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Settling a conjecture of Kuipers and Veldman posted in 
Favaron and Fraisse (2001) [9], Lai et al. (2006) [15] proved 
that if H is a 3-connected claw-free simple graph of order 
n ≥ 196, and if δ(H) ≥ n+5

10 , then either H is Hamiltonian, 
or the Ryjác̆ek’s closure cl(H) = L(G) where G is the 
graph obtained from the Petersen graph P by adding n−15

10
pendant edges at each vertex of P . Recently, Li (2013) [17]
improved this result for 3-connected claw-free graphs H with 
δ(H) ≥ n+34

12 and conjectured that similar result would also 
hold even if δ(H) ≥ n+12

13 . In this paper, we show that for 
any given integer p > 0 and real number ε, there exist an 
integer N = N(p, ε) > 0 and a family Q(p), which can be 
generated by a finite number of graphs with order at most 
max{12, 3p −5} such that for any 3-connected claw-free graph 
H of order n > N and with δ(H) ≥ n+ε

p
, H is Hamiltonian if 

and only if H /∈ Q(p).
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As applications, we improve both results in Lai et al. (2006) 
[15] and in Li (2013) [17], and give a counterexample to the 
conjecture in Li (2013) [17].

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We shall use the notation of Bondy and Murty [1], except when otherwise stated. 
Graphs considered in this paper are finite and loopless. A graph is called a multigraph
if it contains multiple edges. A graph without multiple edges is called a simple graph
or simply a graph. As in [1], κ′(G) and dG(v) (or d(v)) denote the edge-connectivity 
of G and the degree of a vertex v in G, respectively. An edge cut X of a graph G is 
essential if each of the components of G −X contains an edge. A graph G is essentially 
k-edge-connected if G is connected and does not have an essential edge cut of size less 
than k. An edge e = uv is called a pendant edge if either d(u) = 1 or d(v) = 1. The size 
of a maximum matching in G is denoted by α′(G). The length of a shortest cycle in G
is the girth of G. A connected graph G is Eulerian if the degree of each vertex in G is 
even. An Eulerian subgraph Γ in a graph G is called a spanning Eulerian subgraph of 
G if V (G) = V (Γ) and is called a dominating Eulerian subgraph if E(G − V (Γ)) = ∅. 
A graph is supereulerian if it contains a spanning Eulerian subgraph. The family of 
supereulerian graphs is denoted by SL. Let O(G) be the set of vertices of odd degree 
in G. A graph G is collapsible if for every even subset R ⊆ V (G), there is a spanning 
connected subgraph ΓR of G with O(ΓR) = R. When R = ∅, such ΓR is a spanning 
Eulerian subgraph. Examples of collapsible graphs include C2 (a cycle of length 2) and 
K3 = C3. But cycles with length at least 4 (Ci with i ≥ 4) are not collapsible. We use 
CL to denote the family of collapsible graphs. Thus, CL ⊂ SL. For a graph G, define 
Di(G) = {v ∈ V (G) | d(v) = i} and define

σ2(G) = min{d(u) + d(v) | for every edge uv ∈ E(G)}. (1)

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two 
vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent. 
The following theorem shows a relationship between a graph and its line graph.

Theorem A (Harary and Nash-Williams [11]). The line graph H = L(G) of a simple 
graph G with at least three edges is Hamiltonian if and only if G has a dominating 
Eulerian subgraph.

A graph H is claw-free if H does not contain an induced subgraph isomorphic to 
K1,3. Ryjáček [20] defined the closure cl(H) of a claw-free graph H to be one obtained 
by recursively adding edges to join two nonadjacent vertices in the neighborhood of any 



Z.-H. Chen et al. / Journal of Combinatorial Theory, Series B 122 (2017) 167–186 169
locally connected vertex of H as long as this is possible. A graph H is said to be closed
if H = cl(H).

Theorem B (Ryjáček [20]). Let H be a claw-free simple graph and cl(H) its closure. Then

(a) cl(H) is well defined, and κ(cl(H)) ≥ κ(H);
(b) there is a K3-free simple graph G such that cl(H) = L(G);
(c) both graphs H and cl(H) have the same circumference.

It follows from Theorems A and B that a claw-free simple graph H with its closure 
cl(H) = L(G) is Hamiltonian if and only if G has a dominating Eulerian subgraph.

Many researches have been done on the minimum degree conditions for claw-free 
simple graphs to be Hamiltonian (see the surveys [7] and [10]). Matthews and Sumner [19]
proved that if H is a 2-connected claw-free simple graph of order n with δ(H) ≥ n−2

3 , then 
H is Hamiltonian. Kuipers and Veldman [13] and Favaron et al. [8] proved that if H is a 
2-connected claw-free simple graph with sufficiently large order n and δ(H) ≥ n+c

6 (where 
c is a constant), then H is Hamiltonian or is a member of one of the ten well-defined 
families of graphs. Kovářík et al. [12] proved that if H is a 2-connected claw-free simple 
graph of order n ≥ 153 with δ(H) ≥ n+39

8 , then either H is Hamiltonian or the closure of 
H is in the five classes of graphs. For 3-connected claw-free simple graphs, the following 
were proved.

Theorem C (Li [16]). If H is a 3-connected claw-free simple graph of order n and if 
δ(H) ≥ n+5

5 , then H is Hamiltonian.

Theorem D (Li, Lu and Liu [18]). If H is a 3-connected claw-free simple graph of order 
n and if δ(H) ≥ n+7

6 , then H is Hamiltonian.

Theorem E (Kuipers and Veldman [13]). If H is a 3-connected claw-free simple graph 
with sufficiently large order n, and if δ(H) ≥ n+29

8 , then H is Hamiltonian.

