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ABSTRACT

Let �g(n, k; c) denote the class of c-cyclic graphs with n vertices, girth
g ≥ 3 and k ≥ 1 pendant vertices. In this paper, we determine
the unique extremal graph with largest signless Laplacian spectral
radius and Laplacian spectral radius in the class of connected c-
cyclic graphs with n ≥ c(g − 1) + 1 vertices, girth g and at most
n−c(g−1)−1pendant vertices, respectively, and theunique extremal
graph with largest signless Laplacian spectral radius of �g(n, k; c)
when n ≥ c(g− 1) + k + 1 and c ≥ 1, and we also identify the unique
extremal graph with largest Laplacian spectral radius in �g(n, k; c)
in the case c ≥ 1 and either n ≥ c(g − 1) + k + 1 and g is even or
n ≥ 1

2 (g−1)k+cg and g is odd.Our results extends the corresponding
results of [Sci. Sin.Math. 2010;40:1017–1024, Electron. J. Combin. 2011;
18:p.183, Comput. Math. Appl. 2010;59:376–381, Electron. J. Linear
Algebra. 2011;22:378–388 and J. Math. Res. Appl. 2014;34:379–391].
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1. Introduction

Throughout this paper, unless specially indicated, we are concerned with connected
undirected simple graph only. SupposeG is a graphwith vertex setV(G) = {v1, v2, . . . , vn}.
For a vertex v of G, we use NG(v) and dG(v) to denote the neighbour set and degree of v
in G, respectively. If there is no confusion, we always simply write d(u) and N(u) instead
of dG(u) and NG(u), respectively. The sequence π = (d1, d2, . . . , dn) is called the degree
sequence of G if di = d(vi) holds for 1 ≤ i ≤ n. Throughout this paper, we enumerate the
degrees in non-increasing order, i.e. d1 ≥ d2 ≥ · · · ≥ dn, and we suppose that d(vi) = di,
where 1 ≤ i ≤ n. Especially, we use �(G) to denote the maximum degree of G. From the
definition, it follows that �(G) = d1(G). We call u a pendant vertex if d(u) = 1, and call
u amaximum degree vertex if d(u) = �(G). Suppose that P is a path. If one end vertex of
P is a pendant vertex while all the internal vertices of P are vertices with degrees two, then
P is called a pendant path.

Throughout this paper, k and c are two nonnegative integers, and n is a positive integer.
If G is connected with n vertices and n + c − 1 edges, then G is called a c-cyclic graph. In
particular, G is called a tree, unicyclic graph, bicyclic graph or a tricyclic graph if c = 0,
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1, 2 or 3, respectively. The length of a shortest cycle of G is called the girth of G and
denoted by g(G). Let �(n, k; c) denote the class of c-cyclic graphs with n vertices and
k pendant vertices, let �g (n; c) denote the class of c-cyclic graphs with n vertices and
girth g , and let �g (n, k; c) denote the class of c-cyclic graphs with n vertices, k pendant
vertices and girth g , where g is an integer being at least three hereafter. It is easy to see
that �(n, k; c) = ⋃n

g=3 �g (n, k; c) and �g (n; c) = ⋃n−1
k=0 �g (n, k; c). For simplification, let

T(n, k), U(n, k), B(n, k) and S(n, k) be the class of trees, unicyclic graphs, bicyclic graphs
and tricyclic graphs with n vertices and k pendant vertices, respectively.

As usual, Kn, Cn, Pn and Ks,n−s define, respectively, the complete graph, cycle, path and
complete bipartite graph on n vertices. Suppose v is a vertex of G, and Ps = w1w2 · · ·ws,
whereV(Ps)∩V(G) = ∅. If we obtain a new graphG∗ fromG and Ps by adding two edges
vw1 and vws, then we say that G∗ is obtained from G by sewing the path Ps to v of G. If
we obtain a new graph G′ from G and Ps by adding one edge vw1, then we say that G′ is
obtained from G by attaching the path Ps to v of G. In the sequel, if we say that we attach
or sew k paths to one vertex of G, then we agree that these k paths are vertex disjoint each
other, and they are also vertex disjoint with G.

If q is a positive integer and G is a connected graph, qG denote the graph consisting of
q copies of the graph G, and q(p) means p copies of the integer q, where p is a nonnegative
integer. Paths Pl1 , Pl2 , . . ., Plk are said to have almost equal lengths if l1, l2, . . ., lk satisfy
|li − lj| ≤ 1 for 1 ≤ i ≤ j ≤ k. Denoted by C(q1, q2, . . . , qc), the graph on

∑c
i=1 (qi −

1) + 1 vertices obtained by sewing the paths Pq1−1, Pq2−1, . . ., Pqc−1, to a common vertex,
where qi ≥ 2 and 1 ≤ i ≤ c. Let Fn(k,C

(s)
q1 ,C

(c−s)
q2 ) be the c-cyclic graph on n vertices

obtained from C(q(s)
1 , q(c−s)

2 ) by attaching k paths of almost equal lengths to the maximum
degree vertex of C(q(s)

1 , q(c−s)
2 ). In particular, we always simply write Fn(k,C

(c)
q1 ,C

(0)
q2 ) and

Fn(k,C
(0)
q1 ,C

(c)
q2 ) asFn(k,C

(c)
q1 ) andFn(k,C

(c)
q2 ), respectively. Furthermore,we use the symbol

Fn(k) ( ∼= Fn(k,C
(0)
g )) to denote the unique tree on n vertices obtained by attaching k

paths of almost equal lengths to a common vertex. If all cycles of G have exactly one
common vertex, then G is called a bundle graph (see, e.g. [1]). From the definitions, both
C(q1, q2, . . . , qc) and Fn(k,C

(s)
q1 ,C

(c−s)
q2 ) are bundle graphs.

