Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Spanning trails with variations of Chvátal-Erdős conditions

Zhi-Hong Chen^a, Hong-Jian Lai^b, Meng Zhang^{c,*}

^a Department of Computer Science & Software Engineering, Butler University, Indianapolis, IN 46208, USA

^b Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

^c Department of Mathematics, University of North Georgia - Oconee, Watkinsville, GA 30677, USA

ARTICLE INFO

Article history: Received 5 August 2015 Received in revised form 11 May 2016 Accepted 2 August 2016 Available online 23 September 2016

Keywords: Spanning trail Supereulerian Collapsible Independence number Matching number

ABSTRACT

Let $\alpha(G)$, $\alpha'(G)$, $\kappa(G)$ and $\kappa'(G)$ denote the independence number, the matching number, connectivity and edge connectivity of a graph *G*, respectively. We determine the finite graph families \mathcal{F}_1 and \mathcal{F}_2 such that each of the following holds.

(i) If a connected graph *G* satisfies $\kappa'(G) \ge \alpha(G) - 1$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_1 .

(ii) If $\kappa'(G) \ge \max\{2, \alpha(G) - 3\}$, then *G* has a spanning trail. This result is best possible. (iii) If a connected graph *G* satisfies $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_2 .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graphs considered are finite and loopless. We follow [5] for undefined terms and notation. Let $N_G(u)$ be the set of vertices adjacent to u in G, and $D_i(G) = \{v \in V(G) : d(v) = i\}$. As in [5], for a graph G, let $\alpha(G)$, $\alpha'(G)$, $\kappa'(G)$, $\kappa'(G)$ denote independence number, matching number, connectivity and edge connectivity of G, respectively. An edge cut E of a graph G is **essential** if G - E contains two nontrivial components. We use O(G) to denote the set of all odd degree vertices of G. A cycle on n vertices is often called an n-cycle. For $A \subseteq V(G) \cup E(G)$, G[A] is the subgraph of G induced by A, and G - A is the subgraph of G obtained by deleting the elements in A. Let H be a graph. We say G is H-free if G does not contain H as a subgraph.

As in [5], a graph *G* is **eulerian** if *G* is a closed trail. Equivalently, *G* is eulerian if *G* is connected with $O(G) = \emptyset$. A graph is **supereulerian** if it has a spanning closed trail. Boesch et al. [3] first posed the problem of characterizing supereulerian graphs. Pulleyblank [19] proved that determining if a 3-edge-connected planar graph is supereulerian is NP-complete. Catlin [8] gave a survey on supereulerian graphs, which was supplemented and updated in [14,18].

Motivated by a well-known result of Chvátal and Erdős [15] that every graph G with $\kappa(G) \ge \alpha(G)$ is Hamiltonian, there have been researches on conditions analogous to this Chvátal–Erdős Theorem to assure the existence of spanning trials in a graph utilizing relationship among independence number, matching number and edge-connectivity. See [1,16,17] and [21], among others. Let P(10) denote the Petersen graph and let $K_{2,3}(1, 2, 2)$, $S_{1,2}$, $K'_{2,3}$ be the graphs depicted in Fig. 1. Let P^n be a path of order n. Define

 $\mathcal{F}_1 = \{K_2, P^3, P^4, K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}, P(10)\} \text{ and } \mathcal{F}_2 = \{P(10), P(14)\}.$

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.08.002 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: chen@butler.edu (Z.-H. Chen), hong-jian.lai@mail.wvu.edu (H.-J. Lai), meng.zhang@ung.edu (M. Zhang).

Fig. 1. P(14) and some graphs in \mathcal{F}_1 .

Theorem 1.1 (Han et al., Theorem 3 of [16]). Let G be a simple graph with $\kappa(G) \ge 2$. If $\kappa(G) \ge \alpha(G) - 1$, then exactly one of the following holds.

(i) *G* is supereulerian.

(ii) $G \in \{P(10), K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}, K'_{2,3}\}.$

(iii) *G* is a 2-connected graph obtained from $K_{2,3}$ (resp. $S_{1,2}$) by replacing a vertex whose neighbors have degree three in $K_{2,3}$ (resp. $S_{1,2}$) with a complete graph of order at least three.

Theorem 1.2 (*Tian and Xiong, Theorem 4 of* [21]). If *G* is a 2-connected graph with $\alpha(G) \leq \kappa(G) + 3$, then *G* has a spanning trail.

The supereulerian property for graphs *G* with $\alpha'(G) \le 2$ and $\kappa'(G) \ge 2$ has been completely determined in [1] and [17]. The purpose of this paper is to investigate the existence of spanning trails in graphs with given relationship between independence number and edge-connectivity, or matching number with edge-connectivity. In this paper, we determine the finite graph families \mathcal{F}_1 and \mathcal{F}_2 such that each of the following holds.

Theorem 1.3. If a graph *G* satisfies $\kappa'(G) \ge \alpha(G) - 1$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_1 .

Theorem 1.4. If $\kappa'(G) \ge \max\{2, \alpha(G) - 3\}$, then G has a spanning trail.

Theorem 1.5. If a graph *G* satisfies $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$, then *G* has a spanning closed trail if and only if *G* is not contractible to a member of \mathcal{F}_2 .

In Section 2, we display the mechanism we will use in our arguments. In the subsequent sections, we prove the main results.

2. Preliminaries

For a subset $Y \subseteq E(G)$, the **contraction** G/Y is the graph obtained from G by identifying the two ends of each edge in Y and then by deleting the resulting loops. If H is a subgraph of G, we often use G/H for G/E(H). A graph G is called **collapsible** if for any $R \subseteq V(G)$ with |R| is even, G has a spanning subgraph S_R with $O(S_R) = R$. By definition, collapsible graphs are supereulerian. In [7], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs H_1, H_2, \ldots, H_c . The **reduction** of G, denoted by G', is the graph $G/(H_1 \cup H_2 \cup \cdots \cup H_c)$. A graph G is reduced if G' = G.

