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Abstract The cutwidth problem for a graph G is to embed G into a path such that the
maximum number of overlap edges (i.e., the congestion) is minimized. The inves-
tigations of critical graphs and their structures are meaningful in the study of a
graph-theoretic parameters. We study the structures of k-cutwidth (k > 1) critical
trees, and use them to characterize the set of all 4-cutwidth critical trees.
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1 Introduction

Graphs in this paper are finite, simple and connected with undefined terminologies
and notations following (Bondy and Murty 2008). The cutwidth problem for a graph
G is to embed G into a path such that the maximum number of overlap edges (i.e.,
the congestion) is minimized. It is known that the problem for general graphs is
NP-complete (Garey and Johnson 1979) while it is polynomially solvable for trees
(Yannakakis 1985). The cutwidth problem has important applications to VLSI designs
and communication networks (Diaz et al. 2002). It is closely related to other graph-
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theoretic parameters such as bandwidth, pathwidth and treewidth, see Chung and
Seymour (1985), Diaz et al. (2002), Korach and Solel (1993), among others.

Let n > 0 be an integer, and n = {1, 2, . . . , n}. For a graph G = (V, E) with
|V | = n, a labeling of G is a bijection f : V → n, viewed as an embedding of G into
the path P with vertices n, where consecutive integers are the adjacent vertices. The
cutwidth of G with respect to f is

c(G, f ) = max
1≤ j<n

∣
∣
{

uv ∈ E : f (u) ≤ j < f (v)
}∣
∣, (1)

which represents the congestion of the embedding. The cutwidth of G is defined by

c(G) = min
f

c(G, f ), (2)

where the minimum is taken over all labelings f . If k = c(G, f ), then f , as well as
the embedding induced by f , is called a k-cutwidth embedding of G. A labeling f
attaining the minimum in (2) is called an optimal labeling. For each i with 1 ≤ i ≤ n,
let ui = f −1(i), and let S j = {u1, u2, . . . , u j } be the set of the first j vertices. Define
∇(S j ) = {uiuh ∈ E : i ≤ j < h} is called the (edge) cut at [ j, j + 1]. By (1), we
have

c(G, f ) = max
1≤ j<n

|∇(S j )|. (3)

Any cut ∇(S j ) achieving the maximum in (3) is called an f -max-cut of G.
Let G be a graph and i ≥ 0 be an integer. Let Di (G) = {v ∈ V (G) : dG(v) = i},

where any vertex in D1(G) is a pendant vertex of G. For each v ∈ V (G), let NG(v) =
{u ∈ V (G) : uv ∈ E(G)}. If G has a vertex v ∈ D2(G) with NG(v) = {v1, v2} and
v1v2 /∈ E(G), then G − v + v1v2, the graph obtained from G − v by adding a new
edge v1v2, is call a series reduction of G. A graph G is homeomorphically minimal
if G does not have any series reductions. Two graphs are said to be homeomorphic if
they are isomorphic or can be reduced to isomorphic graphs by a sequence of series
reductions.

Definition 1.1 Let k ≥ 1 be an integer. A graph G is said to be k-cutwidth critical if
c(G) = k but for every proper subgraph G ′ of G, c(G ′) < k and G is homeomorphi-
cally minimal, that is, G is not a subdivision of any simple graph.

The cutwidths of certain families of graphs, including complete graphs and complete
bipartite graphs as well as cartesian products of cycles and paths, have been studied
in (Lin et al. 2002; Lin 2003; Liu and Yuan 1995; Rolin et al. 1995). The relations
between cutwidth and other graph-theoretic parameterswere studied in various aspects
(Chung and Seymour 1985; Korach and Solel 1993). The critical graphs with cutwidth
at most three were studied in (Lin and Yang 2004).

Theorem 1.2 (Lin and Yang (2004)) Let G be a graph. Each of the following holds.

(i) G is 1-cutwidth critical if and only if G = K2.
(ii) G is 2-cutwidth critical if and only if G ∈ {K3, K1,3}.
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Fig. 1 The 3-cutwidth critical trees

(iii) G is 3-cutwidth critical if and only if G ∈ {H1, H2, H3, H4, H5}, where
H1, H2, H3, H4, H5 are the graphs depicted in Fig. 1.