Let D(G) be the diagonal matrix of vertex degrees, and A(G) be the adjacency matrix
of G. The Laplacian matrix and signless Laplacian matrix of G are, respectively, defined
as L(G) = D(G) − A(G) and Q(G) = D(G) + A(G). The maximum eigenvalues of L(G)

and Q(G) are denoted by λ(G) and μ(G), respectively. Furthermore, μ(G) and λ(G) are
called, respectively, the signless Laplacian spectral radius and Laplacian spectral radius of
G. For the relation between μ(G) and λ(G), it is well known that

Theorem 1.1 ([2]): If G is a connected graph on n ≥ 2 vertices, then

�(G) + 1 ≤ λ(G) ≤ μ(G),

where the first equality holds if and only if �(G) = n − 1, and the second equality holds if
and only if G is bipartite.

IfG has the largest (signless) Laplacian spectral radius in some given category of graphs,
then we call G a (signless) Laplacian largest extremal graph.



LINEAR ANDMULTILINEAR ALGEBRA 871

Recently, the work on determining the signless Laplacian largest extremal graph, and/or
Laplacian largest extremal graph in �(n, k; c), has attained much attention. For any fixed
positive number n and k, it is proved that: Fn(k) is the unique Laplacian largest extremal
tree (also the signless Laplacian largest extremal tree by Theorem 1.1) of T(n, k),[3,4]
Fn(k,C

(1)
3 ) is the unique signless Laplacian largest extremal unicyclic graph ofU(n, k) [5,6]

when n ≥ k+ 3 and Fn(k,C
(1)
4 ) is the unique Laplacian largest extremal unicyclic graph of

U(n, k) [5,7] when n ≥ k + 4; Fn(k,C(2)
3 ) is the unique signless Laplacian largest extremal

bicyclic graph of B(n, k) [8–10] when n ≥ k + 5 and Fn(k,C
(2)
4 ) is the unique Laplacian

largest extremal bicyclic graph of B(n, k) [5,7] when n ≥ k + 7; Fn(k,C(3)
3 ) is the unique

signless Laplacian largest extremal tricyclic graph of S(n, k) [3,9,11] when n ≥ k + 7 and
Fn(k,C

(3)
4 ) is the unique Laplacian largest extremal tricyclic graph of S(n, k) [12] when

n ≥ k + 10.
In the sequel, one of the present authors extended the above referred results of [3–12]

by determining the unique signless Laplacian and Laplacian largest extremal graphs of
�(n, k; c) for c ≥ 0, k ≥ 1 and n ≥ 2c + k + 1, namely, he proved that

Theorem 1.2 ([13]): If k ≥ 1, c ≥ 0 and n ≥ 2c + k + 1, then Fn(k,C
(c)
3 ) is the unique

signless Laplacian largest extremal graph of �(n, k; c).
Theorem 1.3: ([13]) Suppose that k ≥ 1, c ≥ 0 and G is a Laplacian largest extremal
graph of �(n, k; c). (i) If n ≥ 3c + k + 1, then G ∼= Fn(k,C

(c)
4 ). (ii) If n = 2c + k + 1 + t

and 0 ≤ t ≤ c − 1, then G ∼= Fn(k,C
(t)
4 ,C(c−t)

3 ). (iii) If k + 1 ≤ n ≤ 2c + k, then G is any
graph with �(G) = n − 1.

At the same time, the extremal graphs with largest (signless) Laplacian spectral radii in
the class of �g (n, k; c) and/or �g (n; c) were also studied by some scholars. Up to now, for
any fixed positive number n, k and g ≥ 3, the following results are identified: Fn(k,C

(1)
g )

is the unique Laplacian largest extremal unicyclic graph of �g (n, k; 1) for any k ≥ 1 and
n ≥ k + g [14]; Fn(n − g ,C(1)

g ) is the unique signless Laplacian largest extremal unicyclic
graph of �g (n; 1) for any n ≥ g [15]; Fn(n− 2g + 1,C(2)

g ) is the unique signless Laplacian
and Laplacian largest extremal bicyclic graph in the class of bicyclic bundle graphs with n
vertices and girth g for any n ≥ 2g − 1, respectively, [15–17]; Fn(n − 3g + 2,C(3)

g ) is the
unique signless Laplacian largest extremal tricyclic graph in the class of tricyclic bundle
graphs with n vertices and girth g for any n ≥ 3g − 2.[18] In this paper, we will extend the
corresponding results of [15–18] by showing the following theorem:
Theorem 1.4: Let G be the class of graphs pertaining to �g (n; c), which contain at most
n − c(g − 1) − 1 pendant vertices. If g ≥ 3, c ≥ 1 and n ≥ max{c(g − 1) + 1, 6}, then
Fn(n − c(g − 1) − 1,C(c)

g ) is the unique signless Laplacian and Laplacian largest extremal
graph of G, respectively.
Remark 1.1: Since λ(K2,3) = λ(F5(0,C

(2)
3 )) = 5, the condition ‘n ≥ 6’ in Theorem 1.4 is

necessary. LetH1 be the bicyclic graph with six vertices obtained from K4 − e by attaching
two isolated vertices to one vertex of degree three ofK4−e. Sinceλ(F6(1,C

(2)
3 )) = λ(H1) =

6, the condition ‘contain at most n− c(g − 1) − 1 pendant vertices’ in Theorem 1.4 is also
necessary.

