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a b s t r a c t

Let α(G), α′(G), κ(G) and κ ′(G) denote the independence number, the matching number,
connectivity and edge connectivity of a graph G, respectively. We determine the finite
graph families F1 and F2 such that each of the following holds.

(i) If a connected graph G satisfies κ ′(G) ≥ α(G) − 1, then G has a spanning closed trail
if and only if G is not contractible to a member of F1.

(ii) If κ ′(G) ≥ max{2, α(G) − 3}, then G has a spanning trail. This result is best possible.
(iii) If a connected graph G satisfies κ ′(G) ≥ 3 and α′(G) ≤ 7, then G has a spanning

closed trail if and only if G is not contractible to a member of F2.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, graphs considered are finite and loopless. We follow [5] for undefined terms and notation. Let NG (u) be
the set of vertices adjacent to u in G, and Di(G) = {v ∈ V (G) : d(v) = i}. As in [5], for a graph G, let α(G), α′(G), κ(G),
κ′(G) denote independence number, matching number, connectivity and edge connectivity of G, respectively. An edge cut E
of a graph G is essential if G−E contains two nontrivial components.We useO(G) to denote the set of all odd degree vertices
of G. A cycle on n vertices is often called an n-cycle. For A ⊆ V (G)∪E(G), G[A] is the subgraph of G induced by A, and G − A is
the subgraph of G obtained by deleting the elements in A. Let H be a graph. We say G is H-free if G does not contain H as a
subgraph.

As in [5], a graph G is eulerian if G is a closed trail. Equivalently, G is eulerian if G is connected with O(G) = ∅. A graph is
supereulerian if it has a spanning closed trail. Boesch et al. [3] first posed the problemof characterizing supereulerian graphs.
Pulleyblank [19] proved that determining if a 3-edge-connected planar graph is supereulerian is NP-complete. Catlin [8] gave
a survey on supereulerian graphs, which was supplemented and updated in [14,18].

Motivated by a well-known result of Chvátal and Erdős [15] that every graph G with κ(G) ≥ α(G) is Hamiltonian, there
have been researches on conditions analogous to this Chvátal–Erdős Theorem to assure the existence of spanning trials in a
graph utilizing relationship among independence number, matching number and edge-connectivity. See [1,16,17] and [21],
among others. Let P(10) denote the Petersen graph and let K2,3(1, 2, 2), S1,2, K ′

2,3 be the graphs depicted in Fig. 1. Let Pn be
a path of order n. Define

F1 = {K2, P3, P4, K2,3, K2,3(1, 2, 2), S1,2, P(10)} and F2 = {P(10), P(14)}.
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Fig. 1. P(14) and some graphs in F1 .

Theorem 1.1 (Han et al., Theorem 3 of [16]). Let G be a simple graph with κ(G) ≥ 2. If κ(G) ≥ α(G) − 1, then exactly one of the
following holds.

(i) G is supereulerian.
(ii) G ∈ {P(10), K2,3, K2,3(1, 2, 2), S1,2, K ′

2,3}.
(iii) G is a 2-connected graph obtained from K2,3 (resp. S1,2) by replacing a vertex whose neighbors have degree three in K2,3

(resp. S1,2) with a complete graph of order at least three.

Theorem 1.2 (Tian and Xiong, Theorem 4 of [21]). If G is a 2-connected graph with α(G) ≤ κ(G)+ 3, then G has a spanning trail.

The supereulerian property for graphs Gwith α′(G) ≤ 2 and κ ′(G) ≥ 2 has been completely determined in [1] and [17].
The purpose of this paper is to investigate the existence of spanning trails in graphs with given relationship between

independence number and edge-connectivity, or matching number with edge-connectivity. In this paper, we determine the
finite graph families F1 and F2 such that each of the following holds.

Theorem 1.3. If a graph G satisfies κ ′(G) ≥ α(G) − 1, then G has a spanning closed trail if and only if G is not contractible to a
member of F1.

Theorem 1.4. If κ ′(G) ≥ max{2, α(G) − 3}, then G has a spanning trail.

Theorem 1.5. If a graph G satisfies κ ′(G) ≥ 3 and α′(G) ≤ 7, then G has a spanning closed trail if and only if G is not contractible
to a member of F2.

In Section 2, we display the mechanism we will use in our arguments. In the subsequent sections, we prove the main
results.

2. Preliminaries

For a subset Y ⊆ E(G), the contraction G/Y is the graph obtained from G by identifying the two ends of each edge
in Y and then by deleting the resulting loops. If H is a subgraph of G, we often use G/H for G/E(H). A graph G is called
collapsible if for any R ⊆ V (G) with |R| is even, G has a spanning subgraph SR with O(SR) = R. By definition, collapsible
graphs are supereulerian. In [7], Catlin showed that every graph G has a unique collection of maximal collapsible subgraphs
H1,H2, . . . ,Hc . The reduction of G, denoted by G′, is the graph G/(H1 ∪ H2 ∪ · · · ∪ Hc). A graph G is reduced if G′

= G.

Theorem 2.1 (Catlin, Theorem 2 of [7]). Every graph G with κ ′(G) ≥ 4 is collapsible.