Theorem 2.1 (*Catlin, Theorem 2 of* [7]). Every graph *G* with $\kappa'(G) \ge 4$ is collapsible.

Theorem 2.2 (*Catlin, Theorem 3 of* [7]). Let G be a connected graph, H be a collapsible subgraph of G and let G' be the reduction of G. Then

(i) *G* is collapsible if and only if G/H is collapsible.

(ii) G is supereulerian if and only if G/H is supereulerian.

(iii) *G* has a spanning trail if and only if G/H has a spanning trail.

(iv) Any subgraph of a reduced graph is reduced.

Let F(G) be the minimum number of extra edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following results on the structures of reduced graphs will be needed.

Theorem 2.3. Let G be a connected reduced graph. Then

- (i) (*Catlin, Theorem 7 of* [6]) If $|V(G)| \ge 3$, then F(G) = 2(|V(G)| 1) |E(G)|.
- (ii) (Catlin, Theorem 8 of [7]) *G* is simple and *K*₃-free.
- (iii) (Catlin, Theorem 8 of [7]) $\delta(G) \leq 3$.

(iv) (Catlin et al., Theorem 1.3 of [9]) Either $G \in \{K_1, K_2\} \cup \{K_{2,t} : t \ge 1\}$ or $F(G) \ge 3$ and $|E(G)| \le 2|V(G)| - 5$.

3. Spanning trails with bounded independence numbers

In the first half of this section, we investigate the relationship between minimum degree and independence number that assures supereulerian property.

Lemma 3.1. Let G be a reduced graph with $\delta(G) \geq 2$ and $\alpha(G) \leq 3$. Then G is superculerian if and only if $G \notin \{K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}\}$.

Proof. Since *G* is reduced, by Theorem 2.3(ii), *G* is simple and K_3 -free. Thus, $\Delta(G) \leq \alpha(G) \leq 3$. Assume that *G* has a cut vertex *u*. Since $\Delta(G) \leq 3$, at least one of the edges incident with *u* is a cut edge of *G*. Let *uv* denote this cut edge. Suppose G_1 and G_2 are two connected components in G - uv. Since $\delta(G) \geq 2$, $|D_1(G_i)| \leq 1$ (i = 1, 2). Since *G* is K_3 -free, G_i is K_3 -free. Hence we may assume that, for $1 \leq i \leq 2$, $V(G_i) - \{u, v\}$ has two vertices u_i and v_i with $u_i v_i \notin E(G_i)$. It follows that $\{u_1, v_1, u_2, v_2\}$ is an independent set in *G*, contrary to the assumption $\alpha(G) \leq 3$. Thus we may assume that $\kappa(G) \geq 2$ and so $\kappa(G) \geq \alpha(G) - 1$. Since *G* is reduced with $\alpha(G) \leq 3$, by Theorem 1.1 and $\alpha(P(10)) = 4$, either *G* is supereulerian or $G \in \{K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}\}$. \Box

Theorem 3.2 (Corollary 5.2 of [11]). Let *G* be a connected simple graph with $|V(G)| \le 13$ and $\delta(G) \ge 3$, and *G'* be the reduction of *G*. Then $G' \in \{K_1, K_2, P^3, K_{1,2}, K_{1,3}, P(10)\}$.

Theorem 3.3 (Theorem 1 of [12]). Let G be a connected reduced graph with order n.

(i) If $\alpha(G) = 2$, then $n \le 5$. (ii) If $\alpha(G) = 3$, then $n \le 8$. (iii) If $\alpha(G) \ge 4$, then $\frac{\delta(G)\alpha(G)+4}{2} \le n \le 4\alpha(G) - 5$.

Theorem 3.4. Let G be a connected reduced graph with $\delta(G) \ge \alpha(G) - 1$. Then G is supereulerian if and only if $G \notin \mathcal{F}_1$.

Proof. It is routine to verify that every graph in \mathcal{F}_1 is not supereulerian. It suffices to prove that under the assumption of the theorem, if $G \notin \mathcal{F}_1$, then G must be supereulerian. Since K_1 is supereulerian, we assume that $|V(G)| \ge 2$. Since G is reduced, by Theorem 2.3(iii), we have $\delta(G) \le 3$. Assume first that $\delta(G) = 3$, implying $\alpha(G) \le \delta(G) + 1 = 4$. By Theorem 3.3(iii), $|V(G)| \le 11$. Since $\delta(G) = 3$, by Theorem 3.2, we have $G \cong P(10)$, which is in \mathcal{F}_1 , contrary to the assumption $G \notin \mathcal{F}_1$. Hence we must have $\delta(G) \le 2$. Assume that $\delta(G) = 2$ and so $\alpha(G) \le \delta(G) + 1 = 3$. By Lemma 3.1, we have $G \in \{K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}\} \subseteq \mathcal{F}_1$, contrary to the assumption $G \notin \mathcal{F}_1$. Thus we must have $\delta(G) = 1$, forcing $\alpha(G) \le 2$. By Theorem 2.3(ii), G is K_3 -free. So $\Delta(G) \le \alpha(G) \le 2$. Since G is a connected graph with $\delta(G) = 1$, $\Delta(G) \le 2$ and $\alpha(G) \le 2$, G must be a path with length at most 4. Thus, $G \in \{K_2, P^3, P^4\} \subseteq \mathcal{F}_1$, again, contrary to the assumption $G \notin \mathcal{F}_1$. These contradictions justify Theorem 3.4.

Corollary 3.5. Let G be a connected graph with $\kappa'(G) \ge \alpha(G) - 1$. Let G' be the reduction of G. Then G is supereulerian if and only if $G' \notin \mathcal{F}_1$.

Proof. By the definition of graph contractions, we have $\kappa'(G') \ge \kappa'(G) \ge \delta(G) \ge \alpha(G) - 1 \ge \alpha(G') - 1$. By Theorem 3.4, G' is superculerian if and only if $G' \notin \mathcal{F}_1$. \Box

In the following, we will investigate the relationship between $\alpha(G)$ and $\kappa'(G)$ which may warrant the existence of (possibly open) spanning trails. We need the assistance of some former results.

