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Abstract: Let d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} be a sequence of of nonneg-
ative integers pairs. If a digraph D with V (D) = {v1, v2, . . . , vn} satisfies
d+

D (vi ) = d+
i and d−

D (vi ) = d−
i for each i with 1 ≤ i ≤ n, then d is called

a degree sequence of D. If D is a strict digraph, then d is called a strict
digraphic sequence. Let 〈d〉 be the collection of digraphs with degree se-
quence d. We characterize strict digraphic sequences d for which there
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exists a strict strong digraph D ∈ 〈d〉. C© 2016 Wiley Periodicals, Inc. J. Graph Theory 84:

191–201, 2017
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1. INTRODUCTION

Digraphs in this article are finite and loopless. We follow [1] for undefined terminologies
and notations. As in [1], V (D) and A(D) denote the vertex set and the arc set of a digraph
D; and (u, v) represents an arc oriented from a vertex u to a vertex v. A digraph D is strict if
D has neither loops nor parallel arcs; and D is nontrivial if A(D) �= ∅. If X and Y are vertex
subsets (not necessarily disjoint) of a digraph D, then let A(X,Y ) = {(u, v) ∈ A(D)|x ∈ X
and y ∈ Y }. For a subset X ⊆ V (D), define

∂+
D (X ) = A(F,V (D) − X ) and ∂−

D (X ) = ∂+
D (V (D) − X ).

We use D[X] to denote the subdigraph of D induced by X . If F is a subdigraph of D,
then for notational convenience, we often use ∂+

D (F ), ∂−
D (F ) for ∂+

D (V (F )), ∂−
D (V (F )),

respectively.
For a vertex u of D, define the out-degree d+

D (u) (in-degree d−
D (u), respectively)

of u to be |∂+
D ({u})| (|∂−

D ({u})|, respectively). Let V (D) = {v1, . . . , vn}. The sequence
of integer pairs {(d+

D (v1), d−
D (v1)), (d+

D (v2), d−
D (v2)), . . . , (d+

D (vn), d−
D (vn))} is called a

degree sequence of D. Throughout this article, we always assume in the sequence d =
{(d+

1 , d−
1 ), . . . , (d+

n , d−
n )}, the first components are so ordered that d+

1 ≥ d+
2 ≥ · · · ≥ d+

n .
A sequence of integer pairs d = {(d+

1 , d−
1 ), . . . , (d+

n , d−
n )} is digraphic (multidigraphic

or strict digraphic, respectively) if there exists a digraph (a multidigraph or a strict
digraph, respectively) D with degree sequence d, where D is called a d-realization. Let
〈d〉 be the set of all d-realizations. The following theorem is well known, which can be
found in [2, 8, 13], among others.

Theorem 1.1 (Fulkerson-Ryser). Let d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} be a sequence of
nonnegative integer pairs with d+

1 ≥ · · · ≥ d+
n . Then d is strict digraphic if and only if

each of the following holds:

(i) d+
i ≤ n − 1, d−

i ≤ n − 1 for all 1 ≤ i ≤ n;
(ii)

∑n
i=1 d+

i = ∑n
i=1 d−

i ;
(iii)

∑k
i=1 d+

i ≤ ∑k
i=1 min{k − 1, d−

i } + ∑n
i=k+1 min{k, d−

i } for all 1 ≤ k ≤ n.

For any sequence d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} satisfying
∑n

i=1 d+
i = ∑n

i=1 d−
i , we

associate with a bipartite graph G with vertex bipartition (X,Y ) such that X =
{x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} and such that for each i with 1 ≤ i ≤ n,
dG(xi) = d+

i and dG(yi) = d−
i . Obtain a digraph D′′ from G by orienting each edge

xiy j ∈ E(G) to an arc (xi, y j). Then obtain a digraph D′ on n vertices from D′′ by iden-
tifying each xi with yi, for every i with 1 ≤ i ≤ n. By the construction, D′ is a digraph
with degree sequence d. Note that it is possible that this D may have parallel arcs and
loops. We shall call this digraph D′ a pseudo d-realization. This construction of D′ will
be utilized in the proof of the following multidigraphic version of Theorem 1.1.

Proposition 1.2. Let d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} be a sequence of nonnegative
integer pairs. Then d is multidigraphic if and only if each of the following holds:
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(i)
∑n

i=1 d+
i = ∑n

i=1 d−
i ;

(ii) for k = 1, . . . , n, d+
k ≤ ∑

i �=k d−
i .

Proof. We assume first that that a multidigraph D is a d-realization. Then∑n
i=1 d+

i = |A(D)| = ∑n
i=1 d−

i and so (i) follows. For each u ∈ V (D), we have ∂+
D ({u}) =

∂−
D (V (D) − {u}) ⊆ ⋃

v∈V (D)−{u} ∂
−
D ({v}), implying (ii).