We will also extend the corresponding result of [14] by proving the following theorem:
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Theorem 1.5: Let c ≥ 1, g ≥ 3 and k ≥ 1, and let G be the Laplacian largest extremal
graph of �g (n, k; c). (i) If g is even and n ≥ c(g − 1) + k + 1, then G ∼= Fn(k,C

(c)
g ). (ii) If

g is odd and n ≥ 1
2 (g − 1)k + cg, then G ∼= Fn(k,C

(1)
g ,C(c−1)

g+1 ).

Remark 1.2: Since λ(F13(2,C
(1)
5 ,C(1)

6 )) < 7.166 < 7.192 < λ(F13(2,C
(2)
5 )), the condition

‘n ≥ 1
2 (g − 1)k + cg ’ in Theorem 1.5 (ii) is necessary.

One can also easily see that Theorem 1.5 extends partially result of Theorem 1.3.
Furthermore, the following theorem extends partially result of Theorem 1.2.
Theorem 1.6: If k ≥ 1, g ≥ 3, c ≥ 1 and n ≥ c(g − 1) + k + 1, then Fn(k,C

(c)
g ) is the

unique signless Laplacian largest extremal graph of �g (n, k; c).

2. The proof of Theorem 1.6

Let uv be an edge of G and v be a vertex of G. Let m(v) denote the average of the degrees
of the vertices being adjacent to v, i.e.m(v) = ∑

u∈N(v)
d(u)/d(v). Denote by

�(uv) = d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))
d(u) + d(v)

.

Theorem 1.1 presents a well-known lower bound to λ(G), while the following result
gives a famous upper bound for μ(G).

Lemma 2.1 ([19]): Let G be a connected graph with at least three vertices, and let s =
�(u0v0) = max{�(uv) : uv ∈ E(G)} and t = max{�(uv) : uv ∈ E(G) \ {u0v0}}. Then

μ(G) ≤ 2 + √
(s − 2)(t − 2)

with equality holding if and only if G is a regular graph or a bipartite semiregular graph or
a path with four vertices.

WhenG is connected, by the Perron–Frobenius Theorem of non-negative matrices (see
e.g. [20]), it follows that
Lemma 2.2: If G is connected and G′ ⊂ G, then μ(G′) < μ(G) and λ(G′) ≤ λ(G).

Furthermore, by the Perron–Frobenius Theorem of non-negative matrices, there also
exists a unique positive unit eigenvector corresponding to μ(G). In the sequel, we use f =
(f (v1), f (v2), . . . , f (vn))T to indicate the unique positive unit eigenvector corresponding to
μ(G), and call f the Perron vector of G. As we will see later, the following three operations
will play an important role in our proofs.

LetG−uv be the graph obtained fromG by deleting the edge uv ∈ E(G), and letG+uv
be the graph obtained from G by adding an edge uv �∈ E(G). Similarly, G − v denoted the
graph obtained from G by deleting the vertex v ∈ V(G).

Lemma 2.3 ([4]): Suppose that u, v are two vertices of a connected graph G, and w1,w2, . . . ,
wk (1 ≤ k ≤ d(v)) are some vertices of N(v) \ (N(u) ∪ {u}). Let G′ = G + w1u + w2u +
· · · + wku − w1v − w2v − · · · − wkv. If f is the Perron vector of G with f (u) ≥ f (v), then
μ(G′) > μ(G).
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Let Gu,v define a new graph obtained from G by subdividing the edge uv, i.e. adding a
new vertex w and two edges wu, wv in G − uv, where uv ∈ E(G). An internal path, say
P = w1w2· · ·ws (s ≥ 2), is a path joining w1 and ws (which need not be distinct) such that
the degrees of w1 and ws are greater than 2, while all other vertices (if exist) w2, w3, . . . ,
ws−1 are of degree 2.

Lemma 2.4 ([5]): If G is a connected graph and uv is an edge in an internal path of G, then
μ(G) > μ(Gu,v).

Suppose v is a vertex of a connected graph G with at least two vertices. Let Gs,t (t ≥
s ≥ 1) be the graph obtained from G by attaching two new paths Ps = w1w2· · ·ws and
Pt = u1u2· · · ut , respectively, to v of G. Let Gs−1,t+1 = Gs,t − ws−1ws + utws.

Lemma 2.5 ([5]): Let G be a connected graph with at least two vertices. If t ≥ s ≥ 1, then
μ(Gs,t) > μ(Gs−1,t+1).

