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a b s t r a c t

For positive integers k and r , a (k, r)-coloring of a graphG is a proper coloring of the vertices
with k colors such that every vertex of degree i will be adjacent to vertices with at least
min{i, r} different colors. The r-dynamic chromatic number of G, denoted by χr (G), is the
smallest integer k for which G has a (k, r)-coloring. For a k-list assignment L to vertices of G,
an (L, r)-coloring of G is a coloring c such that for every vertex v of degree i, c(v) ∈ L(v) and
v is adjacent to verticeswith at leastmin{i, r} different colors. The list r-dynamic chromatic
number of G, denoted by χL,r (G), is the smallest integer k such that for every k-list L, G has
an (L, r)-coloring.

In this paper, the behavior and bounds of 3-dynamic coloring and list 3-dynamic
coloring of K1,3-free graphs are investigated. We show that if G is K1,3-free, then χL,3(G) ≤

max{χL(G)+ 3, 7} and χ3(G) ≤ max{χ (G)+ 3, 7}. The results are best possible as 7 cannot
be reduced.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [3]. For a vertex
v ∈ V (G), let NG(v) denote the set of vertices adjacent to v in G, and let dG(v) = |NG(v)| denote the degree of v. Denote
NG[v] = NG(v) ∪ {v} to be the closed neighborhood of v. When G is understood from the context, we often use N(v), d(v)
and N[v] for NG(v), dG(v) and NG[v], respectively. For an integer i ≥ 0, let Di(G) denote the set of all vertices of degree i in
G; vertices in Di(G) are called i-vertices of G. For a graph G, δ(G), ∆(G), and χ (G) denote the minimum degree, the maximum
degree and the chromatic number of G, respectively.

For a vertex set V0 ⊆ V (G), denote G[V0] to be the induced subgraph of V0 in G. For a vertex v ∈ V (G), we abbreviate
G[V (G) − {v}] to G − v. We call a vertex v is locally connected if G[NG(v)] is connected. The clique number of G, denoted by
ω(G), is the maximum number k such that G contains a subgraph isomorphic to Kk.

For an integer k > 0, we define k = {1, 2, . . . , k}. If c : V (G) ↦→ k̄ is a mapping and S ⊆ V (G), then c(S) = {c(u) | u ∈ S}.
For positive integers k and r , a (k, r)-coloring of a graph G is a mapping c : V (G) → k such that both of the following hold:
(C1) if u, v ∈ V (G) are adjacent vertices in G, then c(u) ̸= c(v); and
(C2) for every v ∈ V (G), |c(NG(v))| ≥ min{|NG(v)|, r}.
When G has a (k, r)-coloring, we say that G is (k, r)-colorful. The r-dynamic chromatic number of G, denoted by χr (G), is the
smallest k such that G is (k, r)-colorful. By the definition, we observe that

χ (G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χ∆(G)(G) = χ∆(G)+i(G) ≤ |V (G)|.
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Fig. 1. A 3-colorable graph with 3-dynamic chromatic number 7.

Let L be an assignment such that assigns to every v ∈ V (G) a list L(v) of colors available at v. For an integer k > 0, an L
is a k-list if for any v ∈ V (G), |L(v)| = k. An L-coloring is a proper coloring c such that c(v) ∈ L(v), for every v ∈ V (G). The
list chromatic number of G, denoted by χL(G), is the minimum number k such that for every k-list L, G admits an L-coloring.
Given an assignment L and a positive integer r , an (L, r)-coloring c is an L-coloring such that |c(NG(v))| ≥ min{|NG(v)|, r} for
every v ∈ V (G). The list r-dynamic chromatic number of G, denoted by χL,r (G), is the minimum number k such that for every
k-list L, G has an (L, r)-coloring. By its definition, we observe that χr (G) ≤ χL,r (G), and

χL(G) = χL,1(G) ≤ χL,2(G) ≤ · · · ≤ χL,∆(G)(G) = χL,∆(G)+i(G) ≤ |V (G)|.