Theorem F (Favaron and Fraisse [9]). If H is a 3-connected claw-free simple graph of 
order n and if δ(H) ≥ n+37

10 , then H is Hamiltonian.

Settling a conjecture of Kuipers and Veldman posted in [9,13], Lai et al. proved:

Theorem G (Lai et al. [15]). If H is a 3-connected claw-free simple graph of order n ≥ 196
and if δ(H) ≥ n+5

10 , then either H is Hamiltonian, or cl(H) = L(G) where G is obtained 
from the Petersen graph P by adding n−15

10 pendant edges at each vertex of P .

Recently, Li [17] further improved Theorem G and proved the following:
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Theorem H (Li [17]). If H is a 3-connected claw-free simple graph of order n ≥ 363 and 
if δ(H) ≥ (n + 34)/12, then either H is Hamiltonian or H ∈ F1 ∪F2 (which are defined 
below).

Li [17] defined the following families of non-Hamiltonian graphs in which K2,t is 
a connected spanning subgraph of K2,t. For each i ∈ {1, 2, 3}, let Fi = {H | H is a
3-connected claw-free graph such that cl(H) = L(G) where G is a graph obtained from
the Petersen graph P by replacing exactly i − 1 vertices vj (j = 1 to i − 1 if i > 1)
of P with i − 1 Wj = K2,t (t ≥ 2), and each Wj is connected to P − ∪i−1

j=1{vj} by the
three edges incident with vj in such a way that G is essentially 3-edge-connected and
by adding at least one pendant edge at all other 10 − (i − 1) vertices of P and by
subdividing m edges of P for m = 0, 1, 2, · · · , 15}.

In [17], Li claimed that the bound δ(H) ≥ (n + 34)/12 in Theorem H can be relaxed 
to δ(H) ≥ (n + 6)/12 and posed the following conjecture:

Conjecture A. Let H be a 3-connected claw-free simple graph of order n ≥ 483. If δ(H) ≥
(n + 12)/13, then either H is Hamiltonian or H ∈ F1 ∪ F2 ∪ F3.

The purpose of the current research is to investigate the validity of Conjecture A, to 
find an approach to unify all the results above, and to seek the best result along this 
direction.

Let Q0(r) be the family of 3-edge-connected nonsupereulerian K3-free simple graphs 
of order at most r. For given integer r ≥ p > 0, let Qp(r) denote the graph family of 
essentially 3-edge-connected graphs such that any graph G ∈ Qp(r) if and only if G is 
obtained from a member Gp ∈ Q0(r) by replacing t (1 ≤ t ≤ p) vertices of Gp with 
nontrivial connected graphs or adding some pendant edges at these t vertices such that 
G does not have a dominating Eulerian subgraph. Note that the Petersen graph P is the 
smallest graph in Q0(r). In fact, Q0(r) = {P} if r ≤ 13 (see Theorem K(a)).

In this paper, using Ryjác̆ek’s closure concept [20] and Catlin’s reduction method [2], 
we prove the following:

Theorem 1.1. Let p > 0 be a given integer and let ε be a given number. Let N(p, ε) =
6p2 +(p +1)|ε|. Let H be a 3-connected claw-free simple graph of order n. If n > N(p, ε)
and δ(H) ≥ n+ε

p then H is Hamiltonian if and only if the closure of H satisfies that 
cl(H) = L(G), where G /∈ Qp(r) with r ≤ max{12, 3p − 5}.

Using structural properties of the closure concept, Favaron et al. in [8] show a method 
for characterizing non-Hamiltonian graphs H with δ(H) > n+k2−4k+7

k for any integer 
k ≥ 4.

Theorem I (Favaron et al. [8]). Let k ≥ 4 be an integer. Let H be a 2-connected claw-free 
simple graph of order n such that n ≥ 3k2 − 4k− 7 and δ(H) > n+k2−4k+7

k . Then either 
H is Hamiltonian or the closure cl(H) can be covered by at most k − 1 cliques.
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Theorem 1.1 and Theorem I share some similarity. However, the structural informa-
tion for the non-Hamiltonian exceptional graphs is different. Thus, Theorem 1.1 and 
Theorem I are independent.

Theorems C, D, E, F, G and H are the special cases of Theorem 1.1 with (p, ε) ∈
{(5, 5), (6, 7), (8, 29), (10, 37), (10, 5), (12, 34)}. Using Theorem 1.1, we will show an im-
provement of Theorems G and H as a special case of Theorem 1.1 with p = 13 and 
ε = 6 and give a counterexample to Conjecture A. The same example also shows that 
the bound δ(H) ≥ (n + 34)/12 in Theorem H can not be relaxed to δ(H) ≥ (n + 6)/12.

As Kuratowski [14] and Wagner [22] characterized planar graphs in terms of graphs 
without a subgraph contractible to K5 or K3,3, the graphs K5 or K3,3 have been con-
sidered as the only obstacles for a graph to be planar. Theorem 1.1 shows that in some 
sense, with given p and ε, for 3-connected claw-free simple graphs H of order n with 
δ(H) ≥ (n + ε)/p, there are only a finite number of obstacles for such graphs to be 
Hamiltonian.

2. Catlin’s reduction method

Let G be a connected multigraph. For X ⊆ E(G), the contraction G/X is the multi-
graph obtained from G by identifying the two ends of each edge e ∈ X and deleting the 
resulting loops. Note that even if G is a simple graph, multiple edges may arise by the 
identification. But we do not replace multiple edges into a single edge. If Γ is a connected 
subgraph of G, then we write G/Γ for G/E(Γ) and use vΓ for the vertex in G/Γ to which 
Γ is contracted, and vΓ is called a contracted vertex if Γ 	= K1.