To prove our results, we need to extend Lemma 3.1 of [13] as follows.
Lemma 2.6: Let G be a graph of �(n, k; c) and G �∈ {K2,3,Cn}, where c ≥ 1 and k ≥ 0. If
λ(G) ≥ k + 2c + 1 or μ(G) ≥ k + 2c + 1, then G is one of the following candidates: (i) G
is obtained by attaching k paths and then sewing another c paths, respectively, to a common
vertex; (ii) G is obtained by adding an edge joining one vertex of a cycle to one vertex of
degree two of a path; (iii)G is obtained by attaching one path to each of two adjacent vertices
of a cycle, respectively; (iv) G is obtained by adding one edge to two nonadjacent vertices of
Cn; (v) G is obtained by adding one edge joining one vertex of Cs with one vertex of Cn−s,
where n − s ≥ s ≥ 3.
Proof: Suppose the degree sequence of G is (d1, d2, . . . , dn) and G �∈ {K2,3,Cn}. Since
G ∈ �(n, k; c), we have

2(n + c − 1) =
n∑

i=1

di. (2.1)

If d1 + d2 ≥ k + 2c + 3, then

2(n + c − 1) =
n∑

i=1

di ≥ k + 2c + 3 + 2(n − 2 − k) + k = 2n + 2c − 1, a contradiction.

If k ≥ 1 and d1 + d2 ≤ k + 2c + 1, then G is neither regular nor bipartite semiregular. By
Theorem 1.1 and Lemma 2.1,

λ(G) ≤ μ(G) < 2 +
√

(d1 + d2 − 2)2 = d1 + d2 ≤ k + 2c + 1, a contradiction.

If k = 0 and d1 + d2 ≤ 2c, then by Theorem 1.1 and Lemma 2.1, we have

λ(G) ≤ μ(G) ≤ d1 + d2 ≤ 2c, a contradiction.

If k = 0 and d1 + d2 = 2c + 1, then by (2.1), we have d1 > d2 ≥ d3 = 3. By Theorem 1.1
and Lemma 2.1,

λ(G) ≤ μ(G) ≤ d1 + d2 ≤ 2c + 1.
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Furthermore, by Lemma 2.1, μ(G) = 2c + 1 implies that d1 = 2c − 2 and d2 = d3 =
· · · = dn = 3, which contradicts (2.1).
Therefore, if λ(G) ≥ k + 2c + 1 or μ(G) ≥ k + 2c + 1, then d1 + d2 = k + 2c + 2. Since
G contains exactly k pendant vertices with (2.1), we have

d1 + d2 = k + 2c + 2, d3 = d4 = · · · = dn−k = 2 and dn−k+1 = · · · = dn = 1. (2.2)

If d1 ≤ k + 2c − 2, then by Theorem 1.1 and Lemma 2.1 with (2.2),

λ(G) ≤ μ(G) ≤ 2 + √
(d1 + d2 − 2)(d1 + d3 − 2) = 2 + √

(k + 2c)d1 < k + 2c + 1,

a contradiction. If d1 = k+ 2c, by (2.2) we have d2 = d3 = · · · = dn−k = 2 and dn−k+1 =
dn−k+2 = · · · = dn = 1, thenG is a graph of (i). Notice that d1 = k+2c+2−d2 ≤ k+2c
by (2.2). Thus, the final possibility is d1 = k+ 2c − 1. By (2.2) it follows that d2 = 3. Next,
we shall prove that

μ(G) < max {�(uv) : uv ∈ E(G)} . (2.3)

If c ≥ 2, since d1 = k + 2c − 1 ≥ 3 = d2 > d3 = 2 and G �∼= K2,3, then G is neither
regular nor bipartite semiregular. In this case, (2.3) follows from Lemma 2.1. Now, we
consider the case c = 1. Since G �∼= Cn, dn = 1. Thus, G is neither regular nor bipartite
semiregular, and hence (2.3) follows from Lemma 2.1.

Suppose �(u0v0) = max {�(uv) : uv ∈ E(G)}, where d(u0) ≥ d(v0). Since G is
connected and c ≥ 1, d(u0) ∈ {k + 2c − 1, 3, 2}. If d1 = k + 2c − 1 = 3 = d2, then
either c = 2 and k = 0 or c = 1 and k = 2. If v1v2 �∈ E(G), then by Theorem 1.1 and (2.3)
we have λ(G) ≤ μ(G) < �(u0v0) ≤ 5, a contradiction. Thus, v1v2 ∈ E(G). If c = 2 and
k = 0, then G is one graph of (iv) or (v). If c = 1 and k = 2, then G is one graph of (ii) or
(iii). In the following, we only need to consider the case d1 = k + 2c − 1 ≥ 4:
Case 1 d(u0) = d1 = k + 2c − 1 ≥ 4. If d(v0) = 3, then d(u0) = d1 and d(v0) = d2 by
(2.2). Therefore,

�(u0v0) ≤ d21 + d2 + 2(d1 − 1) + d22 + d1 + 2(d2 − 1)
d1 + d2

= k + 2c − 1 + 14
k + 2 + 2c

≤ k + 2c + 1.

If d(v0) = 2, then

�(u0v0) ≤ d21 + 3 + 2(d1 − 1) + 4 + d1 + 3
d1 + 2

= k + 2c + 6
k + 2c + 1

≤ k + 2c + 1.