Conversely, suppose that d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} satisfies (i) and (ii). We will
construct a multidigraph d-realization D with V (D) = {v1, v2, . . . , vn}. Since d satisfies
(i), as commented right before Proposition 1.2, there exists a pseudo d-realization D′,
possibly with parallel arcs and loops. Let D be a pseudo d-realization whose number of
loops is minimized.

If D is loopless, then D is a d-realization, and so d is multidigraphic. Hence we assume
that D has at least one loop. If D has two distinct vertices vi and v j (say), both of which
are incident with loops, then obtain a new digraph D1 from D by replacing two loops
�i = (vi, vi) and � j = (v j, v j) by two arcs ai = (vi, v j) and a j = (v j, vi). It follows that
D1 is also a pseudo d-realization with fewer number of loops than D, contradicts the
choice of D. Hence we may assume D has exactly one vertex, say vi, incident with a
loop � = (vi, vi). If for some j, k �= i, a = (v j, vk) ∈ A(D), then obtain a new digraph
D2 from D − {a, �} by adding two new arcs a1 = (v j, vi) and a2 = (vi, vk). Thus D2 is
also a pseudo d-realization with fewer number of loops than D, contradicts the choice
of D. This leads to the assumption that every arc in D must be incident with vi. Since
� = (vi, vi) ∈ A(D), we conclude that d+

i >
∑

j �=i d−
j , contradicts (ii). This contradiction

indicates that D must be loopless, and so d is multidigraphic. �

Graphic degree sequences for undirected graphs have been characterized by Havel
[11], Erdös and Gallai [5], and Hakimi [9], among others. Characterizations of multi-
graphic degree have been given by Senior [15] and Hakimi [9]. Characterizations for
graphic sequences and multigraphic sequences with realizations having prescribed edge
connectivity have been studied by many, as seen in Edmonds [4], Wang [16], Wang and
Kleitman [17], and Chou and Frank [3], among other. For more in the literature on degree
sequences, see surveys [10] and [12].

The purpose of this study is to seek analogous characterizations in digraphs. A digraph
D is strongly connected (or just strong) if for any u, v ∈ V (D), D has a (u, v)-dipath. For
an integer k > 0, D is k-arc-connected if for any arc set S with |S| < k, the subdigraph
D − S is strongly connected. Thus a digraph is 1-arc-connected if and only if it is
strongly connected. The k-arc-connector characterization of Frank in [6, 7] (see also
Theorem 63.3 in [14]) leads to a characterization for multidigraphic sequences with k-
arc-connected realizations. In Section 2 of this article, we shall present a characterization
for strict digraphic sequences to have a strongly connected realization. For k ≥ 2, attempts
to obtain similar characterizations for strict digraphic sequences with k-arc-connected
realizations are discussed in the last section.

We conclude this section with a special notation used in this article. A 2-switching of
a digraph D is an operation on two arcs (u1, v1), (u2, v2) ∈ A(D) to obtain a new digraph
D′ from D − {(u1, v1), (u2, v2)} by adding new arcs {(u1, v2), (u2, v1)}. The resulted D′

is usually denoted by D ⊗ {(u1, v1), (u2, v2)}. By definition,

D ⊗ {(u1, v1), (u2, v2)} and D have the same degree sequence . (1.1)

Journal of Graph Theory DOI 10.1002/jgt
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Thus digraphic degree sequences will remains unchanged under 2-switchings. This op-
eration will be a main tool in the arguments of this article.

2. STRICT DIGRAPH

In this section, we will present a characterization of strict digraphic degree sequences that
have strongly connected strict digraph realizations. By the definition of strong digraphs,
we observe that for a digraph D,

D is strongly connected if and only if for any ∅ �= X ⊂ V (D), |∂+
D (X )| ≥ 1. (2.1)

Throughout this section, d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} denotes a strict digraphic se-
quence with d+

1 ≥ · · · ≥ d+
n . For any k ∈ {1, . . . , n}, define

f (k) =
k∑

i=1

(d−
i − d+

i ) +
n∑

i=k+1

min{k, d−
i }. (2.2)

Theorem 2.1. Let d = {(d+
1 , d−

1 ), . . . , (d+
n , d−

n )} be a strict digraphic sequence with
d+

1 ≥ . . . ≥ d+
n . Then d has a strong strict d-realization if and only if both of the following

hold.

(i) d+
i ≥ 1, d−

i ≥ 1 for all 1 ≤ i ≤ n;
(ii) f (k) ≥ 1 for all 1 ≤ k ≤ n − 1.

Proof. Assume that D ∈ 〈d〉 is a strong strict digraph. Then (i) follows from (2.1).
Let F ⊂ V (D) be a nonempty proper subset of V (D). Then by (2.1),∑

vi∈F

d−
i = |A(D[F])| + |∂−

D (F )| ≥ |A(D[F])| + 1 and

∑
vi∈F

d+
i = |A(D[F])| + |∂+

D (F )| = |A(D[F])| +
∑
vi /∈F

|N−
D (vi) ∩ F|.