Lemma 3.6 (Corollary 2.1 of [11]). Let G be a simple 2-edge-connected graph with order $n \le 9$. If $|D_2(G)| \le 2$ and G is K_3 -free, then G is collapsible.

Lemma 3.7 (Corollary 2.3 of [11]). Let G be a simple 2-edge-connected graph with order n. If $n \le 10$ and $|D_2(G)| \le 1$, then either G is collapsible or $G \cong P(10)$.

Lemma 3.8. Let *G* be a connected reduced graph with order $n \le 10$ and $\delta(G) \ge 2$. If $|D_2(G)| \le 2$, then $\kappa'(G) \ge 2$.

Proof. By contradiction, we assume that *G* has a cut edge *e*, and H_1 , H_2 are the two connected components in G - e with $|V(H_1)| \leq |V(H_2)|$. Since $n = |V(G)| \leq 10$ and $\delta(G) \geq 2$, $1 < |V(H_1)| \leq 5$. Because $\delta(G) \geq 2$ and $|D_2(G)| \leq 2$, $0 \leq |D_1(H_1)| \leq 1$. And we have either $|D_2(H_1)| \leq 3$ if $|D_1(H_1)| = 0$ or $|D_2(H_1)| \leq 1$ if $|D_1(H_1)| = 1$. In either case, we have $2|D_1(H_1)| + |D_2(H_1)| \leq 3$. Then

$$\begin{aligned} 2|E(H_1)| &= \sum_{i \ge 1} i|D_i(H_1)| = |D_1(H_1)| + 2|D_2(H_1)| + \sum_{j \ge 3} j|D_j(H_1)| \\ &\geq |D_1(H_1)| + 2|D_2(H_1)| + 3[|V(H_1)| - (|D_1(H_1)| + |D_2(H_1)|)] \\ &= 3|V(H_1)| - (2|D_1(H_1)| + |D_2(H_1)|) \\ &\geq 3|V(H_1)| - 3. \end{aligned}$$

Since G is reduced, by Theorem 2.2(iv) and Theorem 2.3(i), we have,

$$F(H_1) = 2|V(H_1)| - |E(H_1)| - 2 \le 2|V(H_1)| - \frac{3|V(H_1)| - 3}{2} - 2 = \frac{|V(H_1)| - 1}{2} \le 2.$$

By Theorem 2.3(iv), and since $|V(H_1)| \leq 5$ and $\delta(G) \geq 2$, we must have $H_1 \cong K_{2,3}$. It follows that $|V(H_2)| = |V(H_1)| = 5$, and so by the symmetry between H_1 and H_2 , we also have $H_2 \cong K_{2,3}$. Since the cut edge e in G is incident with at most one vertex in $D_2(H_1)$ and at most one vertex in $D_2(H_2)$, it follows that $|D_2(G)| \ge (|D_2(H_1)| - 1) + (|D_2(H_2)| - 1) = 4$, contrary to the assumption that $|D_2(G)| < 2$. Hence we must have $\kappa'(G) > 2$. \Box

Theorem 3.9. If G is a graph with $\kappa'(G) > \max\{2, \alpha(G) - 3\}$, then G has a spanning trail.

Proof. We argue by contradiction and assume that

G does not have a spanning trail, and |V(G)| is minimized.

Suppose G' is the reduction of G. Since $\kappa'(G') > \kappa'(G) > \max\{2, \alpha(G) - 3\} > \max\{2, \alpha(G') - 3\}$, by Theorem 2.2(iii), it suffices to prove the case when G' = G. By Theorem 2.1, we have $2 < \kappa'(G) < 3$. By Theorem 1.2, we may assume that $\kappa'(G) > \kappa(G)$. Let *X* be a vertex cut of *G* and let

 H_1, H_2, \ldots, H_t be the components of G - X, and for 1 < i < t, $G_i = G[V(H_i) \cup X]$. (2)

(1)

(5)

Claim 1. Suppose that $|X| \le 2$ and $t \ge 2$. Then each of the following holds.

(i) If Γ_1 and Γ_2 are two subgraphs of G with $V(\Gamma_1) \cap V(\Gamma_2) \subseteq X$ and $E(\Gamma_1) \cap E(\Gamma_2) \subseteq E(G[X])$, then $\alpha(G[V(\Gamma_1) \cup V(\Gamma_2)]) \geq C(\Gamma_1) \cup C(\Gamma_2)$ $\alpha(\Gamma_1) + \alpha(\Gamma_2) - |X|.$

(ii) $\sum_{i=1}^{t} \alpha(G_i) \leq \alpha(G) + |X|(t-1).$ (iii) If |X| = 1, then for any $1 \leq i \leq t$, G_i is not supereulerian.

(iv) If |X| = 1, then for each $1 \le i \le t$, we have $\kappa'(G_i) \ge \kappa'(G)$ and $\alpha(G_i) \ge \kappa'(G) + 1$. And

$$t(\kappa'(G)+1) \le \sum_{i=1}^{r} \alpha(G_i) \le \alpha(G) + (t-1).$$
 (3)