The investigation of 4-cutwidth critical trees was conducted in (Zhang and Lin
2012), where twelve 4-cutwidth critical trees τ1, τ2, . . . , τ12 have been found, as
depicted in Fig. 3 (see Appendix), together with their optimal labelings. It is natural to
consider the problem of determining all 4-cutwidth critical trees. In this paper we will
give a complete characterization of all 4-cutwidth critical trees. Let τ13, τ14, . . . , τ18
be the trees depicted in Fig. 4 (see Appendix), and let T4 = {τ1, τ2, . . . , τ18}. One of
our main results in this paper is the following.

Theorem 1.3 A tree G is 4-cutwidth critical if and only if G ∈ T4.

A caterpillar is a tree G if G − D1(G) is a path. By Lin and Yang (2004), c(G) =
⌈

�(G)
2

⌉

for any caterpillar G, where�(G) denote the maximum degree of G. The tree
family T4 can be used to characterize all trees with c(T ) = 3 as follows.

Theorem 1.4 A tree G has cutwidth ≤ 3 if and only if it is not homeomorphic to a
caterpillar with �(G) ≥ 7 or it does not contain any subtree homeomorphic to a
member in T4.

Proof By Theorem 1.3, for a tree G, c(G) ≤ 3 if and only if G /∈ T4. Similarly, since
c(G) = ⌈

�(G)
2

⌉

for any caterpillar G, c(G) ≤ 3 if and only if �(G) ≤ 6, completing
the proof. �	

In Sect. 2, we investigate different ways of constructing k-critical trees. The proof
of Theorem 1.3 is given in Sect. 3.

2 Constructions of k-cutwidth critical trees

In this section, we will present several constructions of k-cutwidth critical trees.

Definition 2.1 Let T = (V, E) be a tree.

(i) For any {v, v1, v2, . . . , vr } ⊆ V , define T (v; v1, v2, . . . , vr ) as the largest subtree
of T that contains v but does not contain any of v1, v2, . . . , vr .

(ii) Let T1, T2, . . . , Tt be trees and for j ∈ {1, 2, . . . , t}, let z j ∈ D1(Tj ). Define T =
T (z0; T1, T2, . . . , Tt ) to be a tree obtained from disjoint union of T1, T2, . . . , Tt
by identifying z1, z2, . . . , zt into a single vertex z0 in T . As z0 = z j in Tj , z0 is
viewed as the vertex z j in Tj .
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(iii) If |V (T )| ≥ 2, then define M(T ) = {T − v : v ∈ D1(T )} to be the family of all
proper maximal subtrees of T .

Lemma 2.2 Let G be a graph and T be a tree. Then each of the following holds.

(i) (Zhang and Lin (2012)) c(G) ≥ ��(G)/2�.
(ii) (Chung et al. (1985)) c(T ) ≤ k if and only if every vertex v of degree at least 2

has neighbors v1,v2 such that c(T (v; v1, v2)) ≤ k − 1.
(iii) (Zhang and Lin (2012)) c(T ) ≥ k if and only if there exists a nonpendant vertex

v such that c(T (v; v1, v2)) ≥ k − 1 holds for any two neighbors v1, v2 of v.
(iv) (Zhang and Lin (2012)) Let k ≥ 2 be an integer. If T1, T2 and T3 be (k − 1)-

cutwidth trees, then T = T (z0; T1, T2, T3) is a k-cutwidth tree.

We first obtain a construction of k-cutwidth critical trees by extending Lemma
2.2(iv).

Theorem 2.3 Let k ≥ 2 be an integer, and let T1, T2 and T3 be (k−1)-cutwidth critical
trees (not necessarily distinct). If T = T (z0; T1, T2, T3), then T is a k-cutwidth critical
tree.

