Spanning trails with variations of Chvátal-Erdős conditions

Zhi-Hong Chen ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b }}$, Meng Zhang ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Computer Science E Software Engineering, Butler University, Indianapolis, IN 46208, USA
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
${ }^{\text {c }}$ Department of Mathematics, University of North Georgia - Oconee, Watkinsville, GA 30677, USA

ARTICLE INFO

Article history:

Received 5 August 2015
Received in revised form 11 May 2016
Accepted 2 August 2016
Available online 23 September 2016

Keywords:

Spanning trail
Supereulerian
Collapsible
Independence number
Matching number

Abstract

Let $\alpha(G), \alpha^{\prime}(G), \kappa(G)$ and $\kappa^{\prime}(G)$ denote the independence number, the matching number, connectivity and edge connectivity of a graph G, respectively. We determine the finite graph families \mathcal{F}_{1} and \mathcal{F}_{2} such that each of the following holds. (i) If a connected graph G satisfies $\kappa^{\prime}(G) \geq \alpha(G)-1$, then G has a spanning closed trail if and only if G is not contractible to a member of \mathcal{F}_{1}. (ii) If $\kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\}$, then G has a spanning trail. This result is best possible. (iii) If a connected graph G satisfies $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 7$, then G has a spanning closed trail if and only if G is not contractible to a member of \mathcal{F}_{2}.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graphs considered are finite and loopless. We follow [5] for undefined terms and notation. Let $\boldsymbol{N}_{\boldsymbol{G}}(\boldsymbol{u})$ be the set of vertices adjacent to u in G, and $\boldsymbol{D}_{\boldsymbol{i}}(\boldsymbol{G})=\{\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G}): \boldsymbol{d}(\boldsymbol{v})=\boldsymbol{i}\}$. As in [5], for a graph G, let $\boldsymbol{\alpha}(\boldsymbol{G}), \boldsymbol{\alpha}^{\prime}(\boldsymbol{G}), \boldsymbol{\kappa}(\boldsymbol{G})$, $\boldsymbol{\kappa}^{\prime}(\boldsymbol{G})$ denote independence number, matching number, connectivity and edge connectivity of G, respectively. An edge cut E of a graph G is essential if $G-E$ contains two nontrivial components. We use $\boldsymbol{O}(\boldsymbol{G})$ to denote the set of all odd degree vertices of G. A cycle on n vertices is often called an \boldsymbol{n}-cycle. For $A \subseteq V(G) \cup E(G), \boldsymbol{G}[\boldsymbol{A}]$ is the subgraph of G induced by A, and $\boldsymbol{G}-\boldsymbol{A}$ is the subgraph of G obtained by deleting the elements in A. Let H be a graph. We say G is \boldsymbol{H}-free if G does not contain H as a subgraph.

As in [5], a graph G is eulerian if G is a closed trail. Equivalently, G is eulerian if G is connected with $O(G)=\emptyset$. A graph is supereulerian if it has a spanning closed trail. Boesch et al. [3] first posed the problem of characterizing supereulerian graphs. Pulleyblank [19] proved that determining if a 3-edge-connected planar graph is supereulerian is NP-complete. Catlin [8] gave a survey on supereulerian graphs, which was supplemented and updated in [14,18].

Motivated by a well-known result of Chvátal and Erdős [15] that every graph G with $\kappa(G) \geq \alpha(G)$ is Hamiltonian, there have been researches on conditions analogous to this Chvátal-Erdős Theorem to assure the existence of spanning trials in a graph utilizing relationship among independence number, matching number and edge-connectivity. See [1,16,17] and [21], among others. Let $\boldsymbol{P}(\mathbf{1 0})$ denote the Petersen graph and let $\left.\boldsymbol{K}_{\mathbf{2}, \mathbf{3}} \mathbf{1}, \mathbf{2}, \mathbf{2}\right), \boldsymbol{S}_{\mathbf{1 , 2}}, \boldsymbol{K}_{\mathbf{2}, \mathbf{3}}^{\prime}$ be the graphs depicted in Fig. 1. Let $\boldsymbol{P}^{\boldsymbol{n}}$ be a path of order n. Define

$$
\mathcal{F}_{1}=\left\{K_{2}, P^{3}, P^{4}, K_{2,3}, K_{2,3}(1,2,2), S_{1,2}, P(10)\right\} \quad \text { and } \quad \mathcal{F}_{2}=\{P(10), P(14)\}
$$

[^0]

Fig. 1. $P(14)$ and some graphs in \mathcal{F}_{1}.

Theorem 1.1 (Han et al., Theorem 3 of [16]). Let G be a simple graph with $\kappa(G) \geq 2$. If $\kappa(G) \geq \alpha(G)-1$, then exactly one of the following holds.
(i) G is supereulerian.
(ii) $G \in\left\{P(10), K_{2,3}, K_{2,3}(1,2,2), S_{1,2}, K_{2,3}^{\prime}\right\}$.
(iii) G is a 2-connected graph obtained from $K_{2,3}$ (resp. $S_{1,2}$) by replacing a vertex whose neighbors have degree three in $K_{2,3}$ (resp. $S_{1,2}$) with a complete graph of order at least three.

Theorem 1.2 (Tian and Xiong, Theorem 4 of [21]). If G is a 2-connected graph with $\alpha(G) \leq \kappa(G)+3$, then G has a spanning trail.
The supereulerian property for graphs G with $\alpha^{\prime}(G) \leq 2$ and $\kappa^{\prime}(G) \geq 2$ has been completely determined in [1] and [17].
The purpose of this paper is to investigate the existence of spanning trails in graphs with given relationship between independence number and edge-connectivity, or matching number with edge-connectivity. In this paper, we determine the finite graph families \mathcal{F}_{1} and \mathcal{F}_{2} such that each of the following holds.

Theorem 1.3. If a graph G satisfies $\kappa^{\prime}(G) \geq \alpha(G)-1$, then G has a spanning closed trail if and only if G is not contractible to a member of \mathcal{F}_{1}.

Theorem 1.4. If $\kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\}$, then G has a spanning trail.
Theorem 1.5. If a graph G satisfies $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 7$, then G has a spanning closed trail if and only if G is not contractible to a member of \mathcal{F}_{2}.

In Section 2, we display the mechanism we will use in our arguments. In the subsequent sections, we prove the main results.

2. Preliminaries

For a subset $Y \subseteq E(G)$, the contraction G / Y is the graph obtained from G by identifying the two ends of each edge in Y and then by deleting the resulting loops. If H is a subgraph of G, we often use G / H for $G / E(H)$. A graph G is called collapsible if for any $R \subseteq V(G)$ with $|R|$ is even, G has a spanning subgraph S_{R} with $O\left(S_{R}\right)=R$. By definition, collapsible graphs are supereulerian. In [7], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs $H_{1}, H_{2}, \ldots, H_{c}$. The reduction of G, denoted by G^{\prime}, is the graph $G /\left(H_{1} \cup H_{2} \cup \cdots \cup H_{c}\right)$. A graph G is reduced if $G^{\prime}=G$.

