Characterizations of \boldsymbol{k}-cutwidth critical trees

Zhen-Kun Zhang ${ }^{1} \cdot$ Hong-Jian Lai ${ }^{2}$

Published online: 20 July 2016
© Springer Science+Business Media New York 2016

Abstract

The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges (i.e., the congestion) is minimized. The investigations of critical graphs and their structures are meaningful in the study of a graph-theoretic parameters. We study the structures of k-cutwidth $(k>1)$ critical trees, and use them to characterize the set of all 4-cutwidth critical trees.

Keywords Graph labeling • Cutwidth • Critical tree

1 Introduction

Graphs in this paper are finite, simple and connected with undefined terminologies and notations following (Bondy and Murty 2008). The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges (i.e., the congestion) is minimized. It is known that the problem for general graphs is NP-complete (Garey and Johnson 1979) while it is polynomially solvable for trees (Yannakakis 1985). The cutwidth problem has important applications to VLSI designs and communication networks (Diaz et al. 2002). It is closely related to other graph-

[^0]theoretic parameters such as bandwidth, pathwidth and treewidth, see Chung and Seymour (1985), Diaz et al. (2002), Korach and Solel (1993), among others.

Let $n>0$ be an integer, and $\bar{n}=\{1,2, \ldots, n\}$. For a graph $G=(V, E)$ with $|V|=n$, a labeling of G is a bijection $f: V \rightarrow \bar{n}$, viewed as an embedding of G into the path P with vertices \bar{n}, where consecutive integers are the adjacent vertices. The cutwidth of G with respect to f is

$$
\begin{equation*}
c(G, f)=\max _{1 \leq j<n}|\{u v \in E: f(u) \leq j<f(v)\}|, \tag{1}
\end{equation*}
$$

which represents the congestion of the embedding. The cutwidth of G is defined by

$$
\begin{equation*}
c(G)=\min _{f} c(G, f) \tag{2}
\end{equation*}
$$

where the minimum is taken over all labelings f. If $k=c(G, f)$, then f, as well as the embedding induced by f, is called a k-cutwidth embedding of G. A labeling f attaining the minimum in (2) is called an optimal labeling. For each i with $1 \leq i \leq n$, let $u_{i}=f^{-1}(i)$, and let $S_{j}=\left\{u_{1}, u_{2}, \ldots, u_{j}\right\}$ be the set of the first j vertices. Define $\nabla\left(S_{j}\right)=\left\{u_{i} u_{h} \in E: i \leq j<h\right\}$ is called the (edge) cut at $[j, j+1]$. By (1), we have

$$
\begin{equation*}
c(G, f)=\max _{1 \leq j<n}\left|\nabla\left(S_{j}\right)\right| . \tag{3}
\end{equation*}
$$

Any cut $\nabla\left(S_{j}\right)$ achieving the maximum in (3) is called an f-max-cut of G.
Let G be a graph and $i \geq 0$ be an integer. Let $D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}$, where any vertex in $D_{1}(G)$ is a pendant vertex of G. For each $v \in V(G)$, let $N_{G}(v)=$ $\{u \in V(G): u v \in E(G)\}$. If G has a vertex $v \in D_{2}(G)$ with $N_{G}(v)=\left\{v_{1}, v_{2}\right\}$ and $v_{1} v_{2} \notin E(G)$, then $G-v+v_{1} v_{2}$, the graph obtained from $G-v$ by adding a new edge $v_{1} v_{2}$, is call a series reduction of G. A graph G is homeomorphically minimal if G does not have any series reductions. Two graphs are said to be homeomorphic if they are isomorphic or can be reduced to isomorphic graphs by a sequence of series reductions.

Definition 1.1 Let $k \geq 1$ be an integer. A graph G is said to be k-cutwidth critical if $c(G)=k$ but for every proper subgraph G^{\prime} of $G, c\left(G^{\prime}\right)<k$ and G is homeomorphically minimal, that is, G is not a subdivision of any simple graph.

The cutwidths of certain families of graphs, including complete graphs and complete bipartite graphs as well as cartesian products of cycles and paths, have been studied in (Lin et al. 2002; Lin 2003; Liu and Yuan 1995; Rolin et al. 1995). The relations between cutwidth and other graph-theoretic parameters were studied in various aspects (Chung and Seymour 1985; Korach and Solel 1993). The critical graphs with cutwidth at most three were studied in (Lin and Yang 2004).

Theorem 1.2 (Lin and Yang (2004)) Let G be a graph. Each of the following holds.
(i) G is 1 -cutwidth critical if and only if $G=K_{2}$.
(ii) G is 2-cutwidth critical if and only if $G \in\left\{K_{3}, K_{1,3}\right\}$.

Fig. 1 The 3-cutwidth critical trees
(iii) G is 3-cutwidth critical if and only if $G \in\left\{H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right\}$, where $H_{1}, H_{2}, H_{3}, H_{4}, H_{5}$ are the graphs depicted in Fig. 1.

The investigation of 4-cutwidth critical trees was conducted in (Zhang and Lin 2012), where twelve 4-cutwidth critical trees $\tau_{1}, \tau_{2}, \ldots, \tau_{12}$ have been found, as depicted in Fig. 3 (see Appendix), together with their optimal labelings. It is natural to consider the problem of determining all 4 -cutwidth critical trees. In this paper we will give a complete characterization of all 4-cutwidth critical trees. Let $\tau_{13}, \tau_{14}, \ldots, \tau_{18}$ be the trees depicted in Fig. 4 (see Appendix), and let $\mathcal{T}_{4}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{18}\right\}$. One of our main results in this paper is the following.

Theorem 1.3 A tree G is 4-cutwidth critical if and only if $G \in \mathcal{T}_{4}$.
A caterpillar is a tree G if $G-D_{1}(G)$ is a path. By Lin and Yang (2004), $c(G)=$ $\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for any caterpillar G, where $\Delta(G)$ denote the maximum degree of G. The tree family \mathcal{I}_{4} can be used to characterize all trees with $c(T)=3$ as follows.