Let G and GT be two connected graphs. We say that G is contractible to GT if GT is a 
graph obtained from G by successively contracting a collection of pairwise vertex disjoint 
connected subgraphs, and call GT the contraction graph of G. For a vertex v ∈ V (GT ), 
there is a connected subgraph G(v) in G such that v is obtained by contracting G(v). 
We call G(v) the preimage of v in G and call v the contraction image of G(v) in GT .

Catlin [2] showed that every multigraph G has a unique collection of pairwise disjoint 
maximal collapsible subgraphs Γ1, Γ2, · · ·, Γc such that V (G) = ∪c

i=1V (Γi). The reduc-
tion of G is the graph obtained from G by contracting each Γi into a single vertex vi
(1 ≤ i ≤ c) and is denoted by G′. Thus, the reduction of G is a special type of contrac-
tion graph of G. For a vertex v ∈ V (G′), there is a unique maximal collapsible subgraph 
Γ(v) in G such that v is the contraction image of Γ(v) and Γ(v) is the preimage of v. 
A vertex v ∈ V (G′) is a contracted vertex if Γ(v) 	= K1. A graph is reduced if G = G′. 
By definition, K1 is a collapsible and supereulerian graph. As K1 does not have any edge 
cuts, we define κ′(K1) = ∞. By the definition of contraction, we have κ′(G′) ≥ κ′(G).

Note that although multiple edges may arise by contracting an edge, contracting a 
maximal collapsible subgraph will not generate multiple edges. In particular, the girth 
of the reduction of a multigraph is always larger than 3 (see Theorem J(c) below).

Throughout this paper, we use P to denote the Petersen graph and use P14, 
K1,3(1, 1, 1) and J ′(1, 1) to denote the graphs depicted in Fig. 2.1, respectively.
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Fig. 2.1. P14 and the two reduced graphs G of order 7 with |D2(G)| = 3.

Theorem J (Catlin [2] and Catlin et al. [3]). Let G be a connected multigraph and let G′

be the reduction of G. Then each of the following holds:

(a) G ∈ CL if and only if G′ = K1. In particular, G ∈ SL if and only if G′ ∈ SL.
(b) G has a dominating Eulerian subgraph if and only if G′ has a dominating Eulerian 

subgraph containing all the contracted vertices of G′.
(c) If G is a reduced graph, then G is simple, K3-free with δ(G) ≤ 3, and either G ∈

{K1, K2, K2,t(t ≥ 2)} or |E(G)| ≤ 2|V (G)| − 5.

Theorem K. Let G be a 3-edge-connected multigraph of order n. Let G′ be the reduction 
of G. Then each of the following holds:

(a) (Chen [4]) If n ≤ 14, then either G ∈ SL or G′ ∈ {P, P14}.
(b) (Chen [4]) If n = 15, G /∈ SL and G′ /∈ {P, P14}, then G is 2-connected, 3-edge-

connected and essentially 4-edge-connected reduced graph with girth at least 5 and 
V (G) = D3(G) ∪D4(G) where |D4(G)| = 3 and D4(G) is an independent set.

(c) (Chen et al. [6] or Zhang [23]) Let α′(G′) be the size of a maximum matching in G′. 
Then α′(G′) ≥ min{ |V (G′)|−1

2 , |V (G′)|+5
3 }.

(d) (Chen [4]) If G 	= K1 is a 2-edge-connected reduced graph of order n ≤ 7, then 
|D2(G)| ≥ 3; and if |D2(G)| = 3, then G ∈ {K2,3, K1,3(1, 1, 1), J ′(1, 1)}.

Throughout the rest of this section, G denotes an essentially 3-edge-connected simple 
graph. Then D1(G) ∪D2(G) is an independent set. Let E1 be the set of pendant edges 
in G. For each x ∈ D2(G), there are two edges e1

x and e2
x incident with x. Let X2(G) =

{e1
x | x ∈ D2(G)}. Thus |X2(G)| = |D2(G)|. Define

G0 = G/(E1 ∪X2(G)) = (G−D1(G))/X2(G).

Note that even if G is a K3-free simple graph, G0 may contain multiple edges. But by 
Theorem J(c), its reduction G′

0 is a K3-free simple graph.
Following [21], the graph G0 is called the core of G. A vertex in G0 is G0-nontrivial if 

it is adjacent to a vertex in D1(G) ∪D2(G) in G. Thus, if x ∈ D2(G) and NG(x) = {u, v}, 
and if ux is a vertex in G0 obtained by contracting the edge xu, then both ux and v
are G0-nontrivial (although ux is a contracted vertex and v is not a contracted vertex 
in G0).



Z.-H. Chen et al. / Journal of Combinatorial Theory, Series B 122 (2017) 167–186 173
Let G′
0 be the reduction of G0. For a vertex v ∈ V (G′

0), let Γ0(v) be the preimage 
of v in G0 and let Γ(v) be the preimage of v in G. Then Γ(v) is the subgraph formed 
by Γ0(v) and some edges in E1 ∪ X2(G). A vertex v ∈ V (G′

0) is nontrivial in G′
0 (or 

G′
0-nontrivial) if |V (Γ(v))| > 1 or Γ(v) = K1 and v is adjacent to a vertex in D2(G). 

Thus, a nontrivial vertex in G′
0 is either a contracted vertex or adjacent to a vertex in 

D2(G) in G.
The following theorem will be needed.

Theorem L (Shao, Section 1.4 of [21]). Let G be an essentially 3-edge-connected simple 
graph and L(G) is not complete. Let G0 be the core of graph G, and let G′

0 be the reduction 
of G0, then each of the following holds:

(a) G0 is well defined, nontrivial and δ(G0) = κ′(G0) ≥ 3 and so κ′(G′
0) ≥ κ′(G0) ≥ 3.