Proof of Claim 1. We prove (i) first. For $1 \le i \le 2$, suppose S_i is a maximum independent set of Γ_i . Let $X' = \{x \in X : x \in X : x \in X\}$ $N_G(x) \cap (S_1 \cup S_2) \neq \emptyset$ and S be obtained from $S_1 \cup S_2 - X'$. Since $V(\Gamma_1) \cap V(\Gamma_2) \subseteq X$ and $E(\Gamma_1) \cap E(\Gamma_2) \subseteq E(G[X])$, S is an independent set of $G[V(\Gamma_1) \cup V(\Gamma_2)]$. Since $\alpha(G[V(\Gamma_1) \cup V(\Gamma_2)]) \ge |S| \ge |S_1| + |S_2| - |X|$, and so (i) follows. Consequently, (ii) of Claim 1 follows from (i) by induction on t. To show (iii), we assume that for some i_0, G_{i_0} is supereulerian. Let $\Gamma = G/G_{i_0}$. Then we have $\kappa'(G/G_{i_0}) \ge \kappa'(G) \ge \max\{2, \alpha(G) - 3\} \ge \max\{2, \alpha(G/G_{i_0}) - 3\}$. By (1), G_{i_0} has a spanning trail T passing through the only vertex in X, and so T can be extended to a spanning trail of G by including a spanning eulerian subgraph of G_{i_0} to T. This justifies (iii). Finally we note that if |X| = 1, then every edge cut of G_i is also an edge cut of G, and so $\kappa'(G_i) \ge \kappa'(G)$. If for some *i*, $\alpha(G_i) \leq \kappa'(G)$, then by Corollary 3.5, G_i is supereulerian, contrary to Claim 1(iii). This proves $\alpha(G_i) \geq \kappa'(G) + 1$. Hence (3) follows from Claim 1(ii) and $\alpha(G_i) > \kappa'(G) + 1$, for each 1 < i < t. This proves Claim 1.

Throughout the rest of the proof, when a vertex cut X of G is specified, the notation in (2) will be used in the arguments.

Case 1. $\kappa'(G) = 2$.

Since $\kappa'(G) > \max\{2, \alpha(G) - 3\}$, we have $\alpha(G) < 5$. By Theorem 1.2, we may assume that $\kappa(G) = 1$, and so G has a vertex cut X = {x}. By (3) with $\kappa'(G) = 2$ and $\alpha(G) < 5$, we have 3t < t + 4, and so t = 2. Again by (3), $\alpha(G_1) + \alpha(G_2) = 6$, and so $(\alpha(G_1), \alpha(G_2)) \in \{(2, 4), (3, 3), (4, 2)\}$. Since |X| = 1, by Claim 1(iv), $\kappa'(G_i) \ge \kappa'(G) = 2$ (i = 1, 2). If $(\alpha(G_1), \alpha(G_2)) = (2, 4)$ (resp. $(\alpha(G_1), \alpha(G_2)) = (4, 2)$), then by Theorem 3.4, G_1 (resp. G_2) is supereulerian, contrary to Claim 1(iii). Hence we must have $(\alpha(G_1), \alpha(G_2)) = (3, 3)$. By Theorem 3.4, each of G_1 and G_2 is either superculerian or is in $\{K_{2,3}, K_{2,3}(1, 2, 2), S_{1,2}\}$. Since |X| = 1, it follows that G has a spanning trail, contrary to (1). Thus Case 1 will always lead to a contradiction.

Case 2. $\kappa'(G) = 3$.

As $\kappa'(G) \ge \max\{2, \alpha(G) - 3\}$, we have $\alpha(G) \le 6$. By Theorem 1.2, we may assume that $\kappa(G) \in \{1, 2\}$. Let X be a vertex cut of *G* with $|X| = \kappa(G)$. If $\kappa(G) = 1$, then $\kappa'(G_i) \ge \kappa'(G) = 3$ $(1 \le i \le t)$, and so by (3) and $\alpha(G) \le 6$, we have $4t \le t + 5$, forcing t = 1, contrary to the fact that t > 2. Hence we must have $\kappa(G) = 2$. Denote $X = \{u_1, u_2\}$. Since $\kappa'(G) = 3$ and since *G* is reduced, for each $i \in \{1, 2\}$, (recall that notation in (2) is used here),

$$|D_1(G_i)| \le 1, \ D_1(G_i) \cup D_2(G_i) \subseteq \{u_1, u_2\} \text{ and } |V(H_i)| \ge 3.$$
(4)

Let $G_i^- = G_i - D_1(G_i)$ and $|V(G_i^-)| = n_i^ (1 \le i \le t)$. By $\kappa'(G) = 3$ and (4),

$$\delta(G_i^-) \ge 2$$
 and $|D_2(G_i^-)| \le 2$.

By Theorem 2.2(iv), G_i^- is reduced. If $n_i^- \le 9$, by (5) and Lemma 3.8, $\kappa'(G_i) \ge 2$. By Theorem 2.3(ii) and Lemma 3.6, G_i^- is collapsible, contrary to the fact that G_i^- is reduced. Then $n_i^- \ge 10$ ($1 \le i \le t$). Since $\alpha(G) \le 6$, by Theorem 3.3(iii), $n \le 19$. Since |X| = 2, we have t = 2.

Fig. 2. The graphs J_1 and J_2 .

Claim 2. For each *i* with $1 \le i \le 2$, both $n_i^- = 10$ and $G_i = G_i^-$.

Proof of Claim 2. By symmetry, it suffices to prove the case when i = 1. By contradiction, assume that $n_1^- > 10$ or $G_1 \neq G_1^-$. Since $G_1^- = G_1 - D_1(G_1)$, each of these assumptions leads to $|V(G_1)| \ge 11$. Hence we have $|V(G_1)| \ge 11$ and $|V(G_2)| \ge 10$. As $G_i = G[V(H_i) \cup X]$ and |X| = 2, we have $|V(H_1)| \ge 9$ and $|V(H_2)| \ge 8$. By Theorem 3.3, both $\alpha(H_1) \ge 4$ and $\alpha(H_1) \ge 3$, and so $\alpha(G) \ge \alpha(H_1) + \alpha(H_2) \ge 7$, contrary to $\alpha(G) \le 6$. This proves Claim 2.

Claim 3. For each *i* with $1 \le i \le 2$ and for any $u \in \{u_1, u_2\}$, there is a spanning trail starting from *u* in G_i .