Theorem 1.4 A tree G has cutwidth ≤ 3 if and only if it is not homeomorphic to a caterpillar with $\Delta(G) \geq 7$ or it does not contain any subtree homeomorphic to a member in \mathcal{T}_{4}.

Proof By Theorem 1.3, for a tree $G, c(G) \leq 3$ if and only if $G \notin \mathcal{T}_{4}$. Similarly, since $c(G)=\left\lceil\frac{\Delta(G)}{2}\right\rceil$ for any caterpillar $G, c(G) \leq 3$ if and only if $\Delta(G) \leq 6$, completing the proof.

In Sect. 2, we investigate different ways of constructing k-critical trees. The proof of Theorem 1.3 is given in Sect. 3.

2 Constructions of \boldsymbol{k}-cutwidth critical trees

In this section, we will present several constructions of k-cutwidth critical trees.
Definition 2.1 Let $T=(V, E)$ be a tree.
(i) For any $\left\{v, v_{1}, v_{2}, \ldots, v_{r}\right\} \subseteq V$, define $T\left(v ; v_{1}, v_{2}, \ldots, v_{r}\right)$ as the largest subtree of T that contains v but does not contain any of $v_{1}, v_{2}, \ldots, v_{r}$.
(ii) Let $T_{1}, T_{2}, \ldots, T_{t}$ be trees and for $j \in\{1,2, \ldots, t\}$, let $z_{j} \in D_{1}\left(T_{j}\right)$. Define $T=$ $T\left(z_{0} ; T_{1}, T_{2}, \ldots, T_{t}\right)$ to be a tree obtained from disjoint union of $T_{1}, T_{2}, \ldots, T_{t}$ by identifying $z_{1}, z_{2}, \ldots, z_{t}$ into a single vertex z_{0} in T. As $z_{0}=z_{j}$ in T_{j}, z_{0} is viewed as the vertex z_{j} in T_{j}.
(iii) If $|V(T)| \geq 2$, then define $\mathcal{M}(T)=\left\{T-v: v \in D_{1}(T)\right\}$ to be the family of all proper maximal subtrees of T.

Lemma 2.2 Let G be a graph and T be a tree. Then each of the following holds.
(i) (Zhang and $\operatorname{Lin}(2012)) c(G) \geq\lceil\Delta(G) / 2\rceil$.
(ii) (Chung et al. (1985)) $c(T) \leq k$ if and only if every vertex v of degree at least 2 has neighbors v_{1}, v_{2} such that $c\left(T\left(v ; v_{1}, v_{2}\right)\right) \leq k-1$.
(iii) (Zhang and Lin (2012)) $c(T) \geq k$ if and only if there exists a nonpendant vertex v such that $c\left(T\left(v ; v_{1}, v_{2}\right)\right) \geq k-1$ holds for any two neighbors v_{1}, v_{2} of v.
(iv) (Zhang and Lin (2012)) Let $k \geq 2$ be an integer. If T_{1}, T_{2} and T_{3} be ($k-1$)cutwidth trees, then $T=T\left(z_{0} ; T_{1}, T_{2}, T_{3}\right)$ is a k-cutwidth tree.

We first obtain a construction of k-cutwidth critical trees by extending Lemma 2.2(iv).

Theorem 2.3 Let $k \geq 2$ be an integer, and let T_{1}, T_{2} and T_{3} be $(k-1)$-cutwidth critical trees (not necessarily distinct). If $T=T\left(z_{0} ; T_{1}, T_{2}, T_{3}\right)$, then T is a k-cutwidth critical tree.

Proof By Theorem 1.2, Theorem 2.3 holds with $k=2$. Hence we assume that $k \geq 3$. We adopt the notation in Definition 2.1 in the proof. By Lemma 2.2(iv), $c(T)=k$. For $j \in\{1,2,3\}$, let x_{j} be the only vertex in T_{j} adjacent to z_{0}. Let $T^{\prime} \in \mathcal{M}(T)$ be a maximal proper subtree of T. Then for some $v \in D_{1}(T), T^{\prime}=T-v$. Since $k \geq 3$, we have $v \notin N_{T}\left(z_{0}\right)$, and so we may assume that $w \in D_{1}\left(T_{2}\right)$. Since T_{1}, T_{2}, T_{3} are $(k-1)$-cutwidth critical, $c\left(T_{1}-z_{0}\right) \leq k-2, c\left(T_{2}-w\right) \leq k-2$ and $c\left(T_{3}-z_{0}\right) \leq k-2$. For $1 \leq i \leq 3$, let f_{i} be an optimal labeling of T_{i} such that $c\left(T_{i}, f_{i}\right) \leq k-2$. Define $f: V(T) \rightarrow|V(T)|$ as follows:

$$
f(v)=\left\{\begin{array}{ll}
f_{1}(v) & \text { if } v \in V\left(T_{1}-z_{0}\right) \tag{4}\\
f_{2}(v)+\left|V\left(T_{1}\right)\right|-1 & \text { if } v \in V\left(T_{2}-w\right) . \\
f_{3}(v)+\left|V\left(T_{1}\right)\right|+\left|V\left(T_{2}\right)\right|-1 & \text { if } v \in V\left(T_{3}-z_{0}\right)
\end{array} .\right.
$$

By (3), every f-max-cut of T must be an f_{i}-max-cut of T_{i} plus the newly added edge $z_{0} x_{1}$ or $z_{0} x_{3}$, and so $c\left(T^{\prime}\right) \leq k-1$. Hence T is k-cutwidth critical. This completes the proof.

The labeling f defined in (4) is called the labeling by the order $\left(f_{1}, f_{2}, f_{3}\right)$, or the labeling by the order $\left(V\left(T_{1}-z_{0}\right), V\left(T_{2}-w\right), V\left(T_{3}-z_{0}\right)\right)$.

