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a b s t r a c t

For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the
smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is
a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a
cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and
t , respectively, then P is called a divalent (s, t)-path. Let ℓ(G) = max{m : G has a divalent
path of lengthm that is not both of length 2 and in a K3}. We prove the following.

(i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is
essentially 3-edge-connected.

(ii) pc(G) ≤ ℓ(G) + 2. Furthermore, if ℓ(G) ≥ 2, then pc(G) = ℓ(G) + 2 if and only if for
some integer t ≥ 3, G has a bridge divalent (3, t)-path of length ℓ(G).

© 2016 Elsevier B.V. All rights reserved.

1. The problem

We consider finite and loopless graphs which allow multiple edges and follow [1] for notations and terminology
undefined in this paper. Let G be a graph. The line graph of G, denoted L(G), has vertex set E(G), where two vertices are
adjacent in L(G) if and only if the corresponding edges share at least one common vertex in G. For a connected graph G, the
nth iterated line graph Ln(G) is defined recursively by L0(G) = G and Ln(G) = L(Ln−1(G)). Since the iterated line graph of
a path will eventually diminish, and since the line graph of a cycle remains unchanged, in the discussions of iterated line
graph problems, it is generally assumed that graphs under considerations are connected but not isomorphic to paths, cycles
or K1,3. For this reason, we let G denote the family of all connected graphs that are neither a path or a cycle, nor isomorphic
to K1,3.

The hamiltonian index (to be defined below) of a graph was first introduced in [3] by Chartrand. Other hamiltonian like
indices were given by Clark and Wormald in [6]. More generally, we have the following definition.

Definition 1.1 ([11]). For a property P and a connected nonempty graph G ∈ G, the P-index of G, denoted P(G), is defined
by

P(G) =

{
min{k : Lk(G) has property P} if at least one such integer k exists
∞ otherwise.
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When P represents the properties of being hamiltonian, edge-hamiltonian, pancyclic, vertex-pancyclic, edge-pancyclic,
hamiltonian-connected, the corresponding indices are denoted (as in [6]) by h(G), eh(G), p(G), vp(G), ep(G), hc(G), respec-
tively. In particular, h(G) is called the hamiltonian index of G. Clark andWormald [6] showed that if G ∈ G, then the indices
h(G), eh(G), p(G), vp(G), ep(G), hc(G) exist as finite numbers. In [4] and [11], it is shown that ifGhas any one of these properties
mentioned above, then L(G) also has the same property. In [14], Ryjáček, Woeginger and Xiong proved that determining the
value of h(G) is a difficult problem.

There have been many studies to investigate upper bounds of the hamiltonian index, hamiltonian-connected index and
(vertex) pancyclic index. Interested readers may refer to [2,4,5,7–10,15–21] for further details. A path P of G is a divalent
path of G if every internal vertex of P has degree 2 in G. Define

ℓ(G) = max{m : G has a divalent path of lengthm that is not both of length 2 and in a K3}. (1)

Let P be a divalent path of G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; Moreover, if
the two ends of P are of degree s and t , respectively, then P is called a divalent (s, t)-path. Sharp upper bounds of the
hamiltonian index, hamiltonian-connected index, s-hamiltonian index and pan-cyclic index have been obtained in terms of
ℓ(G), see [5,8,10,16,17,20,21], among others. A graph G on n ≥ 3 vertices is panconnected if for every pair of vertices u and
v in G and for each s with d(u, v) ≤ s ≤ n − 1, G always has a (u, v)-path of length s. Let P denote the property of being
panconnected and following [6], let pc(G) denote the panconnected index of a graph G ∈ G. There has been little study on
pc(G). This observation motivates the current study. An edge cut X of G is an essential edge cut if at least two components
of G− X have at least one edge respectively. A graph G is essentially k-edge-connected if G does not have an essential edge
cut with less than k edges. The main result of this paper is the following.

Theorem 1.2. Let G be a graph in G. Then pc(G) ≤ ℓ(G) + 2. Furthermore, if ℓ(G) ≥ 2, then pc(G) = ℓ(G) + 2 if and only if for
some integer t ≥ 3, G has a bridge divalent (3, t)-path of length ℓ(G).

The proof of Theorem 1.2 needs the assistance of an associate result stated below.