Theorem 2.1 (Catlin, Theorem 2 of [7]). Every graph G with $\kappa^{\prime}(G) \geq 4$ is collapsible.
Theorem 2.2 (Catlin, Theorem 3 of [7]). Let G be a connected graph, H be a collapsible subgraph of G and let G^{\prime} be the reduction of G. Then
(i) G is collapsible if and only if G / H is collapsible.
(ii) G is supereulerian if and only if G / H is supereulerian.
(iii) G has a spanning trail if and only if G/H has a spanning trail.
(iv) Any subgraph of a reduced graph is reduced.

Let $\boldsymbol{F}(\boldsymbol{G})$ be the minimum number of extra edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees. The following results on the structures of reduced graphs will be needed.

Theorem 2.3. Let G be a connected reduced graph. Then
(i) (Catlin, Theorem 7 of [6]) If $|V(G)| \geq 3$, then $F(G)=2(|V(G)|-1)-|E(G)|$.
(ii) (Catlin, Theorem 8 of [7]) G is simple and K_{3}-free.
(iii) (Catlin, Theorem 8 of [7]) $\delta(G) \leq 3$.
(iv) (Catlin et al., Theorem 1.3 of [9]) Either $G \in\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, t}: t \geq 1\right\}$ or $F(G) \geq 3$ and $|E(G)| \leq 2|V(G)|-5$.

3. Spanning trails with bounded independence numbers

In the first half of this section, we investigate the relationship between minimum degree and independence number that assures supereulerian property.

Lemma 3.1. Let G be a reduced graph with $\delta(G) \geq 2$ and $\alpha(G) \leq 3$. Then G is supereulerian if and only if $G \notin\left\{K_{2,3}\right.$, $\left.K_{2,3}(1,2,2), S_{1,2}\right\}$.

Proof. Since G is reduced, by Theorem 2.3(ii), G is simple and K_{3}-free. Thus, $\Delta(G) \leq \alpha(G) \leq 3$. Assume that G has a cut vertex u. Since $\Delta(G) \leq 3$, at least one of the edges incident with u is a cut edge of G. Let $u v$ denote this cut edge. Suppose G_{1} and G_{2} are two connected components in $G-u v$. Since $\delta(G) \geq 2,\left|D_{1}\left(G_{i}\right)\right| \leq 1(i=1,2)$. Since G is K_{3}-free, G_{i} is K_{3}-free. Hence we may assume that, for $1 \leq i \leq 2, V\left(G_{i}\right)-\{u, v\}$ has two vertices u_{i} and v_{i} with $u_{i} v_{i} \notin E\left(G_{i}\right)$. It follows that $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ is an independent set in G, contrary to the assumption $\alpha(G) \leq 3$. Thus we may assume that $\kappa(G) \geq 2$ and so $\kappa(G) \geq \alpha(G)-1$. Since G is reduced with $\alpha(G) \leq 3$, by Theorem 1.1 and $\alpha(P(10))=4$, either G is supereulerian or $G \in\left\{K_{2,3}, K_{2,3}(1,2,2), S_{1,2}\right\}$.

Theorem 3.2 (Corollary 5.2 of [11]). Let G be a connected simple graph with $|V(G)| \leq 13$ and $\delta(G) \geq 3$, and G^{\prime} be the reduction of G. Then $G^{\prime} \in\left\{K_{1}, K_{2}, P^{3}, K_{1,2}, K_{1,3}, P(10)\right\}$.

Theorem 3.3 (Theorem 1 of [12]). Let G be a connected reduced graph with order n.
(i) If $\alpha(G)=2$, then $n \leq 5$.
(ii) If $\alpha(G)=3$, then $n \leq 8$.
(iii) If $\alpha(G) \geq 4$, then $\frac{\delta(\bar{G}) \alpha(G)+4}{2} \leq n \leq 4 \alpha(G)-5$.

Theorem 3.4. Let G be a connected reduced graph with $\delta(G) \geq \alpha(G)-1$. Then G is supereulerian if and only if $G \notin \mathcal{F}_{1}$.
Proof. It is routine to verify that every graph in \mathcal{F}_{1} is not supereulerian. It suffices to prove that under the assumption of the theorem, if $G \notin \mathcal{F}_{1}$, then G must be supereulerian. Since K_{1} is supereulerian, we assume that $|V(G)| \geq 2$. Since G is reduced, by Theorem 2.3(iii), we have $\delta(G) \leq 3$. Assume first that $\delta(G)=3$, implying $\alpha(G) \leq \delta(G)+1=4$. By Theorem 3.3(iii), $|V(G)| \leq 11$. Since $\delta(G)=3$, by Theorem 3.2, we have $G \cong P(10)$, which is in \mathcal{F}_{1}, contrary to the assumption $G \notin \mathcal{F}_{1}$. Hence we must have $\delta(G) \leq 2$. Assume that $\delta(G)=2$ and so $\alpha(G) \leq \delta(G)+1=3$. By Lemma 3.1, we have $G \in\left\{K_{2,3}, K_{2,3}(1,2,2), S_{1,2}\right\} \subseteq \mathcal{F}_{1}$, contrary to the assumption $G \notin \mathcal{F}_{1}$. Thus we must have $\delta(G)=1$, forcing $\alpha(G) \leq 2$. By Theorem 2.3 (ii), G is K_{3}-free. So $\Delta(G) \leq \alpha(G) \leq 2$. Since G is a connected graph with $\delta(G)=1, \Delta(G) \leq 2$ and $\alpha(\bar{G}) \leq 2$, G must be a path with length at most 4 . Thus, $G \in\left\{K_{2}, P^{3}, P^{4}\right\} \subseteq \mathcal{F}_{1}$, again, contrary to the assumption $G \notin \mathcal{F}_{1}$. These contradictions justify Theorem 3.4.

Corollary 3.5. Let G be a connected graph with $\kappa^{\prime}(G) \geq \alpha(G)-1$. Let G^{\prime} be the reduction of G. Then G is supereulerian if and only if $G^{\prime} \notin \mathcal{F}_{1}$.

Proof. By the definition of graph contractions, we have $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq \delta(G) \geq \alpha(G)-1 \geq \alpha\left(G^{\prime}\right)-1$. By Theorem 3.4, G^{\prime} is supereulerian if and only if $G^{\prime} \notin \mathcal{F}_{1}$.

In the following, we will investigate the relationship between $\alpha(G)$ and $\kappa^{\prime}(G)$ which may warrant the existence of (possibly open) spanning trails. We need the assistance of some former results.

Lemma 3.6 (Corollary 2.1 of [11]). Let G be a simple 2-edge-connected graph with order $n \leq 9$. If $\left|D_{2}(G)\right| \leq 2$ and G is K_{3}-free, then G is collapsible.