Proof By Theorem 1.2, Theorem 2.3 holds with k = 2. Hence we assume that k ≥ 3.
We adopt the notation in Definition 2.1 in the proof. By Lemma 2.2(iv), c(T ) = k.
For j ∈ {1, 2, 3}, let x j be the only vertex in Tj adjacent to z0. Let T ′ ∈ M(T ) be a
maximal proper subtree of T . Then for some v ∈ D1(T ), T ′ = T − v. Since k ≥ 3,
we have v /∈ NT (z0), and so we may assume that w ∈ D1(T2). Since T1, T2, T3 are
(k−1)-cutwidth critical, c(T1−z0) ≤ k−2, c(T2−w) ≤ k−2 and c(T3−z0) ≤ k−2.
For 1 ≤ i ≤ 3, let fi be an optimal labeling of Ti such that c(Ti , fi ) ≤ k − 2. Define
f : V (T ) → |V (T )| as follows:

f (v) =
⎧

⎨

⎩

f1(v) if v ∈ V (T1 − z0)
f2(v) + |V (T1)| − 1 if v ∈ V (T2 − w)

f3(v) + |V (T1)| + |V (T2)| − 1 if v ∈ V (T3 − z0)
. (4)

By (3), every f -max-cut of T must be an fi -max-cut of Ti plus the newly added edge
z0x1 or z0x3, and so c(T ′) ≤ k − 1. Hence T is k-cutwidth critical. This completes
the proof. �	

The labeling f defined in (4) is called the labeling by the order ( f1, f2, f3), or the
labeling by the order (V (T1 − z0), V (T2 − w), V (T3 − z0)).

Definition 2.4 Let T be a tree, v0 ∈ V (T ) with i0 = dT (v0) and NT (v0) = {vi :
1 ≤ i ≤ i0}. For each i with 1 ≤ i ≤ i0, let Ti be the component of T − v0 with
vi ∈ V (Ti ), and define, for j = 1, 2, 3,

Fj = Tj ∪
(

i0⋃

h=4

Th

)

∪ {v0vh : 4 ≤ h ≤ i0} ∪ {v0v j }.
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Lemma 2.5, Theorem 2.6, 2.7 and 2.8 below are on k-cutwidth critical trees with a
construction stated in Definition 2.4. Hence notation in Definition 2.4 will be assumed
in Lemma 2.5, as well as Theorems 2.6, 2.7 and 2.8.

Lemma 2.5 Let k ≥ 3 be an integer. With the notation in Definition 2.4, each of the
following holds.

(i) If each of F1, F2 and F3 is (k − 1)-cutwidth critical, Then c(T ) = k.
(ii) If each of F1 and F2 is (k−1)-cutwidth critical, and F3 ∼= K1,2k−3, then c(T ) = k.
(iii) If each of F1is (k−1)-cutwidth critical, and F2 ∼= F3 ∼= K1,2k−3, then c(T ) = k.

Proof (i) Clearly, i0 < 2k−1 because of c(K2k−1) = k by (Zhang and Lin 2012). Fix
j with 1 ≤ j ≤ 3. Since Fj is (k − 1)-cutwidth critical, c(Tj ) ≤ k − 2. Let f1, f2, f3
be optimal labelings of T1, F2 and T3, such that c(T1, f1) ≤ k − 2, c(F2, f2) ≤ k − 1
and c(T3, f3) ≤ k − 2, respectively. Define f : V (T ) → |V (T )| to be the labeling by
the order of ( f1, f2, f3), as follows:

f (v) =
⎧

⎨

⎩

f1(v) if v ∈ V (T1)
f2(v) + |V (T1)| if v ∈ V (F2)
f3(v) + |V (T1)| + |V (F2)| if v ∈ V (T3)

.

By (3), we have c(T ) ≤ c(T, f ) = k. On the other hand, it is routine to verify that, for
any distinct vi1 , vi2 ∈ NT (v0), c(T (v0; vi1 , vi2)) ≥ k − 1, and so by Lemma 2.2(iii),
we have c(T ) ≥ k. Thus c(T ) = k.

The proofs for (ii) and (iii) are similar by utilizing the fact that K1,2k−3 is a (k−1)-
cutwidth critical tree, and so they will be omitted. �	
Theorem 2.6 If each of F1, F2 and F3 is (k−1)-cutwidth critical, then T is k-cutwidth
critical.