The study of r-dynamic colorings started in [10,12]. The r-dynamic chromatic number of certain graph families has been
determined, as seen in [4,5,7,9,11], among others. It has been indicated in [10,12] that χ2(G) − χ (G) can be arbitrarily large.
In [9], it is initiated the study of finding graph families F such that χ2(G)−χ (G) is bounded by a constant for all graphs in F .
For positive integers r and s, a graph G is (r, s)-normal if χr (G)−χ (G) ≤ s. A (2, 0)-normal graph is also called a normal graph
in [9]. When r = 2, it is conjectured in [12] that every regular graph is (2, 2)-normal. Let H be a graph. A graph G is H-free
if G does not have an induced subgraph isomorphic to H . In particular, a K1,3-free graph is also called a claw-free graph. The
following is proved in [9].

Theorem 1.1 (Theorem 4.2 of [9]). Let G be a claw free graph. Each of the following holds.
(i) G is (2, 2)-normal.
(ii) If G is connected, then χ2(G) = χ (G) + 2 if and only if G is a cycle of length 5 or an even cycle of length not a multiple of 3.

More results to investigate the difference χ2 − χ can be found in [1,2,6,9], among others. Motivated by Theorem 1.1, in
this paper, we obtain the following results.

Theorem 1.2. Let G be a claw-free graph. Then χL,3(G) ≤ max{χL(G) + 3, 7}.

Theorem 1.3. Let G be a claw-free graph. Then χ3(G) ≤ max{χ (G) + 3, 7}.

Both Theorems 1.2 and 1.3 are best possible in some sense. Let G be the graph depicted in Fig. 1. It is routine to verify
that χL(G) = χ (G) = 3 while χL,3(G) = χ3(G) = 7.

Necessary preliminaries are presented in Section 2. Our main results are proved in Section 3.

2. Preliminaries

In this section, we present lemmas and observations that will be needed in the arguments to prove the main results.

Lemma 2.1 ([1] and [9]). For positive integer r ≥ 2, each of the following holds:

χL,r (Cn) = χr (Cn) =

{5, if n = 5;
3, if n ≡ 0 (mod 3);
4, otherwise.

We shall adopt the idea of partial colorings from [13]. Throughout this section, if L is a list of G and H is a subgraph of G,
we shall adopt the convention of using L to denote the restriction of L to V (H). If V ′

⊆ V (G), we define a mapping c on V ′ to
be a partial (L, r)-coloring of G if c is an (L, r)-coloring of G[V ′

]. The support of c , also denoted by S(c), equals V ′. If L(v) = k
for every v ∈ V (G), then a partial (L, r)-coloring of G is also called a partial (k, r)-coloring of G. If c1 and c2 are two partial
(L, r)-colorings of G such that S(c1) ⊆ S(c2) and such that for any v ∈ S(c1), c1(v) = c2(v), then c2 is an extension of c1. Given
a partial (L, r)-coloring c with S(c) = V ′, for each v ∈ V − V ′, define {c(v)} = ∅; and for every vertex v ∈ V , we extend the
definition of c(NG(v)) = ∪z∈NG(v){c(z)}, and define

c[v] =

{
{c(v)}, if |c(NG(v))| ≥ r;
{c(v)} ∪ c(NG(v)), otherwise.

By definition, |c[v]| ≤ r for any v ∈ V . We have the following observation.
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Fig. 2. Local structures in claw-free graphs.

Observation 2.2. Let c be a partial (L, r)-coloring of G with support S(c). For any u ̸∈ S(c), and for any v ∈ NG(u), by the
definition of c[v], we have |c[v]| ≤ min{d(v), r} and c[v] represents the colors that cannot be used as c(u) if one wants to extend
the support of c to include u. In other words, the colors in L(u) − ∪v∈NG(u)c[v] are available colors to define c(u) in extending the
support of c from S(c) to S(c) ∪ {u}.

Lemma 2.3. Let G be a simple graph with u ∈ D1(G). Let k be an integer such that k ≥ 4. Then both of the following hold:
(i) If χL,3(G − u) ≤ k, then χL,3(G) ≤ k;
(ii) If χ3(G − u) ≤ k, then χ3(G) ≤ k.