Theorem 1.3. Let G be a graph in G. If every edge of G lies in a cycle of length at most 3, in G, then L(G) is panconnected if and
only if G is essentially 3-edge-connected.

In the next section, we present some of the preliminaries as preparations of the arguments. In Section 3, we prove the
associate result which will play an important role to justify Theorem 1.2. We prove Theorem 1.2 in the last section.

2. Preliminaries

Throughout this section, we always assume that graphs are in G. Let G be a graph. For a vertex v ∈ V (G), define NG(v)
to be the set of all vertices in G adjacent to v, and EG(v) = {e ∈ E(G)| e is incident with v in G}. Following [1], we denote a
trail T = v0e1v1 · · · vt−1etvt such that each edge ei = vi−1vi, for every i with 1 ≤ i ≤ t , and such that all edges are distinct.
For convenience, we sometimes view that T is associated with a natural orientation in which every edge ei in the trail is
oriented from vi−1 to vi. If v0 = vt , then T is a closed trail. To emphasize the terminal vertices, T is called a (v0, vt )-trail. As
the terminal edges of this trail T are e1 and et , we also refer to T as an (e1, et )-trail. The set of internal vertices of T is defined
to be T o

= {v1, v2, . . . , vt−1}. If T is a trail of G, define

∂G(T ) = {e ∈ E(G) : e is incident with a vertex in T o
}. (2)

As in [5,12,13], an (e, e′)-trail T in G is a dominating trail if ∂(T ) = E(G), and is a spanning trail if T is dominating with
V (T ) = V (G). The theorem below is well known.

Theorem 2.1. Let G be a graph with |E(G)| ≥ 3.

(i) (Harary and Nash-Williams) L(G) is hamiltonian if and only if G has a dominating closed trail.
(ii) (Proposition 2.2 of [13]) L(G) is hamiltonian-connected if and only if for every pair of distinct edges e, e′ in E(G), G has a

dominating (e, e′)-trail.

By the definition of line graphs, we have the following lemma.

Lemma 2.2. Let s > 0 be an integer, and e, e′
∈ E(G). Each of the following holds.

(i) There is an (e, e′)-path of length s in L(G) if and only if G has an (e, e′)-trail T with |E(T )| ≤ s + 1 and |∂G(T )| ≥ s + 1.
(ii) The distance between e and e′ in L(G) is s if and only if G has a shortest (e, e′)-path of length s + 1.

Proof. By the definition of line graphs, (ii) follows from (i) and so it suffices to prove Part (i) only. SupposeG has an (e, e′)-trail
T = v0e1v1e2 · · · vm−1emvm with e = e1 and e′

= em, satisfying m = |E(T )| ≤ s + 1 and |∂G(T )| ≥ s + 1. Then L(T ) is an
(e, e′)-path of length m − 1 in L(G). For each i with 0 < i < m, let X ′

i = EG(vi) − E(T ), X1 = X ′

1 and for 2 ≤ j < m, let
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Xj = X ′

j − (∪1≤i<jX ′

i ). Then X1, X2, . . . , Xm are pairwise disjoint and ∂(T ) = E(T ) ∪ (∪m−1
i=1 Xi). Since m = |E(T )| ≤ s + 1 and

|∂G(T )| ≥ s + 1, we have
∑m−1

i=1 |Xi| ≥ (s + 1) − m. Hence there must be an integer m′ with 1 ≤ m′
≤ m − 1 and a subset

X ′
⊆ Xm′ such that |X1 ∪ X2 ∪ · · · ∪ Xm′−1 ∪ X ′

| = s − m. Since every EG(vi) induces a complete subgraph of L(G), for each i
with 1 ≤ i ≤ m′

− 1, L(G)[EG(vi)] has an (ei, ei+1)-path Pi using exactly the vertices in Xi ∪ {ei, ei+1} in L(G), and L(G)[EG(vm′ )]
has an (em′ , em′+1)-path Pm′ using exactly the vertices in X ′

∪ {em′ , em′+1} in L(G). Let Pm′+1 be the subpath em′+1em′+2 · · · em
of L(T ). It follows that L(G) has an (e, e′)-path of length s obtained by putting all the paths P1, P2, . . . , Pm′ , Pm′+1 together.