(b) L(G) is Hamiltonian if and only if G′
0 has a dominating Eulerian subgraph containing 

all the nontrivial vertices in G′
0.

Note that Theorem L(b) would not hold if “the nontrivial vertices” of G′
0 is replaced 

by “contracted vertices”. For instance, let G be the graph obtained from the Petersen 
graph P by subdividing five edges of a perfect matching of P . Then G does not have a 
dominating Eulerian subgraph and G′

0 = G0 = P ; all 10 vertices in G′
0 are nontrivial 

vertices and 5 of them are contracted vertices. Obviously, G′
0 does not have a dominat-

ing Eulerian subgraph containing all the G′
0-nontrivial vertices but has a dominating 

Eulerian subgraph containing the 5 contracted vertices.
Let GT be a contraction graph of G. Let v be a vertex in GT and let G(v) be the 

preimage of v in G. For a vertex x in V (G(v)), let i(x) be the number of edges in E(GT )
that are incident with x in G. Then for any x ∈ V (G(v)),

dG(x) = i(x) + |NG(v)(x)| and i(x) ≤
∑

w∈V (G(v))

i(w) = dGT
(v). (2)

When GT = G′
0, G(v) = Γ(v) and i(x) ≤

∑
w∈V (Γ(v)) i(w) = dG′

0
(v).

Lemma 2.1. Let G be a connected K3-free simple graph. Let GT be a contraction graph 
of G. For a vertex v ∈ V (GT ), let G(v) be the preimage of v in G. If G(v) 	= K1, then 
|V (G(v))| ≥ σ2(G) − dGT

(v).

Proof. Since G(v) is a nontrivial connected graph, G(v) has an edge xy. As a subgraph 
of G, G(v) is a K3-free simple graph. Then NG(v)(x) ∩NG(v)(y) = ∅ and

|NG(v)(x)| + |NG(v)(y)| = |NG(v)(x) ∪NG(v)(y)| ≤ |V (G(v))|. (3)

By (1), (2) and (3),
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σ2(G) ≤ dG(x) + dG(y) = i(x) + |NG(v)(x)| + i(y) + |NG(v)(y)|

≤ (i(x) + i(y)) + |V (G(v))| ≤ dGT
(v) + |V (G(v))|.

Thus, |V (G(v))| ≥ σ2(G) − dGT
(v). �

3. An associated theorem

Let G be a simple graph and let H = L(G) be the line graph of G. By the definition 
of a line graph, if H = L(G) is k-connected and is not complete, then G is essentially 
k-edge-connected, and that |V (H)| = |E(G)| and δ(H) = min{dG(x) + dG(y) − 2 | xy ∈
E(G)}. Thus, δ(H) = σ2(G) − 2.

Throughout the rest of this paper, we always assume that p > 0 is an integer and ε is 
a real number. We prove the following theorem first.

Theorem 3.1. Let G be an essentially 3-edge-connected simple graph with size n = |E(G)|
and

σ2(G) ≥ n + ε

p
+ 2. (4)

Let G0 be the core of G and let G′
0 be the reduction of G0. If n > 4p2 − 11p − pε − ε, 

then exactly one of the following holds.

(a) G0 ∈ CL;
(b) G′

0 is not in CL with |V (G′
0)| ≤ max{12, 3p − 5} and κ′(G′

0) ≥ 3.

Proof. It is clear that (a) and (b) are mutually exclusive. Suppose G0 /∈ CL. By The-
orem J(a), G′

0 	= K1. Let c = |V (G′
0)|. By Theorem L(a), κ′(G′

0) ≥ κ′(G0) ≥ 3. By 
Theorem J(c), G′

0 is a K3-free simple graph and

|E(G′
0)| ≤ 2|V (G′

0)| − 5 = 2c− 5. (5)

Let M(G′
0) be a maximum matching in G′

0 and let m = |M(G′
0)|. If c ≤ 12, then 

Theorem 3.1(b) holds. Thus, in the following, we assume that c ≥ 13. Then c−1
2 ≥ c+5

3 . 
By Theorem K(c), m ≥ c+5

3 and so

c ≤ 3m− 5. (6)

Let M(G′
0) = {u′

1v
′
1, u

′
2v

′
2, · · · , u′

mv′m}. Let S′ = {u′
1, u

′
2, · · · , u′

m, v′1, v
′
2, · · · , v′m}. Then 

S′ ⊆ V (G′
0). Let Γ(u′

i) and Γ(v′i) be the preimages of u′
i and v′i in G, respectively. Since 

each edge e = u′v′ in E(G′
0) is an edge in E(G), there is a vertex u in Γ(u′) and there 

is a vertex v in Γ(v′) such that e = uv is an edge in E(G). Thus, G has a matching 
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M(G) = {u1v1, u2v2, · · · , umvm} corresponding to M(G′
0) in G′

0. For each v′ ∈ S′, let v
be the corresponding vertex in V (Γ(v′)). Then

dG(v) ≤ i(v) + |V (Γ(v′))| − 1. (7)

Since Γ(v′) is a connected graph, |E(Γ(v′))| ≥ |V (Γ(v′))| − 1. By (7), for each ujvj ∈
M(G) with the corresponding edge u′

jv
′
j ∈ M(G′

0) (1 ≤ j ≤ m),

dG(uj) ≤ i(uj) + |V (Γ(u′
j))| − 1 ≤ i(uj) + |E(Γ(u′

j))|;
dG(vj) ≤ i(vj) + |V (Γ(v′j))| − 1 ≤ i(vj) + |E(Γ(v′j))|. (8)

Then by (8),

m∑
j=1

(dG(uj) + dG(vj)) ≤
m∑
j=1

(i(uj) + i(vj)) +
m∑
j=1

(|E(Γ(u′
j))| + E(Γ(v′j))|). (9)