Theorem 2.2 (Catlin, Theorem 3 of [7]). Let G be a connected graph, H be a collapsible subgraph of G and let G′ be the reduction
of G. Then

(i) G is collapsible if and only if G/H is collapsible.
(ii) G is supereulerian if and only if G/H is supereulerian.
(iii) G has a spanning trail if and only if G/H has a spanning trail.
(iv) Any subgraph of a reduced graph is reduced.

Let F (G) be theminimumnumber of extra edges thatmust be added toG so that the resulting graph has two edge-disjoint
spanning trees. The following results on the structures of reduced graphs will be needed.

Theorem 2.3. Let G be a connected reduced graph. Then
(i) (Catlin, Theorem 7 of [6]) If |V (G)| ≥ 3, then F (G) = 2(|V (G)| − 1) − |E(G)|.
(ii) (Catlin, Theorem 8 of [7]) G is simple and K3-free.
(iii) (Catlin, Theorem 8 of [7]) δ(G) ≤ 3.
(iv) (Catlin et al., Theorem 1.3 of [9]) Either G ∈ {K1, K2} ∪ {K2,t : t ≥ 1} or F (G) ≥ 3 and |E(G)| ≤ 2|V (G)| − 5.
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3. Spanning trails with bounded independence numbers

In the first half of this section, we investigate the relationship betweenminimum degree and independence number that
assures supereulerian property.

Lemma 3.1. Let G be a reduced graph with δ(G) ≥ 2 and α(G) ≤ 3. Then G is supereulerian if and only if G ̸∈ {K2,3,
K2,3(1, 2, 2), S1,2}.

Proof. Since G is reduced, by Theorem 2.3(ii), G is simple and K3-free. Thus,∆(G) ≤ α(G) ≤ 3. Assume that G has a cut vertex
u. Since ∆(G) ≤ 3, at least one of the edges incident with u is a cut edge of G. Let uv denote this cut edge. Suppose G1 and G2
are two connected components in G − uv. Since δ(G) ≥ 2, |D1(Gi)| ≤ 1 (i = 1, 2). Since G is K3-free, Gi is K3-free. Hence we
may assume that, for 1 ≤ i ≤ 2, V (Gi)−{u, v} has two vertices ui and vi with uivi ̸∈ E(Gi). It follows that {u1, v1, u2, v2} is an
independent set in G, contrary to the assumption α(G) ≤ 3. Thuswemay assume that κ(G) ≥ 2 and so κ(G) ≥ α(G)−1. Since
G is reduced with α(G) ≤ 3, by Theorem 1.1 and α(P(10)) = 4, either G is supereulerian or G ∈ {K2,3, K2,3(1, 2, 2), S1,2}. □

Theorem 3.2 (Corollary 5.2 of [11]). Let G be a connected simple graph with |V (G)| ≤ 13 and δ(G) ≥ 3, and G′ be the reduction
of G. Then G′

∈ {K1, K2, P3, K1,2, K1,3, P(10)}.

Theorem 3.3 (Theorem 1 of [12]). Let G be a connected reduced graph with order n.
(i) If α(G) = 2, then n ≤ 5.
(ii) If α(G) = 3, then n ≤ 8.
(iii) If α(G) ≥ 4, then δ(G)α(G)+4

2 ≤ n ≤ 4α(G) − 5.

Theorem 3.4. Let G be a connected reduced graph with δ(G) ≥ α(G) − 1. Then G is supereulerian if and only if G ̸∈ F1.

Proof. It is routine to verify that every graph in F1 is not supereulerian. It suffices to prove that under the assumption
of the theorem, if G ̸∈ F1, then G must be supereulerian. Since K1 is supereulerian, we assume that |V (G)| ≥ 2. Since
G is reduced, by Theorem 2.3(iii), we have δ(G) ≤ 3. Assume first that δ(G) = 3, implying α(G) ≤ δ(G) + 1 = 4. By
Theorem 3.3(iii), |V (G)| ≤ 11. Since δ(G) = 3, by Theorem 3.2, we haveG ∼= P(10), which is inF1, contrary to the assumption
G ̸∈ F1. Hence we must have δ(G) ≤ 2. Assume that δ(G) = 2 and so α(G) ≤ δ(G) + 1 = 3. By Lemma 3.1, we have
G ∈ {K2,3, K2,3(1, 2, 2), S1,2} ⊆ F1, contrary to the assumption G ̸∈ F1. Thus we must have δ(G) = 1, forcing α(G) ≤ 2. By
Theorem 2.3(ii), G is K3-free. So ∆(G) ≤ α(G) ≤ 2. Since G is a connected graph with δ(G) = 1, ∆(G) ≤ 2 and α(G) ≤ 2,
G must be a path with length at most 4. Thus, G ∈ {K2, P3, P4

} ⊆ F1, again, contrary to the assumption G ̸∈ F1. These
contradictions justify Theorem 3.4. □

Corollary 3.5. Let G be a connected graph with κ ′(G) ≥ α(G)−1. Let G′ be the reduction of G. Then G is supereulerian if and only
if G′

̸∈ F1.