Proof. The proof for Part (ii) is similar to that for Part (i). Thus we only prove Part (i) and omit the proof for Part (ii).
Assume that NG(u) = {v}. Let L be a k-list of G. Since χL,3(G − u) ≤ k, let c be a partial (L, 3)-coloring of G with

S(c) = V (G) − u. By Observation 2.2, |c[v]| ≤ 3, and c could be extended to an (L, 3)-coloring of G by coloring u with a
color in L(u) − c[v]. □

Lemma 2.4. Let G be a claw-free graph with δ(G) = 2. Let u ∈ D2(G) with NG(u) = {v1, v2}. Denote G′
= G − u + v1v2 if

v1v2 ̸∈ E(G), or G′
= G − u if v1v2 ∈ E(G). Let k be an integer such that k ≥ 7. Then both of the following hold:

(i) If χL,3(G′) ≤ k, then χL,3(G) ≤ k;
(ii) If χ3(G′) ≤ k, then χ3(G) ≤ k.

Proof. As the proof for Part (ii) is similar to that for Part (i), we only present the proof for art (i) and omit that for Part (ii).
Let L be a k-list ofG. Let L′ be a k-list ofG′ where L′(v) = L(v) for any v ∈ V (G′). SinceχL,3(G′) ≤ k, let c be an (L′, 3)-coloring

of G′. Define a coloring c0 on G in the followingway: let c0(v) = c(v), for every v ∈ V (G)−u; and choose c0(u) ∈ L(u)−S1−S2
where

Si =

{
{c0(vi)}, if |c0(NG(vi) − {u})| ≥ 3;
{c0(vi)} ∪ c0(NG(vi) − {u}), otherwise

for i = 1, 2. Then c0 is an (L, 3)-coloring of G. □

Lemma 2.5 (Lemma 3.4 of [8]). Let G be a claw-free graph with δ(G) ≥ 3 and v ∈ V (G) be a locally connected vertex. Then
G[NG(v)] has a Hamilton path.

Lemma 2.6. Define H1,H2, . . . ,H6 to be the graphs depicted in Fig. 2. Let G be a claw-free graph with δ(G) ≥ 3. Then each of the
following holds:
(i) For every u ∈ D3(G), G[NG[u]] is isomorphic to one graph in {H1,H2,H3};
(ii) For every u ∈ D4(G), either G[NG(u)] has K3 as a subgraph or G[NG[u]] is isomorphic to one graph in {H4,H5,H6};
(iii) For every u with degree at least 5, χ (G[NG(u)]) ≥ 3.

Proof. By the definition of claw-free graphs and Lemma 2.5, we have (i) and (ii). For every u with degree at least 5, it is
sufficient to show that G[NG(u)] contains a K3 or a C5. If u is locally connected, then by Lemma 2.5, G[NG(u)] has a Hamilton
path. Since G is claw-free, G[NG(u)] contains a K3 or a C5. If u is not locally connected, then by the definition of claw-free
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graphs, G[NG(u)] has exactly two components, both of which are complete graphs. As |NG(u)| ≥ 5, at least one component
of G[NG(u)] contains a K3. □

Lemma 2.7. Let G be a claw-free graph with δ(G) = 3. Let u ∈ D3(G) with NG(u) = {x1, x2, x3}, x1x2 ∈ E(G) and x1x3 ̸∈ E(G).
Then each of the following holds:
(i) Let k = max{χL(G) + 3, 7}. If χL,3(G − u) ≤ k, then for any k-list L of G, there is a partial (L, 3)-coloring c of G with
S(c) = V (G) − u, such that |c({x1, x2, x3})| = 3;
(ii) Let k′

= max{χ (G)+ 3, 7}. If χ3(G− u) ≤ k′, then there is a partial (k′, 3)-coloring c ′ of G with S(c ′) = V (G)− u, such that
|c ′({x1, x2, x3})| = 3.

Proof. The proof for Part (ii) is similar to that for Part (i). Thus we only prove Part (i) and omit the proof for Part (ii).
Denote H = G[NG[x3] − {u, x2}]. Since G is claw-free, H is a complete graph. Since δ(G) ≥ 3 and x1x3 ̸∈ E(G), |V (H)| ≥ 2.

Note that k ≥ k′
≥ χ (G) + 3 ≥ |V (H)| + 3.

Let L be an assignment on V (G). Since χL,3(G − u) ≤ k, G has a partial (L, 3)-coloring c with S(c) = V (G) − u. If
c(x3) ̸∈ {c(x1), c(x2)}, then |c({x1, x2, x3})| = 3. Hence we assume that c(x3) ∈ {c(x1), c(x2)}.