Definition 2.4 Let T be a tree, $v_{0} \in V(T)$ with $i_{0}=d_{T}\left(v_{0}\right)$ and $N_{T}\left(v_{0}\right)=\left\{v_{i}\right.$: $\left.1 \leq i \leq i_{0}\right\}$. For each i with $1 \leq i \leq i_{0}$, let T_{i} be the component of $T-v_{0}$ with $v_{i} \in V\left(T_{i}\right)$, and define, for $j=1,2,3$,

$$
F_{j}=T_{j} \cup\left(\bigcup_{h=4}^{i_{0}} T_{h}\right) \cup\left\{v_{0} v_{h}: 4 \leq h \leq i_{0}\right\} \cup\left\{v_{0} v_{j}\right\} .
$$

Lemma 2.5, Theorem 2.6, 2.7 and 2.8 below are on k-cutwidth critical trees with a construction stated in Definition 2.4. Hence notation in Definition 2.4 will be assumed in Lemma 2.5, as well as Theorems 2.6, 2.7 and 2.8.

Lemma 2.5 Let $k \geq 3$ be an integer. With the notation in Definition 2.4, each of the following holds.
(i) If each of F_{1}, F_{2} and F_{3} is $(k-1)$-cutwidth critical, Then $c(T)=k$.
(ii) If each of F_{1} and F_{2} is $(k-1)$-cutwidth critical, and $F_{3} \cong K_{1,2 k-3}$, then $c(T)=k$.
(iii) If each of F_{1} is $(k-1)$-cutwidth critical, and $F_{2} \cong F_{3} \cong K_{1,2 k-3}$, then $c(T)=k$.

Proof (i) Clearly, $i_{0}<2 k-1$ because of $c\left(K_{2 k-1}\right)=k$ by (Zhang and Lin 2012). Fix j with $1 \leq j \leq 3$. Since F_{j} is $(k-1)$-cutwidth critical, $c\left(T_{j}\right) \leq k-2$. Let f_{1}, f_{2}, f_{3} be optimal labelings of T_{1}, F_{2} and T_{3}, such that $c\left(T_{1}, f_{1}\right) \leq k-2, c\left(F_{2}, f_{2}\right) \leq k-1$ and $c\left(T_{3}, f_{3}\right) \leq k-2$, respectively. Define $f: V(T) \rightarrow|V(T)|$ to be the labeling by the order of $\left(f_{1}, f_{2}, f_{3}\right)$, as follows:

$$
f(v)=\left\{\begin{array}{ll}
f_{1}(v) & \text { if } v \in V\left(T_{1}\right) \\
f_{2}(v)+\left|V\left(T_{1}\right)\right| & \text { if } v \in V\left(F_{2}\right) . \\
f_{3}(v)+\left|V\left(T_{1}\right)\right|+\left|V\left(F_{2}\right)\right| & \text { if } v \in V\left(T_{3}\right)
\end{array} .\right.
$$

By (3), we have $c(T) \leq c(T, f)=k$. On the other hand, it is routine to verify that, for any distinct $v_{i_{1}}, v_{i_{2}} \in N_{T}\left(v_{0}\right), c\left(T\left(v_{0} ; v_{i_{1}}, v_{i_{2}}\right)\right) \geq k-1$, and so by Lemma 2.2(iii), we have $c(T) \geq k$. Thus $c(T)=k$.

The proofs for (ii) and (iii) are similar by utilizing the fact that $K_{1,2 k-3}$ is a $(k-1)$ cutwidth critical tree, and so they will be omitted.

Theorem 2.6 If each of F_{1}, F_{2} and F_{3} is $(k-1)$-cutwidth critical, then T is k-cutwidth critical.

Proof By Lemma 2.5, to show that T is k-cutwidth critical, it remains to show that, for any $T^{\prime} \in \mathcal{M}(T), c\left(T^{\prime}\right) \leq k-1$. Pick $T^{\prime}=T-x \in \mathcal{M}(T)$ for some $x \in D_{1}(T)$. As $D_{1}(T) \subseteq \cup_{j=1}^{i_{0}} D_{1}\left(T_{j}\right)$, we have $x \in D_{1}\left(T_{j}\right)$ for some j with $1 \leq j \leq i_{0}$. We may assume that $x \in D_{1}\left(T_{2}\right)$ if $1 \leq j \leq 3$; and $x \in D_{1}\left(T_{4}\right)$ if $j \leq 4$. Thus we always have $x \in D_{1}\left(F_{2}\right)$. Since F_{2} is $(k-1)$-cutwidth critical, each of $c\left(T_{1}\right), c\left(F_{2}-x y\right)$ and $c\left(T_{3}\right)$ is at most $k-2$. With an argument similar to the above, a labeling f of T^{\prime} with $c\left(T^{\prime}, f\right) \leq k-1$ can be found, and so $c\left(T^{\prime}\right) \leq k-1$. This proves that T is k-cutwidth critical.

Theorem 2.7 Let $k \geq 3$ be an integer. If, with the notation in Definition 2.4, for some j with $1 \leq j \leq 3$, we have $T_{j}+v_{0} v_{j} \cong K_{1,2 k-3}$, and if each $F_{i}, i \in\{1,2,3\}-\{j\}$, is $(k-1)$-cutwidth critical, then T is k-cutwidth critical.