Proof. By the definition of graph contractions, we have κ ′(G′) ≥ κ ′(G) ≥ δ(G) ≥ α(G)− 1 ≥ α(G′)− 1. By Theorem 3.4, G′ is
supereulerian if and only if G′

̸∈ F1. □

In the following,wewill investigate the relationship betweenα(G) and κ ′(G)whichmaywarrant the existence of (possibly
open) spanning trails. We need the assistance of some former results.

Lemma 3.6 (Corollary 2.1 of [11]). Let G be a simple 2-edge-connected graph with order n ≤ 9. If |D2(G)| ≤ 2 and G is K3-free,
then G is collapsible.

Lemma 3.7 (Corollary 2.3 of [11]). Let G be a simple 2-edge-connected graph with order n. If n ≤ 10 and |D2(G)| ≤ 1, then
either G is collapsible or G ∼= P(10).

Lemma 3.8. Let G be a connected reduced graph with order n ≤ 10 and δ(G) ≥ 2. If |D2(G)| ≤ 2, then κ ′(G) ≥ 2.

Proof. By contradiction, we assume that G has a cut edge e, and H1, H2 are the two connected components in G − e with
|V (H1)| ≤ |V (H2)|. Since n = |V (G)| ≤ 10 and δ(G) ≥ 2, 1 < |V (H1)| ≤ 5. Because δ(G) ≥ 2 and |D2(G)| ≤ 2,
0 ≤ |D1(H1)| ≤ 1. And we have either |D2(H1)| ≤ 3 if |D1(H1)| = 0 or |D2(H1)| ≤ 1 if |D1(H1)| = 1. In either case, we
have 2|D1(H1)| + |D2(H1)| ≤ 3. Then

2|E(H1)| =

∑
i≥1

i|Di(H1)| = |D1(H1)| + 2|D2(H1)| +

∑
j≥3

j|Dj(H1)|

≥ |D1(H1)| + 2|D2(H1)| + 3[|V (H1)| − (|D1(H1)| + |D2(H1)|)]
= 3|V (H1)| − (2|D1(H1)| + |D2(H1)|)
≥ 3|V (H1)| − 3.
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Since G is reduced, by Theorem 2.2(iv) and Theorem 2.3(i), we have,

F (H1) = 2|V (H1)| − |E(H1)| − 2 ≤ 2|V (H1)| −
3|V (H1)| − 3

2
− 2 =

|V (H1)| − 1
2

≤ 2.

By Theorem 2.3(iv), and since |V (H1)| ≤ 5 and δ(G) ≥ 2, we must have H1 ∼= K2,3. It follows that |V (H2)| = |V (H1)| = 5,
and so by the symmetry between H1 and H2, we also have H2 ∼= K2,3. Since the cut edge e in G is incident with at most one
vertex in D2(H1) and at most one vertex in D2(H2), it follows that |D2(G)| ≥ (|D2(H1)| − 1) + (|D2(H2)| − 1) = 4, contrary to
the assumption that |D2(G)| ≤ 2. Hence we must have κ ′(G) ≥ 2. □

Theorem 3.9. If G is a graph with κ ′(G) ≥ max{2, α(G) − 3}, then G has a spanning trail.

Proof. We argue by contradiction and assume that

G does not have a spanning trail, and |V (G)| is minimized. (1)

Suppose G′ is the reduction of G. Since κ ′(G′) ≥ κ ′(G) ≥ max{2, α(G)−3} ≥ max{2, α(G′)−3}, by Theorem 2.2(iii), it suffices
to prove the case when G′

= G. By Theorem 2.1, we have 2 ≤ κ ′(G) ≤ 3. By Theorem 1.2, we may assume that κ ′(G) > κ(G).
Let X be a vertex cut of G and let

H1 , H2 , . . . , Ht be the components of G − X , and for 1 ≤ i ≤ t , Gi = G[V (Hi) ∪ X] . (2)

Claim 1. Suppose that |X | ≤ 2 and t ≥ 2. Then each of the following holds.
(i) If Γ1 and Γ2 are two subgraphs of G with V (Γ1) ∩ V (Γ2) ⊆ X and E(Γ1) ∩ E(Γ2) ⊆ E(G[X]), then α(G[V (Γ1) ∪ V (Γ2)]) ≥

α(Γ1) + α(Γ2) − |X |.
(ii)

∑t
i=1α(Gi) ≤ α(G) + |X |(t − 1).

