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Abstract: Let k > 0 be an integer and let D be a simple digraph on n > k
vertices. We prove that If

|A(D)| > k(2n − k − 1) +
(

n − k
2

)
,

then D must have a nontrivial subdigraph H such that the strong arc connec-
tivity of H is at least k + 1. We also show that this bound is best possible
and present a constructive characterization for the extremal graphs. C© 2015

Wiley Periodicals, Inc. J. Graph Theory 84: 17–25, 2017
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1. INTRODUCTION

We consider finite simple graphs and simple digraphs. Usually, we use G to denote a
graph and D a digraph. Undefined terms and notation will follow [3] for graphs and
[2] for digraphs. In particular, κ ′(G) denotes the edge connectivity of a graph G and
λ(D) denotes the arc-strong connectivity of a digraph D. If G is a simple graph, then
Gc denotes the complement of G. If X ⊆ E(Gc), then G + X is the simple graph with
vertex set V (G) and edge set E(G) ∪ X . We will use G + e for G + {e}. Likewise, if D
is a simple digraph, let Dc denotes the complement of D. For X ⊆ A(Dc) and e ∈ A(Dc),
we similarly define the simple digraphs D + X and D + e, respectively. Throughout this
article, we use the notation (u, v) to denote an arc oriented from u to v in a digraph. If
W ⊆ V (D) or if W ⊆ A(D), then D[W ] denotes the subdigraph of D induced by W . For
v ∈ V (D), we use D − v for D[V (D) − {v}]. For graphs H and G, we denote H ⊆ G when
H is a subgraph of G. Similarly, for digraphs H and D, H ⊆ D when H is a subdigraph
of D. We use D ∼= H when the digraphs D and H are isomorphic.

Given a graph G, Matula [5] first studied the quantity

κ ′(G) = max{κ ′(H) : H ⊆ G}.

He called κ ′(G) the strength of G. Mader [4] considered an extremal problem related
to κ ′(G). For an integer k > 0, a simple graph G with |V (G)| ≥ k + 1 is k-maximal
if κ ′(G) ≤ k but for any edge e ∈ E(Gc), κ ′(G + e) > k. In [4], Mader proved the
following.

Theorem 1.1. (Mader [4]) If G is a k-maximal graph on n > k ≥ 1 vertices, then

|E(G)| ≤ (n − k)k +
(

k
2

)
.

Furthermore, this bound is best possible.

The purpose of this article is to investigate the same for simple digraphs. Naturally,
for a digraph D, we define

λ(D) = max{λ(H) : H ⊆ D}.
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Let k ≥ 0 be an integer. A simple digraph D with |V (D)| ≥ k + 1 is k-maximal if
λ(D) ≤ k but for any arc e ∈ A(Dc), λ(D + e) ≥ k + 1. For positive integer n and k with
n ≥ k + 1, define

D(n, k) = {D : D is a simple digraph with |V (D)| = n and D is k-maximal}.
Our goal is to determine max{|A(D)| : D ∈ D(n, k)}. If h < k, we define (

h
k ) = 0. Our

main result is the following.

Theorem 1.2. Let k ≥ 0 and n ≥ k + 1 be nonnegative integers. If D ∈ D(n, k), then

|A(D)| ≤ k(2n − k − 1) +
(

n − k
2

)
.

Furthermore, the bound is best possible.

Corollary 1.3. Let k > 0 be an integer and let D be a simple digraph on n > k vertices.
If

|A(D)| > k(2n − k − 1) +
(

n − k
2

)
,

then D must have a subdigraph H such that λ(H) ≥ k + 1.

The corollary follows immediately from Theorem 1.2. In the next section, we
investigate properties of k-maximal digraphs. The main result will be proved in the
last section.

2. PROPERTIES OF k-MAXIMAL DIGRAPHS

Throughout this section, let k ≥ 0 be an integer. Define D(k) = ∪n≥k+1D(n, k). Thus
D(k) is the family of all k-maximal digraphs. Recall that a tournament on n vertices is an
orientation of the complete graph Kn on n vertices. The following lemma indicates that
the k = 0 case has a clear structure.