Thus
∑

vi∈F (d−
i − d+

i ) ≥ 1 − ∑
vi /∈F |N−

D (vi) ∩ F| ≥ 1 − ∑
vi /∈F min{|F|, d−

i }, and so (ii)
follows by letting F = {v1, . . . , vk} for k = 1, . . . , n − 1. This justifies the necessity.

Now we prove the sufficiency. For any digraph H, let c(H) be the number of strong
components of H. Since d is a strict digraphic sequence, we assume that D ∈ 〈d〉 is so
chosen that D is a strict digraph and that

c(D) is minimized. (2.3)

If c(D) = 1, then done, and so we may assume c(D) ≥ 2. We shall show that D must
have certain structure that leads to a contradiction to (ii). Since c(D) ≥ 2, D has a strong
component L1 such that

N−
D (L1) = ∅. (2.4)

By Theorems 2.1(i) and (2.4), |V (L1)| ≥ 2 and so,

L1 is a nontrivial strong component of D. (2.5)

Claim 1. For any u ∈ V (L1), and for any subset X ⊆ V (D) − V (L1) with |X | ≥ 2, if
D[X] is strong, then X ⊆ N+

D (u).
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Let X ⊆ V (D) − V (L1) with D[X] being strong, and let L2 be the strong component
of D such that X ⊆ V (L2). Suppose, to the contrary, that there exist a vertex u ∈ V (L1)

and a vertex v ∈ V (L2) ⊆ V (D) − V (L1) such that (u, v) /∈ A(D). By (2.5) there exists
a vertex u′ ∈ N+

L1
(u), and by the assumption of Claim 1, there exists a vertex v′ ∈ N−

L2
(v).

Let D′ = D ⊗ {(u, u′), (v′, v)}. Since ∂−
D (L1) = ∅ and since (u, v) /∈ A(D), D′ is strict. By

(1.1), D′ ∈ 〈d〉. As D′[V (L1) ∪ V (L2)] is strongly connected, we have c(D′) = c(D) − 1,
contrary to (2.3). This proves Claim 1.

Claim 2. For any u ∈ V (L1) and (v1, v2) ∈ A(D − V (L1)), if (u, v1) ∈ A(D), then
(u, v2) ∈ A(D).

Suppose, to the contrary, that there exist u ∈ V (L1) and (v1, v2) ∈ A(D − V (L1)) such
that (u, v1) ∈ A(D) but (u, v2) /∈ A(D). If v1, v2 lie in the same strong component of
D, then by Claim 1, we would have (u, v1), (u, v2) ∈ A(D), contrary to the assumption
that (u, v2) /∈ A(D). Thus v1, v2 must be in different strong components of D, and so
c(D − {v1, v2}) = c(D). Let L′ be the strong component of D containing v1.

Since L1 is strong and by (2.5), there exists a vertex u′ ∈ N+
L1

(u). Let D′ = D ⊗
{(u, u′), (v1, v2)}. Since ∂−

D (L1) = ∅ and (u, v2) /∈ A(D), D′ is also strict. By (1.1), D′ ∈
〈d〉. Furthermore, as both L1 and L′ are strong, and as (u, v1), (v1, u′) ∈ A(D′), it follows
by definition that D′[V (L1) ∪ V (L′)] is strong. This leads to c(D′) < c(D), a contradiction
to (2.3). This completes the proof of Claim 2.

Let F1 = V (L1), F2 = {v /∈ F1| there exists a nontrivial strong component N of D − F1

and a vertex u ∈ V (N) such that D − F1 has a (u, v)-dipath}, and let

F3 := {v ∈ V (D) − (F1 ∪ F2) | F1 ⊆ N−
D (v)};

F31 := {v ∈ F3 | N−
D (v) ∩ F3 = ∅};

F32 := F3 − F31;
F4 := V (D) − (F1 ∪ F2 ∪ F3);

F41 := {v ∈ F4 | N+
D (v) ∩ F4 �= ∅};

F42 = F4 − F41.

(2.6)

It is possible that some of these subset defined above might be empty. Claim 3 follows
from Claims 1 and 2.

Claim 3. For any v ∈ F2 ∪ F3, F1 ⊆ N−
D (v).

Claim 4. For any v ∈ F41, F2 ∪ F32 ⊆ N+
D (v).