(iii) If |X | = 1, then for any 1 ≤ i ≤ t, Gi is not supereulerian.
(iv) If |X | = 1, then for each 1 ≤ i ≤ t, we have κ ′(Gi) ≥ κ ′(G) and α(Gi) ≥ κ ′(G) + 1. And

t(κ ′(G) + 1) ≤

t∑
i=1

α(Gi) ≤ α(G) + (t − 1). (3)

Proof of Claim 1. We prove (i) first. For 1 ≤ i ≤ 2, suppose Si is a maximum independent set of Γi. Let X ′
= {x ∈ X :

NG(x) ∩ (S1 ∪ S2) ̸= ∅} and S be obtained from S1 ∪ S2 − X ′. Since V (Γ1) ∩ V (Γ2) ⊆ X and E(Γ1) ∩ E(Γ2) ⊆ E(G[X]), S is an
independent set ofG[V (Γ1)∪V (Γ2)]. Sinceα(G[V (Γ1)∪V (Γ2)]) ≥ |S| ≥ |S1|+|S2|−|X |, and so (i) follows. Consequently, (ii) of
Claim 1 follows from (i) by induction on t . To show (iii), we assume that for some i0, Gi0 is supereulerian. LetΓ = G/Gi0 . Then
we have κ ′(G/Gi0 ) ≥ κ ′(G) ≥ max{2, α(G) − 3} ≥ max{2, α(G/Gi0 ) − 3}. By (1), Gi0 has a spanning trail T passing through
the only vertex in X , and so T can be extended to a spanning trail of G by including a spanning eulerian subgraph of Gi0 to T .
This justifies (iii). Finally we note that if |X | = 1, then every edge cut of Gi is also an edge cut of G, and so κ ′(Gi) ≥ κ ′(G). If
for some i, α(Gi) ≤ κ ′(G), then by Corollary 3.5, Gi is supereulerian, contrary to Claim 1(iii). This proves α(Gi) ≥ κ ′(G) + 1.
Hence (3) follows from Claim 1(ii) and α(Gi) ≥ κ ′(G) + 1, for each 1 ≤ i ≤ t . This proves Claim 1.

Throughout the rest of the proof, when a vertex cut X of G is specified, the notation in (2) will be used in the arguments.

Case 1. κ ′(G) = 2.
Since κ ′(G) ≥ max{2, α(G)− 3}, we have α(G) ≤ 5. By Theorem 1.2, we may assume that κ(G) = 1, and so G has a vertex

cut X = {x}. By (3) with κ ′(G) = 2 and α(G) ≤ 5, we have 3t ≤ t + 4, and so t = 2. Again by (3), α(G1) + α(G2) = 6, and so
(α(G1), α(G2)) ∈ {(2, 4), (3, 3), (4, 2)}. Since |X | = 1, by Claim 1(iv), κ ′(Gi) ≥ κ ′(G) = 2 (i = 1, 2). If (α(G1), α(G2)) = (2, 4)
(resp. (α(G1), α(G2)) = (4, 2)), then by Theorem 3.4, G1 (resp. G2) is supereulerian, contrary to Claim 1(iii). Hence we must
have (α(G1), α(G2)) = (3, 3). By Theorem 3.4, each of G1 and G2 is either supereulerian or is in {K2,3, K2,3(1, 2, 2), S1,2}. Since
|X | = 1, it follows that G has a spanning trail, contrary to (1). Thus Case 1 will always lead to a contradiction.

Case 2. κ ′(G) = 3.
As κ ′(G) ≥ max{2, α(G) − 3}, we have α(G) ≤ 6. By Theorem 1.2, we may assume that κ(G) ∈ {1, 2}. Let X be a vertex

cut of G with |X | = κ(G). If κ(G) = 1, then κ ′(Gi) ≥ κ ′(G) = 3 (1 ≤ i ≤ t), and so by (3) and α(G) ≤ 6, we have 4t ≤ t + 5,
forcing t = 1, contrary to the fact that t ≥ 2. Hence we must have κ(G) = 2. Denote X = {u1, u2}. Since κ ′(G) = 3 and since
G is reduced, for each i ∈ {1, 2}, (recall that notation in (2) is used here),

|D1(Gi)| ≤ 1, D1(Gi) ∪ D2(Gi) ⊆ {u1, u2} and |V (Hi)| ≥ 3 . (4)

Let G−

i = Gi − D1(Gi) and |V (G−

i )| = n−

i (1 ≤ i ≤ t). By κ ′(G) = 3 and (4),

δ(G−

i ) ≥ 2 and |D2(G−

i )| ≤ 2 . (5)

By Theorem 2.2(iv), G−

i is reduced. If n−

i ≤ 9, by (5) and Lemma 3.8, κ ′(Gi) ≥ 2. By Theorem 2.3(ii) and Lemma 3.6, G−

i is
collapsible, contrary to the fact that G−

i is reduced. Then n−

i ≥ 10 (1 ≤ i ≤ t). Since α(G) ≤ 6, by Theorem 3.3(iii), n ≤ 19.
Since |X | = 2, we have t = 2.
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Fig. 2. The graphs J1 and J2 .

Claim 2. For each i with 1 ≤ i ≤ 2, both n−

i = 10 and Gi = G−

i .

Proof of Claim 2. By symmetry, it suffices to prove the case when i = 1. By contradiction, assume that n−

1 > 10 or G1 ̸= G−

1 .
Since G−

1 = G1 − D1(G1), each of these assumptions leads to |V (G1)| ≥ 11. Hence we have |V (G1)| ≥ 11 and |V (G2)| ≥ 10.
As Gi = G[V (Hi) ∪ X] and |X | = 2, we have |V (H1)| ≥ 9 and |V (H2)| ≥ 8. By Theorem 3.3, both α(H1) ≥ 4 and α(H1) ≥ 3,
and so α(G) ≥ α(H1) + α(H2) ≥ 7, contrary to α(G) ≤ 6. This proves Claim 2.