If d(v0) = 1, then

�(u0v0) ≤ d21 + 1 + 3 + 2(d1 − 2) + 1 + d1
d1 + 1

= k + 2c + 1 − 1
k + 2c

< k + 2c + 1.
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Case 2 d(u0) = 3. By (2.2), we have d1 ≥ 4 and d(u0) = 3 = d2 > d3, which implies that
1 ≤ d(v0) ≤ 2. If d(v0) = 2, then

�(u0v0) ≤ d22 + d1 + 2(d2 − 1) + 4 + d1 + d2
d2 + 2

= 2(k + 2c) + 18
5

< k + 2c + 1.

If d(v0) = 1, then

�(u0v0) ≤ d22 + d1 + 2 + 1 + 1 + d2
d2 + 1

= k + 2c + 15
4

< k + 2c + 1.

Case 3 d(u0) = 2. Then, 1 ≤ d(v0) ≤ 2. If d(v0) = 2, then

�(u0v0) ≤ 2(4 + d1 + 2)
2 + 2

= k + 2c + 5
2

< k + 2c + 1.

If d(v0) = 1, then

�(u0v0) ≤ 4 + d1 + 1 + 1 + 2
2 + 1

= k + 2c + 7
3

< k + 2c + 1.

Now, from Theorem 1.1 with (2.3) and the above discussion, we can conclude that
λ(G) ≤ μ(G) < �(u0v0) ≤ k + 2c + 1, a contradiction. �
Lemma 2.7: If G is one graph of (ii) or (iii) as defined in Lemma 2.6 and g(G) = g , then
μ(G) < μ(Fn(2,C

(1)
g )).

Proof: Let f be the Perron vector ofG. We first suppose thatG is a graph of (iii). Without
loss of generality, we may suppose that f (v1) ≥ f (v2). Let u be a vertex ofNG(v2) \V(Cg).
Let G′ = G + v1u − v2u. By Lemma 2.3, we have μ(G) < μ(G′). Since G′ is obtained
from a cycle Cg by attaching two paths to exactly one vertex of Cg , by Lemma 2.5 we have
μ(G′) ≤ μ(Fn(2,C

(1)
g )). Therefore, μ(G) < μ(Fn(2,C

(1)
g )) holds.

We secondly suppose that G is a graph of (ii). Suppose that v1 ∈ V(Cg). Then, v2 �∈
V(Cg ). If f (v1) ≥ f (v2), since dG(v2) = 3, it can be proved similarly with the former case.
If f (v1) < f (v2), choose u as a vertex ofNG(v1)∩V(Cg). LetG′ = G+v2u−v1u. By Lemma
2.3, we have μ(G) < μ(G′). Suppose thatNG′(u) = {v2, v}. Let G1 = G′ + vv2 − uv − uv2,
G2 = G1 − u and G3 = G1 + xu, where x is a pendant vertex of G1. Since dG2(v2) = 4, vv2
lies in an internal path ofG2. By Lemma 2.4,μ(G′) < μ(G2). Furthermore, sinceG1 ⊂ G3,
by Lemma 2.2 we have μ(G2) = μ(G1) < μ(G3), and hence μ(G′) < μ(G3). Note that
G3 is obtained by attaching two paths to exactly one vertex of Cg . By Lemma 2.5, we have
μ(G3) ≤ μ(Fn(2,C

(1)
g )).

Now, we can conclude that μ(G) < μ(Fn(2,C
(1)
g )) holds. �

Proof of Theorem 1.6: Suppose that G is a signless Laplacian largest extremal graph of
�g (n, k; c). Since Fn(k,C(c)

g ) ∈ �g (n, k; c), by the choice of G and Theorem 1.1 it follows
that μ(G) ≥ μ(Fn(k,C

(c)
g )) > k + 2c + 1. By Lemmas 2.5–2.7, we can conclude that G is

obtained by attaching k paths of almost equal lengths to the maximum degree vertex of
C(q1, q2, . . . , qc), where q1 ≥ q2 ≥ · · · ≥ qc−1 ≥ qc = g .

If q1 = g , then q1 = q2 = · · · = qc = g and hence G ∼= Fn(k,C
(c)
g ), the result already

holds. Thus, we only need to consider the case of q1 ≥ g + 1.
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Suppose that {u, v, w} ∈ V(Cq1)\{v1} such that uv ∈ E(Cq1) and vw ∈ E(Cq1). Let x be
a pendant vertex of G. Let G1 = G + uw − uv − vw, G2 = G1 − v and G3 = G1 + xv.
Then, G3 ∈ �g (n, k; c). Since dG(v1) = k + 2c ≥ 3, uw lies in an internal path of G2. By
Lemma 2.4, we have μ(G) < μ(G2). Note that G1 ⊂ G3. By Lemma 2.2, μ(G) < μ(G2) =
μ(G1) < μ(G3), contradicting the choice of G. Thus, G ∼= Fn(k,C

(c)
g ). �

3. The proofs of Theorems 1.4–1.5

By Lemma 2.2, if we add some edges to a connected graph, the signless Laplacian spectral
radius will increase strictly. However, the following result shows that additional edges to a
connected graph can result for unchanged Laplacian spectral radius:

Lemma 3.1 ([21,22]): Let v be a vertex of a connected graph G with at least two vertices
and let G′ be obtained from G by attaching k paths of equal lengths to v. If G′′ is obtained
from G by adding any s (1 ≤ s ≤ k(k−1)

2 ) edges among these pendant vertices of G′′, which
belong to the referred k paths, then λ(G′) = λ(G′′).