Conversely, assume that L(G) has an (e, e′)-path P of length s. Then V (P) ⊆ E(G). Since P is an (e, e′)-path, the edge induced
subgraph G[V (P)] of G is connected and contains e and e′. Thus G[V (P)] has a longest (e, e′)-trail T . Since T is longest, and
since L(G[V (P)]) = P , it follows that E(T ) ⊆ V (P) ⊆ ∂(T ), and so |E(T )| ≤ |V (P)| = s + 1 and |∂G(T )| ≥ |V (P)| = s + 1. □

3. An associate result on triangular graphs

Theorem 1.3 is an associate result which will play a useful role in our study of the panconnected index of connected
graphs in G. We introduce the terms used in this section first. If H is a subgraph of a graph G, the vertex of attachment of H
in G, is

AG(H) = {v ∈ V (H) : v is adjacent to a vertex in V (G) − V (H)}. (3)

If X ⊆ E(H) and Y ⊆ E(G) − E(H), then we define H − X + Y = G[(E(H) − X) ∪ Y ]. A graph G is triangular if G is connected
with E(G) ̸= ∅ such that every edge in E(G) lies in a cycle of length at most 3 in G. For sets X and Y , the symmetric difference
of X and Y is defined as

X∆Y = (X ∪ Y ) − (X ∩ Y ).

We are to investigate conditions for a line graph to be panconnected. It is well known that

every panconnected graph is 3-connected. (4)

The main result of this section is given below, which, together with (4), implies Theorem 1.3.

Theorem 3.1. If G is an essentially 3-edge-connected triangular graph, then L(G) is panconnected.

Proof. Since G is triangular, throughout the rest of the proof of this theorem, for each edge f ∈ E(G), we define Cf to be a
shortest cycle containing f . Thus |E(Cf )| ≤ 3 for any f ∈ E(G). We argue by contradiction and assume that Theorem 3.1 has
a counterexample Gwith e, e′

∈ E(G) and a positive integer s < |E(G)| − 1 such that

L(G) has an (e, e′)-path of every length at most s but no (e, e′)-paths of length s + 1. (5)

By Lemma 2.2, G has an (e, e′)-trail

T = v0e1v1e2 · · · vm−1emvm with e = e1 and e′
= em (6)

with |E(T )| ≤ s + 1 and |∂(T )| ≥ s + 1. Assume that the choice of G satisfies (5), and that, subject to |E(T )| ≤ s + 1 and
|∂(T )| ≥ s + 1,

|E(T )| is maximized. (7)

If |∂(T )| ≥ s + 2, then by Lemma 2.2, L(G) has an (e, e′)-path of length s + 1, contradicting (5). Hence we must have
|∂(T )| = s + 1 < |E(G)|.

Claim 1. For any edge f = uv ∈ ∂(T ) − E(T ), we have u, v ∈ V (T ).

By contradiction, assume that there exists an edge f = uv ∈ ∂(T ) − E(T ) violating the claim. By (2), we may assume that
v ∈ T o and u ̸∈ V (T ). Since G is triangular, there exists a cycle Cf of length at most 3 in G containing f . If Cf = {f , f ′

} is a cycle
of length 2, then the trail G[E(T ) ∪ Cf ] violates (7). Assume that Cf is a 3-cycle with V (Cf ) = {u, v, w}. As uv, uw ̸∈ E(T ), it
follows that G[E(T )∆E(Cf )] is an (e, e′)-trail in G violating (7). This justifies Claim 1.

Claim 2. With the notation in (6), each of the following holds.

(i) There exists an edge f ∈ E(G) − ∂(T ) such that f shares at least one vertex with an edge in ∂(T ).
(ii) For any edge f ∈ E(G) − ∂(T ), if f shears at least one vertex with an edge in ∂(T ), then f must be incident with either v0 or

vm.
(iii) AG(G[∂(T )]) ⊆ {v0, vm}.
(iv) Let H = G[∂(T )]. For any z ∈ {v0, vm}, let x ∈ {e, e′

} be the corresponding edge incident with z. If there exists an edge
f ∈ EG(z) − ∂(T ), then x is not in any cycle of length 2 and