If |V (H)| ≥ 4, thenwe could obtain a desired partial (L, 3)-coloring from c by recoloring x3 with a color in L(x3)−c(V (H)∪
{x1, x2}).

If |V (H)| = 3, then we assume V (H) = {x3, y1, y2}. Since dG(y1) = dG−u(y1) ≥ 3, then there exists z1 ∈ NG(y1) such that
|c({x3, y2, z1})| = 3. Similarly, there exists z2 ∈ NG(y2) such that |c({x3, y1, z2})| = 3. Define an L-coloring c0 of G − u in the
following way:

c0(v) = c(v) if v ̸= x3, and c0(x3) = awhere a ∈ L(x3) − c({x1, x2, y1, y2, z1, z2}).

For v ∈ V (G) − {u, x2, x3, y1, y2}, |c0({NG−u(v)})| = |c({NG−u(v)})| ≥ min{dG−u(v), 3}. For yi (i = 1, 2), |c0({NG−u(yi)})| ≥

|{c(zi), c(y3−i), a}| = 3. For x2 and x3, if x2x3 ̸∈ E(G), then |c0({NG−u(x2)})| = |c({NG−u(x2)})| ≥ min{dG−u(x2), 3} and
|c0({NG−u(x3)})| = |{c(y1), c(y2)}| = dG−u(x3) = 2. If x2x3 ∈ E(G), then c(x3) = c(x1) and c({NG−u(x2)}) ⊆ c0({NG−u(x2)}).
Thus |c0({NG−u(x2)})| ≥ |c({NG−u(x2)})| ≥ min{dG−u(x2), 3}, and |c0({NG−u(x3)})| = |{c(x2), c(y1), c(y2)}| = 3. Therefore, c0
is a desired partial (L, 3)-coloring.

If |V (H)| = 2, then dG(x3) = 3 and x2x3 ∈ E(G) as δ(G) = 3. Since c(x2) ̸= c(x3), c(x3) = c(x1). We assume that
NG(x3) = {u, x2, y1}. Since dG(y1) = dG−u(y1) ≥ 3, then there exists z1, z2 ∈ NG(y1) such that |c({x3, z1, z2})| = 3. Therefore,
we could obtain a required partial (L, 3)-coloring from c by recoloring x3 with a color in L(x3) − c({x1, x2, y1, z1, z2)}. □

Lemma 2.8. Let G be the bull graph, where V (G) = {v1, v2, v3, v4, v5} and E(G) = {v1v2, v1v3, v2v3, v2v4, v3v5}. For any
assignment L to V (G) satisfying |L(vi)| = 4 for i = 1, 2, 3 and |L(vj)| = 3 for j = 4, 5, there exists an (L, 3)-coloring of G.

Proof. If L(v4) ∩ L(v5) ̸= ∅, then choose a ∈ L(v4) ∩ L(v5). We could find an (L, 3)-coloring c of G in the following way:
c(v1) ∈ L(v1) − {a}; c(v2) ∈ L(v2) − {c(v1), a}; c(v3) ∈ L(v3) − {c(v1), c(v2), a}; c(v4) = c(v5) = a. Thus we assume that
L(v4) ∩ L(v5) = ∅. without loss of generality, we assume that L(v4) = {1, 2, 3} and L(v5) = {4, 5, 6}.

If 1 ̸∈ L(v1), we could find an (L, 3)-coloring c of G in the following way: c(v4) = 1; c(v5) = 6; c(v2) = L(v2) − {1, 6};
c(v3) = L(v3) − {1, 6, c(v2)}; c(v1) ∈ L(v1) − {6, c(v2), c(v3)}. If 1 ̸∈ L(v2), we could find an (L, 3)-coloring c of G in the
following way: c(v4) = 1; c(v5) = 6; c(v3) = L(v3) − {1, 6}; c(v1) = L(v1) − {1, 6, c(v3)}; c(v2) ∈ L(v2) − {6, c(v1), c(v3)}.
If 1 ̸∈ L(v3), we could find an (L, 3)-coloring c of G in the following way: c(v4) = 1; c(v5) = 6; c(v1) = L(v1) − {1, 6};
c(v2) = L(v2) − {1, 6, c(v1)}; c(v3) ∈ L(v3) − {6, c(v1), c(v2)}. Thus, we could assume that 1 ∈ L(v1) ∩ L(v2) ∩ L(v3). By a
similar argument, we could assume that 2, 3, 4 ∈ L(v1) ∩ L(v2) ∩ L(v3). Therefore, L(vi) = {1, 2, 3, 4} for i = 1, 2, 3. Hence
we could find an (L, 3)-coloring c of G in the following way: c(v1) = 2, c(v2) = 3, c(v3) = 4, c(v4) = 1, c(v5) = 5. □