Lemma 2.1. ([1]) A digraph D ∈ D(0) if and only if D is an acyclic tournament.

The easy proof is left to the reader (and found in [1]).
For any integer n ≥ 0, let K∗

n denote the complete digraph on n vertices. By definition,
we have

K∗
k+1 ∈ D(k) and if H ∈ D(k) and |V (H)| = k + 1, then H ∼= K∗

k+1. (1)

Following [2], if D is a digraph and if X,Y ⊆ V (D), then define

(X,Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }.
We further define that, for X ⊆ V (D),

∂+
D (X ) = (X,V (D) − X )D and ∂−

D (X ) = (V (D) − X, X )D.

For each v ∈ V (D), we define

N+
D (v) = {u ∈ V (D) : (v, u) ∈ A(D)} and N−

D (v) = {u ∈ V (D) : (u, v) ∈ A(D)}.
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When the digraph D is understood from the context, we sometimes omit the subscript
D in the notation above. By the definition of arc-strong connectivity in [2], a digraph D
satisfies λ(D) ≥ k if and only if for any nonempty proper subset X ⊂ V (D), |∂+

D (X )| ≥ k.

Lemma 2.2. If D ∈ D(k) and if D is not a complete digraph, then for any proper
nonempty subset X ⊂ V (D) such that |∂+

D (X )| ≤ k, each of the following holds:

(i) (X,V (D) − X )Dc �= ∅.
(ii) |∂+

D (X )| = k.
(iii) (V (D) − X, X )D = {(y, x) : for any y ∈ V (D) − X and for any x ∈ X}.
Proof. Let Y = V (D) − X . Suppose that (X,Y )Dc = ∅. Then the arcs in ∂+(X )

induce an underlying complete bipartite graph with a vertex bipartition {X,Y }. It follows
from |∂+(X )| ≤ k that we must have

|X |(n − |X |) = |X | · |Y | ≤ k, and |X | + |Y | = n ≥ k + 1.

As the minimum of |X |(n − |X |) must be attained at the boundary point of the domain
1 ≤ |X | ≤ n − 1, we observe that k ≤ n − 1 ≤ |X |(n − |X |) ≤ k. it follows that we must
have n = k + 1, and so by (1) that D must be a K∗

k+1, contrary to the assumption that D
is not a complete digraph. This proves (i).

Therefore there must be an arc (x, y) ∈ (X,Y )Dc . The existence of this arc and the fact
that D ∈ D(k) imply that |∂+

D (X )| = k. This proves (ii).
To prove (iii), we again argue by contradiction and assume that for some x ∈ X

and y ∈ Y , (y, x) /∈ A(D). Then as D ∈ D(k), λ(D + (y, x)) ≥ k + 1. It follows that
D + (y, x) has a subdigraph H ′ with λ(H ′) ≥ k + 1 and with (y, x) ∈ A(H ′). Hence both
X ∩ V (H ′) �= ∅ and Y ∩ V (H ′) �= ∅. As ∂+

H ′ (X ∩ V (H ′)) ⊆ ∂+
D (X ), we have k + 1 ≤

|∂+
H ′ (X ∩ V (H))| ≤ |∂+

D (X )| ≤ k, a contradiction. This proves (iii). �
Lemma 2.3. Suppose that D ∈ D(k) − {K∗

k+1}, for any proper nonempty subset X ⊂
V (D) such that |∂+

D (X )| = k, define Y = V (D) − X. One of the following must hold:

(i) |X | = 1 and D[Y ] ∈ D(k), and, |V (D) − X | ≥ k + 1.
(ii) |X | ≥ k + 1 and D[X] ∈ D(k), and, |V (D) − X | = 1.

(iii) Both D[X] ∈ D(k) and D[Y ] ∈ D(k), and, both |X | ≥ k + 1 and |V (D) − X | ≥
k + 1.