Proof Without loss of generality, we assume that $T_{1}+v_{0} v_{1}=K_{1,2 k-3}$. By Lemma 2.5(ii), it suffices to show that for any $T^{\prime} \in \mathcal{M}(T), c\left(T^{\prime}\right) \leq k-1$. Pick $T^{\prime}=T-x \in$ $\mathcal{M}(T)$ for some $x \in D_{1}(T)$. If $x \in D_{1}\left(T_{j}\right)$ for some $j \geq 2$, then using the same arguments as in the proof of Theorem 2.6, we conclude that $c\left(T^{\prime}\right) \leq k-1$. Hence we assume that $x \in D_{1}\left(T_{1}\right)$, and so $T_{1}+v_{0} v_{1}-x \cong K_{2 k-4}$ with cutwidth $k-2$. Since
F_{2} and F_{3} are $(k-1)$-cutwidth critical, we have $c\left(T_{2}\right) \leq k-2$ and $c\left(T_{3}\right) \leq k-2$. Let f_{1}, f_{2}, f_{3} be optimal labelings of T_{1}, F_{2} and T_{3}, respectively. Define a labeling f of T to be the labeling by the order of $\left(V\left(T_{1}\right), V\left(F_{2}\right), V\left(T_{3}\right)\right)$, as follows:

$$
f(v)=\left\{\begin{array}{ll}
f_{1}(v) & \text { if } v \in V\left(T_{1}\right) \\
f_{2}(v)+\left|V\left(T_{1}\right)\right| & \text { if } v \in V\left(F_{2}\right) . \\
f_{3}(v)+\left|V\left(T_{1}\right)\right|+\left|V\left(F_{2}\right)\right| & \text { if } v \in V\left(T_{3}\right)
\end{array} .\right.
$$

As $c\left(T_{2}\right) \leq k-2$ and $c\left(T_{3}\right) \leq k-2$, we must have

$$
\begin{align*}
\min \left\{f(v): v \in V\left(T_{2}^{\prime}\right)\right\} & =\max \left\{f(v): v \in V\left(T_{1}\right)\right\}+1, \\
\min \left\{f(v): v \in V\left(T_{2}\right)\right\} & =\max \left\{f(v): v \in V\left(F_{2}-V\left(T_{2}\right)\right)\right\}-1, \\
\max \left\{f(v): v \in V\left(T_{2}\right)\right\} & =\max \left\{f(v): v \in V\left(F_{2}\right)\right\}=\min \left\{f(v): v \in V\left(T_{3}\right)\right\}-1 . \tag{5}
\end{align*}
$$

To apply (3) to estimate $c(T, f)$, we present the embedding of $V(T)$ onto a path P_{n} with $n=|V(T)|$. Let $f\left(v_{0}\right)=q_{0}$ and denote $V\left(T_{1}\right)=\left\{u_{1}, \ldots, u_{i_{1}}\right\}, V_{1}\left(F_{2}-V\left(T_{2}\right)\right)=$ $\left\{v: v \in V\left(F_{2}-V\left(T_{2}\right)\right), f(v)<q_{0}\right\}=\left\{u_{i_{1}+1}, \ldots, u_{i_{1}+q}\right\}, V_{2}\left(F_{2}-V\left(T_{2}\right)\right)=\{v:$ $\left.v \in V\left(F_{2}-V\left(T_{2}\right)\right), f(v) \geq q_{0}\right\}=\left\{u_{i_{1}+q+1}, \ldots, u_{i_{2}}\right\}, V\left(T_{2}\right)=\left\{u_{i_{2}+1}, \ldots, u_{i_{3}}\right\}$, $V\left(T_{3}\right)=\left\{u_{i_{3}+1}, \ldots, u_{i_{4}}\right\}$. Then, f can be viewed as an embedding ordering π of vertices of T on the path P_{n} :

$$
u_{1}, u_{2}, \ldots, u_{i_{1}}, u_{i_{1}+1}, \ldots, u_{q_{0}-1}, u_{q_{0}}, \ldots, u_{i_{2}}, u_{i_{2}+1}, \ldots, u_{i_{3}}, u_{i_{3}+1}, \ldots, u_{i_{4}}
$$

By (3), for the restriction of π on $V\left(F_{2}-V\left(T_{2}\right)\right)$, we have $\left|\nabla\left(S_{j}\right)\right| \leq k-2$ for any $j<$ q_{0}, and $\left|\nabla\left(S_{j}\right)\right| \leq k-3$ for any $j \geq q_{0}$. Now we consider the embedding ordering π^{\prime} of vertices of $T^{\prime}=T-x$, and let $x=u_{l}\left(1<l<i_{1}\right)$. Since $T_{1}+v_{0} v_{1}-x=K_{1,2 k-4}$, we have $c\left(T_{1}+v_{0} v_{1}-x\right)=k-2$. On the basis of π, we arrange an embedding ordering π^{\prime} of vertices of $T-x$ as follows:

$$
\begin{aligned}
& u_{i_{4}}, \ldots, u_{i_{3}+1}, u_{1}, u_{2}, \ldots, u_{l-1}, u_{l+1}, \ldots, u_{i_{1}}, u_{i_{2}}, \ldots, \\
& \quad u_{q_{0}}, u_{q_{0}-1}, \ldots, u_{i_{1}}, u_{i_{2}}, u_{i_{2}+1}, \ldots, u_{i_{3}}
\end{aligned}
$$

and define a labeling f^{\prime} of T^{\prime} according to π^{\prime}. Since $c\left(T_{1}-x\right)=k-2, c\left(T_{2}\right) \leq k-2$ and $c\left(T_{3}\right) \leq k-2$, the cardinality of any maximum cut is at most $k-1$ in π^{\prime}, and so by (3), $c\left(T-x, f^{\prime}\right)=k-1$. Thus $c(T-x) \leq k-1$,. This proves that T is k-cutwidth critical.

The argument used in the proof of Theorem 2.7 can be further applied to prove the Theorem 2.8 below. Its detailed proof will be omitted.

Theorem 2.8 Let $k \geq 3$ be an integer. If, with the notation in Definition 2.4, for some i, j with $1 \leq i<j \leq 3$, we have $T_{j}+v_{0} v_{j} \cong K_{1,2 k-3}$, and if $F_{\ell}, \ell \in\{1,2,3\}-\{i, j\}$, is $(k-1)$-cutwidth critical, then T is k-cutwidth critical.