Claim 3. For each i with 1 ≤ i ≤ 2 and for any u ∈ {u1, u2}, there is a spanning trail starting from u in Gi.

Proof of Claim 3. Without loss of generality, suppose i = 1. By Claim 2, G1 = G−

1 , and so (5) applies to G1. If |D2(G1)| ≤ 1,
by Claim 2 and Lemma 3.8, κ ′(G1) ≥ 2. By Lemma 3.7, we have G1 ∼= P(10) which has a spanning trail starting from any
vertex. Hence we assume that |D2(G1)| = 2. By (4), D2(G1) = {u1, u2}. By Lemma 3.8, κ ′(G1) ≥ 2. For any u ∈ {u1, u2}, since
dG1 (u) = 2, by Claim 2, there is a v ∈ V (G1) such that uv ̸∈ E(G1). Let G+

1 = G1 + uv. Then δ(G+

1 ) ≥ 2, |D2(G+

1 )| ≤ 1 and
κ ′(G+

1 ) ≥ κ ′(G1) ≥ 2. By Lemma 3.7, either G+

1 is collapsible or G+

1
∼= P(10). If G+

1 is collapsible, then there is a spanning
closed trail T in G+

1 , and so T − uv is a spanning trail starting from u in G1. If G+

1
∼= P(10), then G+

1 − u is supereulerian,
implying that G1 has a spanning trail starting from u. This proves Claim 3.

Since t = 2, by Claim 3, G has a spanning trail. This completes the proof of Theorem 3.9. □

As shown in [21], the inequality of Theorem 3.9 is sharp. Let J1 and J2 be the graphs depicted in Fig. 2. For i ∈ {1, 2}, let
t ≥ 3 be an integer and J∗i be a graph obtained from Ji by replacing at most two 2-degree vertices in Ji by a complete graph
Kt . Then κ ′(J∗i ) ≥ 2 and α(J∗i ) = 6. But J∗i does not have a spanning trail.

4. Spanning trails with bounded matching numbers

In this section, we will investigate supereulerian graphs with a bounded size of maximum matchings. A component H
of G is an odd component if |V (H)| ≡ 1 (mod 2). Let q(G) = |{Q : Q is an odd component of G}|. Tutte [22] and Berge [2]
proved the following theorem.

Theorem 4.1 (Tutte, [22]; Berge, [2]). Let G be a graph with n vertices. If

t = max
S⊂V (G)

{q(G − S) − |S|}, (6)

then α′(G) = (n − t)/2.

In [13], a lower bound of the size of maximummatching has been found for reduced graphs.

Theorem 4.2 (Theorem 1 of [13]). Let G be a reduced graph with n vertices and δ(G) ≥ 3. Then α′(G) ≥ min{
n−1
2 , n+4

3 }.

Following a similar idea in [13], the lower bond in Theorem 4.2 can be slightly improved as shown in Theorem 4.4. We
start with a lemma on reduced graphs.

Lemma 4.3. Let G be a connected reduced graph with δ(G) ≥ 3. Suppose that S ⊆ V (G) is a vertex subset attaining the maximum
in (6) with |S| > 0, m = q(G − S) and that G1,G2, . . . ,Gm are the components in G − S with odd number of vertices such that
|V (G1)| ≤ |V (G2)| ≤ · · · ≤ |V (Gm)|. Define

X = {Gi : |V (Gi)| = 1, 1 ≤ i ≤ m}, Y = {Gi : |V (Gi)| = 3, 1 ≤ i ≤ m}, x = |X |, y = |Y |.

V ∗
= ∪

x+y
k=1V (Gk),G∗

= G[V ∗
∪ S∗

] and s∗ = |S∗
|, where S∗

= {s ∈ S : v∗s ∈ E(G), v∗
∈ V ∗

}. (7)

Thus G∗ is spanned by a bipartite subgraph with (V ∗, S∗) being its vertex bipartition with |V ∗
| = x + 3y ≥ 1. By the definition of

x, V ∗ contains x isolated vertices in G∗
[V ∗

]. Then each of the following holds.
(i) n ≥

∑m
i=1|V (Gi)| + |S| ≥ m|V (G1)| + |S|.

(ii) If x > 0, then s∗ ≥ 3.
(iii) m ≤

n+4x+2y−|S|
5 .

(iv) G∗
̸∈ {K1, K2, K1,2, K2,2}.

(v) |E(G∗)| ≥ 3x + 7y.
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Proof. Statement (i) follows from the definition ofm and Gi. If x > 0, then by δ(G) ≥ 3, there must be at least 3 vertices in S∗

adjacent to the only vertex in G1, and so s∗ ≥ 3. This justifies (ii). By (7), we have n ≥ |S| + x+ 3y+ 5(m− x− y), and so (iii)
follows. As δ(G) ≥ 3, every vertex in G1 must have degree at least 3 in G∗, and so (iv)must hold. Since δ(G) ≥ 3 and G does not
contain a 3-cycle, every vertex in ∪Gi∈XV (Gi) is incident with at least 3 edges in G∗; and every component in G∗

[∪Gi∈YV (Gi)]
is a K1,2 and is incident with at least 5 edges with one end in S∗ plus two edges in E(Gi). Hence |E(G∗)| ≥ 3x + 7y. This
proves (v). □

Theorem 4.4. Let G be a connected reduced graph with n vertices and δ(G) ≥ 3. Then α′(G) ≥ min{
n
2 ,

n+5
3 }.