Suppose that there exist a vertex v ∈ F41 and a vertex u′ ∈ F2 ∪ F32 such that (v, u′) /∈
A(D). Let v′ ∈ N+

D (v) ∩ F4. By (2.6), F1 contains a vertex w such that (w, v′) /∈ A(D).
By (2.5), there exists a vertex w′ ∈ N+

D (w) ∩ F1. If u′ ∈ F2, then by the definition of F2,
there exists a vertex u ∈ N−

D (u′) ∩ F2; if u′ ∈ F32, then by (2.6), there exists a vertex
u ∈ N−

D (u′) ∩ F3. In either case, a vertex u ∈ N−
D (u′) ∩ (F2 ∪ F3) exists. Define D′ =

D − {(u, u′), (v, v′), (w, w′)} + {(u, w′), (v, u′), (w, v′)}. As w′ ∈ F1 and ∂−
D (F1) = ∅, D′

is also a strict digraph in 〈d〉.
If both u and u′ are in the same strong component C′ of D, then in D −

{(u, u′), (v, v′), (w, w′)}, every vertex in V (C′) − {u} has a dipath to u. By Claim 1,
F1 ∪ V (C′) induces a strongly connected subdigraph in D′, whence c(D′) < c(D), con-
trary to (2.3).
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If u and u′ are in different strong components of D, then the strong components of
D − {(u, u′), (v, v′)} are also the strong components of D. Furthermore, by Claim 3,
(w, u) ∈ A(D). Thus F1 and the component containing u in D are contained in one strong
component of D′, implying c(D′) < c(D), again contrary to (2.3). This verifies Claim 4.

Claim 5. There exists a vertex subset Z ⊆ V (D) with F41 ⊆ Z ⊆ F4 such that

(i) for any v ∈ Z, F2 ∪ F32 ⊆ N+
D (v) and N+

D (v) ∩ (F4 ∪ F31) �= ∅, and
(ii) for any v ∈ F31, either Z ⊆ N−

D (v) ∩ F4 or N−
D (v) ∩ F4 ⊆ Z.

To prove this claim, we start with some notation. Let X0 := F41, Y0 = ∅ and for
i = 1, 2, . . ., define

Xi := Xi−1 ∪ (N−
D (Yi−1) ∩ F4); (2.7)

Yi := {v ∈ F31 | N−
D (v) ∩ F4 �⊆ Xi and Xi �⊆ N−

D (v) ∩ F4}. (2.8)

By definition, X1 = X0 = F41. We first justify the following subclaim (5A).
(5A). For any strict d-realization D satisfying (2.3), we define the sets

F1, F2, F3, F31, F32, F4, F41, F42 as in (2.6), and Xi,Yi with i ≥ 0 as in (2.7) and (2.8).
Thus for any i ≥ 1 and for any v ∈ Xi, F2 ∪ F32 ⊆ N+

D (v).
We argue by induction on i to prove (5A). When i = 1 the result follows from

Claim 4. Assume that for some k > 1, (5A) holds for any i < k. We want to prove
(5A) holds for i = k as well. Suppose, to the contrary, that Xk has a vertex v such
that F2 ∪ F32 − N+

D (v) �= ∅. By induction, for any z ∈ Xk−1, F2 ∪ F32 ⊆ N+
D (z). Hence

v ∈ Xk − Xk−1. By (2.7), v ∈ N−
D (Yk−1) ∩ F4 − Xk−1. It follows that there exists a vertex

v′ ∈ Yk−1 such that (v, v′) ∈ A(D). Moreover, by (2.8), Xk−1 contains a vertex u such that
(u, v′) /∈ A(D). For these vertices u and v, we shall show that

There exists a u′ ∈ N+
D (u) such that (v, u′) /∈ A(D). (2.9)

In fact, if k = 2, then u ∈ Xk−1 = F41. By the definition of F41, there is a vertex u′
1 ∈ F4

such that (u, u′
1) ∈ A(D). As v /∈ Xk−1 = F41, v ∈ F42. By the definition of F42, (v, u′

1) /∈
A(D), and so (2.9) holds. Now we assume that k ≥ 3. We first show that u ∈ Xk−1 − Xk−2.
If u ∈ Xk−2, then as (u, v′) /∈ A(D) and (v, v′) ∈ A(D), we conclude that v′ ∈ Yk−2 and so
v ∈ Xk−1, contrary to the assumption that v ∈ Xk − Xk−1. Hence we must have u ∈ Xk−1 −
Xk−2. By the definition of Xk−1, there exists a vertex u′

2 ∈ Yk−2 such that (u, u′
2) ∈ A(D).

If (v, u′
2) ∈ A(D), then as u′

2 ∈ Yk−2 and by (2.7), we must have v ∈ Xk−1, contrary to the
assumption that v ∈ Xk − Xk−1. Hence (v, u′

2) /∈ A(D), and so (2.9) must hold.
By (2.9), there always exists a vertex u′ ∈ N+

D (u) such that (v, u′) /∈ A(D). Let
D′ = D ⊗ {(u, u′), (v, v′)}. Then since (u, v′), (v, u′) /∈ A(D), D′ is also a strict d-
realization. As the two arcs (u, u′), (v, v′) are not in any strong components of D, c(D′) ≤
c(D − {(u, u′), (v, v′)}) = c(D). By (2.3), we have c(D′) = c(D). Thus D′ is also a strict
d-realization satisfying (2.3).