Following (Chung et al. 1985), let $\mathcal{T}_{d}(k)$ denote the set of all trees T such that $V(T)=D_{1}(T) \cup D_{d}(T)$ and $c(T)=k$. We shall use $T_{d}(k)$ to denote a member in $\mathcal{T}_{d}(k)$.

Theorem 2.9 (Chung et al. (1985)) Each of the following holds.
(i) $\mathcal{T}_{3}(1)=\left\{K_{2}\right\}, \mathcal{T}_{3}(2)=\left\{K_{1,3}\right\}$, and $\mathcal{T}_{3}(3)=\left\{H_{2}\right\}$.
(ii) For $k>1$, any $T \in \mathcal{I}_{3}(k)$ can be formed from the disjoint union of three (not necessarily distinct) trees $T_{1}, T_{2}, T_{3} \in \mathcal{T}_{3}(k-1)$ by identifying a pendant vertex in each of T_{1}, T_{2} and T_{3} to form a degree 3 vertex v_{0} in T. (The vertex v_{0} is called the identified vertex of T.)

Corollary 2.10 $T_{3}(k)$ is k-cutwidth critical.
Proof By definition, $c\left(T_{3}(k)\right)=k$. By Theorems 1.2 and $2.9(\mathrm{i}), T_{3}(k)$ is k-cutwidth critical for $1 \leq k \leq 3$. Now assume that $k>3$ and for all $k^{\prime}<k, T_{3}\left(k^{\prime}\right)$ is k^{\prime}-cutwidth critical. By Theorem 2.9(ii) and 2.3, $T_{3}(k+1)$ is k-cutwidth critical. Thus the corollary is proved by induction.

Definition 2.11 Let $k \geq 3$ be an integer.
(i) A graph G is minimally homeomorphic to a graph H if G is homeomorphic to H and G is homeomorphically minimal.
(ii) (Definition of the family $\mathcal{T}(k))$ Take a $T_{3}(k-1) \in \mathcal{T}_{3}(k-1)$. For $1 \leq r \leq 3$ let $\tilde{T}_{r} \cong T_{3}(k-1)$ and x_{0}^{r} be the identified vertex of \tilde{T}_{r}. For each $4 \leq s \leq 6$, let $\tilde{T}_{s} \cong T_{3}(k-1)$ and x_{0}^{3+s} be a pendent vertex of \tilde{T}_{s}. For $7 \leq q \leq 9$, let $\tilde{T}_{q} \cong K_{1,2 k-3}$ and x_{0}^{q} be a pendent vertex of \tilde{T}_{q}. Define $S=\left\{x_{0}^{i}: 1 \leq i \leq 9\right\}$. Thus

For each i with $1 \leq i \leq 9, \tilde{T}_{i}$ is $(k-1)-$ cutwidth critical.
Let $L \cong K_{1,3}$ be a star $V(L)=\left\{u_{0}, u_{1}, u_{2}, u_{3}\right\}$, where $N_{L}\left(u_{0}\right)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Let $\mathcal{T}(k)$ denote the family of trees such that $\tilde{T} \in \mathcal{T}(k)$ if and only if there exist some (i, j, p) with $1 \leq i, j, p \leq 9$ such that \tilde{T} is minimally homeomorphic to the tree $T(i, j, p)$ obtained from the disjoint union of $\tilde{T}_{i}, \tilde{T}_{j}, \tilde{T}_{p}$ and L by identifying u_{1} and x_{0}^{i}, u_{2} and x_{0}^{j}, u_{3} and x_{0}^{p} respectively. The vertices $x_{0}^{i}, x_{0}^{j}, x_{0}^{p}$ are called the identified vertices of \tilde{T}.

Theorem 2.12 For any $\tilde{T} \in \mathcal{T}(k), \tilde{T}$ is a k-cutwidth critical tree.
Proof We use the notation in Definition 2.11(ii). Let $T=T(i, j, p)$ and $\tilde{T} \in \mathcal{T}(k)$ with $x_{0}^{i}, x_{0}^{j}, x_{0}^{p}$ being the identified vertices, for some $1 \leq i \leq j \leq p \leq 9$.

If $i \geq 4$, then $x_{0}^{i}, x_{0}^{j}, x_{0}^{p}$ are in $D_{2}(T(i, j, p))$, and so by Definition $2.11, \tilde{T}=$ $T\left(z_{0} ; \tilde{T}_{i}, \tilde{T}_{j}, \tilde{T}_{p}\right)$. It follows by Theorem 2.3 that \tilde{T} is k-cutwidth critical.

Hence we assume that $i \leq 3$. There are six cases to consider: (1) $x_{0}^{i} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}$, $x_{0}^{j} \in\left\{x_{0}^{4}, x_{0}^{5}, x_{0}^{6}\right\}, x_{0}^{p} \in\left\{x_{0}^{7}, x_{0}^{8}, x_{0}^{9}\right\} ;$ (2) $x_{0}^{i} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}, x_{0}^{j}, x_{0}^{p} \in\left\{x_{0}^{4}, x_{0}^{5}, x_{0}^{6}\right\}$; (3) $x_{0}^{i} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}, x_{0}^{j}, x_{0}^{p} \in\left\{x_{0}^{7}, x_{0}^{8}, x_{0}^{9}\right\}$; (4) $x_{0}^{i}, x_{0}^{j} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}, x_{0}^{p} \in\left\{x_{0}^{4}, x_{0}^{5}, x_{0}^{6}\right\}$; (5) $x_{0}^{i}, x_{0}^{j} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}, x_{0}^{p} \in\left\{x_{0}^{7}, x_{0}^{8}, x_{0}^{9}\right\}$; (6) $x_{0}^{i}, x_{0}^{j}, x_{0}^{p} \in\left\{x_{0}^{1}, x_{0}^{2}, x_{0}^{3}\right\}$.