Lemma 3.7 (Corollary 2.3 of [11]). Let G be a simple 2-edge-connected graph with order n. If $n \leq 10$ and $\left|D_{2}(G)\right| \leq 1$, then either G is collapsible or $G \cong P(10)$.

Lemma 3.8. Let G be a connected reduced graph with order $n \leq 10$ and $\delta(G) \geq 2$. If $\left|D_{2}(G)\right| \leq 2$, then $\kappa^{\prime}(G) \geq 2$.
Proof. By contradiction, we assume that G has a cut edge e, and H_{1}, H_{2} are the two connected components in $G-e$ with $\left|V\left(H_{1}\right)\right| \leq\left|V\left(H_{2}\right)\right|$. Since $n=|V(G)| \leq 10$ and $\delta(G) \geq 2,1<\left|V\left(H_{1}\right)\right| \leq 5$. Because $\delta(G) \geq 2$ and $\left|D_{2}(G)\right| \leq 2$, $0 \leq\left|D_{1}\left(H_{1}\right)\right| \leq 1$. And we have either $\left|D_{2}\left(H_{1}\right)\right| \leq 3$ if $\left|\bar{D}_{1}\left(H_{1}\right)\right|=0$ or $\left|D_{2}\left(H_{1}\right)\right| \leq 1$ if $\left|D_{1}\left(H_{1}\right)\right|=1$. In either case, we have $2\left|D_{1}\left(H_{1}\right)\right|+\left|D_{2}\left(H_{1}\right)\right| \leq 3$. Then

$$
\begin{aligned}
2\left|E\left(H_{1}\right)\right| & =\sum_{i \geq 1} i\left|D_{i}\left(H_{1}\right)\right|=\left|D_{1}\left(H_{1}\right)\right|+2\left|D_{2}\left(H_{1}\right)\right|+\sum_{j \geq 3} j\left|D_{j}\left(H_{1}\right)\right| \\
& \geq\left|D_{1}\left(H_{1}\right)\right|+2\left|D_{2}\left(H_{1}\right)\right|+3\left[\left|V\left(H_{1}\right)\right|-\left(\left|D_{1}\left(H_{1}\right)\right|+\left|D_{2}\left(H_{1}\right)\right|\right)\right] \\
& =3\left|V\left(H_{1}\right)\right|-\left(2\left|D_{1}\left(H_{1}\right)\right|+\left|D_{2}\left(H_{1}\right)\right|\right) \\
& \geq 3\left|V\left(H_{1}\right)\right|-3 .
\end{aligned}
$$

Since G is reduced, by Theorem 2.2(iv) and Theorem 2.3(i), we have,

$$
F\left(H_{1}\right)=2\left|V\left(H_{1}\right)\right|-\left|E\left(H_{1}\right)\right|-2 \leq 2\left|V\left(H_{1}\right)\right|-\frac{3\left|V\left(H_{1}\right)\right|-3}{2}-2=\frac{\left|V\left(H_{1}\right)\right|-1}{2} \leq 2
$$

By Theorem 2.3(iv), and since $\left|V\left(H_{1}\right)\right| \leq 5$ and $\delta(G) \geq 2$, we must have $H_{1} \cong K_{2,3}$. It follows that $\left|V\left(H_{2}\right)\right|=\left|V\left(H_{1}\right)\right|=5$, and so by the symmetry between H_{1} and H_{2}, we also have $H_{2} \cong K_{2,3}$. Since the cut edge e in G is incident with at most one vertex in $D_{2}\left(H_{1}\right)$ and at most one vertex in $D_{2}\left(H_{2}\right)$, it follows that $\left|D_{2}(G)\right| \geq\left(\left|D_{2}\left(H_{1}\right)\right|-1\right)+\left(\left|D_{2}\left(H_{2}\right)\right|-1\right)=4$, contrary to the assumption that $\left|D_{2}(G)\right| \leq 2$. Hence we must have $\kappa^{\prime}(G) \geq 2$.

Theorem 3.9. If G is a graph with $\kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\}$, then G has a spanning trail.
Proof. We argue by contradiction and assume that
G does not have a spanning trail, and $|V(G)|$ is minimized.
Suppose G^{\prime} is the reduction of G. Since $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\} \geq \max \left\{2, \alpha\left(G^{\prime}\right)-3\right\}$, by Theorem 2.2(iii), it suffices to prove the case when $G^{\prime}=G$. By Theorem 2.1, we have $2 \leq \kappa^{\prime}(G) \leq 3$. By Theorem 1.2, we may assume that $\kappa^{\prime}(G)>\kappa(G)$. Let X be a vertex cut of G and let
$H_{1}, H_{2}, \ldots, H_{t}$ be the components of $G-X$, and for $1 \leq i \leq t, G_{i}=G\left[V\left(H_{i}\right) \cup X\right]$.
Claim 1. Suppose that $|X| \leq 2$ and $t \geq 2$. Then each of the following holds.
(i) If Γ_{1} and Γ_{2} are two subgraphs of G with $V\left(\Gamma_{1}\right) \cap V\left(\Gamma_{2}\right) \subseteq X$ and $E\left(\Gamma_{1}\right) \cap E\left(\Gamma_{2}\right) \subseteq E(G[X])$, then $\alpha\left(G\left[V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)\right]\right) \geq$ $\alpha\left(\Gamma_{1}\right)+\alpha\left(\Gamma_{2}\right)-|X|$.
(ii) $\sum_{i=1}^{t} \alpha\left(G_{i}\right) \leq \alpha(G)+|X|(t-1)$.
(iii) If $|X|=1$, then for any $1 \leq i \leq t, G_{i}$ is not supereulerian.
(iv) If $|X|=1$, then for each $1 \leq i \leq t$, we have $\kappa^{\prime}\left(G_{i}\right) \geq \kappa^{\prime}(G)$ and $\alpha\left(G_{i}\right) \geq \kappa^{\prime}(G)+1$. And

$$
\begin{equation*}
t\left(\kappa^{\prime}(G)+1\right) \leq \sum_{i=1}^{t} \alpha\left(G_{i}\right) \leq \alpha(G)+(t-1) \tag{3}
\end{equation*}
$$