To complete the proof of Subclaim (5A), we work on the strict d-realization D′ instead
of D. Since D′ − {(u, v′), (v, u′)} = D − {(u, u′), (v, v′)} and since ∂−

D′ (F1) = ∂−
D (F1) =

∅, we choose F ′
1 = F1, and define the corresponding sets F ′

2, F ′
3, F ′

31, F ′
32, F ′

4, F ′
41, F ′

42 as in
(2.6), and X ′

j, Y ′
j for j ≥ 0 as in (2.7) and (2.8) for the digraph D′. Then by the definitions

of these sets, we observe that F ′
2 = F2, F ′

3 = F3, F ′
31 = F31, F ′

32 = F32, F ′
4 = F4.

If k = 2, then by the definition of D′, we have N+
D′ (v) ∩ F4 �= ∅, and so v ∈ F ′

41.
Applying Claim 4 to D′, we conclude that F ′

2 ∪ F ′
32 ⊆ N+

D′ (v), and so F2 ∪ F32 ⊆ N+
D (v).

If k ≥ 3, then by the definitions of X ′
j and Y ′

j , we observe that X ′
i = Xi,Y ′

i = Yi for i =

Journal of Graph Theory DOI 10.1002/jgt
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1, . . . , k − 2. However, as u′ ∈ Yk−2, by (2.7), we conclude that v ∈ X ′
k−1. By induction,

F ′
2 ∪ F ′

32 ⊆ N+
D′ (v). It follows that F2 ∪ F32 ⊆ N+

D (v), which completes the proof of (5A).
We are now ready to finish the proof of Claim 5. By (2.7), we have F41 = X0 ⊆ X1 ⊆

· · · ⊆ Xi ⊆ F4. The finiteness of the graph warrants that there is a constant integer h such
that Xh = Xj for any j ≥ h. Define Z = Xh. Then F41 ⊆ Z ⊆ F4. By (5A), for any v ∈ Z,
F2 ∪ F32 ⊆ N+

D (v). Also, by the definitions of Xi, N+
D (v) ∩ (F4 ∪ F31) �= ∅. This justifies

Claim 5(i). By (2.7) and (2.8), we have N−
D (Yh) ∩ F4 ⊆ Xh and Yh+1 = Yh. It follows that

N−
D (Yh+1) ∩ F4 ⊆ Xh. If Yh �= ∅, then for any v ∈ Yh = Yh+1, we have N−

D (v) ∩ F4 ⊆ Xh.
On the other hand, by (2.8), N−

D (v) ∩ F4 �⊆ Xh, and so a contradiction is obtained. Hence
Yh+1 = Yh = ∅. By (2.8), we have, for any vertex v ∈ F31, either N−

D (v) ∩ F4 ⊆ Z or
Z ⊆ N−

D (v) ∩ F4. This proves Claim 5.
We continue letting Z = Xk. Choose z0 ∈ Z such that d+

D (z0) = minu∈Z{d+
D (u)} if

Z �= ∅. Define

Z′ =
{ {v ∈ F4 − Z | d+

D (v) ≥ d+
D (z0)} if Z �= ∅

∅ if Z = ∅.

Claim 6. If Z′ �= ∅, then for any v ∈ Z′, N+
D (v) = N+

D (z0).

Let v ∈ Z′ be an arbitrary vertex. First, we show that N+
D (v) ∩ F31 ⊆ N+

D (z0) ∩ F31.
Take any vertex u ∈ N+

D (v) ∩ F31. By (2.6), we have v ∈ N−
D (u) ∩ F4 and so N−

D (u) ∩
F4 �⊆ Z. By Claim 5, we have Z ⊆ N−

D (u) ∩ F4. It follows that z0 ∈ N−
D (u) and so

u ∈ N+
D (z0). Hence N+

D (v) ∩ F31 ⊆ N+
D (z0) ∩ F31. Since v /∈ F41, N+

D (v) = (
N+

D (v) ∩
F31

) ∪ (N+
D (v) ∩ (F2 ∪ F32)) ⊆ (N+

D (z0) ∩ F31) ∪ (F2 ∪ F32) ⊆ N+
D (z0). This, together

with d+
D (v) ≥ d+

D (z0), implies N+
D (v) = N+

D (z0).
Define F = F1 ∪ Z ∪ Z′. We make the following two claims.

Claim 7. For any v /∈ F, either F ⊆ N−
D (v) or N−

D (v) ⊆ F.