Proof By Lemma 2.5, to show that T is k-cutwidth critical, it remains to show that,
for any T ′ ∈ M(T ), c(T ′) ≤ k − 1. Pick T ′ = T − x ∈ M(T ) for some x ∈ D1(T ).
As D1(T ) ⊆ ∪i0

j=1D1(Tj ), we have x ∈ D1(Tj ) for some j with 1 ≤ j ≤ i0. We may
assume that x ∈ D1(T2) if 1 ≤ j ≤ 3; and x ∈ D1(T4) if j ≤ 4. Thus we always
have x ∈ D1(F2). Since F2 is (k−1)-cutwidth critical, each of c(T1), c(F2 − xy) and
c(T3) is at most k − 2. With an argument similar to the above, a labeling f of T ′ with
c(T ′, f ) ≤ k−1 can be found, and so c(T ′) ≤ k−1. This proves that T is k-cutwidth
critical. �	
Theorem 2.7 Let k ≥ 3 be an integer. If, with the notation in Definition 2.4, for some
j with 1 ≤ j ≤ 3, we have Tj + v0v j ∼= K1,2k−3, and if each Fi , i ∈ {1, 2, 3} − { j},
is (k − 1)-cutwidth critical, then T is k-cutwidth critical.

Proof Without loss of generality, we assume that T1 + v0v1 = K1,2k−3. By Lemma
2.5(ii), it suffices to show that for any T ′ ∈ M(T ), c(T ′) ≤ k−1. Pick T ′ = T − x ∈
M(T ) for some x ∈ D1(T ). If x ∈ D1(Tj ) for some j ≥ 2, then using the same
arguments as in the proof of Theorem 2.6, we conclude that c(T ′) ≤ k − 1. Hence we
assume that x ∈ D1(T1), and so T1 + v0v1 − x ∼= K2k−4 with cutwidth k − 2. Since
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F2 and F3 are (k − 1)-cutwidth critical, we have c(T2) ≤ k − 2 and c(T3) ≤ k − 2.
Let f1, f2, f3 be optimal labelings of T1, F2 and T3, respectively. Define a labeling f
of T to be the labeling by the order of (V (T1), V (F2), V (T3)), as follows:

f (v) =
⎧

⎨

⎩

f1(v) if v ∈ V (T1)
f2(v) + |V (T1)| if v ∈ V (F2)
f3(v) + |V (T1)| + |V (F2)| if v ∈ V (T3)

.

As c(T2) ≤ k − 2 and c(T3) ≤ k − 2, we must have

min{ f (v) : v ∈ V (T ′
2)} = max{ f (v) : v ∈ V (T1)} + 1,

min{ f (v) : v ∈ V (T2)} = max{ f (v) : v ∈ V (F2 − V (T2))} − 1,

max{ f (v) : v ∈ V (T2)} = max{ f (v) : v ∈ V (F2)} = min{ f (v) : v ∈ V (T3)} − 1.

(5)

To apply (3) to estimate c(T, f ), we present the embedding ofV (T )onto a path Pn with
n = |V (T )|. Let f (v0) = q0 and denote V (T1) = {u1, . . . , ui1}, V1(F2 − V (T2)) =
{v : v ∈ V (F2 − V (T2)), f (v) < q0} = {ui1+1, . . . , ui1+q}, V2(F2 − V (T2)) = {v :
v ∈ V (F2 − V (T2)), f (v) ≥ q0} = {ui1+q+1, . . . , ui2}, V (T2) = {ui2+1, . . . , ui3},
V (T3) = {ui3+1, . . . , ui4}. Then, f can be viewed as an embedding ordering π of
vertices of T on the path Pn :

u1, u2, . . . , ui1 , ui1+1, . . . , uq0−1, uq0 , . . . , ui2 , ui2+1, . . . , ui3 , ui3+1, . . . , ui4 .

By (3), for the restriction ofπ on V (F2−V (T2)), we have |∇(S j )| ≤ k−2 for any j <

q0, and |∇(S j )| ≤ k − 3 for any j ≥ q0. Now we consider the embedding ordering π ′
of vertices of T ′ = T −x , and let x = ul (1 < l < i1). Since T1+v0v1−x = K1,2k−4,
we have c(T1 + v0v1 − x) = k − 2. On the basis of π , we arrange an embedding
ordering π ′ of vertices of T − x as follows:

ui4 , . . . , ui3+1, u1, u2, . . . , ul−1, ul+1, . . . , ui1 , ui2 , . . . ,

uq0 , uq0−1, . . . , ui1 , ui2 , ui2+1, . . . , ui3 ,

and define a labeling f ′ of T ′ according to π ′. Since c(T1 − x) = k−2, c(T2) ≤ k−2
and c(T3) ≤ k − 2, the cardinality of any maximum cut is at most k − 1 in π ′, and so
by (3), c(T − x, f ′) = k−1. Thus c(T − x) ≤ k−1,. This proves that T is k-cutwidth
critical. �	

The argument used in the proof of Theorem 2.7 can be further applied to prove the
Theorem 2.8 below. Its detailed proof will be omitted.