Proof of Claim 1. We prove (i) first. For $1 \leq i \leq 2$, suppose S_{i} is a maximum independent set of Γ_{i}. Let $X^{\prime}=\{x \in X$: $\left.N_{G}(x) \cap\left(S_{1} \cup S_{2}\right) \neq \emptyset\right\}$ and S be obtained from $S_{1} \cup S_{2}-X^{\prime}$. Since $V\left(\Gamma_{1}\right) \cap V\left(\Gamma_{2}\right) \subseteq X$ and $E\left(\Gamma_{1}\right) \cap E\left(\Gamma_{2}\right) \subseteq E(G[X]), S$ is an independent set of $G\left[V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)\right]$. Since $\alpha\left(G\left[V\left(\Gamma_{1}\right) \cup V\left(\Gamma_{2}\right)\right]\right) \geq|S| \geq\left|S_{1}\right|+\left|S_{2}\right|-|X|$, and so (i) follows. Consequently, (ii) of Claim 1 follows from (i) by induction on t. To show (iii), we assume that for some $i_{0}, G_{i_{0}}$ is supereulerian. Let $\Gamma=G / G_{i_{0}}$. Then we have $\kappa^{\prime}\left(G / G_{i_{0}}\right) \geq \kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\} \geq \max \left\{2, \alpha\left(G / G_{i_{0}}\right)-3\right\}$. By (1), $G_{i_{0}}$ has a spanning trail T passing through the only vertex in X, and so T can be extended to a spanning trail of G by including a spanning eulerian subgraph of $G_{i_{0}}$ to T. This justifies (iii). Finally we note that if $|X|=1$, then every edge cut of G_{i} is also an edge cut of G, and so $\kappa^{\prime}\left(G_{i}\right) \geq \kappa^{\prime}(G)$. If for some $i, \alpha\left(G_{i}\right) \leq \kappa^{\prime}(G)$, then by Corollary $3.5, G_{i}$ is supereulerian, contrary to Claim 1(iii). This proves $\alpha\left(G_{i}\right) \geq \kappa^{\prime}(G)+1$. Hence (3) follows from Claim 1(ii) and $\alpha\left(G_{i}\right) \geq \kappa^{\prime}(G)+1$, for each $1 \leq i \leq t$. This proves Claim 1.

Throughout the rest of the proof, when a vertex cut X of G is specified, the notation in (2) will be used in the arguments.

Case 1. $\kappa^{\prime}(G)=2$.

Since $\kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\}$, we have $\alpha(G) \leq 5$. By Theorem 1.2, we may assume that $\kappa(G)=1$, and so G has a vertex cut $X=\{x\}$. By (3) with $\kappa^{\prime}(G)=2$ and $\alpha(G) \leq 5$, we have $3 t \leq t+4$, and so $t=2$. Again by $(3), \alpha\left(G_{1}\right)+\alpha\left(G_{2}\right)=6$, and so $\left(\alpha\left(G_{1}\right), \alpha\left(G_{2}\right)\right) \in\{(2,4),(3,3),(4,2)\}$. Since $|X|=1$, by Claim 1(iv), $\kappa^{\prime}\left(G_{i}\right) \geq \kappa^{\prime}(G)=2(i=1,2)$. If $\left(\alpha\left(G_{1}\right), \alpha\left(G_{2}\right)\right)=(2,4)$ (resp. $\left(\alpha\left(G_{1}\right), \alpha\left(G_{2}\right)\right)=(4,2)$), then by Theorem 3.4, G_{1} (resp. G_{2}) is supereulerian, contrary to Claim 1(iii). Hence we must have $\left(\alpha\left(G_{1}\right), \alpha\left(G_{2}\right)\right)=(3,3)$. By Theorem 3.4, each of G_{1} and G_{2} is either supereulerian or is in $\left\{K_{2,3}, K_{2,3}(1,2,2), S_{1,2}\right\}$. Since $|X|=1$, it follows that G has a spanning trail, contrary to (1). Thus Case 1 will always lead to a contradiction.
Case 2. $\kappa^{\prime}(G)=3$.
As $\kappa^{\prime}(G) \geq \max \{2, \alpha(G)-3\}$, we have $\alpha(G) \leq 6$. By Theorem 1.2, we may assume that $\kappa(G) \in\{1,2\}$. Let X be a vertex cut of G with $|X|=\kappa(G)$. If $\kappa(G)=1$, then $\kappa^{\prime}\left(G_{i}\right) \geq \kappa^{\prime}(G)=3(1 \leq i \leq t)$, and so by (3) and $\alpha(G) \leq 6$, we have $4 t \leq t+5$, forcing $t=1$, contrary to the fact that $t \geq 2$. Hence we must have $\kappa(\bar{G})=2$. Denote $X=\left\{u_{1}, u_{2}\right\}$. Since $\kappa^{\prime}(G)=3$ and since G is reduced, for each $i \in\{1,2\}$, (recall that notation in (2) is used here),

$$
\begin{equation*}
\left|D_{1}\left(G_{i}\right)\right| \leq 1, D_{1}\left(G_{i}\right) \cup D_{2}\left(G_{i}\right) \subseteq\left\{u_{1}, u_{2}\right\} \text { and }\left|V\left(H_{i}\right)\right| \geq 3 \tag{4}
\end{equation*}
$$

Let $G_{i}^{-}=G_{i}-D_{1}\left(G_{i}\right)$ and $\left|V\left(G_{i}^{-}\right)\right|=n_{i}^{-}(1 \leq i \leq t)$. By $\kappa^{\prime}(G)=3$ and (4),

$$
\begin{equation*}
\delta\left(G_{i}^{-}\right) \geq 2 \text { and }\left|D_{2}\left(G_{i}^{-}\right)\right| \leq 2 \tag{5}
\end{equation*}
$$

By Theorem 2.2(iv), G_{i}^{-}is reduced. If $n_{i}^{-} \leq 9$, by (5) and Lemma 3.8, $\kappa^{\prime}\left(G_{i}\right) \geq 2$. By Theorem 2.3(ii) and Lemma 3.6, G_{i}^{-}is collapsible, contrary to the fact that G_{i}^{-}is reduced. Then $n_{i}^{-} \geq 10(1 \leq i \leq t)$. Since $\alpha(G) \leq 6$, by Theorem 3.3(iii), $n \leq 19$. Since $|X|=2$, we have $t=2$.

Fig. 2. The graphs J_{1} and J_{2}.

Claim 2. For each i with $1 \leq i \leq 2$, both $n_{i}^{-}=10$ and $G_{i}=G_{i}^{-}$.
Proof of Claim 2. By symmetry, it suffices to prove the case when $i=1$. By contradiction, assume that $n_{1}^{-}>10$ or $G_{1} \neq G_{1}^{-}$. Since $G_{1}^{-}=G_{1}-D_{1}\left(G_{1}\right)$, each of these assumptions leads to $\left|V\left(G_{1}\right)\right| \geq 11$. Hence we have $\left|V\left(G_{1}\right)\right| \geq 11$ and $\left|V\left(G_{2}\right)\right| \geq 10$. As $G_{i}=G\left[V\left(H_{i}\right) \cup X\right]$ and $|X|=2$, we have $\left|V\left(H_{1}\right)\right| \geq 9$ and $\left|V\left(H_{2}\right)\right| \geq 8$. By Theorem 3.3, both $\alpha\left(H_{1}\right) \geq 4$ and $\alpha\left(H_{1}\right) \geq 3$, and so $\alpha(G) \geq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \geq 7$, contrary to $\alpha(G) \leq 6$. This proves Claim 2 .