Proof. Let t be defined as in (6). By Theorem 4.1, if t = 0, α′(G) =
n
2 ≥ min{

n
2 ,

n+5
3 }. Hence we assume that t ≥ 1. If n ≤ 11,

then since δ(G) ≥ 3, by Theorem 3.2, G ∼= P(10). As α′(P(10)) = 5 =
10
2 , Theorem 4.4 holds when n ≤ 11.

Hence we assume that n ≥ 12, and so n+5
3 < n

2 . By Theorem 4.1, to prove Theorem 4.4, it suffices to show that

α′(G) ≥
n − t
2

≥
n + 5
3

, or equivalently, t ≤
n − 10

3
. (8)

In the rest of the proof, we shall show that (8) always holds in any case, which implies the validity of Theorem 4.4. Define
S, m, G1,G2, . . . ,Gm, V ∗, S∗, s∗ and G∗ as in Lemma 4.3. Since G is reduced, by Theorem 2.3(ii), G is simple and K3-free. If
|S| = 0, as G is connected and as n ≥ 12, we have t = 1 and so |V (G)| is odd and n ≥ 13. By Theorem 4.1 and as n ≥ 13,
α′(G) ≥

n−1
2 ≥

n+5
3 , and so (8) holds. Hence we assume that |S| ≥ 1.

Case 1. x = 0, i.e. |V (G1)| ≥ 3.

Subcase 1.1. |V (G1)| = 3.
Since G is K3-free, G1 ∼= K1,2. By δ(G) ≥ 3, we have |S| ≥ 3. It follows by n ≥ 3m + |S| that

t = m − |S| ≤
n − |S|

3
− |S| =

n − 4|S|
3

≤
n − 12

3
,

and so (8) must hold.

Subcase 1.2. |V (G1)| = 5.
If |S| = 1, then as G is K3-free and δ(G) ≥ 3, we have |E(G[V (G1) ∪ S])| ≥

15
2 > 7. On the other hand, G[V (G1) ∪ S] ̸∈

{K1, K2}∪ {K2,ℓ : ℓ ≥ 1} since δ(G) ≥ 3. By Theorem 2.3(iv), we have |E(G[V (G1)∪ S])| ≤ 2(5+1)−5 = 7. A contradiction is
obtained. Hence we assume that |S| ≥ 2. As n ≥ 5m+ |S|, we havem ≤

n−|S|
5 . It follows by n ≥ 12 and t = m− |S| ≥ 1 that

t = m − |S| ≤
n − |S|

5
− |S| =

n − 6|S|
5

≤
n − 12

5
<

n − 10
3

,

and so (8) must hold.

Subcase 1.3. |V (G1)| ≥ 7.
Since t = m − |S| ≥ 1, we have m ≥ 2, and so n ≥ 7m + |S| ≥ 15 and m ≤

n−|S|
7 . It follows that

t = m − |S| ≤
n − |S|

7
− |S| =

n − 8|S|
7

≤
n − 8
7

<
n − 10

3
,

and so (8) must hold.

Case 2. x ≥ 1.
By Lemma 4.3(iv), G∗ is not in {K1, K2, K1,2, K2,2}, and so by Theorem 2.3(iv), either for some integer ℓ ≥ 3, G∗ ∼= K2,ℓ or

F (G∗) ≥ 3.

Subcase 2.1. For some integer ℓ ≥ 3, G∗ ∼= K2,ℓ.
Since δ(G) ≥ 3, every vertices in V ∗ must have degree at least 3 in G∗, |V ∗

| = x = 2 and s∗ = ℓ ≥ 3. By the definition of
y, we must have y = 0 and |S| ≥ |S∗

|. It follows by Lemma 4.3(iii) that 1 ≤ t = m − |S| ≤
n+8+2y−|S|

5 − |S| ≤
n+8−6s∗

5 , and
so n ≥ 6s∗ − 3. As s∗ ≥ 3, we have n ≥ 6s∗ − 3 ≥ 15 ≥ 32 − 9s∗, or 5(n − 10) ≥ 3(n + 8 − 6s∗). Hence

t ≤
n + 8 − 6s∗

5
<

n − 10
3

,

and so (8) must hold.

Subcase 2.2. F (G∗) ≥ 3.
By Theorem 2.3(i) and by Lemma 4.3(v), 3x + 7y ≤ |E(G∗)| ≤ 2(|V (G∗)| − 1) − 3 = 2(x + 3y + |S|) − 5. This implies that

|S| ≥
x+y+5

2 , and so n ≥ x + 3y + |S| ≥
3x+7y+5

2 . It follows that

t = m − |S| ≤
n + 4x + 2y − |S|

5
− |S| ≤

n + x − y − 15
5

≤
n − 10

3
,

and so (8) must hold. This completes the proof of the theorem. □
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The following theorem for 3-edge-connected graphs with order at most 15 will be needed.