Proof. Let Y = V (D) − X . We make the following claims.
Claim 1. If D[X] (or D[Y ], respectively) is a complete digraph, then |X | ∈ {1, k + 1}, (or
|Y | ∈ {1, k + 1}, respectively).

By symmetry, we prove the case when D[X] is complete. Let m = |X |. Then D[X] =
K∗

m. Since m − 1 = λ(K∗
m) ≤ λ(D) ≤ k, we have m ≤ k + 1. Assume that 1 < m ≤ k. By

Lemma 2.2(i), there exists an arc (x, y) ∈ (X,Y )Dc . As D ∈ D(k), D + (x, y) has a sub-
digraph H with λ(H) ≥ k + 1 and (x, y) ∈ A(H). Hence X ∩ V (H) �= ∅. Let X ′ = X ∩
V (H) and m′ = |X ′|, and denote X ′ = {x1, x2, · · · , xm′ }. For each xi, let ki denote the num-
ber of arcs in (X ′,V (H) − X ′)H incident with xi. Then

∑m′
i=1 ki = |∂+

H (X ′)| ≥ λ(H) ≥
k + 1, and so m′(k + 1) ≤ ∑m′

i=1 d+
H (xi) ≤ ∑m′

i=1(ki + m′ − 1) = (k + 1) + m′(m′ − 1),

which leads to (m′ − 1)(k + 1) ≤ m′(m′ − 1). If m′ > 1, then k + 1 ≤ m′ ≤ k, a con-
tradiction. Therefore, we must have m′ = 1. Assume that X ′ = {x1}. Then all arcs in
(X,Y )D must be incident with x1 in X . Since m ≥ 2. x2 is not incident with any arcs
in (X,Y )D, and so for any y ∈ Y , (x2, y) ∈ A(Dc). As D ∈ D(k), D + (x2, y) must
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have a subdigraph H ′′ such that λ(H ′′) ≥ k + 1 and (x2, y) ∈ A(H ′′). Since m ≤ k,
d+

H ′′ (x2) ≤ |∂+
D[X](x2) ∪ {x2, y)}| = (m − 1) + 1 ≤ k, contrary to the assumption that

λ(H ′′) ≥ k + 1. Therefore if D[X] is complete, then |X | ∈ {1, k + 1}. This proves Claim
1.

Claim 2. If D[X] (or D[Y ], respectively) is not complete digraph, then D[X] ∈ D(k),
(or D[Y ] ∈ D(k), respectively).

Again by symmetry, it suffices to show that D[X] ∈ D(k). The case for showing D[Y ] ∈
D(k) is similar and will be omitted. Since D[X] is not complete, A(D[X]c) �= ∅. For any
e ∈ A(D[X]c), since A(D[X]c) ⊆ A(Dc) and since D ∈ D(k), it follows by definition of
D(k) that D + e has a subdigraph He with e ∈ A(He) and with λ(He) ≥ k + 1. If for
any e ∈ A(D[X]c), we always have V (He) ⊆ X , then by definition of D(k), we have
D[X] ∈ D(k) and so |X | ≥ k + 1. Hence by contradiction, we assume that there exists an
arc (u, v) ∈ A(D[X]c) such that D + (u, v) has a subdigraph H with λ(H) ≥ k + 1 and
with (u, v) ∈ A(H), and such that V (H) ∩ Y �= ∅. Then as u, v ∈ X and as V (H) ∩ Y �=
∅, we have ∂+

H (X ∩ V (H)) = (X ∩ V (H),Y ∩ V (H))H ⊆ (X,Y )D. It follows that k +
1 ≤ λ(H) ≤ |∂+

