = |V (G′) − W ′

|. We shall show that k ≤ 4. Firstly, we claim that

for any z ∈ V (G′) − W ′, there exists v ∈ V (PIG(z)) such that NG(v) ⊆ V (PIG(z)). (14)

Fix a z0 ∈ V (G′)−W ′ which violates (14). Then for every v ∈ V (PIG(z0)), we haveNG(v)−V (PIG(z0)) ̸= ∅. By (9), z0 ̸∈ X ′′

6 −W ′.
By (4), (5) and (13), for any z ∈ X ′′

6 − W ′, we have |V (PIG(z))| ≥
n
4 −

1
2 . It follows that n ≥ ( n4 −

1
2 )|X

′′

6 − W ′
|, implying

|X ′′

6 − W ′
| ≤ 4.

Since G′ is C2-reduced, by Lemma 2.6 (iii) with s = 2, we have |E(G′)| ≤ 3(|V (G′)| − 1) − 2 ≤ 3(k + 4 − 1) − 2 = 3k + 7.
Denote |V (PIG(z0))| = m. As |NG(v) − V (PIG(z))| ≥ 1 for each v ∈ V (PIG(z)),

0 < m ≤ dG′ (z0) =

∑
z∈V (G′)

dG′ (z) −

∑
z∈V (G′−z0)

dG′ (z) ≤ 2(3k + 7) −

∑
z ̸=z0

dG′ (z)

≤ 2(3k + 7) − 3|X ′′

6 − W ′
| −

∑
z ̸=z0,z ̸∈X ′′

6 −W ′

dG′ (z) ≤ 2(3k + 7) − 3 × 4 − (k − 5)6 = 33.

It follows that there exists v ∈ V (PIG(z0)) such that NG(v) − V (PIG(z0)) ≤
33
m . As n ≥ 138, we have n

4 −
1
2 ≥ 34. Thus

34 ≤ dG(v) ≤
33
m + m − 1, forcing eitherm ≤ 0 orm ≥ 34, contrary to (15). This justifies (14).

By (14), for each z ∈ V (G′) − W ′, there exists v ∈ V (PIG(z)) such that NG(v) ⊆ V (PIG(z)). It follows by (13) that,

|V (PIG(z))| ≥ |NG(v) ∪ {v}| = dG(v) + 1 ≥
n
4

−
1
2
. (15)

As n = |V (G)| ≥
⋃

z∈V (G′)−W ′ |V (PIG(z))| ≥ |V (G′) − W ′
|
( n
4 −

1
2

)
, and our choice of n, we conclude that |V (G′) − W ′

| ≤ 4.
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Thus |V (G′)| = |W ′
| + |V (G′) − W ′

| ≤ 8, where equality holds if and only if |W ′
| = |V (G′) − W ′

| = 4. If |V (G′)| = 8,
then by the choice of n and by (15), we have 8 = |V (G′)| ≤ 4 +

[
n − 4

( n
4 −

1
2

)]
= 6, a contradiction. Therefore we must

have |V (G′)| ≤ 7. □

Lemma 4.4. Let J be a graph κ ′(J) ≥ 3 and |V (J)| ≤ 4. For any edge subset X ⊆ E(J) with 1 ≤ |X | ≤ 2 such that J[X] is a path,
each of the following holds.

(i) J − X is 1-collapsible if and only if κ ′(J − X) ≥ 2.
(ii) If J ∈ {K4, K4 − e} where e ∈ E(K4), then J is 1-collapsible.

Proof. Since every edge of K4 and K4 − e lies in a triangle, by Lemma 4.2, we have (ii) holds. By Lemma 2.3, if J − X is
1-collapsible, then κ ′(J − X) ≥ µ′(J − X) ≥ 2. It remains to show the sufficiency of (i).