Lemma 3.2: If k ≥ 1, c ≥ s ≥ 1 and n ≥ c(g − 1) + k + s + 1, then

μ(Fn(k,C
(s)
g+1,C

(c−s)
g )) < μ(Fn(k,C

(s−1)
g+1 ,C(c−s+1)

g )).

Proof: Suppose v1 is the maximum degree vertex of Fn(k,C
(s)
g+1,C

(c−s)
g ), and suppose that

{u, v,w} ∈ V(Cg+1)\{v1} such thatuv ∈ E(Cg+1) and vw ∈ E(Cg+1) inFn(k,C
(s)
g+1,C

(c−s)
g ).

Let x be a pendant vertex of Fn(k,C
(s)
g+1,C

(c−s)
g ). LetG1 = Fn(k,C

(s)
g+1,C

(c−s)
g )+uw−uv−

vw, G2 = G1 − v and G3 = G1 + xv. Since dG2(v1) = k + 2c ≥ 3, uw is contained in
an internal path of G2. By Lemma 2.4, we have μ(Fn(k,C

(s)
g+1,C

(c−s)
g )) < μ(G2). Note that

G1 ⊂ G3. By Lemma 2.2, μ(G2) = μ(G1) < μ(G3). Furthermore, since G3 is obtained by
attaching k paths to the maximum degree vertex of C((g + 1)(s−1), g (c−s+1)), by Lemma
2.5 we haveμ(G3) ≤ μ(Fn(k,C

(s−1)
g+1 ,C(c−s+1)

g )). Now, the result follows by combining the
above discussion. �

Suppose that g ≥ 3 is an odd number. Let F∗
n(k,C

(c−s)
g+1 ,C(s)

g ) be a graph obtained from
Fn(k,C

(c−s)
g+1 ,C(s)

g ) by deleting every edge, which has the largest distance from themaximum
degree vertex of Fn(k,C

(c−s)
g+1 ,C(s)

g ) in each cycle Cg . From the definition, F∗
n(k,C

(c−s)
g+1 ,C(s)

g )

can be also obtained from Fn−s(g−1)(k,C
(c−s)
g+1 ) by attaching 2s paths of length 1

2 (g − 1)− 1
to the vertex of degree k + 2(c − s) of Fn−s(g−1)(k,C

(c−s)
g+1 ). By Lemma 3.1, the following

equation holds for any c ≥ s ≥ 1, k ≥ 1 and g ≥ 3:

λ(F∗
n(k,C

(c−s)
g+1 ,C(s)

g )) = λ(Fn(k,C
(c−s)
g+1 ,C(s)

g )). (3.1)

Lemma 3.3: Suppose that g is odd, and G is a c-cyclic graph on n vertices obtained by
attaching k paths to the vertex with degree 2c of C(g (s), q1, q2, . . . , qc−s). If c ≥ s ≥ 1, k ≥ 1
and q1 ≥ q2 ≥ · · · ≥ qc−s ≥ g + 1, then

λ(G) ≤ λ(F∗
n(k,C

(c−s)
g+1 ,C(s)

g )) = λ(Fn(k,C
(c−s)
g+1 ,C(s)

g )),
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where the first equality holds if and only if G ∼= Fn(k,C
(c−s)
g+1 ,C(s)

g ).

Proof: Since v1 is the maximum degree vertex of G, we have dG(v1) = k + 2c. Let G1 be
a (c − s)-cyclic graph on n vertices obtained by deleting every edge, which has the largest
distance from v1 in each Cg . By Lemma 3.1, λ(G) = λ(G1).

First we assume that c = s. In this case, G1 is a tree obtained by attaching k + 2c paths
(among which at least 2c paths are P0.5(g−1)) to a common vertex. By (3.1) with Theorem
1.1 and Lemma 2.5, we have

λ(G) = λ(G1) = μ(G1) ≤ μ(F∗
n(k,C

(c)
g )) = λ(F∗

n(k,C
(c)
g )).

If λ(G) = λ(F∗
n(k,C

(c)
g )), then μ(G1) = μ(F∗

n(k,C
(c)
g )), and hence G1 ∼= F∗

n(k,C
(c)
g ) by

Lemma 2.5. By the definition of G1, G ∼= Fn(k,C
(c)
g ). Conversely, if G ∼= Fn(k,C

(c)
g ), then

by (3.1) we have λ(G) = λ(F∗
n(k,C

(c)
g )). So, the result holds for c = s.

Next, we assume that c − s ≥ 1. In this case, g(G1) = qc−s ≥ g + 1.
Case 1 q1 = g + 1. Now, q1 = q2 = · · · = qc−s = g + 1 and G1 is a (c − s)-cyclic
graph obtained by attaching k + 2s paths (among which at least 2s paths are P0.5(g−1)) to
the vertex of degree 2(c − s) of C((g + 1)(c−s)). By Lemma 2.5,

μ(G1) ≤ μ
(
F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

))

with equality holding if and only if G1 ∼= F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

)
. By Theorem 1.1 and Lemma

3.1, we have

λ(G) = λ(G1) = μ(G1) ≤ μ
(
F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

))
= λ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
).