3. Proof of main results

Proof of Theorem 1.2. Let k = max{χL(G) + 3, 7}. By contradiction, we choose a counterexample G to Theorem 1.2 such
that

χL,3(G) > kwith |V (G)| minimized. (1)

As k ≥ 7, Theorem 1.2 holds trivially for all graphs with at most 7 vertices, and so we assume |V (G)| ≥ 8. By Lemma 2.1, G
is not a 2-regular graph. By (1),

there exists a k-list L such that G does not have an (L, 3)-coloring. (2)

Claim 1. δ(G) ≥ 3.

Suppose u1 ∈ D1(G) and denote G′
= G − u1. By (1), χL,3(G′) ≤ max{χL(G′) + 3, 7} ≤ k. By Lemma 2.3(i), χL,3(G) ≤ k,

contrary to (1). Therefore, D1(G) = ∅.
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Fig. 3. A vertex is represented by a solid point if all of its incident edges are drawn, otherwise it is represented by a hollow point.

Suppose u2 ∈ D2(G) with NG(u2) = {v1, v2}. Denote G′
= G− u+ v1v2 if v1v2 ̸∈ E(G), or G′

= G− u if v1v2 ∈ E(G). By (1),
χL,3(G′′) ≤ max{χL(G′′) + 3, 7} ≤ k. By Lemma 2.4(i), χL,3(G) ≤ k, contrary to (1). Thus D2(G) = ∅. This completes the proof
of Claim 1.
Case 1 δ(G) = 3.

Pick u ∈ D3(G) and denoteNG(u) = {x1, x2, x3}. By (1), χL,3(G−u) ≤ max{χL(G−u)+3, 7} ≤ k. By Lemma 2.6(i), G[NG[u]]
is isomorphic to one of H1,H2 and H3.

If G[NG[u]] ∼= H3, then there exists a partial (L, 3)-coloring c1 of Gwith S(c1) = V (G) − u. The partial coloring c1 could be
extended to an (L, 3)-coloring of G by coloring u with a color in L(u) − c1{NG(u)}, contrary to (2).

If G[NG[u]] ∼= H2, then by Lemma 2.7(i), there exists a partial (L, 3)-coloring c2 of G with S(c2) = V (G) − u and
|c2({x1, x2, x3})| = 3. Since δ(G) = 3, dG−u(x1) ≥ 2. Choose y1 ∈ NG(x1) − u such that c2(y1) ̸= c2(x2). Similarly, choose
y2 ∈ NG(x3) − u such that c2(y2) ̸= c2(x2). Therefore, the partial coloring c2 could be extended to an (L, 3)-coloring of G by
coloring uwith a color in L(u) − c2({x1, x2, x3, y1, y2}), contrary to (2).

If G[NG[u]] ∼= H1, then by Lemma 2.7(i), there exists a partial (L, 3)-coloring c3 of G with S(c3) = V (G) − u and
|c3({x1, x2, x3})| = 3. Since δ(G) = 3, choose y1 ∈ N(x1), y2 ∈ N(x2) and y3, y4 ∈ N(x3) such that |c3{y1, x2}| = 2,
|c3{x1, y2}| = 2 and |c3{y3, y4}| = 2. If L(u)−c3({x1, x2, x3, y1, y2, y3, y4}) ̸= ∅, then the partial coloring c3 could be extended
to an (L, 3)-coloring ofG by coloring uwith a color in L(u)−c3({x1, x2, x3, y1, y2, y3, y4}), contrary to (2). Therefore,we assume
that L(u) = c3({x1, x2, x3, y1, y2, y3, y4}) and k = 7.