Proof of Claim 3. Without loss of generality, suppose i = 1. By Claim 2, $G_1 = G_1^-$, and so (5) applies to G_1 . If $|D_2(G_1)| \le 1$, by Claim 2 and Lemma 3.8, $\kappa'(G_1) \ge 2$. By Lemma 3.7, we have $G_1 \cong P(10)$ which has a spanning trail starting from any vertex. Hence we assume that $|D_2(G_1)| = 2$. By (4), $D_2(G_1) = \{u_1, u_2\}$. By Lemma 3.8, $\kappa'(G_1) \ge 2$. For any $u \in \{u_1, u_2\}$, since $d_{G_1}(u) = 2$, by Claim 2, there is a $v \in V(G_1)$ such that $uv \notin E(G_1)$. Let $G_1^+ = G_1 + uv$. Then $\delta(G_1^+) \ge 2$, $|D_2(G_1^+)| \le 1$ and $\kappa'(G_1^+) \ge \kappa'(G_1) \ge 2$. By Lemma 3.7, either G_1^+ is collapsible or $G_1^+ \cong P(10)$. If G_1^+ is collapsible, then there is a spanning closed trail *T* in G_1^+ , and so *T* - uv is a spanning trail starting from *u* in G_1 . If $G_1^+ \cong P(10)$, then $G_1^+ - u$ is supereulerian, implying that G_1 has a spanning trail starting from *u*. This proves Claim 3.

Since t = 2, by Claim 3, G has a spanning trail. This completes the proof of Theorem 3.9.

As shown in [21], the inequality of Theorem 3.9 is sharp. Let J_1 and J_2 be the graphs depicted in Fig. 2. For $i \in \{1, 2\}$, let $t \ge 3$ be an integer and J_i^* be a graph obtained from J_i by replacing at most two 2-degree vertices in J_i by a complete graph K_t . Then $\kappa'(J_i^*) \ge 2$ and $\alpha(J_i^*) = 6$. But J_i^* does not have a spanning trail.

4. Spanning trails with bounded matching numbers

In this section, we will investigate superculerian graphs with a bounded size of maximum matchings. A component H of G is an **odd component** if $|V(H)| \equiv 1 \pmod{2}$. Let $q(G) = |\{Q : Q \text{ is an odd component of } G\}|$. Tutte [22] and Berge [2] proved the following theorem.

Theorem 4.1 (Tutte, [22]; Berge, [2]). Let G be a graph with n vertices. If

$$t = \max_{S \in V(G)} \{q(G - S) - |S|\},\tag{6}$$

then $\alpha'(G) = (n - t)/2$.

In [13], a lower bound of the size of maximum matching has been found for reduced graphs.

Theorem 4.2 (Theorem 1 of [13]). Let G be a reduced graph with n vertices and $\delta(G) \ge 3$. Then $\alpha'(G) \ge \min\{\frac{n-1}{2}, \frac{n+4}{3}\}$.

Following a similar idea in [13], the lower bond in Theorem 4.2 can be slightly improved as shown in Theorem 4.4. We start with a lemma on reduced graphs.

Lemma 4.3. Let *G* be a connected reduced graph with $\delta(G) \ge 3$. Suppose that $S \subseteq V(G)$ is a vertex subset attaining the maximum in (6) with |S| > 0, m = q(G - S) and that G_1, G_2, \ldots, G_m are the components in G - S with odd number of vertices such that $|V(G_1)| \le |V(G_2)| \le \cdots \le |V(G_m)|$. Define

$$X = \{G_i : |V(G_i)| = 1, 1 \le i \le m\}, \qquad Y = \{G_i : |V(G_i)| = 3, 1 \le i \le m\}, \quad x = |X|, y = |Y|.$$

$$V^* = \bigcup_{k=1}^{x+y} V(G_k), G^* = G[V^* \cup S^*] \quad and \quad s^* = |S^*|, \quad where \ S^* = \{s \in S : v^*s \in E(G), v^* \in V^*\}.$$
(7)

Thus G^* is spanned by a bipartite subgraph with (V^*, S^*) being its vertex bipartition with $|V^*| = x + 3y \ge 1$. By the definition of x, V^* contains x isolated vertices in $G^*[V^*]$. Then each of the following holds.

(i) $n \ge \sum_{i=1}^{m} |V(G_i)| + |S| \ge m |V(G_1)| + |S|.$ (ii) If x > 0, then $s^* \ge 3$. (iii) $m \le \frac{n+4x+2y-|S|}{5}$. (iv) $G^* \notin \{K_1, K_2, K_{1,2}, K_{2,2}\}.$ (v) $|E(G^*)| \ge 3x + 7y.$ **Proof.** Statement (i) follows from the definition of *m* and *G*_i. If x > 0, then by $\delta(G) \ge 3$, there must be at least 3 vertices in *S*^{*} adjacent to the only vertex in *G*₁, and so $s^* \ge 3$. This justifies (ii). By (7), we have $n \ge |S| + x + 3y + 5(m - x - y)$, and so (iii) follows. As $\delta(G) \ge 3$, every vertex in *G*₁ must have degree at least 3 in *G*^{*}, and so (iv) must hold. Since $\delta(G) \ge 3$ and *G* does not contain a 3-cycle, every vertex in $\cup_{G_i \in X} V(G_i)$ is incident with at least 3 edges in *G*^{*}; and every component in $G^*[\cup_{G_i \in Y} V(G_i)]$ is a $K_{1,2}$ and is incident with at least 5 edges with one end in *S*^{*} plus two edges in $E(G_i)$. Hence $|E(G^*)| \ge 3x + 7y$. This proves (v). \Box

Theorem 4.4. Let G be a connected reduced graph with n vertices and $\delta(G) \geq 3$. Then $\alpha'(G) \geq \min\{\frac{n}{2}, \frac{n+5}{2}\}$.

Proof. Let *t* be defined as in (6). By Theorem 4.1, if t = 0, $\alpha'(G) = \frac{n}{2} \ge \min\{\frac{n}{2}, \frac{n+5}{3}\}$. Hence we assume that $t \ge 1$. If $n \le 11$, then since $\delta(G) \ge 3$, by Theorem 3.2, $G \cong P(10)$. As $\alpha'(P(10)) = 5 = \frac{10}{2}$, Theorem 4.4 holds when $n \le 11$.