If λ(G) = λ(F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

)
), then μ(G1) = μ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
), and hence G ∼=

Fn
(
k,C(c−s)

g+1 ,C(s)
g

)
. Conversely, if G ∼= Fn

(
k,C(c−s)

g+1 ,C(s)
g

)
, then by Lemma 3.1 implies

that λ(G) = λ(F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

)
).

Case 2 q1 ≥ g + 2. Suppose that {u, v, w} ∈ V(Cq1)\{v1} such that uv ∈ E(Cq1) and
vw ∈ E(Cq1). Let x be a pendent vertex pertaining to a longest pendant path of G. Let
G2 = G1 + uw − uv − vw, G3 = G2 − v and G4 = G2 + xv. Since dG3(v1) = k + 2c ≥ 3,
uw is contained in an internal path of G3. By Lemma 2.4, we have μ(G1) < μ(G3). Note
that G2 ⊂ G4. By Lemma 2.2, μ(G1) < μ(G3) = μ(G2) < μ(G4).

Note that G4 contains exactly k + 2s pendant vertices, and at least 2s pendant vertices
are contained in 2s pendant paths of lengths 1

2 (g − 1) initial from the maximum degree
vertex of G4. By repeating the above operation, we can obtain a (c − s)-cyclic graph G5
such that μ(G4) ≤ μ(G5), where G5 is obtained by attaching k + 2s paths (among which
at least 2s paths are P0.5(g−1)) to the vertex of degree 2(c− s) of C((g + 1)(c−s)). By Lemma
2.5, μ(G5) ≤ μ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
). Now, from Theorem 1.1, we have λ(G) = λ(G1) ≤

μ(G1) < μ(G5) ≤ μ(F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

)
) = λ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
). �
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Lemma 3.4: If g is odd, c ≥ s ≥ 1, k ≥ 1 and n ≥ 1
2 (g − 1)k + cg + 2 − s, then

λ
(
Fn

(
k,C(c−s)

g+1 ,C(s)
g

))
< λ

(
Fn

(
k,C(c−s+1)

g+1 ,C(s−1)
g

))
.

Proof: Let P be a longest pendant path among these k pendant paths, which are initial
from the maximum degree vertex (i.e. v1) of Fn

(
k,C(c−s)

g+1 ,C(s)
g

)
, and let y be the pendant

vertex of P. If |V(P)| ≤ 1
2 (g + 1), then

n ≤ s(g − 1) + g(c − s) + 1 + 1
2
(g − 1)k = 1

2
(g − 1)k + gc + 1 − s, a contradiction.

Thus, |V(P)| ≥ 1
2 (g+1)+1. Let x be a pendant vertex of a pendant path with length 1

2 (g−
1), which is initial from v1 in F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
. By the definition of F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
,

such vertex x must exist.
Let G1 = F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
+ xy. Then g(G1) ≥ g + 1 and G1 is a (c − s + 1)-cyclic

graph obtained by attaching k + 2(s − 1) paths (among which at least 2s − 1 paths are
P0.5(g−1)) to themaximumdegree vertex ofC((g+1)(c−s), q), where q ≥ g+1. By Lemmas
2.4 and 2.5, μ(G1) ≤ μ(F∗

n(k,C
(c−s+1)
g+1 ,C(s−1)

g )). Since g + 1 is even, by (3.1), we have

μ(F∗
n(k,C

(c−s+1)
g+1 ,C(s−1)

g )) = λ(F∗
n(k,C

(c−s+1)
g+1 ,C(s−1)

g )).

Furthermore, since F∗
n

(
k,C(c−s)

g+1 ,C(s)
g

)
⊂ G1, by (3.1) with Theorem 1.1 and Lemma

2.2, we have

λ
(
Fn

(
k,C(c−s)

g+1 ,C(s)
g

))
= λ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
) = μ(F∗

n

(
k,C(c−s)

g+1 ,C(s)
g

)
)

< μ(G1) ≤ λ(F∗
n(k,C

(c−s+1)
g+1 ,C(s−1)

g )) = λ(Fn(k,C
(c−s+1)
g+1 ,C(s−1)

g )).

Thus, the required inequality holds. �
Lemma 3.5: If G is one graph of (ii) or (iii) as defined in Lemma 2.6 and g(G) = g, then
λ(G) < λ(Fn(2,C

(1)
g )).

Proof: When g is even, by Lemma 2.7 and Theorem 1.1, the result already holds. Thus,
we may suppose that g is odd and n ≥ 6 in the following, as n = 5 can be checked easily.
If g = 3 and G is a graph of (iii), it is well-known that [23]

λ(G) ≤ max{|N(u) ∪ N(v)| : uv ∈ E(G)},

and hence λ(G) ≤ 5 < λ(Fn(2,C
(1)
g )) by Theorem 1.1. If g = 3 and G is a graph of (ii), let

G′ be the graph obtained fromG by deleting one edge with both end vertices are of degrees
two in C3. By Lemmas 2.1 and 3.1 with Theorem 1.1, we have

λ(G) = λ(G′) ≤ max{�(uv) : uv ∈ E(G′)} = 5 < λ(F∗
n(2,C

(1)
g )).
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If g ≥ 5, then by Lemmas 2.1–2.2 it follows that

λ(G) ≤ μ(G) ≤ 2 +
√(

16
3

− 2
)

(5 − 2) < 5.163 < λ(F∗
7 (2,C

(1)
5 )) ≤ λ(F∗

n(2,C
(1)
g )).