H (X ∩ V (H))| ≤ |(X,Y )D| = |∂+
D (X )| = k, a contradiction. This proves

Claim 2.
Claim 3. If |X | = 1, then |Y | ≥ k + 1; and If |Y | = 1, then |X | ≥ k + 1.
By symmetry, we shall assume that |X | = 1 to prove |Y | ≥ k + 1. The other case

can be done with symmetric arguments. By contradiction, we assume that X = {x} and
Y = {y1, y2, · · · , yh} with h ≤ k. By Lemma 2.2 (iii), for each i with 1 ≤ i ≤ h, we have
(yi, x) ∈ A(D). Since D is simple, and since |(X,Y )D| = |∂+

D (X )| = k, we must have
h = k and (x, yi) ∈ A(D) for every i with 1 ≤ i ≤ k. It follows that D = K∗

k+1, contrary
to the assumption that D �= K∗

k+1. This proves Claim 3.
With these claims, we now to prove the lemma. If |X | = 1 or |Y | = 1, then by Claim

3, Lemma 2.3 (i) or (ii) must hold. Assume that both |X | > 1 and |Y | > 1. If D[X] is
a complete digraph, then by Claim 1, D[X] ∼= K∗

k+1 ∈ D(k). If D[X] is not a complete
graph, then by Claim 2, D[X] ∈ D(k) as well. Hence if |X | = 1, then D[Y ] ∈ D(k), which
implies |Y | ≥ k + 1. Similarly, in any case, D[X] ∈ D(k) and |X | ≥ k + 1. This proves
the lemma. �

Definition 2.4. Let H ∈ D(k) and let {v1, v2, · · · , vk} ⊂ V (H) be a subset of k distinct
vertices. Let u be a vertex not in V (H). Define a digraph [H, K1]k ([K1, H]k, respectively)
as follows:

(i) V ([H, K1]k) = V ([K1, H]k) = V (H) ∪ {u}.
(ii) A([H, K1]k) = A(H) ∪ {(v1, u), (v2, u), · · · , (vk, u)} ∪ (

⋃
v∈V (H){(u, v)}).

(A([K1, H]k) = A(H) ∪ {(u, v1), (u, v2), · · · , (u, vk)} ∪ (
⋃

v∈V (H){(v, u)}),
respectively).

Note that each of [H, K1]k and [K1, H]k represents a family of graphs as the set
{v1, v2, · · · , vk} ⊂ V (H) may vary. For notational convenience, we often use [H, K1]k

([K1, H]k, respectively) to denote any member in the family [H, K1]k ([K1, H]k, respec-
tively).

Definition 2.5. Let H1, H2 ∈ D(k) with H1 and H2 being vertex disjoint, and let
{u1, u2, · · · , uk} ⊂ V (H1) be a multiset of V (H1) and {v1, v2, · · · , vk} ⊂ V (H2) be a
multiset of V (H2) such that all the arcs (u1, v1), (u2, v2), · · · , (uk, vk) are distinct. Define
a digraph D = D(H1, H2; k) as follows.
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(i) V (D) = V (H1) ∪ V (H2).
(ii) A(D) = A(H1) ∪ A(H2) ∪ {(u1, v1), (u2, v2), · · · , (uk, vk)}

∪ (⋃u∈V (H1),v∈V (H2){(v, u)}).
Let [H1, H2]k be the family of all such digraphs D = D(H1, H2; k) defined above.

For notational convenience, we often use [H1, H2]k to denote any member in the family
[H1, H2]k.

Corollary 2.6. Let D ∈ D(k) − {K∗
k+1} be a digraph. Then there exists a nonempty

proper subset X ⊆ V (D) such that one of the following holds.

(i) |X | = 1, and for some H ∈ D(k), D = [H, K1]k.
(ii) |V (D) − X | = 1 and and for some H ∈ D(k), D = [K1, H]k.

(iii) For some H1, H2 ∈ D(k), D = [H1, H2]k.