By (2), i(v) ≤ dG′
0
(v′) and so

m∑
j=1

(i(uj) + i(vj)) ≤
∑
v′∈S′

dG′
0
(v′) ≤

∑
v′∈V (G′

0)

dG′
0
(v′) = 2|E(G′

0)|. (10)

Since E(G) = (
⋃m

j=1 E(Γ(u′
j))) ∪ (

⋃m
j=1 E(Γ(v′j))) ∪ E(G′

0) ∪ (
⋃

v′∈V (G′
0)−S′ E(Γ(v′)))

|E(G)| ≥
m∑
j=1

|E(Γ(u′
j))| +

m∑
j=1

|E(Γ(v′j))| + |E(G′
0)|. (11)

By (9), (10) and (11),

m∑
j=1

(dG(uj) + dG(vj)) ≤ |E(G′
0)| + |E(G)|. (12)

By (4), (5), (6), (12) and n = |E(G)|,

m(n + ε

p
+ 2) ≤ mσ2(G) ≤

m∑
j=1

(dG(uj) + dG(vj)) ≤ (2c− 5) + n ≤ 2(3m− 5) − 5 + n,

which yields

m ≤ (n− 15)p
n + ε− 4p = p + (4p− ε− 15)p

n + ε− 4p .

Since m is an integer, when n > 4p2−11p −εp −ε, m ≤ p. By (6), |V (G′
0)| = c ≤ 3p −5. �
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4. Proof of Theorem 1.1

To deal with claw-free graphs H = L(G), by Theorem B, we only need to focus on the 
properties of K3-free simple graphs G with σ2(G) ≥ n+ε

p + 2. Note that even when G is 
a K3-free simple graph, its core G0 may contain multiple edges. But by Theorem J(c), 
the reduction G′

0 of G0 is simple and K3-free. For convenience, we define the following:

• S0 = {v ∈ V (G′
0) | v is a nontrivial vertex in G′

0};
• S1 = {v ∈ V (G′

0) | v is a contracted vertex in G′
0};

• Y = V (G′
0) − S1.

By definition, S1 is a subset of S0. However, for the graphs satisfying the assumptions 
of Theorem 3.1, S1 = S0 as shown in Proposition 4.1(b) below.

Proposition 4.1. Let G be an essentially 3-edge-connected K3-free simple graph with size 
n = |E(G)| and with σ2(G) ≥ n+ε

p + 2, where p > 0 is a given integer and ε is a given 
number. Suppose that G0, the core of G, is not in CL. Let G′

0 be the reduction of G0. 
Let S0, S1 and Y be the sets defined above. If n > N(p, ε) = 6p2 + (p + 1)|ε|, then each 
of the following holds:

(a) For each v ∈ S1, let Γ(v) be the preimage of v in G. Then |V (Γ(v))| ≥ σ2(G) −dG′
0
(v).

(b) S1 = S0.
(c) Y is an independent set and NG′

0
(y) ⊆ S1 for any y ∈ Y .

(d) |S0| ≤ p. Furthermore, if |S0| = p, then
(di) |E(G′

0)| ≥ ε + p +
∑

y∈Y dG′
0
(y) ≥ ε + p + 3|Y |;

(dii) |V (G′
0)| ≤ 2p − 5 − ε.

Proof. Let c = |V (G′
0)|. Since G0 /∈ CL, c > 1. As the assumptions of Proposition 4.1

imply the assumptions of Theorem 3.1, it follows from Theorem 3.1 that 1 < c ≤
max{12, 3p − 5}.

Let v be a vertex in V (G′
0), let Γ0(v) be the preimage of v in G0, and let Γ(v) be the 

preimage of v in G. By Theorem J(c), κ′(G′
0) ≥ 3 and G′

0 is simple and K3-free, and so

dG′
0
(v) ≤ |V (G′

0)| − 2 ≤ max{10, 3p− 7}. (13)

(a) For each v ∈ S1, v is a contracted vertex in G′
0 and so Γ(v) is nontrivial. It follows 

from the fact that G′
0 satisfies Lemma 2.1 (where GT = G′

0 and G(v) = Γ(v)).
(b) By way of contradiction, suppose that S1 	= S0. Let v be a vertex in S0−S1. Then 

v is not a contracted vertex and v is nontrivial. Thus, dG(v) = dG′
0
(v) and v is adjacent 

to a vertex u ∈ D2(G). By (1) and (13),

n + ε + 2 ≤ σ2(G) ≤ dG(v) + dG(u) = dG′
0
(v) + 2 ≤ |V (G′

0)| ≤ max{12, 3p− 5},

p
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contrary to the fact that n > N(p, ε) ≥ max{10p − ε, 3p2 − 7p − ε} and so (b) is 
proved.

(c) To the contrary, suppose that there are two vertices y1 and y2 in Y such that 
y1y2 ∈ E(G′

0). Since yi ∈ Y = V (G′
0) − S1 (i = 1, 2), dG(yi) = dG′

0
(yi). By (1), (4)

and (13),

n + ε

p
+ 2 ≤ σ2(G) ≤ dG(y1) + dG(y2) ≤ 2 max{10, 3p− 7},

contrary to the fact that n > N(p, ε) ≥ max{18p −ε, (6p −16)p −ε}, and so (c) is proved.
(d) By way of contradiction, suppose that s = |S0| > p. Let S0 = {v1, v2, · · · , vs}. By 

(b) above, S0 = S1. Then by (a), |E(Γ(vj))| ≥ |V (Γ(vj))| − 1 ≥ σ2(G) − dG′
0
(vj) − 1. 