NH (z) − V (Cx) = ∅. (8)
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Claim 2(i) follows from the assumptions that G is connected and that |∂(T )| < |E(G)|. To justify Claim 2(ii), suppose that
an edge f ∈ E(G) − ∂(T ) shares at least one vertex with an edge y in ∂(T ). If y ̸∈ {e, e′

}, then by Claim 1, both ends are in
T o, and so f is incident with a vertex in T o, leading to the contradiction that f ∈ ∂(T ). Hence we may assume that y = e. As
v1 ∈ T o and as f ∈ E(G) − ∂(T ), f must be incident with v0. Similarly, if y = e′, then f must be incident with vm. This shows
Claim 2(ii).

Claim 2(iii) follows from (ii) and (3). We now show (iv) and assume, by symmetry, that z = v0 and x = e, and there
exists an edge f ∈ EG(v0) − ∂(T ). By (2), v0 ̸∈ T o. If {e, e′′

} is a cycle of G, then by (6), T ′
= v1ev0e′′v1e2 · · · vm−1e′vm is also

an (e, e′)-trail in G with E(T ′) ⊆ ∂(T ) and with |E(T ′)| > |E(T )|, a contradiction to (7). Thus e is not in any cycle of length
2. Assume now that there exists a vertex z ′

∈ NH (v0) − V (Ce). Since G is triangular, G has a cycle Cv0z′ of length 2 or 3. By
Claim 1, E(Cv0z′ ) ⊆ ∂(T ). As v0 ̸∈ T o, E(Cv0z′ ) ∩ E(T ) = ∅ and so G[E(T ) ∪ E(Cv0z′ )] is an (e, e′)-trail violating (7). Hence we
have (8).

Claim 3. Suppose that v0 ̸= vm and that there exists an edge f ∈ EG(v0) − ∂(T ). Then each of the following holds.

(i) V (Ce) = {v0, v1, w} is a cycle of length 3 and v1 ̸= vm.
(ii) If vm ̸∈ V (Ce), then G has an (e, e′)-trail T ′ such that |E(T ′)| ≤ |∂(T )| and |∂(T ′)| ≥ |∂(T )| + 1.
(iii) If C ′

e is a cycle of length 3 in G containing e, then v0v1, v1w ∈ E(C ′
e).

(iv) w = vm.
(v) If v1 ̸= vm−1, then either v1vm ̸∈ E(T ) or v1vm is not a cut edge of T .
(vi) The vertex v1 is a cut vertex of G.

Throughout the justification of Claim 3, we let H = G[V (T )] and assume that v0 ̸= vm, and there exists an edge
f ∈ EG(v0) − ∂(T ). If E(Ce) ∩ E(T ) = {e}, then G[E(Ce) ∪ E(T )] is an (e, e′)-trail violating (7). Hence we may assume that
V (Ce) = {v0, v1, w} and v0v1, v1w ∈ E(T ). By contradiction, assume that v1 = vm. If w = vm−1, then let L = T [E(T )− {e, e′

}]

be a (v1, vm−1)-subtrail of T . View L as a trail oriented by its direction from v1 to vm−1. Define L−1 to be the (vm−1, v1)-trail
obtained from L by reversing the orientations. Then L−1 together with the oriented edges v1v0 and vmvm−1 is an (e, e′)-trail
T2 with E(T2) = E(T ) and ∂(T )∪{f } ⊆ ∂(T2). It follows that |∂(T2)| ≥ |∂(T )|+1 = s+2. By Lemma 2.2, L(G) has an (e, e′)-path
of length s + 1, which contradicts (5).

Hence we assume that w ̸= vm−1. If v1w is not a cut edge of T − {e, e′
}, then T − {e, e′, v1w} + {v0w} is a (v0, vm−1)-trail.