As the proof arguments are similar in each of these six cases, it suffices to show case (1). Without loss of generality, we assume that $i=1, j=4$ and $p=7$. Let $x \in N_{\tilde{T}_{4}}\left(x_{0}^{4}\right)$ and $y \in N_{\tilde{T}_{7}}\left(x_{0}^{7}\right)$. Thus $\tilde{T}=T-\left\{u_{0} x_{0}^{4}, x_{0}^{4} x, u_{0} x_{0}^{7}, x_{0}^{7} y\right\}+\left\{u_{0} x, u_{0} y\right\}$. Since $\tilde{T}_{1}, \tilde{T}_{4} \in \mathcal{T}_{3}(k-1)$ and $\tilde{T}_{7} \cong K_{1,2 k-3}$, both \tilde{T}_{1} and \tilde{T}_{4} are $(k-1)$-critical. It follows by Lemma 2.5 that $c(\tilde{T})=k$.

It remains to show that, for any maximal proper subtree $\tilde{T}^{\prime} \in \mathcal{M}(\tilde{T}), c\left(\tilde{T}^{\prime}\right) \leq k-1$. Let $\tilde{T}^{\prime}=\tilde{T}-z$ for some $z \in D_{1}(\tilde{T})$. Then we have these possibilities. (1A) $z \in V\left(\tilde{T}_{1}\right)$; (1B) $z \in V\left(\tilde{T}_{4}-u_{0}\right) ;(1 \mathrm{C}) z \in V\left(\tilde{T}_{7}-u_{0}\right)$.

As the arguments for each of (1A), (1B) and (1C) are similar, we only present the proof when (1A) holds. As $\tilde{T}_{1} \in \mathcal{T}_{3}(k-1)$, by Theorem $2.9, \tilde{T}_{1}$ is formed by identifying a pendent vertex in three copies $T_{3}^{(1)}(k-2), T_{3}^{(2)}(k-2), T_{3}^{(3)}(k-2) \in \mathcal{T}_{3}(k-2)$ with the identified vertex x_{0}^{1}. Let $N_{\tilde{T}_{1}}\left(x_{0}^{1}\right)=\left\{v_{0}^{\prime}, v_{0}^{\prime \prime}, v_{0}^{\prime \prime \prime}\right\}$ with $v_{0}^{\prime} \in V\left(T_{3}^{(1)}(k-\right.$ 2)), $v_{0}^{\prime \prime} \in V\left(T_{3}^{(2)}(k-2)\right), v_{0}^{\prime \prime \prime} \in V\left(T_{3}^{(3)}(k-2)\right)$. Without loss of generality, let $z \in D_{1}\left(T_{3}^{(2)}(k-2)\right)$. As $c\left(\tilde{T}_{1}-z\right)=k-2$, we have $c\left(T_{3}^{(2)}(k-2)-z\right)=k-3$. Using the $(k-2)$-cutwidth embeddings of $T_{3}^{\prime}(k-2)-x_{0}^{1}$ and $T_{3}^{\prime \prime \prime}(k-2)-x_{0}^{1}$ and a $(k-3)$-cutwidth embedding of $T_{3}^{\prime \prime}(k-2)-z-x_{0}^{1}$, there exists a $(k-2)$-cutwidth embedding of \tilde{T}_{1} defined as the labeling by the order $\left(V\left(T_{3}^{\prime}(k-2)\right)-x_{0}^{1}, V\left(T_{3}^{\prime \prime}(k-\right.\right.$ 2) $\left.\left.-z-x_{0}^{1}\right), x_{0}^{1}, V\left(T_{3}^{\prime \prime \prime}(k-2)\right)-x_{0}^{1}\right)$.

Now using the $(k-1)$-cutwidth embeddings in $V\left(\tilde{T}_{4}-u_{0}\right)$ and $V\left(\tilde{T}_{7}-u_{0}\right)$, we obtain a labeling f of $\tilde{T}-\left\{u_{0} x_{0}^{1}, u_{0} x_{0}^{4}, u_{0} x_{0}^{7}\right\}$ by the order $\left(V\left(\tilde{T}_{4}-u_{0}\right), V\left(T_{3}^{\prime}(k-\right.\right.$ 2)) $\left.-x_{0}^{1}, V\left(T_{3}^{\prime \prime}(k-2)-z-x_{0}^{1}\right), x_{0}^{1}, u_{0}, V\left(T_{3}^{\prime \prime \prime}(k-2)\right)-x_{0}^{1}, V\left(\tilde{T}_{7}-u_{0}\right)\right)$. Note that f is also a labeling of \tilde{T}. As one can put edges $x_{0}^{1} v_{0}^{\prime}, x_{0}^{1} v_{0}^{\prime \prime}, x_{0}^{1} v_{0}^{\prime \prime \prime}, u_{0} x_{0}^{1}, u_{0} x_{0}^{4}, u_{0} x_{0}^{7}$ back. Obviously, the congestion is $k-1$ in the embedding ordering, which indicates $c\left(\tilde{T}^{\prime}\right) \leq k-1$. Consequently, \tilde{T} is k-cutwidth critical.

By Theorem 2.6, Lemma 2.2(iv) and Theorem 2.12 can be generalized to be a method to construct k-cutwidth trees.

Theorem 2.13 Let T_{1}, T_{2}, T_{3} be $(k-1)$-cutwidth trees, where at least one of them is critical, and $v_{i} \in V\left(T_{i}\right)(i=1,2,3), u_{i}(i=1,2,3)$ be a pendent vertex in $K_{1,3}$. If tree T is formed by identifying v_{i} and $u_{i}(i=1,2,3)$ respectively, then T is a k-cutwidth tree.

3 Proof of Theorem 1.3

Throughout this section, for two graphs G and H, we write $H \subseteq G$ to mean that H is a subgraph of G. Let $\mathcal{T}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{18}\right\}$. To prove Theorem 1.3, we shall first show that every tree in \mathcal{T} is 4 -cutwidth critical. In (Zhang and Lin 2012), it is shown that

Lemma 3.1 Each of the following holds.
(i) (Zhang and Lin (2012)) For $1 \leq i \leq 12$, every τ_{i} is 4 -cutwidth critical.
(ii) For $13 \leq i \leq 18$, every τ_{i} is 4 -cutwidth critical.