Pick an arbitrary vertex v /∈ F . By (2.6), we have v ∈ (F2 ∪ F32) ∪ F31 ∪ (F4 − (Z ∪
Z′)). We will justify Claim 7 by showing that any subset in the union containing the
vertex v will lead to the conclusion of Claim 7. If v ∈ F2 ∪ F32, then by Claims 3
and 5, F1 ∪ Z ⊆ N−

D (v). It follows that v ∈ N+
D (z0). If Z′ = ∅, then F = F1 ∪ Z ∪ Z′ ⊆

N−
D (v), and so Claim 7 holds. Now assume that Z′ �= ∅. By Claim 6, for any z′ ∈ Z′,

v ∈ N+
D (z0) = N+

D (z′). Thus Z′ ⊆ N−
D (v). It follows that F = F1 ∪ Z ∪ Z′ ⊆ N−

D (v), and
so Claim 7 holds. If v ∈ F31, then by Claim 5, either N−

D (v) ∩ F4 ⊆ Z or Z ⊆ N−
D (v) ∩ F4.

In fact, if Z ⊆ N−
D (v) ∩ F4, then (z0, v) ∈ A(D). Thus by Claim 6, (z′, v) ∈ A(D) for

any z′ ∈ Z′, implying Z ∪ Z′ ⊆ N−
D (v). Hence we have either N−

D (v) ∩ F4 ⊆ Z ∪ Z′ or
Z ∪ Z′ ⊆ N−

D (v) ∩ F4. Furthermore, by the definition of F31 in (2.6) and by Claim 3, we
must have N−

D (v) = F1 ∪ (N−
D (v) ∩ F4). Thus either N−

D (v) ⊆ F1 ∪ Z ∪ Z′ = F or F ⊆
N−

D (v). In either case, Claim 7 holds. Therefore, we may assume that v ∈ F4 − Z − Z′.
By the definition of F41 in (2.6), and by the fact F41 ⊆ Z, it follows that F4 − Z − Z′ is
an independent set of D. Furthermore, by the definitions of F2, F3 and by Claim 2, we
have N−

D (v) ∩ (F2 ∪ F3) = ∅. It follows that N−
D (v) ⊆ F1 ∪ Z ∪ Z′ = F . Hence Claim 7

is justified.

Claim 8. For any u ∈ F and v /∈ F, d+
D (u) > d+

D (v).

Let u ∈ F and v /∈ F be two vertices. Since F = F1 ∪ Z ∪ Z′, we will justify Claim
8 by examining the cases when the vertex u lies in different subsets of F . If u ∈ F1,
then by Claim 3 and by the fact that D[F1] is strong, we have d+

D (u) ≥ |F2 ∪ F3| + 1.
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By the definition of F41 or by Claim 2, N+
D (v) ∩ F4 = ∅. Thus d+

D (v) ≤ |F2 ∪ F3| ≤
d+

D (u) − 1, and so Claim 8 holds. Hence we may assume u ∈ Z ∪ Z′ − F1. By Claims
5 and 6, d+

D (u) ≥ |F2 ∪ F32| + 1. If v ∈ F2 ∪ F3, then by the definitions of F31 and F3,
we have N+

D (v) ∩ F31 = ∅. By Claim 2, we also have N+
D (v) ∩ F4 = ∅. Thus N+

D (v) ⊆
F2 ∪ F32. This leads to d+

D (v) ≤ |F2 ∪ F32| < d+
D (u), and so Claim 8 holds. Hence we may

assume that v ∈ F4 − Z − Z′. By the definition of Z′, we observe that d(v) < d(z0) =
minw∈Z d+

D (w) = minw∈Z∪Z′ d+
D (w) ≤ d+

D (u). Claim 8 is proved.
We are now ready to complete the proof of the theorem. We adopt the notation that

V (D) = {v1, . . . , vn} with d+
D (vi) = d+

i and d−
D (vi) = d−

i for i = 1, . . . , n. Assume that
|F| = t. By Claim 8, F = {v1, . . . , vt}. By Theorem 2.1(ii), we have

∑
u∈F

(d−
D (u) − d+

D (u)) +
∑
u/∈F

min{|F|, d−
D (u)} =

t∑
i=1

(d−
i d+

i ) +
n∑

i=t+1

min{t, d−
i } ≥ 1.

(2.10)

This inequality (2.10) and Claim 7 imply that

|∂−
D (F )| =

∑
u∈F

d−
D (u) − |A(D[F])|

=
∑
u∈F

d−
D (u) −

∑
u∈F

d+
D (u) + |∂+

D (F )|

=
∑
u∈F

(
d−

D (u) − d+
D (u)

) +
∑
u/∈F

min{|F|, d−
D (u)} ≥ 1.

As F1 = V (L1), by (2.4), we must have ∂−
D (F1) = ∅, and so there is an arc (x, y) ∈ A(D)

such that x ∈ F = F2 ∪ F3 ∪ (F4 − Z − Z′) and y ∈ Z ∪ Z′ ⊆ F4. This is a contradiction
to Claim 2 or to the definition of F41. This completes the proof of Theorem 2.1. �

3. AN EXAMPLE

As shown in Theorem 63.3 of [14], Frank in [6, 7] has obtained characterizations for
multidigraphic degree sequences to have strongly k-arc-connected realizations. It is nat-
ural to seek similar characterizations of strict digraphic sequences that have a strongly
k-arc-connected strict realization. The purpose of this section is to present an example to
show that it might be difficult to find such a characterization.