Thus T1 = T −{v1w}+ {v0w} is an (e, e′)-trail with ∂(T ) ⊆ ∂(T1) and v0 ∈ T o
1 . It follows that f ∈ ∂(T1), and so by Lemma 2.2,

we obtain a contradiction to (5).
Thus v1w is a cut edge of T − {e, e′

}. Let J1 and J2 be the two components of T − {e, e′, v1w} with v1 = vm ∈ V (J1) and
w ∈ V (J2). Since v1w is a cut edge of T − {e, e′

}, we have vm−1 ∈ V (J2). Thus T − {e, e′
} is a (v1, vm−1)-trail. If v0 ∈ V (Ce′ ),

then V (Ce′ ) = {v0, v1, vm−1}, and so by v1 = vm, T − {e, e′
} + {v0vm−1} is a (v0, vm)-trail. It follows that T2 = T + {v0vm−1} is

a (e, e′)-trail with ∂(T ) ⊆ ∂(T2) and v0 ∈ T o
2 , and so a contradiction to (5) is obtained. Hence v0 ̸∈ V (Ce′ ). By (7), |E(Ce′ )| = 3

and so V (Ce′ ) = {z, v1, vm−1} for some z ̸= v0. It follows that T3 = G[E(T )∆E(Ce′ )∆(E(Ce) + {e, e′
})] is an (e, e′)-trail with

∂(T ) ⊆ ∂(T3) and v0 ∈ T o
3 , once again a contradiction to (5) is obtained. This shows that v1 ̸= vm, and justifies (i).

Assume that vm ̸∈ V (Ce). If T − v1w is connected, then T4 = G[E(T )∆(E(Ce) − {e})] is an (e, e′)-trail with v0 ∈ T o
4 , and

so E(T4) ⊆ ∂(T ) and ∂(T ) ∪ {f } ⊆ ∂(T4), implying (ii). Hence we may assume that T − v1w has two components L1 and L2
such that e ∈ E(L1) and w ∈ V (L2). Since T is an (e, e′)-trail and w ̸= vm, e′

̸= v1w and so e′
∈ E(L2). Since G is essentially

3-edge-connected, {v0v1, v1w} is not an essential edge cut. By Claim 2(ii), there must be an edge e′′
= z1z2 ∈ ∂(T ) − E(T )

with z1 ∈ V (L1) and z2 ∈ V (L2). Since G is triangular, there exists a cycle Ce′′ of length 2 or 3 containing e′′. Since any cycle
intersects any edge cut with an even number of edges, Ce′′ has two edges incident with both V (T1) and V (T2). It follows that
T5 = G[E(T )∆E(Ce′′ )] is also an (e, e′)-trail of G with E(T5) ⊆ ∂(T ) and ∂(T ) = ∂(T5). Since Ce′′ has two edges incident with
both V (L1) and V (L2), the edge v1w is not a cut edge of T ′. Hence T6 = G[E(T5)∆E(Ce − e)] is an (e, e′)-trail with the first edge
v1v0 andwith E(T6) ⊆ ∂(T ) ⊆ ∂(T6). However, v0 ∈ (T6)o, and so f ∈ ∂(T6)−∂(T ), which is a contradiction to (5). This proves
Claim 3(ii).

For (iii), suppose next that C ′
e is a cycle of length 3 in G containing e. By contradiction, assume that V (C ′

e) = {v0, v1, w
′
} for

some w′
̸= w. By Claim 3(i), v1 ̸= vm. Hence we may assume that w ̸= vm. It follows that by Claim 3(ii), G has an (e, e′)-trail

T ′ such that |E(T ′)| ≤ |∂(T )| = s + 1 and |∂(T ′)| ≥ |∂(T )| + 1 = s + 2. By Lemma 2.2, we have a contradiction to (5). This
justifies (iii). Claim 3(iv) now follows from Claim 3(ii) and (iii).

Now suppose that v1 ̸= vm−1. Since v0 ̸∈ T o, we have v1vm ̸∈ E(T ). By contradiction, assume that v1vm ∈ E(T ) and v1vm is
a cut edge of T . To avoid introducing toomany new notations, we again assume that T −v1vm has two components L1 and L2
such that e ∈ E(L1) and vm ∈ V (L2). Since T is an (e, e′)-trail and vm−1 ̸= v1, e′