Claim 3. For each i with $1 \leq i \leq 2$ and for any $u \in\left\{u_{1}, u_{2}\right\}$, there is a spanning trail starting from u in G_{i}.
Proof of Claim 3. Without loss of generality, suppose $i=1$. By Claim 2, $G_{1}=G_{1}^{-}$, and so (5) applies to G_{1}. If $\left|D_{2}\left(G_{1}\right)\right| \leq 1$, by Claim 2 and Lemma 3.8, $\kappa^{\prime}\left(G_{1}\right) \geq 2$. By Lemma 3.7, we have $G_{1} \cong P(10)$ which has a spanning trail starting from any vertex. Hence we assume that $\left|D_{2}\left(G_{1}\right)\right|=2$. By (4), $D_{2}\left(G_{1}\right)=\left\{u_{1}, u_{2}\right\}$. By Lemma 3.8, $\kappa^{\prime}\left(G_{1}\right) \geq 2$. For any $u \in\left\{u_{1}, u_{2}\right\}$, since $d_{G_{1}}(u)=2$, by Claim 2, there is a $v \in V\left(G_{1}\right)$ such that $u v \notin E\left(G_{1}\right)$. Let $G_{1}^{+}=G_{1}+u v$. Then $\delta\left(G_{1}^{+}\right) \geq 2,\left|D_{2}\left(G_{1}^{+}\right)\right| \leq 1$ and $\kappa^{\prime}\left(G_{1}^{+}\right) \geq \kappa^{\prime}\left(G_{1}\right) \geq 2$. By Lemma 3.7, either G_{1}^{+}is collapsible or $G_{1}^{+} \cong P(10)$. If G_{1}^{+}is collapsible, then there is a spanning closed trail T in G_{1}^{+}, and so $T-u v$ is a spanning trail starting from u in G_{1}. If $G_{1}^{+} \cong P(10)$, then $G_{1}^{+}-u$ is supereulerian, implying that G_{1} has a spanning trail starting from u. This proves Claim 3.

Since $t=2$, by Claim 3, G has a spanning trail. This completes the proof of Theorem 3.9.
As shown in [21], the inequality of Theorem 3.9 is sharp. Let J_{1} and J_{2} be the graphs depicted in Fig. 2. For $i \in\{1,2\}$, let $t \geq 3$ be an integer and J_{i}^{*} be a graph obtained from J_{i} by replacing at most two 2-degree vertices in J_{i} by a complete graph K_{t}. Then $\kappa^{\prime}\left(J_{i}^{*}\right) \geq 2$ and $\alpha\left(J_{i}^{*}\right)=6$. But J_{i}^{*} does not have a spanning trail.

4. Spanning trails with bounded matching numbers

In this section, we will investigate supereulerian graphs with a bounded size of maximum matchings. A component H of G is an odd component if $|V(H)| \equiv 1(\bmod 2)$. Let $q(G)=\mid\{Q: Q$ is an odd component of $G\} \mid$. Tutte [22] and Berge [2] proved the following theorem.

Theorem 4.1 (Tutte, [22]; Berge, [2]). Let G be a graph with n vertices. If

$$
\begin{equation*}
t=\max _{S \subset V(G)}\{q(G-S)-|S|\} \tag{6}
\end{equation*}
$$

then $\alpha^{\prime}(G)=(n-t) / 2$.
In [13], a lower bound of the size of maximum matching has been found for reduced graphs.
Theorem 4.2 (Theorem 1 of [13]). Let G be a reduced graph with n vertices and $\delta(G) \geq 3$. Then $\alpha^{\prime}(G) \geq \min \left\{\frac{n-1}{2}, \frac{n+4}{3}\right\}$.
Following a similar idea in [13], the lower bond in Theorem 4.2 can be slightly improved as shown in Theorem 4.4. We start with a lemma on reduced graphs.

Lemma 4.3. Let G be a connected reduced graph with $\delta(G) \geq 3$. Suppose that $S \subseteq V(G)$ is a vertex subset attaining the maximum in (6) with $|S|>0, m=q(G-S)$ and that $G_{1}, G_{2}, \ldots, G_{m}$ are the components in $G-S$ with odd number of vertices such that $\left|V\left(G_{1}\right)\right| \leq\left|V\left(G_{2}\right)\right| \leq \cdots \leq\left|V\left(G_{m}\right)\right|$. Define

$$
\begin{align*}
& X=\left\{G_{i}:\left|V\left(G_{i}\right)\right|=1,1 \leq i \leq m\right\}, \quad Y=\left\{G_{i}:\left|V\left(G_{i}\right)\right|=3,1 \leq i \leq m\right\}, \quad x=|X|, y=|Y| \\
& V^{*}=\cup_{k=1}^{x+y} V\left(G_{k}\right), G^{*}=G\left[V^{*} \cup S^{*}\right] \quad \text { and } \quad s^{*}=\left|S^{*}\right|, \quad \text { where } S^{*}=\left\{s \in S: v^{*} s \in E(G), v^{*} \in V^{*}\right\} . \tag{7}
\end{align*}
$$

Thus G^{*} is spanned by a bipartite subgraph with $\left(V^{*}, S^{*}\right)$ being its vertex bipartition with $\left|V^{*}\right|=x+3 y \geq 1$. By the definition of x, V^{*} contains x isolated vertices in $G^{*}\left[V^{*}\right]$. Then each of the following holds.
(i) $n \geq \sum_{i=1}^{m}\left|V\left(G_{i}\right)\right|+|S| \geq m\left|V\left(G_{1}\right)\right|+|S|$.
(ii) If $x>0$, then $s^{*} \geq 3$.
(iii) $m \leq \frac{n+4 x+2 y-|S|}{5}$.
(iv) $G^{*} \notin\left\{K_{1}, K_{2}, K_{1,2}, K_{2,2}\right\}$.
(v) $\left|E\left(G^{*}\right)\right| \geq 3 x+7 y$.

Proof. Statement (i) follows from the definition of m and G_{i}. If $x>0$, then by $\delta(G) \geq 3$, there must be at least 3 vertices in S^{*} adjacent to the only vertex in G_{1}, and so $s^{*} \geq 3$. This justifies (ii). By (7), we have $n \geq|S|+x+3 y+5(m-x-y)$, and so (iii) follows. As $\delta(G) \geq 3$, every vertex in G_{1} must have degree at least 3 in G^{*}, and so (iv) must hold. Since $\delta(G) \geq 3$ and G does not contain a 3-cycle, every vertex in $\cup_{G_{i} \in X} V\left(G_{i}\right)$ is incident with at least 3 edges in G^{*}; and every component in $G^{*}\left[\cup_{G_{i} \in Y} V\left(G_{i}\right)\right]$ is a $K_{1,2}$ and is incident with at least 5 edges with one end in S^{*} plus two edges in $E\left(G_{i}\right)$. Hence $\left|E\left(G^{*}\right)\right| \geq 3 x+7 y$. This proves (v).