Proof (ii) As it is similar to prove that for each i with $13 \leq i \leq 18, \tau_{i}$ is 4-cutwidth critical, we only present the proof for τ_{13}. Let H_{2} be the graph depicted in Fig. 3 (see Appendix). The only vertex v_{0} in H_{2} that is of distance at most 2 to all vertices of H_{2} is called the center of H_{2} (in Fig. 1, v_{0} is the vertex with label 6). By definition, $H_{2} \cong T_{3}(3)$. Let $T_{3}^{(1)}(3), T_{3}^{(2)}(3), T_{3}^{(3)}(3)$ be three copies of $T_{3}(3)$ with centers $v_{0}^{(1)}$, $v_{0}^{(2)}$ and $v_{0}^{(3)}$ respectively. Let $T=K_{1,3}$ with $D_{1}(T)=\left\{u_{1}, u_{2}, u_{3}\right\}$. Obtain τ_{13} from the disjoint union of $T_{3}^{(1)}(3), T_{3}^{(2)}(3), T_{3}^{(3)}(3)$ and T by identifying u_{i} with $v_{0}^{(i)}$, for each $1 \leq i \leq 3$. By Theorem 2.12, τ_{13} is 4 -cutwidth critical, and so the lemma follows.

Lemma 3.2 Let $T=T\left(z_{0}, T_{1}, T_{2}, \ldots, T_{t}\right)$ be a tree as defined in Definition 2.1.
(i) If $t=3$ and if $c\left(T_{1}\right)<3, T_{j}$ and $T_{j}-z_{0}$ are k-cutwidth critical with $k \leq 3$, for each $j \geq 2$, then $c(T) \leq 3$.
(ii) If $t \geq 3$ and if $c\left(T_{j}\right) \geq 3$ for $j=1,2,3$, then $c(T) \geq 4$.

Proof (i) is a consequence of Theorem 2.3. To prove (ii), let $N_{T}\left(z_{0}\right)=\left\{v_{0}^{i}: v_{0}^{i} \in\right.$ $\left.V\left(T_{i}\right), 1 \leq i \leq t\right\}$. Since $t \geq 3$, any $T\left(z_{0} ; v_{0}^{i}, v_{0}^{j}\right)$ contains at least one subtree T_{k} $(k \neq i, j)$ for $1 \leq i, j \leq t$, resulting in $c\left(T\left(z_{0} ; v_{0}^{i}, v_{0}^{j}\right)\right) \geq 3$ by the assumption. Thus by Lemma 2.2(iii), $c(T) \geq 4$, completing the proof.

Proof of Theorem 1.3 By Lemma 3.1, it suffices to show that every 4-cutwidth critical tree must be in \mathcal{T}. Let T be a 4-cutwidth critical tree. By Definition 1.1, T is homeomorphically minimal, and so for any $v \in V(T)-D_{1}(T), \Delta(T) \geq d_{T}(v) \geq 3$. If $\Delta(T) \geq 7$, then $\tau_{1} \cong K_{1,7} \subseteq T$, and so $T=\tau_{1}$ by the minimality of T. By Lemma 2.2(i), we may assume that

$$
\begin{equation*}
3 \leq \Delta(G) \leq 6, \text { and } T \text { is not homeomorphic to a caterpillar. } \tag{7}
\end{equation*}
$$

Let $\Delta=\Delta(T)$. Pick any $v_{0} \in V(T)-D_{1}(T)$ with $\Delta=d_{T}\left(v_{0}\right) \geq 3$, and denote $N_{T}\left(v_{0}\right)=\left\{v_{1}, v_{2}, \ldots, v_{\Delta}\right\}$. Then by Lemma 2.2(iii) and since T is 4-cutwidth critical, we have

$$
\begin{equation*}
\text { For any } v^{\prime}, v^{\prime \prime} \in N_{T}\left(v_{0}\right), c\left(T\left(v_{0} ; v^{\prime}, v^{\prime \prime}\right)\right)=3 \tag{8}
\end{equation*}
$$