̸= v1w and so e′
∈ E(L2). Since G is essentially

3-edge-connected, {v0v1, v1vm} is not an essential edge cut. By Claim 2(ii), there must be an edge e′′
= z1z2 ∈ ∂(T ) − E(T )

with z1 ∈ V (L1) and z2 ∈ V (L2). Since G is triangular, there exists a cycle Ce′′ of length 2 or 3 containing e′′. Since any cycle
intersects any edge cut with an even number of edges, Ce′′ has two edges incident with both V (T1) and V (T2). It follows that
T5 = G[E(T )∆E(Ce′′ )] is also an (e, e′)-trail of G with E(T5) ⊆ ∂(T ) and ∂(T ) = ∂(T5). Since Ce′′ has two edges incident with
both V (L1) and V (L2), the edge v1w is not a cut edge of T ′. Hence T6 = G[E(T5)∆E(Ce − e)] is an (e, e′)-trail with the first
edge v1v0 and with E(T6) ⊆ ∂(T ) ⊆ ∂(T6). However, v0 ∈ (T6)o, and so f ∈ ∂(T6) − ∂(T ), which contradicts (5). Therefore, if
v1vm ∈ E(T ), then v1vm is not a cut edge of T . This justifies (v).
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We argue by contradiction to prove (vi) and assume that v1 is not a cut vertex of G. By Claim 2(ii), {v0, vm} is a vertex cut
of G such that if J is a component of G − {v0, vm} containing v1, then G[V (J) ∪ {v0, vm}] = H .

Suppose first that v1 ̸= vm−1 or vm ∈ T o. If v1vm is not a cut edge of T − {e, e′
}, then T − {e, e′, v1vm} + {v0vm} is a

(v0, vm)-trail, and so T7 = T − {v1vm} + {v0vm} is an (e, e′)-trail with E(T7) ⊆ ∂(T ) ∪ {f } ⊆ ∂(T7). By Lemma 2.2, this is a
contradiction to (5). Hence T−{e, e′, v1vm} has two components L′

1 and L′

2 with v1 ∈ V (L′

1) and vm ∈ V (L′

2). By Claim 2(iii) and
(iv), NH (v0)−V (Ce) = ∅ and AG(H) = {v0, vm}. Thus either {e, v1vm} is an edge cut of G, or there is an edge z1z2 ∈ ∂(T )−E(T )
with z1 ∈ V (L′

1) and z2 ∈ V (L′

2). Since G is essentially 3-edge-connected, if {e, v1vm} is an edge cut of G, then one side
of G − {e, v1vm} is a singleton v1. In this case, as T = v0ev1e2v2e3v3 · · · vm−1e′vm with v2 = vm, we obtain an (e, e′)-trail
T8 = v1ev0e′

2v2e3v3 · · · vm−1e′vm where e′

2 = v0vm ∈ E(Cr ). Since E(T8) ⊆ ∂(T ) ∪ {f } ⊆ ∂(T8), this leads to a contradiction to
(5). Assume then that there is an edge z1z2 ∈ ∂(T ) − E(T ) with z1 ∈ V (L′

1) and z2 ∈ V (L′

2). Since G is triangular, G has a cycle
Cz1z2 of length 2 or 3 containing z1z2, and so T9 = G[E(T )∆E(Ce)∆(Cz1z2 )] is an (e, e′)-trail violating (7). As in either case, a
contradiction is always obtained, we conclude that both v1 = vm−1 and vm ̸∈ T o. Since v1 is not a cut vertex of G, we must
have NG(v1) − V (Ce) = ∅. It follows that we must have s = 2, and T10 = v1ev0e′′vme′vm−1, having f ∈ ∂(T10), which leads to
a contradiction to (5). This proves (vi).

We continue our proof of Theorem 3.1. If v0 ̸= vm, then by Claim 3(v), v1 is a cut vertex of G. By Claim 2(iv), {v0v1, v1vm}

is an essential edge cut of G, contradicting the assumption that G is essentially 3-edge-connected. Therefore, we must have
v0 = vm. By Claim 2(iii), v0 is a cut vertex of G and V (Ce) = {v0, v1, vm−1}. By Claim 2(iv) and by the existence of f and
v1vm−1, {v0v1, v0vm−1} is an essential edge-cut of G, which is a contradiction to the assumption that G is essentially 3-edge-
connected. This final contradiction indicates that (5) does not hold, which proves Theorem 3.1. □

4. Main results

We start with some former results and lemmas. Recall that if G ∈ G, then ℓ(G) is defined in (1).

Lemma 4.1 (Zhang et al., Lemma 3.2 [20]). If G ∈ G, then Lℓ(G)(G) is triangular.