Theorem 2.8 Let k ≥ 3 be an integer. If, with the notation in Definition 2.4, for some
i, j with 1 ≤ i < j ≤ 3, we have Tj +v0v j ∼= K1,2k−3, and if F�, � ∈ {1, 2, 3}−{i, j},
is (k − 1)-cutwidth critical, then T is k-cutwidth critical.
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Following (Chung et al. 1985), let Td(k) denote the set of all trees T such that
V (T ) = D1(T ) ∪ Dd(T ) and c(T ) = k. We shall use Td(k) to denote a member in
Td(k).

Theorem 2.9 (Chung et al. (1985)) Each of the following holds.

(i) T3(1) = {K2}, T3(2) = {K1,3}, and T3(3) = {H2}.
(ii) For k > 1, any T ∈ T3(k) can be formed from the disjoint union of three (not

necessarily distinct) trees T1, T2, T3 ∈ T3(k − 1) by identifying a pendant vertex
in each of T1, T2 and T3 to form a degree 3 vertex v0 in T . (The vertex v0 is called
the identified vertex of T .)

Corollary 2.10 T3(k) is k-cutwidth critical.

Proof By definition, c(T3(k)) = k. By Theorems 1.2 and 2.9(i), T3(k) is k-cutwidth
critical for 1 ≤ k ≤ 3. Now assume that k > 3 and for all k′ < k, T3(k′) is k′-cutwidth
critical. By Theorem 2.9(ii) and 2.3, T3(k+1) is k-cutwidth critical. Thus the corollary
is proved by induction. �	
Definition 2.11 Let k ≥ 3 be an integer.

(i) A graph G is minimally homeomorphic to a graph H if G is homeomorphic to H
and G is homeomorphically minimal.

(ii) (Definition of the family T (k)) Take a T3(k − 1) ∈ T3(k − 1). For 1 ≤ r ≤ 3
let T̃r ∼= T3(k − 1) and xr0 be the identified vertex of T̃r . For each 4 ≤ s ≤ 6,
let T̃s ∼= T3(k − 1) and x3+s

0 be a pendent vertex of T̃s . For 7 ≤ q ≤ 9, let
T̃q ∼= K1,2k−3 and xq0 be a pendent vertex of T̃q . Define S = {xi0 : 1 ≤ i ≤ 9}.
Thus

For each i with 1 ≤ i ≤ 9, T̃i is (k − 1) − cutwidth critical. (6)

Let L ∼= K1,3 be a star V (L) = {u0, u1, u2, u3}, where NL(u0) = {u1, u2, u3}. Let
T (k) denote the family of trees such that T̃ ∈ T (k) if and only if there exist some
(i, j, p) with 1 ≤ i, j, p ≤ 9 such that T̃ is minimally homeomorphic to the tree
T (i, j, p) obtained from the disjoint union of T̃i , T̃ j , T̃p and L by identifying u1 and

xi0, u2 and x j
0 , u3 and x p

0 respectively. The vertices xi0, x
j
0 , x p

0 are called the identified
vertices of T̃ .

Theorem 2.12 For any T̃ ∈ T (k), T̃ is a k-cutwidth critical tree.

Proof We use the notation in Definition 2.11(ii). Let T = T (i, j, p) and T̃ ∈ T (k)
with xi0, x

j
0 , x p

0 being the identified vertices, for some 1 ≤ i ≤ j ≤ p ≤ 9.

If i ≥ 4, then xi0, x
j
0 , x p

0 are in D2(T (i, j, p)), and so by Definition 2.11, T̃ =
T (z0; T̃i , T̃ j , T̃p). It follows by Theorem 2.3 that T̃ is k-cutwidth critical.