Theorem 4.4. Let G be a connected reduced graph with n vertices and $\delta(G) \geq 3$. Then $\alpha^{\prime}(G) \geq \min \left\{\frac{n}{2}, \frac{n+5}{3}\right\}$.
Proof. Let t be defined as in (6). By Theorem 4.1, if $t=0, \alpha^{\prime}(G)=\frac{n}{2} \geq \min \left\{\frac{n}{2}, \frac{n+5}{3}\right\}$. Hence we assume that $t \geq 1$. If $n \leq 11$, then since $\delta(G) \geq 3$, by Theorem $3.2, G \cong P(10)$. As $\alpha^{\prime}(P(10))=5=\frac{10}{2}$, Theorem 4.4 holds when $n \leq 11$.

Hence we assume that $n \geq 12$, and so $\frac{n+5}{3}<\frac{n}{2}$. By Theorem 4.1, to prove Theorem 4.4, it suffices to show that

$$
\begin{equation*}
\alpha^{\prime}(G) \geq \frac{n-t}{2} \geq \frac{n+5}{3}, \text { or equivalently, } t \leq \frac{n-10}{3} \tag{8}
\end{equation*}
$$

In the rest of the proof, we shall show that (8) always holds in any case, which implies the validity of Theorem 4.4. Define $S, m, G_{1}, G_{2}, \ldots, G_{m}, V^{*}, S^{*}, s^{*}$ and G^{*} as in Lemma 4.3. Since G is reduced, by Theorem 2.3(ii), G is simple and K_{3}-free. If $|S|=0$, as G is connected and as $n \geq 12$, we have $t=1$ and so $|V(G)|$ is odd and $n \geq 13$. By Theorem 4.1 and as $n \geq 13$, $\alpha^{\prime}(G) \geq \frac{n-1}{2} \geq \frac{n+5}{3}$, and so (8) holds. Hence we assume that $|S| \geq 1$.
Case 1. $x=0$, i.e. $\left|V\left(G_{1}\right)\right| \geq 3$.
Subcase 1.1. $\left|V\left(G_{1}\right)\right|=3$.
Since G is K_{3}-free, $G_{1} \cong K_{1,2}$. By $\delta(G) \geq 3$, we have $|S| \geq 3$. It follows by $n \geq 3 m+|S|$ that

$$
t=m-|S| \leq \frac{n-|S|}{3}-|S|=\frac{n-4|S|}{3} \leq \frac{n-12}{3}
$$

and so (8) must hold.
Subcase 1.2. $\left|V\left(G_{1}\right)\right|=5$.
If $|S|=1$, then as G is K_{3}-free and $\delta(G) \geq 3$, we have $\left|E\left(G\left[V\left(G_{1}\right) \cup S\right]\right)\right| \geq \frac{15}{2}>7$. On the other hand, $G\left[V\left(G_{1}\right) \cup S\right] \notin$ $\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, \ell}: \ell \geq 1\right\}$ since $\delta(G) \geq 3$. By Theorem 2.3 (iv), we have $\left|E\left(G\left[V\left(G_{1}\right) \cup S\right]\right)\right| \leq 2(5+1)-5=7$. A contradiction is obtained. Hence we assume that $|S| \geq 2$. As $n \geq 5 m+|S|$, we have $m \leq \frac{n-|S|}{5}$. It follows by $n \geq 12$ and $t=m-|S| \geq 1$ that

$$
t=m-|S| \leq \frac{n-|S|}{5}-|S|=\frac{n-6|S|}{5} \leq \frac{n-12}{5}<\frac{n-10}{3}
$$

and so (8) must hold.
Subcase 1.3. $\left|V\left(G_{1}\right)\right| \geq 7$.
Since $t=m-|S| \geq 1$, we have $m \geq 2$, and so $n \geq 7 m+|S| \geq 15$ and $m \leq \frac{n-|S|}{7}$. It follows that

$$
t=m-|S| \leq \frac{n-|S|}{7}-|S|=\frac{n-8|S|}{7} \leq \frac{n-8}{7}<\frac{n-10}{3}
$$

and so (8) must hold.

Case 2. $x \geq 1$.

By Lemma 4.3(iv), G^{*} is not in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,2}\right\}$, and so by Theorem 2.3(iv), either for some integer $\ell \geq 3, G^{*} \cong K_{2, \ell}$ or $F\left(G^{*}\right) \geq 3$.
Subcase 2.1. For some integer $\ell \geq 3, G^{*} \cong K_{2, \ell}$.
Since $\delta(G) \geq 3$, every vertices in V^{*} must have degree at least 3 in $G^{*},\left|V^{*}\right|=x=2$ and $s^{*}=\ell \geq 3$. By the definition of y, we must have $y=0$ and $|S| \geq\left|S^{*}\right|$. It follows by Lemma 4.3 (iii) that $1 \leq t=m-|S| \leq \frac{n+8+2 y-|S|}{5}-|S| \leq \frac{n+8-6 s^{*}}{5}$, and so $n \geq 6 s^{*}-3$. As $s^{*} \geq 3$, we have $n \geq 6 s^{*}-3 \geq 15 \geq 32-9 s^{*}$, or $5(n-10) \geq 3\left(n+8-6 s^{*}\right)$. Hence

$$
t \leq \frac{n+8-6 s^{*}}{5}<\frac{n-10}{3}
$$

and so (8) must hold.
Subcase 2.2. $F\left(G^{*}\right) \geq 3$.
By Theorem 2.3(i) and by Lemma 4.3(v), $3 x+7 y \leq\left|E\left(G^{*}\right)\right| \leq 2\left(\left|V\left(G^{*}\right)\right|-1\right)-3=2(x+3 y+|S|)-5$. This implies that $|S| \geq \frac{x+y+5}{2}$, and so $n \geq x+3 y+|S| \geq \frac{3 x+7 y+5}{2}$. It follows that

$$
t=m-|S| \leq \frac{n+4 x+2 y-|S|}{5}-|S| \leq \frac{n+x-y-15}{5} \leq \frac{n-10}{3}
$$

and so (8) must hold. This completes the proof of the theorem.

The following theorem for 3-edge-connected graphs with order at most 15 will be needed.
Theorem 4.5 (Theorem 1.1 of [11]). Let G be a 3-edge-connected graph and G^{\prime} be the reduction of G.
(i) If $|V(G)| \leq 13$, then either G is supereulerian or $G^{\prime} \cong P(10)$.
(ii) If $|V(G)| \leq 14$, then either G is supereulerian or $G^{\prime} \in \mathcal{F}_{2}$.
(iii) If $|V(G)|=15, G$ is not supereulerian and $G^{\prime} \notin \mathcal{F}_{2}$, then G is an essentially 4-edge-connected reduced graph with girth at least $5, \kappa(G) \geq 2$ with $V(G)=D_{3}(G) \cup D_{4}(G)$ where $\left|D_{4}(G)\right|=3$.