Since 
(⋃s

j=1 E(Γ(vj))
)
∪E(G′

0) ⊆ E(G) and n = |E(G)|,

|E(G)| ≥
s∑

j=1
|E(Γ(vj))| + |E(G′

0)| ≥
s∑

j=1
(σ2(G) − dG′

0
(vj) − 1) + |E(G′

0)|;

n ≥ sσ2(G) −
s∑

j=1
dG′

0
(vj) − s + |E(G′

0)|. (14)

Since 
∑s

j=1 dG′
0
(vj) ≤

∑
v∈V (G′

0)
dG′

0
(v) = 2|E(G′

0)|, by (14), we have

n ≥ sσ2(G) − |E(G′
0)| − s ≥ s(n + ε

p
+ 2) − |E(G′

0)| − s;

n + |E(G′
0)| − s ≥ s(n + ε)

p
. (15)

By Theorem J(c) and c ≤ max{12, 3p − 5}, |E(G′
0)| ≤ 2c − 5 ≤ max{19, 6p − 15}. Since 

s ≥ p + 1, it follows by (15) that

n + max{19, 6p− 15} − (p + 1) ≥ n + |E(G′
0)| − s ≥ s(n + ε)

p
;

max{18p− p2, (5p− 16)p} − (p + 1)ε ≥ (s− p)n ≥ n,

contrary to the fact that n > N(p, ε) ≥ max{18p − p2, (5p − 16)p} − (p + 1)ε. Thus, 
|S0| ≤ p.

Suppose that |S0| = p. By putting s = p and σ2(G) ≥ n+ε
p + 2 in (14), we obtain

n ≥ p(n + ε

p
+ 2) −

p∑
j=1

dG′
0
(vj) − p + |E(G′

0)|,

which yields
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p∑
j=1

dG′
0
(vj) ≥ ε + p + |E(G′

0)|. (16)

Since 2|E(G′
0)| =

∑
v∈V (G′

0)
dG′

0
(v) =

∑
v∈S0

dG′
0
(v) +

∑
y∈Y dG′

0
(y),

p∑
j=1

dG′
0
(vj) =

∑
v∈S0

dG′
0
(v) = 2|E(G′

0)| −
∑
y∈Y

dG′
0
(y). (17)

By (16), (17) and dG′
0
(y) ≥ δ(G′

0) ≥ 3 for any y ∈ Y , we have

2|E(G′
0)| −

∑
y∈Y

dG′
0
(y) ≥ ε + p + |E(G′

0)|;

|E(G′
0)| ≥ ε + p +

∑
y∈Y

dG′
0
(y) ≥ ε + p + 3|Y |. (18)

The proof of (di) is completed.
Since dG′

0
(y) ≥ δ(G′

0) ≥ 3, by (18) and |E(G′
0)| ≤ 2|V (G′

0)| − 5,

|Y | ≤ |E(G′
0)| − ε− p

3 ≤ 2|V (G′
0)| − 5 − ε− p

3 . (19)

Since |V (G′
0)| = |S0| + |Y | and |S0| = p, by (19)

|V (G′
0)| = p + |Y | ≤ p + 2|V (G′

0)| − 5 − ε− p

3 .

Solving the inequality above, we have |V (G′
0)| ≤ 2p − 5 − ε. The proof is completed. �

Proof of Theorem 1.1. By Theorem B, graph H is Hamiltonian if and only if its closure 
cl(H) is Hamiltonian. Since |V (H)| = |V (cl(H))|, δ(cl(H)) ≥ δ(H) and κ(cl(H)) ≥
κ(H) ≥ 3, the graph cl(H) satisfies the same hypotheses as H. Thus, we may assume 
that H is closed claw-free graph. By Theorem B, there is a K3-free simple graph G such 
that H = cl(H) = L(G). Since H is 3-connected with δ(H) ≥ n+ε

p , by the definition of 
line graphs and by (2), G is essentially 3-edge-connected with size |E(G)| = n = |V (H)|
and σ2(G) ≥ n+ε

p + 2. Let G0 be the core of G, i.e., G0 = G/(E1 ∪X2(G)).
If G′

0 = K1, then by Theorem J(a), G0 has a spanning Eulerian subgraph. By Theo-
rem L(b), cl(H) = L(G) is Hamiltonian. Theorem 1.1 is proved for this case.

Next, suppose that L(G) is not Hamiltonian. Then G′
0 	= K1. By Theorem L(b), 

G0 does not have a dominating Eulerian subgraph containing all the nontrivial vertices. 
In particular, G0 is not supereulerian. Hence, G0 is not collapsible. By Theorem 3.1, 
G′

0 has order at most max{12, 3p − 5} and κ′(G′
0) ≥ 3. Moreover, G′

0 has at most p con-
tracted vertices by Proposition 4.1. Thus G′

0 is the graph Gp stated in Theorem 1.1. �
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Remark. One can check from the proofs above that Theorem 1.1 and Proposition 4.1 are 
still valid if the expression N(p, ε) = 6p2 + (p + 1)|ε| is replaced by

N(p, ε) = max{4p2 − 11p− pε− ε, 3p2 − 7p− ε, 18p− ε, 6p2 − 16p− ε,

18p− p2 − pε− ε, 5p2 − 16p− pε− ε}.

However, even with this new expression, it may not be best possible. We did not make 
efforts to find best possible lower bound for n to avoid tedious case by case analysis.

5. Applications of Theorem 1.1

With Theorem 1.1, many prior results for Hamiltonicity of 3-connected claw-free sim-
ple graphs involved minimum degrees can be improved. In the following, we first prove 
a theorem for the case p = 13 and ε = 6 of Theorem 1.1. The best possible minimum 
degree conditions for Theorems G and H are given in Corollary 5.2. With the proofs of 
these results, we construct some graphs as depicted in Fig. 5.2 to show that these are 
best possible results. One of the graphs (Fig. 5.2(b)) also shows that Conjecture A is 
false.