Define the function f as in (2.2). In Theorem 2.1, it is shown that a necessary condition
for a strict digraphic sequence d to have a strongly 1-arc-connected strict realization is
that f (i) ≥ 1 for all i with 1 ≤ i ≤ n − 1. In fact, a slightly stronger necessary condition
is also presented in the arguments to prove Theorem 2.1. For any subset I with ∅ �= I ⊂
{1, . . . , n}, define

g(I) =
∑
i∈I

(d−
i − d+

i ) +
∑
i/∈I

min{|I|, d−
i }. (3.1)

By definition, it is routine to verify that the function f defined in (2.2) satisfies f (i) =
g({1, 2, . . . , i}). In the justification of (2.10), we have shown that a necessary condition
for a strict digraphic sequence d to have a strongly 1-arc-connected strict realization
is that g(I) ≥ 1, for any subset I with ∅ �= I ⊂ {1, . . . , n}. With a similar argument as
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in the proof of Theorem 2.1, it is routine to show that both f (i) ≥ k and g(I) ≥ k are
necessary conditions for a strict digraphic sequence d to have a strongly k-arc-connected
strict realization. In this section, we will give a strict digraphic sequence d to show that
it is possible that a strict digraphic sequence d satisfies the condition f (i) → ∞ (or the
condition g(I) → ∞), but d to does not have a strongly k-arc-connected strict realization.

Example 3.1. Let t > 1 be an integer and d = {(n − 1, t)t, (3t + 1, 2t + 1), (2t +
1, 3t + 1), (t + 2, t)t, (t, t + 2)t, (t, n − 1)t}. Then each of the following holds.

(i) There is only one strict digraph D with degree sequence d.
(ii) The sequence d satisfies the condition that g(I) ≥ t for any ∅ ⊂ I ⊂ {1, . . . , n}.

(iii) The only strict digraph D with degree sequence d is not strongly 2-arc-connected.

Proof. By Theorem 1.1, d is strict digraphic. Let D be a strict digraph with degree
sequence d, X1 be the set of the t vertices with out-degree n − 1 and in-degree t, X2

be the set of the t vertices with out-degree t + 2 and in-degree t, X3 be the set of t
vertices with out-degree t and in-degree t + 2, X4 be the set of t vertices with out-
degree t and in-degree n − 1. Then |X1| = |X2| = |X3| = |X4| = t and n = 4t + 2. Let
u, v /∈ ⋃4

i=1 Xi be the two additional vertices satisfying d+
D (u) = 3t + 1, d−

D (u) = 2t + 1,
d+

D (v) = 2t + 1, d−
D (v) = 3t + 1. Thus V (D) = {u, v} ∪ (∪4

i=1Xi).
In order to determine the structure of D, we only need to find out N+

D (x) for every
vertex x ∈ V (D). We make the Observations (A)–(F) as follows.

(A) For each vertex x ∈ V (D), as vertices in X1 have out-degree n − 1 and vertices in
X4 have in-degree n − 1, both X4 − {x} ⊆ N+

D (x) and X1 − {x} ⊆ N−
D (x).

(B) For each x2 ∈ X2 and x3 ∈ X3, it follows by (A) and by the fact that vertices in
X2 have in-degree t and vertices in X3 have out-degree t, that N−

D (x2) = X1 and
N+

D (x3) = X4.
(C) By Observations (A) and (B), we have both N+

D (u) ⊆ X1 ∪ X3 ∪ X4 ∪ {v} and
N−

D (v) ⊆ X1 ∪ X2 ∪ X4 ∪ {u}. As d+
D (u) = d−

D (v) = 3t + 1, we must also have
N+

D (u) = X1 ∪ X3 ∪ X4 ∪ {v} and N−
D (v) = X1 ∪ X2 ∪ X4 ∪ {u}.

(D) For each x4 ∈ X4, since X4 is the set of t vertices with out-degree t and in-degree
n − 1, and by (A)–(C), we conclude that N+

D (x4) = (X4 − {x4}) ∪ {v}.
(E) It follows from (A)–(D) that for each x1 ∈ X1, we have N−

D (x1) = X1 ∪ {v} − {x1},
and so N+

D (v) ⊆ X3 ∪ X4 ∪ {u}. These, together with the fact d+
D (v) = 2t + 1,

implies N+
D (v) = X3 ∪ X4 ∪ {u}.