Hence we assume that $n \ge 12$, and so $\frac{n+5}{2} < \frac{n}{2}$. By Theorem 4.1, to prove Theorem 4.4, it suffices to show that

$$\alpha'(G) \ge \frac{n-t}{2} \ge \frac{n+5}{3} \text{, or equivalently, } t \le \frac{n-10}{3}.$$
(8)

In the rest of the proof, we shall show that (8) always holds in any case, which implies the validity of Theorem 4.4. Define *S*, *m*, *G*₁, *G*₂, ..., *G*_m, *V*^{*}, *S*^{*}, *s*^{*} and *G*^{*} as in Lemma 4.3. Since *G* is reduced, by Theorem 2.3(ii), *G* is simple and *K*₃-free. If |S| = 0, as *G* is connected and as $n \ge 12$, we have t = 1 and so |V(G)| is odd and $n \ge 13$. By Theorem 4.1 and as $n \ge 13$, $\alpha'(G) \ge \frac{n-1}{2} \ge \frac{n+5}{3}$, and so (8) holds. Hence we assume that $|S| \ge 1$.

Case 1. x = 0, i.e. $|V(G_1)| \ge 3$.

Subcase 1.1.
$$|V(G_1)| = 3$$
.

Since *G* is K_3 -free, $G_1 \cong K_{1,2}$. By $\delta(G) \ge 3$, we have $|S| \ge 3$. It follows by $n \ge 3m + |S|$ that

$$t = m - |S| \le \frac{n - |S|}{3} - |S| = \frac{n - 4|S|}{3} \le \frac{n - 12}{3},$$

and so (8) must hold.

Subcase 1.2. $|V(G_1)| = 5$.

If |S| = 1, then as G is K_3 -free and $\delta(G) \ge 3$, we have $|E(G[V(G_1) \cup S])| \ge \frac{15}{2} > 7$. On the other hand, $G[V(G_1) \cup S] \notin \{K_1, K_2\} \cup \{K_2, \ell : \ell \ge 1\}$ since $\delta(G) \ge 3$. By Theorem 2.3(iv), we have $|E(G[V(G_1) \cup S])| \le 2(5+1) - 5 = 7$. A contradiction is obtained. Hence we assume that $|S| \ge 2$. As $n \ge 5m + |S|$, we have $m \le \frac{n-|S|}{5}$. It follows by $n \ge 12$ and $t = m - |S| \ge 1$ that

$$t = m - |S| \le \frac{n - |S|}{5} - |S| = \frac{n - 6|S|}{5} \le \frac{n - 12}{5} < \frac{n - 10}{3}$$

and so (8) must hold.

Subcase 1.3. $|V(G_1)| \ge 7$.

Since $t = m - |S| \ge 1$, we have $m \ge 2$, and so $n \ge 7m + |S| \ge 15$ and $m \le \frac{n - |S|}{7}$. It follows that

$$t = m - |S| \le \frac{n - |S|}{7} - |S| = \frac{n - 8|S|}{7} \le \frac{n - 8}{7} < \frac{n - 10}{3},$$

and so (8) must hold.

Case 2. *x* ≥ 1.

By Lemma 4.3(iv), G^* is not in $\{K_1, K_2, K_{1,2}, K_{2,2}\}$, and so by Theorem 2.3(iv), either for some integer $\ell \ge 3$, $G^* \cong K_{2,\ell}$ or $F(G^*) \ge 3$.

Subcase 2.1. For some integer $\ell \geq 3$, $G^* \cong K_{2,\ell}$.

Since $\delta(G) \ge 3$, every vertices in V* must have degree at least 3 in G^* , $|V^*| = x = 2$ and $s^* = \ell \ge 3$. By the definition of y, we must have y = 0 and $|S| \ge |S^*|$. It follows by Lemma 4.3(iii) that $1 \le t = m - |S| \le \frac{n+8+2y-|S|}{5} - |S| \le \frac{n+8-65^*}{5}$, and so $n \ge 6s^* - 3$. As $s^* \ge 3$, we have $n \ge 6s^* - 3 \ge 15 \ge 32 - 9s^*$, or $5(n - 10) \ge 3(n + 8 - 6s^*)$. Hence

$$t \leq \frac{n+8-6s^*}{5} < \frac{n-10}{3},$$

and so (8) must hold.

Subcase 2.2. $F(G^*) \ge 3$.

By Theorem 2.3(i) and by Lemma 4.3(v), $3x + 7y \le |E(G^*)| \le 2(|V(G^*)| - 1) - 3 = 2(x + 3y + |S|) - 5$. This implies that $|S| \ge \frac{x+y+5}{2}$, and so $n \ge x + 3y + |S| \ge \frac{3x+7y+5}{2}$. It follows that

$$t = m - |S| \le \frac{n + 4x + 2y - |S|}{5} - |S| \le \frac{n + x - y - 15}{5} \le \frac{n - 10}{3},$$

and so (8) must hold. This completes the proof of the theorem. \Box

The following theorem for 3-edge-connected graphs with order at most 15 will be needed.

Theorem 4.5 (Theorem 1.1 of [11]). Let G be a 3-edge-connected graph and G' be the reduction of G.

(i) If $|V(G)| \le 13$, then either G is supereulerian or $G' \cong P(10)$.

(ii) If $|V(G)| \le 14$, then either G is supereulerian or $G' \in \mathcal{F}_2$.

(iii) If |V(G)| = 15, G is not supereulerian and $G' \notin \mathcal{F}_2$, then G is an essentially 4-edge-connected reduced graph with girth at least 5, $\kappa(G) \ge 2$ with $V(G) = D_3(G) \cup D_4(G)$ where $|D_4(G)| = 3$.

A few more former results are needed in the proof of the main theorem in this section.

Theorem 4.6 (Theorem 3.1 of [10]). Let G be a 3-edge-connected reduced graph with F(G) = 3. Then either G is supereulerian or each of the following holds:

(i) G has no edge joining two vertices of even degree;

(ii) G has girth at least 5;

(iii) *G* has no 2-edge-connected subgraph *G* with F(H) = 2.