(3.2)

Now, the result follows from (3.1). �
Proof of Theorem 1.5: When g is even, byTheorems 1.1 and 1.6, we haveλ(G) ≤ μ(G) ≤
μ(Fn(k,C

(c)
g )) = λ(Fn(k,C

(c)
g )), where λ(G) = λ(Fn(k,C

(c)
g )) holds if and only if G ∼=

Fn(k,C
(c)
g ). Thus, (i) follows. Now, we turn to prove (ii).

Since n ≥ 1
2 (g − 1)k + cg + 1, Fn(k,Cg ,C

(c−1)
g+1 ) ∈ �g (n, k; c). By Theorem 1.1 and

the choice of G, λ(G) ≥ λ(Fn(k,Cg ,C
(c−1)
g+1 )) ≥ k + 2c + 1. From Lemmas 2.6 and 3.5,

it follows that G is obtained from C(q1, q2, . . . , qc) by attaching k paths to the maximum
degree vertex of C(q1, q2, . . . , qc), where q1 ≥ q2 ≥ · · · ≥ qc−1 ≥ qc = g .

We suppose that G contains exactly s cycles Cg . By Lemma 3.3, we have

λ(G) ≤ λ
(
Fn

(
k,C(c−s)

g+1 ,C(s)
g

))

with equality holding if and only ifG ∼= Fn
(
k,C(c−s)

g+1 ,C(s)
g

)
. If s = 1, then the result already

holds. Otherwise, s ≥ 2. By Lemma 3.4, it follows that

λ
(
Fn

(
k,C(c−s)

g+1 ,C(s)
g

))
< λ

(
Fn

(
k,C(c−s+1)

g+1 ,C(s−1)
g

))
≤ · · · ≤ λ(Fn(k,C

(c−1)
g+1 ,C(1)

g )).

Thus, λ(G) < λ(Fn(k,C
(c−1)
g+1 ,C(1)

g )). This completes the proof of (ii). �
Lemma 3.6: Let G be one graph of (iv) or (v) as defined in Lemma 2.6 and g(G) = g. If
n ≥ 2g − 1, then λ(G) < λ(Fn(n − 2g + 1,C(2)

g )) and μ(G) < μ(Fn(n − 2g + 1,C(2)
g )).

Proof: In this case, G is neither regular nor bipartite semiregular. If n − 2g + 1 ≥ 1, by
Lemma 2.1 and Theorem 1.1, we have

λ(G) ≤ μ(G) < 6 ≤ λ(Fn(n − 2g + 1,C(2)
g )) ≤ μ(Fn(n − 2g + 1,C(2)

g )),

and the result already holds.
If n = 2g − 1, it is easy to check the result holds for g = 3. Now, we suppose that g ≥ 4.

Since F∗
7 (2,C

(1)
5 ) ⊂ Fn(0,C

(2)
g ), by Theorem 1.1, Lemmas 2.1–2.2 and (3.2), we have

λ(G) ≤ μ(G) < 5.163 < λ(F∗
7 (2,C

(1)
5 )) ≤ λ(Fn(0,C(2)

g )) ≤ μ(Fn(0,C(2)
g )).

This completes the proof of this result. �
Proof of Theorem 1.4: Let G be a Laplacian or signless Laplacian largest extremal graph
of G. Since Fn(k,C(c)

g ) ∈ G, by Lemmas 2.6–2.7 and Lemmas 3.5–3.6, G is obtained from
C(q1, q2, . . . , qc) by attaching k paths to the maximum degree vertex of C(q1, q2, . . . , qc),
where q1 ≥ q2 ≥ · · · ≥ qc−1 ≥ qc = g and 0 ≤ k ≤ n− c(g − 1) − 1. Furthermore, when
n = c(g − 1) + 1, then G ∼= Fn(0,C

(c)
g ) and the result already holds. We may suppose that

n ≥ c(g − 1) + 2 in the following.
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If k ≤ n − c(g − 1) − 2, by Lemma 2.1 and Theorem 1.1, we have

λ(G) ≤ μ(G) ≤ d1 + d2 = 2c + k + 2 ≤ 2c + n − c(g − 1)
≤ λ(Fn(n − c(g − 1) − 1,C(c)

g )) ≤ μ(Fn(n − c(g − 1) − 1,C(c)
g )).

By the structure ofG and Lemma 2.1,G is regular with d1 = 2c+ k = 2 = d2. Thus, c = 1
and k = 0, which implies that G ∼= Cn. In this case, 0 ≤ k ≤ n − c(g − 1) − 2 = −1,
a contradiction. Therefore, k = n − c(g − 1) − 1 and hence G ∼= Fn(n − c(g − 1) − 1,
C(c)
g ). �
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