Hence we assume that i ≤ 3. There are six cases to consider: (1) xi0 ∈ {x10 , x20 , x30 },
x j
0 ∈ {x40 , x50 , x60}, x p

0 ∈ {x70 , x80 , x90 }; (2) xi0 ∈ {x10 , x20 , x30 }, x j
0 , x p

0 ∈ {x40 , x50 , x60 }; (3)
xi0 ∈ {x10 , x20 , x30 }, x j

0 , x p
0 ∈ {x70 , x80 , x90}; (4) xi0, x j

0 ∈ {x10 , x20 , x30 }, x p
0 ∈ {x40 , x50 , x60 };

(5) xi0, x
j
0 ∈ {x10 , x20 , x30 }, x p

0 ∈ {x70 , x80 , x90 }; (6) xi0, x j
0 , x p

0 ∈ {x10 , x20 , x30 }.
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As the proof arguments are similar in each of these six cases, it suffices to show
case (1). Without loss of generality, we assume that i = 1, j = 4 and p = 7. Let
x ∈ NT̃4

(x40) and y ∈ NT̃7
(x70). Thus T̃ = T − {u0x40 , x40 x, u0x70 , x70 y} + {u0x, u0y}.

Since T̃1, T̃4 ∈ T3(k − 1) and T̃7 ∼= K1,2k−3, both T̃1 and T̃4 are (k − 1)-critical. It
follows by Lemma 2.5 that c(T̃ ) = k.

It remains to show that, for anymaximal proper subtree T̃ ′ ∈ M(T̃ ), c(T̃ ′) ≤ k−1.
Let T̃ ′ = T̃−z for some z ∈ D1(T̃ ). Thenwe have these possibilities. (1A) z ∈ V (T̃1);
(1B) z ∈ V (T̃4 − u0); (1C) z ∈ V (T̃7 − u0).

As the arguments for each of (1A), (1B) and (1C) are similar, we only present the
proofwhen (1A) holds. As T̃1 ∈ T3(k−1), by Theorem2.9, T̃1 is formed by identifying
a pendent vertex in three copies T (1)

3 (k − 2), T (2)
3 (k − 2), T (3)

3 (k − 2) ∈ T3(k − 2)

with the identified vertex x10 . Let NT̃1
(x10) = {v′

0, v
′′
0 , v

′′′
0 } with v′

0 ∈ V (T (1)
3 (k −

2)), v′′
0 ∈ V (T (2)

3 (k − 2)), v′′′
0 ∈ V (T (3)

3 (k − 2)). Without loss of generality, let

z ∈ D1(T
(2)
3 (k − 2)). As c(T̃1 − z) = k − 2, we have c(T (2)

3 (k − 2) − z) = k − 3.
Using the (k − 2)-cutwidth embeddings of T ′

3(k − 2) − x10 and T ′′′
3 (k − 2) − x10 and

a (k − 3)-cutwidth embedding of T ′′
3 (k − 2) − z − x10 , there exists a (k − 2)-cutwidth

embedding of T̃1 defined as the labeling by the order (V (T ′
3(k − 2)) − x10 , V (T ′′

3 (k −
2) − z − x10), x

1
0 , V (T ′′′

3 (k − 2)) − x10).
Now using the (k − 1)-cutwidth embeddings in V (T̃4 − u0) and V (T̃7 − u0), we

obtain a labeling f of T̃ − {u0x10 , u0x40 , u0x70} by the order (V (T̃4 − u0), V (T ′
3(k −

2))− x10 , V (T ′′
3 (k −2)− z− x10), x

1
0 , u0, V (T ′′′

3 (k −2))− x10 , V (T̃7 −u0)). Note that
f is also a labeling of T̃ . As one can put edges x10v

′
0, x

1
0v

′′
0 , x

1
0v

′′′
0 , u0x

1
0 , u0x

4
0 , u0x

7
0

back. Obviously, the congestion is k − 1 in the embedding ordering, which indicates
c(T̃ ′) ≤ k − 1. Consequently, T̃ is k−cutwidth critical. �	

By Theorem 2.6, Lemma 2.2(iv) and Theorem 2.12 can be generalized to be a
method to construct k-cutwidth trees.