(F) For every x2 ∈ X2, we have X4 ∪ {u, v} ⊆ N+
D (x2). As d+

D (x2) = t + 2, we must
have N+

D (x2) = X4 ∪ {u, v}.
From Observations (A)–(F), we conclude that for each x ∈ V (D), the set N+

D (x) is
uniquely determined. This implies (i).

Next we justify (ii). For each nonempty I ⊂ {1, . . . , n}, we will show that g(I) ≥ t.
Let X = {vi | i ∈ I}, and let αi = |X ∩ Xi|, for i = 1, 2, 3, 4, αu = |X ∩ {u}| and αv =
|X ∩ {v}|. Then 0 ≤ αi ≤ t for i = 1, 2, 3, 4 and 0 ≤ αu, αv ≤ 1. Let α = |X |. Then α =∑4

i=1 αi + αu + αv. By (3.1),

g(I) =
∑
i∈I

(d−
i − d+

i ) +
∑
i/∈I

min{|I|, d−
i }

= (t − (n − 1))α1 + (t − (t + 2))α2 + ((t + 2) − t)α3 + (n − 1 − t)α4

+ (2t + 1 − (3t + 1))αu + (3t + 1 − (2t + 1))αv + (t − α1) min{α, t}
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+ (t − α2) min{α, t} + (t − α3) min{α, t + 2}
+ (t − α4) min{α, n − 1} + (1 − αu) min{α, 2t + 1} + (1 − αv) min{α, 3t + 1}

= (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu) + (2t − α1 − α2) min{α, t}
+ (t − α3) min{α, t + 2} + α(t − α4) + (1 − αu) min{α, 2t + 1}
+ (1 − αv) min{α, 3t + 1}.

Case 1. 1 ≤ α ≤ t. In this case,

g(I) = (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu) + (4t + 2

− α1 − α2 − α3 − α4 − αu − αv)α

= (4t + 2 − α)α + (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu)

= (t − α)α + α1 + 3tα2 + (3t + 4)α3 + (6t + 3)α4 + (2t + 2)αu

+ (4t + 2)αv.

If at least one of α2, α3, α4, αu, αv is at least 1, then g(I) > t. Hence we may
assume that α2 = α3 = α4 = αu = αv = 0. Thus α = α1, and so g(I) = (t −
α)α + α = α(t + 1 − α) ≥ t as 1 ≤ α ≤ t.

Case 2. t + 1 ≤ α ≤ t + 2. In this case,

g(I) = (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu) + (2t − α1 − α2)t

+(2t + 2 − α3 − α4 − αu − αv)α

= −(4t + 1)α1 − (t + 2)α2 − (α − 2)α3 + (3t + 1 − α)α4 − (t + α)αu

− (α − t)αv + 2t2 + (2t + 2)α

= −(4t + 1)α1 − (t + 2)α2 − (α − 2)α3 + (3t + 1 − α)α4 − (t + α)αu

− (α − t)αv + 2t2 − (2t − 1)α + (4t + 1)(α1 + α2 + α3 + α4 + αu + αv)

= −(2t − 1)α + (3t − 1)α2 + (4t + 3 − α)α3 + (7t + 2 − α)α4

+ (3t + 1 − α)αu + (5t + 1 − α)αv + 2t2

≥ 2t2 − (2t − 1)α + (2t − 1)(α2 + α3 + α4 + αu + αv)

≥ 2t2 − (2t − 1)α + (2t − 1)(α − t) = t.

Case 3. t + 3 ≤ α ≤ n − 1 = 4t + 1. In this case,

g(I) = (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu) + (2t − α1 − α2)t

+ (t − α3)(t + 2) + αt − αα4 + (1 − αu) min{α, 2t + 1}
+ (1 − αv) min{α, 3t + 1}.

Since min{α, 2t + 1}· (1 − αu) ≥ 0 and min{α, 3t + 1} · (1 − αv) ≥ (1 −
αv)(α1 + α2), it follows that

g(I) ≥ (3t + 1)(α4 − α1) + 2(α3 − α2) + t(αv − αu) + (2t − α1 − α2)t

+(t − α3)(t + 2) + (α1 + α2 + α3 + α4 + αu + αv)t − αα4

+ (1 − αv)(α1 + α2)

= −(3t + αv)α1 − (1 + αv)α2 + (4t + 1 − α)α4 + 2tαv + 3t2 + 2t

≥ −(3t + αv)t − (1 + αv)t + 2tαv + 3t2 + 2t = t.
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As in any case, we always have g(I) ≥ t for all ∅ ⊂ I ⊂ {1, . . . , n}. This proves (ii).
To see that this strict digraph D is not 2-arc-connected, it suffices to observe that direct

computation yields |∂−
D (X1 ∪ X2 ∪ {u})| = 1. Thus (iii) must hold. �

Example 3.1 shows that the necessary condition g(I) ≥ k fails to be a sufficient condi-
tion for d to have a strict k-arc-connected realization. It remains open to find an necessary
and sufficient condition for such degree sequences.
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