We will need the following theorem:

Theorem M (Chen et al. [5]). Let G be a 3-edge-connected graph and let S ⊆ V (G)
be a vertex subset such that |S| ≤ 12. Then either G has an Eulerian subgraph C such 
that S ⊆ V (C), or G can be contracted to the Petersen graph P in such a way that the 
preimage of each vertex of P contains at least one vertex in S.

Let Φ1 and Φ2 be two graphs with |D2(Φ1)| = |D2(Φ2)| = 3. Define P (Φ1) to be a 
graph obtained from the Petersen graph P by replacing a vertex v of P by Φ1 in the 
way that the three edges incident with v in P are incident with the three vertices in 
D2(Φ1), respectively. For instance, P (K2,3) = P14 (see Fig. 2.1). Define P (Φ1, Φ2) to be
the graph obtained from P by replacing two nonadjacent vertices vi of P (i = 1, 2) by 
Φi in the way that the three edges incident with vi are incident with the three vertices 
in D2(Φi), respectively. (See Fig. 5.1.)

Theorem 5.1. Let H be a 3-connected claw-free simple graph of order n. If δ(H) ≥ n+6
13

and n is sufficiently large, then either H is Hamiltonian or cl(H) = L(G) where G

Fig. 5.1. Graphs of P (K1,3(1, 1, 1)) and P (K2,3, K2,3).
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is an essentially 3-edge-connected K3-free simple graph with size |E(G)| = n and G
can be contracted to the Petersen graph P in such a way that each vertex v of P is 
obtained by contracting a nontrivial connected subgraph G(v) with order |V (G(v))| ≥
n−7
13 and size sv = |E(G(v))| ≥ n−20

13 and that n = 15 +
∑

v∈V (P ) sv. Furthermore, 
G′

0 ∈ {P, P (K2,3), P (K1,3(1, 1, 1)), P (K2,3, K2,3)}.

Proof. This is the special case of Theorem 1.1 with p = 13 and ε = 6. We may assume 
that H is non-Hamiltonian. Let cl(H) = L(G). By Theorem B, G is an essentially 
3-edge-connected K3-free simple graph with size |E(G)| = n and σ2(G) = δ(cl(H)) +2 ≥
δ(H) + 2 ≥ n+32

13 . Let G0 be the core of G and let G′
0 be the reduction of G0. By 

Theorem L, κ′(G′
0) ≥ κ′(G0) ≥ 3.

Let S0, S1 and Y be the subsets of V (G′
0) defined in Section 4. By Proposition 4.1, 

S0 = S1, |S0| = |S1| ≤ p = 13 and for each y ∈ Y , NG′
0
(y) ⊆ S1. If G′

0 has an Eulerian 
subgraph Φ0 containing S0, then Φ0 is a dominating Eulerian subgraph containing all the 
nontrivial vertices of G′

0. Then by Theorem L(b), L(G) is Hamiltonian, a contradiction. 
Thus, we assume that G′

0 does not have any Eulerian subgraph containing S0 (and S1).

Claim 1. |S1| ≤ 12.

To the contrary, suppose that |S1| ≥ 13. Then |S1| = 13. By Proposition 4.1(d) with 
p = 13 and ε = 6, 13 ≤ |V (G′

0)| ≤ 2p − 5 − ε = 15 and

|E(G′
0)| ≥ 19 + 3|Y |. (20)

If 13 ≤ |V (G′
0)| ≤ 14, then by Theorem K(a), G′

0 = P14. Then |Y | = 1 and |E(G′
0)| =

|E(P14)| = 21, contrary to (20) that |E(G′
0)| ≥ 19 + 3|Y | = 22.

If |V (G′
0)| = 15, then |Y | = 2. By Theorem K(b) V (G′

0) = D3(G′
0) ∪ D4(G′

0) with 
|D4(G′

0)| = 3, and so |E(G′
0)| = 24, contrary to (20) again that |E(G′

0)| ≥ 19 +3|Y | = 25. 
Thus, |S0| = 13 is impossible. The claim is proved.

By Theorem M and |S1| ≤ 12, since G′
0 has no Eulerian subgraph containing S1, G′

0
can be contracted to the Petersen graph P in such a way that the preimage of each 
vertex of P contains at least one vertex in S1.

For each vertex v ∈ V (P ), let G0(v) be the subgraph of G′
0 that is the preimage of v

in G′
0. Then V (G0(v)) ∩ S1 	= ∅. Let G(v) be the preimage of v in G. Since each vertex 

in S1 is a contracted vertex, G(v) 	= K1 for each v ∈ V (P ).
By Lemma 2.1 with GT = P and dP (v) = 3, |V (G(v))| ≥ σ2(G) −dP (v) ≥ n−7

13 . Since 
G(v) is connected, sv = |E(G(v))| ≥ |V (G(v))| − 1 ≥ n−7

13 − 1 = n−20
13 . Since E(G) =

E(P ) ∪
(⋃

v∈V (P ) E(G(v))
)
, n = |E(G)| = 15 +

∑
v∈V (P ) |E(G(v))| = 15 +

∑
v∈V (P ) sv.

Next we will show that G′
0 ∈ {P, P (K2,3), P (K1,3(1, 1, 1)), P (K2,3, K2,3)}.

If for any v ∈ V (P ), G0(v) = K1, then G′
0 = P . We are done.

In the following, we assume that there is a vertex v ∈ V (P ) such that G0(v) 	= K1.
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Since P is a 3-regular graph, only three edges outside of G0(v) are incident with some 
vertices in G0(v). For each v ∈ V (P ), let Sv

1 = V (G0(v)) ∩S1 and let Yv = V (G0(v)) −Sv
1 . 