Lemma 4.2 (Zhang et al., Proposition 2.3 [21]). Let G be a simple connected triangular graph. Each of the following holds.

(i) The line graph L(G) is triangular.
(ii) If G is k-connected, then L(G) is (k + 1)-connected.
(iii) If G is essentially k-edge-connected, then L(G) is essentially (k + 1)-edge-connected.

From the definition of line graphs, we make the following observations.

Observation 4.3. Let G ∈ G be a graph, let H(G) denote the collection of all edge-induced subgraphs of G and let L(G) denote
the collection of all induced subgraphs of L(G).

(i) For any H ∈ H(G), by the definition of line graphs, L(H) = L(G[E(H)]) is an induced subgraph of L(G), and so L(H) ∈ L(G).
Conversely, if Γ ∈ L(G), then H = G[V (Γ )] ∈ H(G). Hence there exists a bijection between H(G) and L(G). We also use
L : H(G) ↦→ L(G) to denote this bijection, and L−1 denotes the inverse mapping of L. By the definition of iterated line graphs,
for any integer s > 1, Ls is an operator mapping subgraphs in H(G) into subgraphs in Ls(G); and L−s pulls back induced
subgraphs in Ls(G) to subgraphs in H(G).

(ii) In particular, if e ∈ E(G), we define ve = L(e). Thus ve ∈ V (L(G)) is a cut vertex of L(G) if and only if {e} is an essential
edge-cut of G; if ve1ve2 ∈ E(L(G)) is an edge which is not lying in a K3 of L(G), then L−1(ve1ve2 ) = G[{e1, e2}] is a divalent
path of G.

(iii) By (i),we conclude that if P is a divalent path of length h > 0, the for any integer k with 0 ≤ k < h, Lk(P) is a divalent path
of length h − k in Lk(G); and Lh(P) is a vertex of Lh(G).

(iv) By (ii),we observe that for integers s ≥ t ≥ 2, if v is a cut vertex of Ls(G), then {L−1(v)} is an essential edge cut of Ls−1(G);
and L−2(v) is a bridge divalent path of length 2 in Ls−2(G). Inductively, if s − t ≥ 0, then L−t (v) is a bridge divalent path of
length t in Ls−t (G).

(v) Similarly, if e is an edge which is not in a complete subgraph of order at least 3 in L(G), L−1(e) is a divalent path of length 2
in G. For integers s ≥ t ≥ 2, if e is an edge which is not in a complete subgraph of order at least 3 in Ls(G), then {L−1(e)} is
a divalent path of length 2 in Ls−1(G). Inductively, if s − t ≥ 0, then L−t (e) is a divalent path of length t + 1 in Ls−t (G).

We are now ready to prove the main results, restated below as Theorem 4.5. We observe that if G is a triangular graph,
then G is connected and every edge of G lies in a cycle. Hence

every triangular graph is 2-edge-connected. (9)

Lemma 4.4. Let G ∈ G be a graph with ℓ = ℓ(G) ≥ 2. Each of the following holds.

(i) If G has a bridge divalent (3, t)-path of length ℓ for some integer t ≥ 3, then pc(G) = ℓ(G) + 2.
(ii) If G does not have any bridge divalent (3, t)-path of length ℓ, then pc(G) ≤ ℓ(G) + 1.
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Proof. (i) Suppose first that P = v0e1v1 · · · vℓ−1eℓvℓ is a bridge divalent (3, t)-path for some integer t ≥ 3 with dG(v0) = 3.
Let e′

1, e
′

2, e1 be the three edges of G incident with v0. By the definition of line graphs, the neighbors of vertex e1 in L(G) are
the vertices {e′