Suppose κ ′(J − X) ≥ 2 and assume that J − X is not collapsible. Let (J − X)′ be the 1-reduction of J − X . Then by
Proposition 2.2 (C3), we have 2 ≤ |V [(J − X)′]| ≤ 4. As it is known (Page 38 of [5]) that every 2-edge-connected graph
with at most 3 vertices are 1-collapsible, we must have that |V [(J − X)′]| = 4. Since κ ′

[(J − X)′] = κ ′(J − X) ≥ 2, we have
|E(J ′)| ≥

1
2

∑
v∈V (J ′)dJ ′ (v) ≥

4×2
2 = 4. It follows by Lemma 2.6 (iii) that F ((J − X)′, 2) ≤ 2. By Theorem 2.5 (ii), we have

(J − X)′ ∼= K2,2. This implies that (J − X)′ = J − X . Since κ ′(J) ≥ 3, and since J − X = K2,2, X must be a matching of size 2 in
J , contrary to the assumption that J[X] is a path in J . This completes the proof. □

Lemma 4.5. Let H be a graph with κ ′(H) ≥ 3 and |V (H)| = 7. If H contains a subgraph L ∼= K4, then for any distinct u, v ∈ H
there exists a (u, v)-path P in H such that H − E(P) is 1-collapsible.

Proof. For integers ℓ > 0 and t > 0, let ℓPt denote the graph obtained from a path Pt = z1z2...zt by replacing each edge of
Pt by a set of ℓ parallel edges. We will use this notation in the proof. Note that if H/L is spanned by a 3P4, then by Lemma 4.2,
Lemma 4.5 holds trivially. Hence we assume that

H/L is not spanned by a 3P4. (16)

Fix the vertices u, v ∈ V (H). If uv ∈ E(G), then let P = H[{uv}], L1 = L if uv ̸∈ E(L) and L′
= L − uv if uv ∈ E(L). Then

J = H/L′ ∼= H/L is a 3-edge-connected graph with |V (J)| ≤ 4. It follows by Lemma 4.4(i) that (H − E(P))/L′ is 1-collapsible.
By Lemma 4.4(ii) and Proposition 2.2 (C3), H − E(P) is 1-collapsible. Hence in the following arguments, we assume that
uv ̸∈ E(H), and so |{u, v} ∩ V (L)| ≤ 1. Let J = H/L and vL be the vertex in J onto which L is contracted. We further assume
that if |{u, v} ∩ V (L)| = 1, then v ∈ V (L), in which case we adopt the convention to denote v = vL.

By the assumption of the lemma, |V (J)| = 4 with κ ′(J) ≥ 3. By (16), it is a routine inspection to conclude that J always
has a (u, v)-path P ′ with |E(P ′)| ≤ 2 and κ ′(J − E(P ′)) ≥ 2. It follows by Lemma 4.4(i) that J − E(P ′) is 1-collapsible.

If vL ̸∈ V (P ′), then v ̸∈ V (L) and so P ′ is a path in H , in this case we define P = P ′. If vL ∈ V (L) such that P ′ is a (u, vL)-path
in J , then v ∈ V (L). In this case, let v′

∈ V (L) be the vertex in L such that H[E(P ′)] is an (u, v′)-path; and define P = P ′ if
v = v′, and P = P ′

+ v′v if v ̸= v′. If vL ∈ V (P ′) is an internal vertex of P ′, then v ̸∈ V (L) and there exist distinct vertices
v′, v′′

∈ V (L) such that H[E(P ′)] consists of a (u, v′)-path T ′ and a (v′′, v)-path T ′′. In this case we define P = T ′
+viv

′

i +T ′′. In
any case, P is a (u, v)-path in H satisfying |E(P)∩ E(L)| ≤ 1. By Lemma 4.4, L− (E(P)∩ E(L)) is 1-collapsible. By the definition
of contraction,

(H − E(P))/(L − (E(P) ∩ E(L))) = (H − E(P ′))/L = J − E(P ′),

is 1-collapsible. We conclude that H − E(P) is 1-collapsible by applying Proposition 2.2(C3). □

With these Lemmas, now we are ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. Necessity; Let G be a graph which is contractible to K3,3, then by Lemma 4.1 and Lemma 2.8 (ii),
µ′(G) ≤ 2.

Sufficiency: Let G be a graph which is not contractible to K3,3. Let G′ be the C2-reduction of G. Then by Lemma 4.3,
|V (G′)| ≤ 7. If |V (G′)| ≤ 6, then since G is not contractible to K3,3 and by Lemma 4.1 we have µ′(G′) ≥ 3. If |V (G′)| = 7, then
by Lemma 4.5 we have µ′(G′) ≥ 3. Finally, since µ′(G′) ≥ 3, by Lemma 2.8 we know that µ′(G) ≥ 3. □
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