If dG(x1) ≥ 4, then there exists y′

1 ∈ N(x1) such that |c3({y1, x2, y′

1})| = 3. Then coloring u by c3(y1) extends c3 to an
(L, 3)-coloring of G, contrary to (2). It follows that dG(x1) = 3 and NG(x1) = {u, x2, y1}. Similarly, dG(x2) = 3 and
NG(x2) = {u, x1, y2}. If dG(x3) ≥ 4, then there exists y′

3 ∈ N(x3) such that |c3({y3, y4, y′

3})| = 3. Then coloring u by c3(y3)
extends c3 to an (L, 3)-coloring of G, contrary to (2). Thus dG(x3) = 3 and NG(x3) = {u, y3, y4}. (See Fig. 3.)

Since G is claw-free, G[NG[y1] − x1] is a complete graph with dG(y1) vertices. If dG(y1) ≥ 4, then an (L, 3)-coloring of G
could be obtained from c3 by coloring uwith c3(x1) and recoloring x1 with a color in L(x1)− c3({x1, x2, x3, y1, y2}), leading to
a contradiction to (2). Thus, dG(y1) = 3 and we assume that NG(y1) = {x1, z1, z2}. If L(x1) − c3({x1, x2, x3, y1, y2, z1, z2}) ̸= ∅,
then we could obtain an (L, 3)-coloring of G from c3 by coloring u with c3(x1) and recoloring x1 with a color in L(x1) −

c3({x1, x2, x3, y1, y2, z1, z2}), a contradiction to (2). Thus L(x1) = c3({x1, x2, x3, y1, y2, z1, z2}). By symmetry, dG(y2) = 3.
Denote NG(y2) = {x2, z3, z4}. With a similar argument, we conclude that L(x2) = c3({x1, x2, x3, y1, y2, z3, z4}).

Since dG(zi) ≥ 3 (i = 1, 2), there exists wi ∈ NG(zi) such that |c3({y1, z3−i, wi})| = 3. Since dG(zi) ≥ 3 (i = 3, 4), there
exists wi ∈ NG(zi) such that |c3({y2, z7−i, wi})| = 3. If L(y1) − c3({x1, x2, y1, z1, z2, w1, w2}) ̸= ∅, then we could obtain an
(L, 3)-coloring of G from c3 by coloring u with c3(y1) and recoloring y1 with a color in L(y1) − c3({x1, x2, y1, z1, z2, w1, w2}),
a contradiction to (2). Thus L(y1) = c3({x1, x2, y1, z1, z2, w1, w2}). Similarly, L(y2) = c3({x1, x2, y2, z3, z4, w3, w4}).

Denote G1 = G[{u, x1, x2, y1, y2}]. Define an assignment L′ on V (G1) in the following way: L′(u) = L(u) − c3({x3, y3, y4});
L′(x1) = L(x1) − c3({x3, z1, z2}); L′(x2) = L(x2) − c3({x3, z3, z4}); L′(y1) = L(y1) − c3({z1, z2, w1, w2}); L′(y2) = L(y2) −

c3({z3, z4, w3, w4}). By Lemma 2.8, there exists an (L′, 3)-coloring c0 of G1. Then we could define an (L, 3)-coloring c4 of G in
the following way:

c4(v) =

{
c0(v), if v ∈ {u, x1, x2, y1, y2};
c3(v), otherwise,

a contradiction to (2).
Case 2 δ(G) = 4.

Choose u ∈ D4(G). Assume that NG(u) = {x1, x2, x3, x4}. By (1), χL,3(G−u) ≤ max{χL(G−u)+3, 7} ≤ k. Let c ′ be a partial
(L, 3)-coloring of G with S(c ′) = V (G) − u. If |c ′({x1, x2, x3, x4})| ≥ 3, then c ′ could be extended to an (L, 3)-coloring of G by
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coloring uwith a color in L(u)− c ′({x1, x2, x3, x4}), contrary to (2). Thus |c ′({x1, x2, x3, x4})| = 2. Therefore, G[NG(u)] does not
contain K3 as a subgraph. By Lemma 2.6(ii), G[NG[u]] is isomorphic to one of H4,H5 and H6.