1, e
′

2, e2}, and so L(P) is bridge divalent (3, t ′)-path in L(G) for some integer t ′ ≥ 3. Inductively, we conclude
that Lℓ−1(P) is a cut edge z1z2 of Lℓ−1(G) such that dLℓ−1(G)(z1) = 3 (say) and dLℓ−1(G)(z2) ≥ 3. Thus {z1z2} is an essential edge
cut of Lℓ−1(G). By Observation 4.3(i), the cut edge z1z2 in Lℓ−1(G) is a cut vertex v of Lℓ(G). Since dLℓ−1(G)(z1) = 3, the three
edges in NLℓ−1(G)(z1) form a 3-cycle C of Lℓ(G) containing the cut vertex v. Since v is a cut vertex of Lℓ(G), the two edges in
C incident with v form an essential edge cut of Lℓ(G). By Observation 4.3, Ls+1(G) is not 3-connected. By (4), Lℓ+1(G) is not
panconnected. Hence by (4), pc(G) ≥ ℓ(G) + 2. On the other hand, by (9) and by Lemmas 4.1 and 4.2, Lℓ+1 is triangular and
essentially 3-edge-connected, and so by Theorem 3.1, pc(G) = ℓ(G) + 2. This proves (i).

(ii) Assume that G does not have any bridge divalent (3, t)-path of length ℓ. Let P = v0e1v1 · · · vℓ−1eℓvℓ be a divalent
(s, t)-path of length ℓ(G). Since P is a maximal divalent path of G, s ̸= 2 and t ̸= 2. Let Q (G) be the collection of all divalent
paths of G of length ℓ. We have the following cases.

Case 1. Every bridge divalent path of G of length ℓ is either an (s, t)-path with s ≥ t ≥ 4, or with s ≥ 3 and t = 1.
By Observation 4.3(iii), for every Q ∈ Q (G), Lℓ(Q ) is a vertex of Lℓ(G). Moreover, if Q is a bridge divalent path, then Lℓ(Q )

is a cut vertex of Lℓ(G). Since every bridge divalent path of G is either an (s, t)-path with s ≥ t ≥ 4, or with s ≥ 3 and t = 1,
Lℓ(G) does not have any essential edge cut of size 2. By (9), Lℓ(G) is essentially 3-edge-connected. By Lemma 4.1, Lℓ(G) is
triangular. By Theorem 3.1, L(Lℓ(G)) is panconnected, and so pc(G) ≤ ℓ + 1. Hence (ii) holds for Case 1.

Case 2. G does not have a bridge divalent path of length ℓ.
By Lemma 4.1, Lℓ(G) is triangular. By (9), Lℓ(G) is 2-edge-connected. If Lℓ(G) has an essential edge cut X of size 2, then

since Lℓ(G) is triangular, X must be in a cycle of size 3, and so the vertex incident with both edges in X must be a cut vertex v
of Lℓ(G). By Observation 4.3(vi), L−ℓ(v) is a bridge divalent path of length ℓ of G, contradicting the assumption that G does not
have a bridge divalent path of length ℓ. This contradiction implies that Lℓ(G) is essentially 3-edge-connected. By Theorem 3.1,
Lℓ(G) is panconnected, and so pc(G) ≤ ℓ + 1. Hence (ii) holds for Case 2 as well. □

Theorem 4.5. For a graph G ∈ G, pc(G) ≤ ℓ(G) + 2. Furthermore, if ℓ(G) ≥ 2, then pc(G) = ℓ(G) + 2 if and only if G has a
bridge divalent (3, t)-path of length ℓ(G), for some integer t ≥ 3.

Proof. Let G ∈ G and ℓ = ℓ(G). By Lemma 4.1, Lℓ(G) is triangular. By (9), Lℓ(G) is 2-edge-connected, so Lℓ(G) is essentially
2-edge-connected. By Lemma 4.2, Lℓ+1(G) is both triangular and essentially 3-edge-connected. It follows from Theorem 3.1
that Lℓ+2(G) is panconnected.

Now assume that ℓ ≥ 2. If for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length ℓ(G), then by Lemma 4.4(i),
pc(G) = ℓ + 2. Therefore we will assume that pc(G) = ℓ + 2. Let Q (G) be the collection of all divalent path of G of length ℓ.
If every path in Q (G) is not a bridge divalent path, or if every bridge divalent path Q ∈ Q (G) is an (s, t) path such that either
min{s, t} ≥ 4, or both max{s, t} ≥ 3 and min{s, t} = 1, then by Lemma 4.4(ii), pc(G) = ℓ + 1, contradicting the assumption
that pc(G) = ℓ + 2. Hence we must have a bridge divalent (3, t)-path of length ℓ(G), for some integer t ≥ 3. This completes
the proof of the theorem. □
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