A few more former results are needed in the proof of the main theorem in this section.
Theorem 4.6 (Theorem 3.1 of [10]). Let G be a 3-edge-connected reduced graph with $F(G)=3$. Then either G is supereulerian or each of the following holds:
(i) G has no edge joining two vertices of even degree;
(ii) G has girth at least 5;
(iii) G has no 2-edge-connected subgraph G with $F(H)=2$.

Theorem 4.7 (Reiman, [20]; Bollobás, [4]). Let G be a connected bipartite $C_{4}-$ free graph with vertex bipartition $\{X, Y\}$, where $|X| \leq|Y|$. Then

$$
|E(G)| \leq \sqrt{|Y| \cdot|X|(|X|-1)+\frac{|Y|^{2}}{4}}+\frac{|Y|}{2}
$$

Lemma 4.8. Let G be a reduced graph with order $n \geq 15$. If $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 7$, then G is supereulerian.
Proof. By contradiction, assume that G is not supereulerian. As $\alpha^{\prime}(G) \leq 7$ and $n \geq 15$, by Theorem 4.4,

$$
\begin{equation*}
15 \leq n \leq 3 \alpha^{\prime}(G)-5 \leq 16 \tag{9}
\end{equation*}
$$

Let t be the integer satisfying (6) in Theorem 4.1. Then $\alpha^{\prime}(G)=\frac{n-t}{2}$. By (9) and Theorem 4.4, we have $7 \geq \alpha^{\prime}(G)=\frac{n-t}{2} \geq \frac{n+5}{3}$. Thus $\frac{n-10}{3} \geq t \geq n-14$. By (9), we have $t \geq 1$ when $n=15$ and $t \geq 2$ when $n=16$. We shall show that neither case can occur to reach a contradiction to the assumption that G is not supereulerian, thereby proving the theorem. Define S, m, $G_{1}, G_{2}, \ldots, G_{m}, V^{*}, S^{*}, s^{*}$ and G^{*} as in Lemma 4.3.

Claim 4. $G^{*} \notin\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, \ell}, \ell \geq 1\right\}$.
Proof of Claim 4. By Lemma 4.3(iv), $G^{*} \notin\left\{K_{1}, K_{2}, K_{1,2}, K_{2,2}\right\}$. Suppose that $G^{*} \cong K_{2, \ell}$, for some $\ell \geq 3$. By the definition of G^{*}, we have $x \geq \min \{2, \ell\}=2$. This implies that $x=2, y=0$ and $|S|=s^{*}=\ell \geq 3$. By Lemma 4.3(i), $n \geq|S|+x+5(m-x)=$ $|S|+5 m-4 x$. As $|S| \geq 3, n \in\{15,16\}, x=2$ and $m=|S|+t$, we have $16 \geq n \geq 6|S|+5 t-8 \geq 18-5 t-8=10-5 t$, and so $t \leq \frac{6}{5}<2$. Thus, $t=1$ and $n=15$. By Theorem 4.5 (iii), G does not have cycles of length at most 4 , contrary to the assumption that $G^{*} \cong K_{2, \ell}$. This justifies Claim 4 .

Claim 5. Each of the following holds.
(i) $|S| \geq \frac{x+y+5}{2}$.
(ii) $x-y \geq 5 t+15-n$.

Proof of Claim 5. By Claim 4, $G^{*} \notin\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, \ell}, \ell \geq 1\right\}$. By Theorem 2.3 (iv), $F\left(G^{*}\right) \geq 3$. As G is reduced, G^{*} is also reduced, and so by Theorem 2.3(i) and Lemma 4.3(v), $3 x+7 y \leq\left|E\left(G^{*}\right)\right| \leq 2(x+3 y+|S|)-5$. Hence (i) must hold.

By Lemma 4.3(iii) and by $m-|S|=t$, we have $\frac{n+4 x+2 y-|S|}{5}-|S| \geq t$. It follows by Claim 5(i) that

$$
\frac{n+4 x+2 y-\frac{x+y+5}{2}}{5}-\frac{x+y+5}{2} \geq \frac{n+4 x+2 y-|S|}{5}-|S| \geq t
$$

which implies $x-y \geq 5 t+15-n$. Hence (ii) holds as well. This proves Claim 5 .
Case 1. $t \geq 1$ when $n=15$.
By Claim 5(ii) with $n=15, x \geq 5+y \geq 5$. Assume that $|S| \geq x+1$. By the choice of S, we have $1 \leq t=m-|S|$, and so $m \geq|S|+1 \geq x+2$. By Lemma 4.3(i) and by $|S| \geq x+1, n \geq \sum_{i=1}^{m}\left|V\left(G_{i}\right)\right|+|S| \geq x+\left|V\left(G_{x+1}\right)\right|+\left|V\left(G_{x+2}\right)\right|+|S| \geq$ $x+3+3+(x+1) \geq 17$, contrary to $n=15$. Hence $|S| \leq x$. Let $E^{+}=\left\{u v \in E(G): u \in\left[\bar{\cup}_{G_{i} \in X} V\left(G_{i}\right)\right], v \in S\right\}$, and $G^{+}=G\left[E^{+}\right]$. $\mathrm{By}(7)$ and the definition of G^{+}, G^{+}is a bipartite graph with a vertex bipartition $\left\{\cup_{G_{i} \in X} V\left(G_{i}\right), S\right\}$. Since $\delta(G) \geq 3,\left|E\left(G^{+}\right)\right| \geq 3 x$. Since $n=15$, by Theorem $4.5, G^{+}$is C_{4}-free. Since $|S| \leq x$, by Theorem 4.7,

$$
\begin{equation*}
3 x \leq\left|E\left(G^{+}\right)\right| \leq \sqrt{x \cdot|S|(|S|-1)+\frac{x^{2}}{4}}+\frac{x}{2} \leq \sqrt{x^{2}(x-1)+\frac{x^{2}}{4}}+\frac{x}{2} \tag{10}
\end{equation*}
$$

Solving (10) for x to get $\frac{25 x^{2}}{4} \leq x^{3}-x^{2}+\frac{x^{2}}{4}$, and so $x \geq 7$. In particular, when $x=7$, the equality in (10) holds. Thus, if $x=7$, $|S|=x=7$ and so $m=|S|+t=8$. By Lemma 4.3(i), $|S| \leq 15-x-\sum_{i=x+1}^{m}\left|V\left(G_{i}\right)\right| \leq 15-7-3=5$, contrary to that $|S|=7$. Hence we must have $x \geq 8$. As $n=15$ and $x-|S| \leq m-|S|=t=1$, we have $|S|=7$ and $x=8$. By Theorem 4.7, $\left|E\left(G^{+}\right)\right|<23$. As $\delta(G) \geq 3,\left|E\left(G^{+}\right)\right| \geq 3 x=24$, a contradiction. This proves that Case 1 does not occur.
Case 2. $t \geq 2$ when $n=16$.
By Claim 5(ii), $x \geq 9+y$. By Claim 5(i), $|S| \geq 7+y$. Since $n=16$, we must have $x=9=\left|V^{*}\right|,|S|=7$ and $V\left(G^{*}\right)=V(G)$. As $\delta(G) \geq 3$, we have $|E(G)| \geq\left|E\left(G^{*}\right)\right| \geq 3 x=27$. By Theorem 2.3(i) and (iv), $|E(G)| \leq 2|V(G)|-5=27$. Therefore, $|E(G)|=27, F(G)=3$ and $G^{*} \cong G$ is a bipartite graph with bipartition V^{*} and S. By Theorem 4.6, the girth of G is at least 5 . By Theorem $4.7,|E(G)| \leq 24$, contrary to $|E(G)|=27$. This proves that Case 2 does not occur as well, and completes the proof.