Proof. Since D ∈ D(k) − {K∗
k+1}, by Lemma 2.2, there exists a proper nonempty

subset X ⊂ V (D) such that |∂+
D (X )| = k. Let Y = V (D) − X . By Lemma 2.3, one of the

conclusions of Lemma 2.3 must hold.
If Lemma 2.3(i) holds, then |X | = 1 and D[Y ] ∈ D(k). Let X = {x} and H = D[Y ]. As

|({x},Y )D| = k and as, by Lemma 2.2(iii), for each y ∈ Y , (y, x) ∈ A(D), it follows by
Definition 2.4 that D = [K1, H]k, implying Corollary 2.6 (ii). If Lemma 2.3(ii) holds, then
|Y | = 1 and D[X] ∈ D(k). Let H = D[X]. With a symmetric argument, Corollary 2.6 (i)
holds. If Lemma 2.3(iii) holds, then let H1 = D[X] and H2 = D[Y ]. As |(X,Y )D| = k,
and H1, H2 ∈ D(k), and by Lemma 2.2(iii), D = [H1, H2]k. �

3. THE EXTREMAL FUNCTION

In this section, we shall determine the extremal function as shown in Theorem 3.2 below.
This clearly implies Theorem 1.2. We start with a definition.

Definition 3.1. Let M(k) be the family of digraphs such that

(i) K∗
k+1 ∈ M(k) and such that

(ii) a digraph D �= K∗
k+1 is in M(k) if and only if for some H ∈ M(k), D = [H, K1]k

or D = [K1, H]k.

Theorem 3.2. Let D ∈ D(n, k). Then

|A(D)| ≤ k(2n − k − 1) +
(

n − k
2

)
. (2)

Furthermore, each of the following holds.

(i) If k = 1, then every digraph D ∈ D(1) satisfies equality in (2).
(ii) If k ≥ 2, then a digraph D ∈ D(k) satisfies equality in (2) if and only if D ∈ M(k).

Proof. By Definition 3.1, every digraph D in M(k) satisfies λ(D) ≤ k. It is rou-
tine to verify that every digraphs D ∈ M(k) is k-maximal. A straightforward inductive
computation shows that if D ∈ M(k) with n = |V (D)| ≥ k + 1, then

|A(D)| = k(2n − k − 1) +
(

n − k
2

)
. (3)
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To proceed the proof of the theorem, we first prove (2) by induction on n = |V (D)|. If
n = k + 1, then D = K∗

k+1. As |A(K∗
k+1)| = k(k + 1), we observe that (2) holds when

n = k + 1. Assume that n > k + 1 and (2) holds for smaller values of n. Since n > k + 1,
D cannot be a complete digraph. By Corollary 2.6, we make the following claims.

Claim 1. If Corollary 2.6 (i) or (ii) holds, then (2) holds as well.
Without loss of generality, we assume that D = [H, K1]k for some H ∈ D(k) with

V (K1) = {v}. As |V (H)| = n − 1, by Definition 2.4, |∂+
D (v)| = k and |∂−

D (v)| = n − 1.
It follows by induction on n,

|A(D)| = |A(H)| + k + (n − 1) ≤ k(2(n − 1) − k − 1) +
(

(n − 1) − k
2

)
+ k + (n − 1)

= k(2n − k − 1) − 2k +
(

n−k−2∑
i=1

i

)
+ 2k + (n − k − 1)

= k(2n − k − 1) +
(

n − k
2

)
.

Claim 2. If Corollary 2.6 (iii) holds, then (2) holds. Furthermore, if k ≥ 2, then (2)
holds with strict inequality.

Without loss of generality, we may assume that D = [H1, H2]k for some H1, H2 ∈ D(k).
Let n1 = |V (H1)| and n2 = |V (H2)|. It follows by induction on n,

|A(D)| = |A(H1)| + k + n1n2 + |A(H2)|
≤ k(2n1 − k − 1) +

(
n1 − k

2

)
+ k + n1n2 + k(2n2 − k − 1) +

(
n2 − k

2

)

= k(2n − k − 1) +
(

n − k
2

)
− k2 + n1n2 +

(
n1 − k

2

)
+
(

n2 − k
2

)

−
(

n − k
2

)
.