Theorem 4.5 (Theorem 1.1 of [11]). Let G be a 3-edge-connected graph and G′ be the reduction of G.
(i) If |V (G)| ≤ 13, then either G is supereulerian or G′ ∼= P(10).
(ii) If |V (G)| ≤ 14, then either G is supereulerian or G′

∈ F2.
(iii) If |V (G)| = 15, G is not supereulerian and G′

̸∈ F2, then G is an essentially 4-edge-connected reduced graph with girth at
least 5, κ(G) ≥ 2 with V (G) = D3(G) ∪ D4(G) where |D4(G)| = 3.

A few more former results are needed in the proof of the main theorem in this section.

Theorem 4.6 (Theorem 3.1 of [10]). Let G be a 3-edge-connected reduced graph with F (G) = 3. Then either G is supereulerian or
each of the following holds:

(i) G has no edge joining two vertices of even degree;
(ii) G has girth at least 5;
(iii) G has no 2-edge-connected subgraph G with F (H) = 2.

Theorem 4.7 (Reiman, [20]; Bollobás, [4]). Let G be a connected bipartite C4-free graph with vertex bipartition {X, Y }, where
|X | ≤ |Y |. Then

|E(G)| ≤

√
|Y | · |X |(|X | − 1) +

|Y |
2

4
+

|Y |

2
.

Lemma 4.8. Let G be a reduced graph with order n ≥ 15. If κ ′(G) ≥ 3 and α′(G) ≤ 7, then G is supereulerian.

Proof. By contradiction, assume that G is not supereulerian. As α′(G) ≤ 7 and n ≥ 15, by Theorem 4.4,

15 ≤ n ≤ 3α′(G) − 5 ≤ 16. (9)

Let t be the integer satisfying (6) in Theorem 4.1. Then α′(G) =
n−t
2 . By (9) and Theorem 4.4, we have 7 ≥ α′(G) =

n−t
2 ≥

n+5
3 .

Thus n−10
3 ≥ t ≥ n − 14. By (9), we have t ≥ 1 when n = 15 and t ≥ 2 when n = 16. We shall show that neither case

can occur to reach a contradiction to the assumption that G is not supereulerian, thereby proving the theorem. Define S, m,
G1,G2, . . . ,Gm, V ∗, S∗, s∗ and G∗ as in Lemma 4.3.

Claim 4. G∗
̸∈ {K1, K2} ∪ {K2,ℓ, ℓ ≥ 1}.

Proof of Claim 4. By Lemma 4.3(iv), G∗
̸∈ {K1, K2, K1,2, K2,2}. Suppose that G∗ ∼= K2,ℓ, for some ℓ ≥ 3. By the definition of G∗,

we have x ≥ min{2, ℓ} = 2. This implies that x = 2, y = 0 and |S| = s∗ = ℓ ≥ 3. By Lemma 4.3(i), n ≥ |S| + x+ 5(m− x) =

|S| + 5m − 4x. As |S| ≥ 3, n ∈ {15, 16}, x = 2 and m = |S| + t , we have 16 ≥ n ≥ 6|S| + 5t − 8 ≥ 18 − 5t − 8 = 10 − 5t ,
and so t ≤

6
5 < 2. Thus, t = 1 and n = 15. By Theorem 4.5(iii), G does not have cycles of length at most 4, contrary to the

assumption that G∗ ∼= K2,ℓ. This justifies Claim 4.

Claim 5. Each of the following holds.
(i) |S| ≥

x+y+5
2 .

(ii) x − y ≥ 5t + 15 − n.

Proof of Claim 5. By Claim 4, G∗
̸∈ {K1, K2}∪{K2,ℓ, ℓ ≥ 1}. By Theorem 2.3(iv), F (G∗) ≥ 3. As G is reduced, G∗ is also reduced,

and so by Theorem 2.3(i) and Lemma 4.3(v), 3x + 7y ≤ |E(G∗)| ≤ 2(x + 3y + |S|) − 5. Hence (i) must hold.
By Lemma 4.3(iii) and bym − |S| = t , we have n+4x+2y−|S|

5 − |S| ≥ t . It follows by Claim 5(i) that

n + 4x + 2y −
x+y+5

2

5
−

x + y + 5
2

≥
n + 4x + 2y − |S|

5
− |S| ≥ t

which implies x − y ≥ 5t + 15 − n. Hence (ii) holds as well. This proves Claim 5.

Case 1. t ≥ 1 when n = 15.
By Claim 5(ii) with n = 15, x ≥ 5 + y ≥ 5. Assume that |S| ≥ x + 1. By the choice of S, we have 1 ≤ t = m − |S|, and

so m ≥ |S| + 1 ≥ x + 2. By Lemma 4.3(i) and by |S| ≥ x + 1, n ≥
∑m

i=1|V (Gi)| + |S| ≥ x + |V (Gx+1)| + |V (Gx+2)| + |S| ≥

x+3+3+ (x+1) ≥ 17, contrary to n = 15. Hence |S| ≤ x. Let E+
= {uv ∈ E(G) : u ∈ [∪Gi∈XV (Gi)], v ∈ S}, and G+

= G[E+
].