Theorem 4.9. Let G be a connected graph with n vertices and $\kappa^{\prime}(G) \geq 3$, and G^{\prime} be the reduction of G. If $\alpha^{\prime}(G) \leq 7$, then G is supereulerian if and only if $G^{\prime} \notin \mathcal{F}_{2}=\{P(10), P(14)\}$.

Proof. As $P(10)$ and $P(14)$ are not supereulerian, the necessity is clear. By Theorem 2.2, G is supereulerian if and only if G^{\prime} is supereulerian. By the definition of contractions, we have $\kappa\left(G^{\prime}\right) \geq \kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}\left(G^{\prime}\right) \leq \alpha^{\prime}(G) \leq 7$. Hence it suffices to prove that
if a reduced graph G with $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 7$ is not supereulerian, then $G \in \mathcal{F}_{2}$.
By Lemma 4.8, (11) holds if $|V(G)| \geq 15$. By Theorem 4.5 , (11) holds if $|V(G)| \leq 14$. This completes the proof of the theorem.

Corollary 4.10. Let G be a connected graph. If $|V(G)| \leq 15$ and $\kappa^{\prime}(G) \geq 3$, then G is supereulerian if and only if the reduction of G is not in \mathcal{F}_{2}.

Proof. If $|V(G)| \leq 15$, then $\alpha^{\prime}(G) \leq \frac{15}{2}$. So $\alpha^{\prime}(G) \leq 7$. By Theorem 4.9, this corollary holds.
Corollary 4.11. Let G be a connected reduced graph. Each of the following holds.
(i) If $|V(G)| \leq 15$ and $\delta(G) \geq 3$, then G is supereulerian if and only if $G \notin \mathcal{F}_{2}$.
(ii) If $\delta(G) \geq 3$ and $\alpha(G) \leq 5$, then G is supereulerian if and only if $G \neq P(10)$.

Proof. First we prove (i). Suppose that $\kappa^{\prime}(G) \leq 2$. Let X be a minimal edge cut in G with $|X| \leq 2$. Let G_{1} and G_{2} be the two components in $G-X$ with $\left|V\left(G_{1}\right)\right| \leq\left|V\left(G_{2}\right)\right|$. Since $|V(G)| \leq 15,\left|V\left(G_{1}\right)\right| \leq 7$. Since $|X| \leq 2$ and $\delta(G) \geq 3$, either $\left|D_{1}\left(G_{1}\right)\right|=0$ and $\left|D_{2}\left(G_{1}\right)\right| \leq 2$ or $\left|D_{1}\left(G_{1}\right)\right| \leq 1$ and $\left|D_{2}\left(G_{1}\right)\right|=0$. Then $G \notin\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, \ell}: \ell \geq 1\right\}$ and $\left|E\left(G_{1}\right)\right| \geq \frac{4+3\left(\left|V\left(G_{1}\right)\right|-2\right)}{2}$. By Theorem 2.3, $\frac{4+3\left(\left|V\left(G_{1}\right)\right|-2\right)}{2} \leq\left|E\left(G_{1}\right)\right| \leq 2\left|V\left(G_{1}\right)\right|-5$. Then $\left|V\left(G_{1}\right)\right| \geq 8$, contrary to that $\left|V\left(G_{1}\right)\right| \leq 7$. Thus, $\kappa^{\prime}(G) \geq 3$. Statement (i) follows from Corollary 4.10.

Now we prove (ii). If $\alpha(G) \leq 5$, by Theorem 3.3, $|V(G)| \leq 15$. Since $\alpha(P(14))=6$, the statement follows from (i) above.

Acknowledgments

The authors would like to thank the referees for their helpful suggestions which improved the presentation of the paper.

References

[1] M. An, L. Xiong, Supereulerian graphs, collapsible graphs and matchings, Acta Math. Appl. Sin. Engl. Ser. (2015) in press.
[2] C. Berge, Sur le couplage maximum d'un graphe, CR Acad. Sci. Paris 247 (1958) 258-259.
[3] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79-84.
[4] B. Bollobás, Extremal Graph Theory, Academic Press, New York, NY, 1978.
[5] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[6] P.A. Catlin, Supereulerian graph, Collopsible graphs and four-cycles, Congr. Numer. 56 (1987) 233-246.
[7] P.A. Catlin, A reduction method to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-45.
[8] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177-196.
[9] P.A. Catlin, Z. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
[10] P.A. Catlin, H.-J. Lai, Supereulerian Graphs and the Petersen Graph, J. Combin. Theory Ser. B 66 (1996) 123-139.
[11] W.-G. Chen, Z.-H. Chen, Spanning Eulerian subgraphs and Catlin's reduced graphs, J. Combin. Math. Combin. Comput. 96 (2016) 41-63.
[12] Z.-H. Chen, Supereulerian graphs, independent sets, and degree-sum conditions, Discrete Math. 179 (1998) 73-87.
[13] Z.-H. Chen, H.-J. Lai, Collapsible graphs and matching, J. Graph Theory 17 (1993) 597-605.
[14] Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, in: Combinatorics and Graph Theory'95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, 1995, pp. 53-69.
[15] V. Chvátal, P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[16] L. Han, H.-J. Lai, L. Xiong, H. Yan, The Chvátal-Erdős condition for supereulerian graphs and the Hamiltonian index, Discrete Math. 310 (2010) 2082-2090.
[17] H.-J. Lai, H. Yan, Supereulerian graphs and matchings, Appl. Math. Lett. 24 (2011) 1867-1869.
[18] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926-940.
[19] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309-310.
[20] I. Reiman, Über ein problem von K. Zarankiewicz, Acta. Math. Acad. Sci. Hungary 9 (1958) 269-273.
[21] R. Tian, L. Xiong, The Chvátal-Erdős condition for a graph to have a spanning trail, Graphs Combin. 31 (2015) 1739-1754.
[22] W.T. Tutte, The factorization of linear graphs, J. Lond. Math. Soc. 22 (1947) 107-111.

[^0]: * Corresponding author.

 E-mail addresses: chen@butler.edu (Z.-H. Chen), hong-jian.lai@mail.wvu.edu (H.-J. Lai), meng.zhang@ung.edu (M. Zhang).