We further observe the following.

2

[
n1n2 +

(
n1 − k

2

)
+
(

n2 − k
2

)
−
(

n − k
2

)]
= 2n1n2 + (n1 − k)(n1 − k − 1) + (n2 − k)(n2 − k − 1) − (n − k)(n − k − 1)

= 2n1n2 +
[

2∑
i=1

(n2
i − 2nik + k2 − ni + k)

]
− (n2 − 2nk + k2 − n + k)

= (n1 + n2)
2 − 2nk + 2k2 − (n1 + n2) + 2k − n2 + 2nk − k2 + n − k = k(k + 1).

As k ≥ 2, we have −k2 + k(k+1)

2 = − k2−k
2 < 0, and so |A(D)| ≤ k(2n − k − 1) +

(
n−k

2 ) − k2−k
2 . This implies Claim 2.

Claim 3. If k ≥ 2, and if D ∈ D(k) satisfies equality in (2), then D ∈ M(k).
Let D ∈ D(k) be a digraph satisfying equality in (2). We argue by induction on

n = |V (D)| ≥ k + 1 to prove Claim 3. If n = k + 1, then D = K∗
k+1 ∈ M(k). Hence we

assume that n > k + 1 and that Claim 3 holds for smaller values of n.
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If D satisfies Corollary 2.6(iii), then by Claim 2, D cannot satisfy equality in (2),
contrary to the assumption of Claim 3. Hence D must satisfy Corollary 2.6(i) or (ii). By
symmetry, we assume that for some digraph H ∈ D(k) and vertex v ∈ V (D), we have
D = [{v}, H]k. By Definition 2.4, we have |A(D)| = |A(H)| + k + n − 1. As D satisfies
equality in (2), this implies that

|A(H)| = k(2n − k − 1) +
(

n − k
2

)
− (n + k − 1) = k(2(n − 1) − k − 1)

+
(

(n − 1) − k
2

)
.

It follows by induction that H ∈ M(k). By Definition 3.1, D ∈ M(k), and so Claim 3
is proved by induction.

Claim 4. If k = 1, then for any D ∈ D(k), we always have

|A(D)| = k(2n − k − 1) +
(

n − k
2

)
= 2(n − 1) + (n − 1)(n − 2)

2
. (4)

We again argue by induction. Since |A(K∗
2 )| = 2, (4) holds when n = k + 1 = 2.

Assume that n > 2 and (4) holds for smaller values of n. Hence D is not a complete
digraph. By Corollary 2.6, we have the following observations.

Suppose that Corollary 2.6(i) or (ii) holds. Then D ∈ {[K1, H]k, [H, K1]k} for some
H ∈ D(1). By induction,

|A(D)| = 2[(n − 1) − 1] + 1 + (n − 1) + (n − 2)(n − 3)

2
= 2(n − 1)

+ (n − 1)(n − 2)

2
.

Thus (4) is justified in this case.
Now suppose that for some H1, H2 ∈ D(1), we have D = [H1, H2]k. Let n1 = |V (H1)|

and n2 = |V (H2)|. By induction, and with the same computation in the proof of Claim
2, we have

|A(D)| = |A(H1)| + 1 + n1n2 + |A(H2)| =
2∑

i=1

[
2(ni − 1) + (ni − 1)(ni − 1)

2

]

+ 1 + n1n2

= 2(n1 + n2 − 1) − 1 + (n − 1)(n − 2)

2
+

2n1n2 + (n1 − 1)(n1 − 2) + (n2 − 1)(n2 − 2) − (n − 1)(n − 2)

2

= 2(n1 + n2 − 1) − 1 + (n − 1)(n − 2)

2
+ 1 + 1

2
= 2(n1 + n2 − 1)

+ (n − 1)(n − 2)

2
.

Therefore, (4) is also justified in this case, and so Claim 4 is proved by induction.
Now Theorem 3.2 follows from (3), and Claims 1, 2, 3 and 4. �
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