Theorem 4.7 (*Reiman,* [20]; Bollobás, [4]). Let G be a connected bipartite C_4 -free graph with vertex bipartition {X, Y}, where $|X| \leq |Y|$. Then

$$|E(G)| \leq \sqrt{|Y| \cdot |X|(|X|-1) + \frac{|Y|^2}{4} + \frac{|Y|}{2}}.$$

Lemma 4.8. Let G be a reduced graph with order $n \ge 15$. If $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$, then G is supereulerian.

Proof. By contradiction, assume that *G* is not supereulerian. As $\alpha'(G) \leq 7$ and $n \geq 15$, by Theorem 4.4,

$$15 \le n \le 3\alpha'(G) - 5 \le 16.$$
 (9)

Let *t* be the integer satisfying (6) in Theorem 4.1. Then $\alpha'(G) = \frac{n-t}{2}$. By (9) and Theorem 4.4, we have $7 \ge \alpha'(G) = \frac{n-t}{2} \ge \frac{n+5}{3}$. Thus $\frac{n-10}{3} \ge t \ge n - 14$. By (9), we have $t \ge 1$ when n = 15 and $t \ge 2$ when n = 16. We shall show that neither case can occur to reach a contradiction to the assumption that *G* is not supereulerian, thereby proving the theorem. Define *S*, *m*, $G_1, G_2, \ldots, G_m, V^*, S^*$, s^* and G^* as in Lemma 4.3.

Claim 4. $G^* \notin \{K_1, K_2\} \cup \{K_{2,\ell}, \ell \ge 1\}.$

Proof of Claim 4. By Lemma 4.3(iv), $G^* \notin \{K_1, K_2, K_{1,2}, K_{2,2}\}$. Suppose that $G^* \cong K_{2,\ell}$, for some $\ell \ge 3$. By the definition of G^* , we have $x \ge \min\{2, \ell\} = 2$. This implies that x = 2, y = 0 and $|S| = s^* = \ell \ge 3$. By Lemma 4.3(i), $n \ge |S| + x + 5(m - x) = |S| + 5m - 4x$. As $|S| \ge 3$, $n \in \{15, 16\}$, x = 2 and m = |S| + t, we have $16 \ge n \ge 6|S| + 5t - 8 \ge 18 - 5t - 8 = 10 - 5t$, and so $t \le \frac{6}{5} < 2$. Thus, t = 1 and n = 15. By Theorem 4.5(iii), G does not have cycles of length at most 4, contrary to the assumption that $G^* \cong K_{2,\ell}$. This justifies Claim 4.

Claim 5. Each of the following holds. (i) $|S| > \frac{x+y+5}{2}$.

(i) $|S| \ge \frac{x+y+5}{2}$. (ii) $x - y \ge 5t + 15 - n$.

Proof of Claim 5. By Claim 4, $G^* \notin \{K_1, K_2\} \cup \{K_{2,\ell}, \ell \ge 1\}$. By Theorem 2.3(iv), $F(G^*) \ge 3$. As *G* is reduced, G^* is also reduced, and so by Theorem 2.3(i) and Lemma 4.3(v), $3x + 7y \le |E(G^*)| \le 2(x + 3y + |S|) - 5$. Hence (i) must hold. By Lemma 4.3(iii) and by m - |S| = t, we have $\frac{n+4x+2y-|S|}{5} - |S| \ge t$. It follows by Claim 5(i) that

$$\frac{n+4x+2y-\frac{x+y+5}{2}}{5} - \frac{x+y+5}{2} \ge \frac{n+4x+2y-|S|}{5} - |S| \ge t$$

which implies $x - y \ge 5t + 15 - n$. Hence (ii) holds as well. This proves Claim 5.

Case 1. $t \ge 1$ when n = 15.

By Claim 5(ii) with n = 15, $x \ge 5 + y \ge 5$. Assume that $|S| \ge x + 1$. By the choice of S, we have $1 \le t = m - |S|$, and so $m \ge |S| + 1 \ge x + 2$. By Lemma 4.3(i) and by $|S| \ge x + 1$, $n \ge \sum_{i=1}^{m} |V(G_i)| + |S| \ge x + |V(G_{x+1})| + |V(G_{x+2})| + |S| \ge x + 3 + 3 + (x + 1) \ge 17$, contrary to n = 15. Hence $|S| \le x$. Let $E^+ = \{uv \in E(G) : u \in [\bigcup_{G_i \in X} V(G_i)], v \in S\}$, and $G^+ = G[E^+]$. By (7) and the definition of G^+ , G^+ is a bipartite graph with a vertex bipartition $\{\bigcup_{G_i \in X} V(G_i), S\}$. Since $\delta(G) \ge 3$, $|E(G^+)| \ge 3x$. Since n = 15, by Theorem 4.5, G^+ is C_4 -free. Since $|S| \le x$, by Theorem 4.7,

$$3x \le |E(G^+)| \le \sqrt{x \cdot |S|(|S|-1) + \frac{x^2}{4}} + \frac{x}{2} \le \sqrt{x^2(x-1) + \frac{x^2}{4}} + \frac{x}{2}.$$
(10)

Solving (10) for *x* to get $\frac{25x^2}{4} \le x^3 - x^2 + \frac{x^2}{4}$, and so $x \ge 7$. In particular, when x = 7, the equality in (10) holds. Thus, if x = 7, |S| = x = 7 and so m = |S| + t = 8. By Lemma 4.3(i), $|S| \le 15 - x - \sum_{i=x+1}^{m} |V(G_i)| \le 15 - 7 - 3 = 5$, contrary to that |S| = 7. Hence we must have $x \ge 8$. As n = 15 and $x - |S| \le m - |S| = t = 1$, we have |S| = 7 and x = 8. By Theorem 4.7, $|E(G^+)| < 23$. As $\delta(G) \ge 3$, $|E(G^+)| \ge 3x = 24$, a contradiction. This proves that Case 1 does not occur.

Case 2. $t \ge 2$ when n = 16.