Theorem 2.13 Let T1, T2, T3 be (k − 1)-cutwidth trees, where at least one of them is
critical, and vi ∈ V (Ti ) (i = 1, 2, 3), ui (i = 1, 2, 3) be a pendent vertex in K1,3.
If tree T is formed by identifying vi and ui (i = 1, 2, 3) respectively, then T is a
k-cutwidth tree.

3 Proof of Theorem 1.3

Throughout this section, for two graphs G and H , we write H ⊆ G to mean that H
is a subgraph of G. Let T = {τ1, τ2, . . . , τ18}. To prove Theorem 1.3, we shall first
show that every tree in T is 4-cutwidth critical. In (Zhang and Lin 2012), it is shown
that

Lemma 3.1 Each of the following holds.

(i) (Zhang and Lin (2012)) For 1 ≤ i ≤ 12, every τi is 4-cutwidth critical.
(ii) For 13 ≤ i ≤ 18, every τi is 4-cutwidth critical.
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Proof (ii) As it is similar to prove that for each i with 13 ≤ i ≤ 18, τi is 4-cutwidth
critical, we only present the proof for τ13. Let H2 be the graph depicted in Fig. 3 (see
Appendix). The only vertex v0 in H2 that is of distance at most 2 to all vertices of
H2 is called the center of H2 (in Fig. 1, v0 is the vertex with label 6). By definition,
H2 ∼= T3(3). Let T

(1)
3 (3), T (2)

3 (3), T (3)
3 (3) be three copies of T3(3) with centers v

(1)
0 ,

v
(2)
0 and v

(3)
0 respectively. Let T = K1,3 with D1(T ) = {u1, u2, u3}. Obtain τ13 from

the disjoint union of T (1)
3 (3), T (2)

3 (3), T (3)
3 (3) and T by identifying ui with v

(i)
0 , for

each 1 ≤ i ≤ 3. By Theorem 2.12, τ13 is 4-cutwidth critical, and so the lemma follows.
�	

Lemma 3.2 Let T = T (z0, T1, T2, . . . , Tt ) be a tree as defined in Definition 2.1.

(i) If t = 3 and if c(T1) < 3, Tj and Tj − z0 are k-cutwidth critical with k ≤ 3, for
each j ≥ 2, then c(T ) ≤ 3.

(ii) If t ≥ 3 and if c(Tj ) ≥ 3 for j = 1, 2, 3, then c(T ) ≥ 4.

Proof (i) is a consequence of Theorem 2.3. To prove (ii), let NT (z0) = {vi0 : vi0 ∈
V (Ti ), 1 ≤ i ≤ t}. Since t ≥ 3, any T (z0; vi0, v

j
0 ) contains at least one subtree Tk

(k �= i, j) for 1 ≤ i, j ≤ t , resulting in c(T (z0; vi0, v
j
0 )) ≥ 3 by the assumption. Thus

by Lemma 2.2(iii), c(T ) ≥ 4, completing the proof. �	
Proof of Theorem 1.3 By Lemma 3.1, it suffices to show that every 4-cutwidth crit-
ical tree must be in T . Let T be a 4-cutwidth critical tree. By Definition 1.1, T is
homeomorphically minimal, and so for any v ∈ V (T ) − D1(T ), �(T ) ≥ dT (v) ≥ 3.
If �(T ) ≥ 7, then τ1 ∼= K1,7 ⊆ T , and so T = τ1 by the minimality of T . By Lemma
2.2(i), we may assume that

3 ≤ �(G) ≤ 6, and T is not homeomorphic to a caterpillar. (7)

Let � = �(T ). Pick any v0 ∈ V (T ) − D1(T ) with � = dT (v0) ≥ 3, and denote
NT (v0) = {v1, v2, . . . , v�}. Then byLemma2.2(iii) and since T is 4-cutwidth critical,
we have

For any v′, v′′ ∈ NT (v0), c(T (v0; v′, v′′)) = 3. (8)