By the structure of H4,H5 and H6, x1x2, x3x4 ∈ E(G) and x1x3, x2x4 ̸∈ E(G). As |c ′({x1, x2, x3, x4})| = 2, without loss of
generality, we assume that c ′(x1) = c ′(x3) and c ′(x2) = c ′(x4). Denote G2 = G[NG[x1] − {u, x2, x4}]. Since G is claw-free,
G2 is a complete graph. Since dG−u(x1) ≥ 3, |c ′(NG−u(x1))| ≥ 3. As c ′(x2) = c ′(x4), there exists y1, y′

1 ∈ NG(x1) − NG[u]
such that |c ′({x2, y1, y′

1})| = 3. Similarly, for x2, there exists y2, y′

2 ∈ NG(x2) − NG[u] such that |c ′({x1, y2, y′

2})| = 3; and
for xi (i = 3, 4), there exists yi, y′

i ∈ NG(xi) − NG[u] such that |c ′({x7−i, yi, y′

i})| = 3. Note that {x1, y1, y′

1} ⊆ V (G2) and
k ≥ χL(G) + 3 ≥ ω(G) + 3 ≥ |V (G2)| + 3.

If |V (G2)| ≥ 4, then an (L, 3)-coloring c ′

0 of G could be obtained in the following way:

c ′

0(v) =

{a if v = x1, and a ∈ L(x1) − c ′(V (G2)) − {c ′(x2)};
b if v = u, and b ∈ L(u) − {c ′(x1), c ′(x2), c ′(y2), c ′(y′

2), a};
c ′(v) otherwise.

This is a contradiction to (2).
So V (G2) = {x1, y1, y2}. Choose colors a1, a2, a3 ∈ L(x1)− c ′({x1, x2, y1, y′

1}). Define three L-colorings of G in the following
way: for i = 1, 2, 3,

c ′

i (v) =

{ai if v = x1;
bi if v = u, and bi ∈ L(u) − {c ′(x1), c ′(x2), c ′(y2), c ′(y′

2), ai};
c ′(v) otherwise.

Define BV (c ′

i ) = {v ∈ V (G) : |c ′

i (NG(v))| ≤ 2} for i = 1, 2, 3. Note that |c ′

i (NG(u))| = 3, |c ′

i (NG(x1))| ≥ |c ′({x2, y1, y′

1})| = 3,
|c ′

i (NG(x2))| ≥ |{c ′(y2), c ′(y′

2), bi}| = 3 and |c ′

i (NG(xj))| ≥ |c ′({x7−j, yj, y′

j})| = 3 for j = 3, 4. For any v ∈ V (G)−NG[u]−{y1, y′

1},
|c ′

i (NG(v))| = |c ′(NG(v))| ≥ 3. Thus BV (c ′

i ) ⊆ {y1, y′

1} for i = 1, 2, 3.
By (2), c ′

1 and c ′

2 are not an (L, 3)-coloring of G. Then BV (c ′

1) ̸= ∅ and BV (c ′

2) ̸= ∅. Without loss of generality, we assume
that |c ′

1(NG(y1))| = 2 = |{a1, c ′(y′

1)}|. Since |c ′(NG(y1))| ≥ 3, there exists z1 ∈ NG(y1) such that c ′(z1) = a1. Thus |c ′

2(NG(y1))| ≥

|{a2, c ′(z1), c ′(y′

1)}| = 3 and BV (c ′

2) = {y′

1}. As |c ′

2(NG(y′

1))| = 2 = |{a2, c ′(y1)}| and |c ′(NG(y′

1))| ≥ 3, there exists z ′

1 ∈ NG(y′

1)
such that c ′(z ′

1) = a2. Therefore, |c ′

3(NG(y1))| ≥ |{a3, c ′(z1), c ′(y′

1)}| = 3 and |c ′

3(NG(y′

1))| ≥ |{a3, c ′(z ′

1), c
′(y1)}| = 3. Hence,

BV (c ′

3) = ∅ and c ′

3 is an (L, 3)-coloring of G, a contradiction to (2).
Case 3 δ(G) ≥ 5.

Since k ≥ χL(G), there is an L-coloring c ′′ of G. By Lemma 2.6(iii), |c ′′(NG(v))| ≥ 3 for any v ∈ V (G). Therefore c ′′ is also an
(L, 3)-coloring of G, a contradiction to (2). □

Although Theorem 1.3 is not a corollary of Theorem 1.2, the proof of Theorem 1.3 is quite similar to the proof of
Theorem 1.2. So it is omitted here.
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