By (7) and the definition of G+, G+ is a bipartite graph with a vertex bipartition {∪Gi∈XV (Gi), S}. Since δ(G) ≥ 3, |E(G+)| ≥ 3x.
Since n = 15, by Theorem 4.5, G+ is C4-free. Since |S| ≤ x, by Theorem 4.7,

3x ≤ |E(G+)| ≤

√
x · |S|(|S| − 1) +

x2

4
+

x
2

≤

√
x2(x − 1) +

x2

4
+

x
2
. (10)
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Solving (10) for x to get 25x2
4 ≤ x3 − x2 +

x2
4 , and so x ≥ 7. In particular, when x = 7, the equality in (10) holds. Thus, if x = 7,

|S| = x = 7 and so m = |S| + t = 8. By Lemma 4.3(i), |S| ≤ 15 − x −
∑m

i=x+1|V (Gi)| ≤ 15 − 7 − 3 = 5, contrary to that
|S| = 7. Hence we must have x ≥ 8. As n = 15 and x − |S| ≤ m − |S| = t = 1, we have |S| = 7 and x = 8. By Theorem 4.7,
|E(G+)| < 23. As δ(G) ≥ 3, |E(G+)| ≥ 3x = 24, a contradiction. This proves that Case 1 does not occur.

Case 2. t ≥ 2 when n = 16.
By Claim 5(ii), x ≥ 9 + y. By Claim 5(i), |S| ≥ 7 + y. Since n = 16, we must have x = 9 = |V ∗

|, |S| = 7 and V (G∗) = V (G).
As δ(G) ≥ 3, we have |E(G)| ≥ |E(G∗)| ≥ 3x = 27. By Theorem 2.3(i) and (iv), |E(G)| ≤ 2|V (G)| − 5 = 27. Therefore,
|E(G)| = 27, F (G) = 3 and G∗ ∼= G is a bipartite graph with bipartition V ∗ and S. By Theorem 4.6, the girth of G is at least 5.
By Theorem 4.7, |E(G)| ≤ 24, contrary to |E(G)| = 27. This proves that Case 2 does not occur as well, and completes the
proof. □

Theorem 4.9. Let G be a connected graph with n vertices and κ ′(G) ≥ 3, and G′ be the reduction of G. If α′(G) ≤ 7, then G is
supereulerian if and only if G′

̸∈ F2 = {P(10), P(14)}.

Proof. As P(10) and P(14) are not supereulerian, the necessity is clear. By Theorem 2.2, G is supereulerian if and only if G′

is supereulerian. By the definition of contractions, we have κ(G′) ≥ κ ′(G) ≥ 3 and α′(G′) ≤ α′(G) ≤ 7. Hence it suffices to
prove that

if a reduced graph Gwith κ ′(G) ≥ 3 and α′(G) ≤ 7 is not supereulerian, then G ∈ F2 . (11)

By Lemma 4.8, (11) holds if |V (G)| ≥ 15. By Theorem 4.5, (11) holds if |V (G)| ≤ 14. This completes the proof of the
theorem. □

Corollary 4.10. Let G be a connected graph. If |V (G)| ≤ 15 and κ ′(G) ≥ 3, then G is supereulerian if and only if the reduction of
G is not in F2.

Proof. If |V (G)| ≤ 15, then α′(G) ≤
15
2 . So α′(G) ≤ 7. By Theorem 4.9, this corollary holds. □

Corollary 4.11. Let G be a connected reduced graph. Each of the following holds.
(i) If |V (G)| ≤ 15 and δ(G) ≥ 3, then G is supereulerian if and only if G ̸∈ F2.
(ii) If δ(G) ≥ 3 and α(G) ≤ 5, then G is supereulerian if and only if G ̸= P(10).

Proof. First we prove (i). Suppose that κ ′(G) ≤ 2. Let X be a minimal edge cut in G with |X | ≤ 2. Let G1 and G2 be the two
components in G−X with |V (G1)| ≤ |V (G2)|. Since |V (G)| ≤ 15, |V (G1)| ≤ 7. Since |X | ≤ 2 and δ(G) ≥ 3, either |D1(G1)| = 0
and |D2(G1)| ≤ 2 or |D1(G1)| ≤ 1 and |D2(G1)| = 0. Then G ̸∈ {K1, K2} ∪ {K2,ℓ : ℓ ≥ 1} and |E(G1)| ≥

4+3(|V (G1)|−2)
2 . By

Theorem 2.3, 4+3(|V (G1)|−2)
2 ≤ |E(G1)| ≤ 2|V (G1)| − 5. Then |V (G1)| ≥ 8, contrary to that |V (G1)| ≤ 7. Thus, κ ′(G) ≥ 3.

Statement (i) follows from Corollary 4.10.
Nowwe prove (ii). If α(G) ≤ 5, by Theorem 3.3, |V (G)| ≤ 15. Since α(P(14)) = 6, the statement follows from (i) above. □
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