For each i with $1 \leq i \leq \Delta$, define T_{i} to be the largest subtree of T with $V\left(T_{i}\right) \cap$ $\left(N_{T}\left(v_{0}\right) \cup\left\{v_{0}\right\}\right)=\left\{v_{0}, v_{i}\right\}$.
Case $1 \Delta=3$. For each T_{i} with $c\left(T_{i}\right)=3$, the 3-cutwidth critical trees H_{1} or H_{2} (see Figure 1) must be contained in T_{i}. On the other hand, $\Delta(T)=d_{T}\left(v_{0}\right)$ must be 3 in this case, otherwise it is not hard to verify that $c(T)>4$ by Lemma 3.2, a contradiction to $c(T)=4$. Hence T must be one of $\left\{\tau_{3}, \ldots, \tau_{6}, \tau_{13}, \ldots, \tau_{18}\right\}$ by the minimality.
Case $2 \Delta=4$. Note that $c\left(T\left(v_{0} ; v_{i}, v_{j}\right)\right)=3$ for any two neighbors v_{i}, v_{j} of v_{0} ($1 \leq i<j \leq 4$), and the degree of v_{0} is two in subtree $T\left(v_{0} ; v_{i}, v_{j}\right)$. If one neighbor of v_{0}, say v_{1}, is a pendant vertex of T, then the other subtrees T_{2}, T_{3}, T_{4} must have cutwidth 3 , thus the subtree T_{1} (namely the edge $v_{0} v_{1}$) can be deleted, which is reduced to be Case 1 leading to $T-v_{1} \in\left\{\tau_{3}, \ldots, \tau_{6}, \tau_{13}, \ldots, \tau_{18}\right\}$, contradicting that T is 4 -critical. So, we may assume that all neighbors $v_{1}, v_{2}, v_{3}, v_{4}$ of v_{0} are not pendant. Due to that T is critical, among all subtrees $T\left(v_{0} ; v_{i}, v_{j}\right)(1 \leq i<j<4)$, there
must be one being minimal (if the degree two vertex v_{0} is ignored, then it is critical). Therefore, at least one subtree $T\left(v_{0} ; v_{i}, v_{j}\right)$ is an H_{2} with v_{0} as a subdivision vertex; and the subtree T_{i} and T_{j} in the remaining part may contain an H_{1}. By the minimality, T is one of $\left\{\tau_{7}, \tau_{8}, \tau_{9}\right\}$.
Case $3 \Delta=5$. If all neighbors v_{i} of v_{0} have $d_{T}\left(v_{i}\right) \geq 3(i=1,2,3,4,5)$, then τ_{2} is included in T and thus $T=\tau_{2}$ by the minimality. If only one neighbor of v_{0}, say v_{1}, is pendant, then by $c\left(T_{1} \bigcup T_{i} \bigcup T_{j}\right)=3(2 \leq i<j \leq 5)$, the edge $v_{0} v_{1}$ can be deleted without effect on $c(T)=4$, i.e., $c\left(T-v_{1}\right)=4$, which can be reduced to be Case 2 , a contradiction to the assumptions. By $c\left(T\left(v_{0} ; v_{i}, v_{j}\right)\right)=3$, it is impossible that v_{0} has three or more pendant neighbors. So, we may assume that there are two neighbors of v_{0} being pendant. By the fact that $c\left(T\left(v_{0} ; v_{i}, v_{j}\right)\right)=3$ for any two neighbors v_{i}, v_{j} of $v_{0}(1 \leq i<j \leq 5)$ and that T is critical, it can be seen that there must be a subtree $T\left(v_{0} ; v_{i}, v_{j}\right)$ being an H_{2} containing those two pendant neighbors of v_{0}. And the subtree T_{i} or T_{j} in the remaining parts may contain an H_{1}. Therefore, T is one of $\left\{\tau_{10}, \tau_{11}, \tau_{12}\right\}$ by the minimality.
Case $4 \Delta=6$. By using the fact that $c\left(T\left(v_{0} ; v_{i}, v_{j}\right)\right)=3$ for any i and $j(1 \leq i<$ $j \leq 6$), it can be deduced that T must contain a subtree in Case 2 or Case 3, which contradicts that T is critical. This establishes the proof.

4 Remarks

The paper first investigates combinatorial structures of k-cutwidth ($k>1$) critical trees, from which one can obtain some methods to construct k-cutwidth critical trees, and then characterizes the set of 4 -cutwidth critical trees, which corrects the shortcomings of that of (Zhang and Lin 2012) by giving six new 4-cutwidth critical trees. As to more methods to construct the critical trees with cutwidth k, Zhang and Lin (2012) gave other two results: (1) star $K_{1,2 k-1}$ is a critical tree with cutwidth k; (2) If tree T_{1}^{\prime} is obtained from star $K_{1,2 k-3}$ by replacing every edge $u v$ of it with tree shown in Fig. 2, where $d_{K_{1}, 2 k-3}(u)=2 k-3, d_{K_{1}, 2 k-3}(v)=1, x$ and y are new vertices and y is a new pendant vertex. Then tree T_{1}^{\prime} is k-cutwidth critical.

From these, we think that we have found all ways of constructing k-cutwidth critical trees for any fixed integer $k(k>1)$; In addition, for any k-cutwidth critical tree, there must exist an optimal embedding ordering π of vertices $v_{1}, v_{2}, \ldots, v_{n}$ arranged on path P_{n} such that there is a unique maximum cut $\nabla\left(S_{j}\right)$ in π (it is true for $T_{3}(k)$). These will be our emphases to study in the future works. Other further tasks are to characterize the set of 4-cutwidth nontree critical graphs which includes K_{4} and all 5-critical graphs.

Fig. 2 Definition of T^{\prime}

Appendix

See Figs. 3 and 4.

Fig. 3 The 4-cutwidth critical trees in Zhang and Lin (2012)

Fig. 4 New 4-cutwidth critical trees

References

Bondy JA, Murty USR (2008) Graph theory. Springer, New York
Chung FRK, Seymour PD (1985) Graphs with small bandwidth and cutwidth. Discret Math 75:268-277
Chung MJ, Makedon F, Sudborough IH, Turner J (1985) Polynomial time algorithms for the min cut problem on degree restricted trees. SIAM J Comput 14:158-177
Diaz J, Petit J, Serna M (2002) A survey of graph layout problems. ACM Comput Surv 34:313-356
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman \& Company, San Francisco

Korach E, Solel N (1993) Treewidth, pathwidth and cutwidth. Discret Appl Math 43:97-101
Lin Y, Yang A (2004) On 3-cutwidth critical graphs. Discret Math 275:339-346
Lin Y, Li X, Yang A (2002) A degree sequence method for the cutwidth problem of graphs. Appl Math J Chin Univ B 17(2):125-134
Lin Y (2003) The cutwidth of trees with diameter at most 4. Appl Math J Chin Univ B 18(3):361-369
Liu H, Yuan J (1995) Cutwidth problem on graphs. Appl Math J Chin Univ A 10(3):339-348
Rolin J, Sykora O, Vrto I (1995) Optimal cutwidth of meshes., Lecture Notes in Computer Science. Springer, Berlin
Yannakakis M (1985) A polynomial algorithm for the min-cut arrangement of trees. J ACM 32:950-989
Zhang Z, Lin Y (2012) On 4-cutwidth critical trees. ARS Comb 105:149-160

[^0]: Supported by China Scholarship Council.
 \boxtimes Zhen-Kun Zhang
 zhzhkun-2006@163.com
 Hong-Jian Lai
 hongjianlai@gmail.com
 1 Huanghuai University, Zhumadian 463000, Henan, China
 2 West Virginia University, Morgantown, WV 26506, USA