By Claim 5(ii), $x \ge 9 + y$. By Claim 5(i), $|S| \ge 7 + y$. Since n = 16, we must have $x = 9 = |V^*|$, |S| = 7 and $V(G^*) = V(G)$. As $\delta(G) \ge 3$, we have $|E(G)| \ge |E(G^*)| \ge 3x = 27$. By Theorem 2.3(i) and (iv), $|E(G)| \le 2|V(G)| - 5 = 27$. Therefore, |E(G)| = 27, F(G) = 3 and $G^* \cong G$ is a bipartite graph with bipartition V^* and S. By Theorem 4.6, the girth of G is at least 5. By Theorem 4.7, $|E(G)| \le 24$, contrary to |E(G)| = 27. This proves that Case 2 does not occur as well, and completes the proof. \Box

Theorem 4.9. Let *G* be a connected graph with *n* vertices and $\kappa'(G) \ge 3$, and *G'* be the reduction of *G*. If $\alpha'(G) \le 7$, then *G* is superculerian if and only if $G' \notin \mathcal{F}_2 = \{P(10), P(14)\}$.

Proof. As P(10) and P(14) are not supereulerian, the necessity is clear. By Theorem 2.2, *G* is supereulerian if and only if *G*' is supereulerian. By the definition of contractions, we have $\kappa(G') \ge \kappa'(G) \ge 3$ and $\alpha'(G') \le \alpha'(G) \le 7$. Hence it suffices to prove that

if a reduced graph *G* with $\kappa'(G) \ge 3$ and $\alpha'(G) \le 7$ is not superculerian, then $G \in \mathcal{F}_2$. (11)

By Lemma 4.8, (11) holds if $|V(G)| \ge 15$. By Theorem 4.5, (11) holds if $|V(G)| \le 14$. This completes the proof of the theorem. \Box

Corollary 4.10. Let *G* be a connected graph. If $|V(G)| \le 15$ and $\kappa'(G) \ge 3$, then *G* is supereulerian if and only if the reduction of *G* is not in \mathcal{F}_2 .

Proof. If $|V(G)| \le 15$, then $\alpha'(G) \le \frac{15}{2}$. So $\alpha'(G) \le 7$. By Theorem 4.9, this corollary holds. \Box

Corollary 4.11. Let G be a connected reduced graph. Each of the following holds.

(i) If $|V(G)| \le 15$ and $\delta(G) \ge 3$, then G is supereulerian if and only if $G \notin \mathcal{F}_2$.

(ii) If $\delta(G) \ge 3$ and $\alpha(G) \le 5$, then G is supereulerian if and only if $G \ne P(10)$.

Proof. First we prove (i). Suppose that $\kappa'(G) \le 2$. Let *X* be a minimal edge cut in *G* with $|X| \le 2$. Let G_1 and G_2 be the two components in G - X with $|V(G_1)| \le |V(G_2)|$. Since $|V(G)| \le 15$, $|V(G_1)| \le 7$. Since $|X| \le 2$ and $\delta(G) \ge 3$, either $|D_1(G_1)| = 0$ and $|D_2(G_1)| \le 2$ or $|D_1(G_1)| \le 1$ and $|D_2(G_1)| = 0$. Then $G \notin \{K_1, K_2\} \cup \{K_{2,\ell} : \ell \ge 1\}$ and $|E(G_1)| \ge \frac{4+3(|V(G_1)|-2)}{2}$. By Theorem 2.3, $\frac{4+3(|V(G_1)|-2)}{2} \le |E(G_1)| \le 2|V(G_1)| - 5$. Then $|V(G_1)| \ge 8$, contrary to that $|V(G_1)| \le 7$. Thus, $\kappa'(G) \ge 3$. Statement (i) follows from Corollary 4.10.

Now we prove (ii). If $\alpha(G) \le 5$, by Theorem 3.3, $|V(G)| \le 15$. Since $\alpha(P(14)) = 6$, the statement follows from (i) above. \Box

Acknowledgments

The authors would like to thank the referees for their helpful suggestions which improved the presentation of the paper.

References

- [1] M. An, L. Xiong, Supereulerian graphs, collapsible graphs and matchings, Acta Math. Appl. Sin. Engl. Ser. (2015) in press.
- [2] C. Berge, Sur le couplage maximum d'un graphe, CR Acad. Sci. Paris 247 (1958) 258-259.
- [3] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79-84.
- [4] B. Bollobás, Extremal Graph Theory, Academic Press, New York, NY, 1978.
- [5] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [6] P.A. Catlin, Supereulerian graph, Collopsible graphs and four-cycles, Congr. Numer. 56 (1987) 233-246.
- [7] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
- [8] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177–196.
- [9] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81–91.
- [10] P.A. Catlin, H.-J. Lai, Supereulerian Graphs and the Petersen Graph, J. Combin. Theory Ser. B 66 (1996) 123–139.
- [11] W.-G. Chen, Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. Combin. Math. Combin. Comput. 96 (2016) 41–63.
- [12] Z.-H. Chen, Supereulerian graphs, independent sets, and degree-sum conditions, Discrete Math. 179 (1998) 73–87.
- [13] Z.-H. Chen, H.-J. Lai, Collapsible graphs and matching, J. Graph Theory 17 (1993) 597–605.
- [14] Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, in: Combinatorics and Graph Theory'95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, 1995, pp. 53–69.
- [15] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
- [16] L. Han, H.-J. Lai, L. Xiong, H. Yan, The Chvátal-Erdős condition for supereulerian graphs and the Hamiltonian index, Discrete Math. 310 (2010) 2082–2090.
- [17] H.-J. Lai, H. Yan, Supereulerian graphs and matchings, Appl. Math. Lett. 24 (2011) 1867–1869.

- [18] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926–940.
 [19] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309–310.
 [20] I. Reiman, Über ein problem von K. Zarankiewicz, Acta. Math. Acad. Sci. Hungary 9 (1958) 269–273.
- [21] R. Tian, L. Xiong, The Chvátal-Erdős condition for a graph to have a spanning trail, Graphs Combin. 31 (2015) 1739–1754.
 [22] W.T. Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107–111.