For each i with 1 ≤ i ≤ �, define Ti to be the largest subtree of T with V (Ti ) ∩
(NT (v0) ∪ {v0}) = {v0, vi }.
Case 1 � = 3. For each Ti with c(Ti ) = 3, the 3-cutwidth critical trees H1 or H2 (see
Figure 1) must be contained in Ti . On the other hand,�(T ) = dT (v0)must be 3 in this
case, otherwise it is not hard to verify that c(T ) > 4 by Lemma 3.2, a contradiction
to c(T ) = 4. Hence T must be one of {τ3, . . . , τ6, τ13, . . . , τ18} by the minimality.
Case 2 � = 4. Note that c(T (v0; vi , v j )) = 3 for any two neighbors vi , v j of v0
(1 ≤ i < j ≤ 4), and the degree of v0 is two in subtree T (v0; vi , v j ). If one neighbor
of v0, say v1, is a pendant vertex of T , then the other subtrees T2, T3, T4 must have
cutwidth 3, thus the subtree T1 (namely the edge v0v1) can be deleted, which is reduced
to be Case 1 leading to T − v1 ∈ {τ3, . . . , τ6, τ13, . . . , τ18}, contradicting that T is
4-critical. So, we may assume that all neighbors v1, v2, v3, v4 of v0 are not pendant.
Due to that T is critical, among all subtrees T (v0; vi , v j )(1 ≤ i < j < 4), there
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must be one being minimal (if the degree two vertex v0 is ignored, then it is critical).
Therefore, at least one subtree T (v0; vi , v j ) is an H2 with v0 as a subdivision vertex;
and the subtree Ti and Tj in the remaining part may contain an H1. By the minimality,
T is one of {τ7, τ8, τ9}.
Case 3 � = 5. If all neighbors vi of v0 have dT (vi ) ≥ 3(i = 1, 2, 3, 4, 5), then τ2 is
included in T and thus T = τ2 by the minimality. If only one neighbor of v0, say v1, is
pendant, then by c(T1

⋃
Ti

⋃
Tj ) = 3 (2 ≤ i < j ≤ 5), the edge v0v1 can be deleted

without effect on c(T ) = 4, i.e., c(T − v1) = 4, which can be reduced to be Case 2, a
contradiction to the assumptions. By c(T (v0; vi , v j )) = 3, it is impossible that v0 has
three or more pendant neighbors. So, we may assume that there are two neighbors of
v0 being pendant. By the fact that c(T (v0; vi , v j )) = 3 for any two neighbors vi , v j

of v0(1 ≤ i < j ≤ 5) and that T is critical, it can be seen that there must be a
subtree T (v0; vi , v j ) being an H2 containing those two pendant neighbors of v0. And
the subtree Ti or Tj in the remaining parts may contain an H1. Therefore, T is one of
{τ10, τ11, τ12} by the minimality.
Case 4 � = 6. By using the fact that c(T (v0; vi , v j )) = 3 for any i and j (1 ≤ i <

j ≤ 6), it can be deduced that T must contain a subtree in Case 2 or Case 3, which
contradicts that T is critical. This establishes the proof. �	

4 Remarks

The paper first investigates combinatorial structures of k-cutwidth (k > 1) critical
trees, from which one can obtain some methods to construct k-cutwidth critical trees,
and then characterizes the set of 4-cutwidth critical trees, which corrects the short-
comings of that of (Zhang and Lin 2012) by giving six new 4-cutwidth critical trees.
As to more methods to construct the critical trees with cutwidth k, Zhang and Lin
(2012) gave other two results: (1) star K1,2k−1 is a critical tree with cutwidth k; (2) If
tree T ′

1 is obtained from star K1,2k−3 by replacing every edge uv of it with tree shown
in Fig. 2, where dK1,2k−3(u) = 2k−3, dK1,2k−3(v) = 1, x and y are new vertices and
y is a new pendant vertex. Then tree T ′

1 is k-cutwidth critical.
From these, we think that we have found all ways of constructing k-cutwidth critical

trees for any fixed integer k (k > 1); In addition, for any k-cutwidth critical tree, there
must exist an optimal embedding ordering π of vertices v1, v2, . . . , vn arranged on
path Pn such that there is a unique maximum cut ∇(S j ) in π (it is true for T3(k)).
These will be our emphases to study in the future works. Other further tasks are to
characterize the set of 4-cutwidth nontree critical graphs which includes K4 and all
5-critical graphs.

Fig. 2 Definition of T ′

u v u vx

y

−→
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Appendix

See Figs. 3 and 4.
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Fig. 3 The 4-cutwidth critical trees in Zhang and Lin (2012)
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Fig. 4 New 4-cutwidth critical trees
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