Then |V (G0(v))| = |Sv
1 | + |Yv|.

If G0(v) 	= K1, then since κ′(G′
0) ≥ 3, G0(v) has the following properties:

(i) G0(v) is 2-edge-connected and so dG0(v)(x) ≥ 2 for any x ∈ V (G0(v)).
(ii) |D2(G0(v))| ≤ 3, i.e., the number of vertices of degree 2 in G0(v) is at most 3.
(iii) |Sv

1 | = |V (G0(v)) ∩S1| ≤ 3 since |S1| ≤ 12 and V (G0(v)) ∩S1 	= ∅ for any v ∈ V (P ).
(iv) Yv is an independent set, by Proposition 4.1(c) and since Yv ⊆ Y .

Claim 2. For any v ∈ V (P ), |Yv| ≤ 4 and |V (G0(v))| ≤ 7.

If G0(v) = K2,t, then by (ii) above, t = |D2(G0(v))| ≤ 3. Since Yv is an independent 
set in this K2,t, we have |Yv| ≤ t ≤ 3, and so |V (G0(v))| = 5. We are done for this case.

Next, we assume that G0(v) 	= K2,t.
Note that Yv is an independent set and E(G0(v)) contains edges joining Yv and Sv

1 . 
It follows by |D2(G0(v))| ≤ 3 that

|E(G0(v))| ≥ 2|D2(G0(v)) ∩ Yv| + 3(|Yv| − |D2(G0(v)) ∩ Yv|)
≥ 3|Yv| − |D2(G0(v))| ≥ 3|Yv| − 3.

By Theorem J(c) and G0(v) /∈ {K1, K2, K2,t}, |E(G0(v))| ≤ 2|V (G0(v))| − 5. We have

3|Yv| − 3 ≤ |E(G0(v))| ≤ 2|V (G0(v))| − 5 = 2|Yv| + 2|Sv
1 | − 5;

which yields |Yv| ≤ 2|Sv
1 | −2. Since |Sv

1 | ≤ 3, |Yv| ≤ 4, and so |V (G0(v))| = |Sv
1 | +|Yv| ≤ 7. 

Claim 2 is proved.

Since G0(v) is 2-edge-connected reduced graph of order at most 7, by Theorem K(d), 
G0(v) ∈ {K2,3, K1,3(1, 1, 1), J ′(1, 1)}. Since |Sv

1 | ≤ 3, by Claim 2, if |V (G0(v))| = 7, 
|Yv| = 4 and |Sv

1 | = 3. Note that Yv is an independent set and J ′(1, 1) has the independent 
number 3. Thus, G0(v) 	= J ′(1, 1) and so G0(v) ∈ {K2,3, K1,3(1, 1, 1)} if G0(v) 	= K1.

Since |S1| ≤ 12 and V (G0(v)) ∩ S1 	= ∅ for any v ∈ V (P ), we have the following fact:

Fact 1. If there is a G0(v) with |Sv
1 | = 3, then G0(u) = K1 for every u ∈ V (P ) − {v}.

We complete our proof by checking on each of the following cases.

Case 1. G0(v1) = K1,3(1, 1, 1) for some v1 ∈ V (P ).
Then |Sv

1 | = 3. By Fact 1, only this G0(v1) 	= K1. Thus, G′
0 = P (K1,3(1, 1, 1)).

Case 2. G0(v1) = K2,3 for some v1 ∈ V (P ).
Since |Sv

1 | ≤ 3 and |Yv| ≤ 3 in K2,3, either |Yv| = 2 and |Sv
1 | = 3 or |Yv| = 3 and 

|Sv
1 | = 2.
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Subcase 2.a. |Yv| = 2 and |Sv
1 | = 3.

By Fact 1 again, only G0(v1) 	= K1. Thus, G′
0 = P (K2,3) = P14.

Subcase 2.b. |Yv| = 3 and |Sv
1 | = 2.

Then the three vertices of degree 2 in G0(v1) = K2,3 are the vertices in Yv ⊆ Y .
If only G0(v1) 	= K1, then |S1| = 11 and we still have G′

0 = P (K2,3) = P14.
If there is another vertex v2 in P such that G0(v2) 	= K1, then G0(v2) = K2,3 and so 

|S1| = 12. Like G0(v1), the three vertices of degree 2 in G0(v2) = K2,3 are all in Y .
Since Y is an independent set in G′

0, none of the vertices of degree 2 in G0(v1) is 
adjacent to a vertex of degree 2 in G0(v2). Thus, v1 is not adjacent to v2 in P . Hence 
G′

0 = P (K2,3, K2,3). The proof is completed. �
Corollary 5.2. Let H be a 3-connected claw-free simple graph of order n and n is suffi-
ciently large.

(a) If δ(H) ≥ n+7
11 , then either H is Hamiltonian or H ∈ F1;

(b) If δ(H) ≥ n+10
12 , then either H is Hamiltonian or H ∈ F1 ∪ F2.

Proof. Suppose that H is not Hamiltonian. Let G be the preimage of cl(H) = L(G). 
Then G is an essentially 3-edge-connected K3-free simple graph with size n = |E(G)|. 
Since n+7

11 ≥ n+10
12 ≥ n+6

13 , both (a) and (b) satisfy the assumptions of Theorem 5.1. 
Thus, G′

0 ∈ {P, P (K2,3), P (K1,3(1, 1, 1)), P (K2,3, K2,3)}, and so G′
0 is a 3-regular graph 

with |S1| ≤ 12. For each v ∈ S1, let Γ(v) be the preimage of v in G. Let {e1, e2, e3} be 
the three edges between Γ(v) and G − V (Γ(v)).

For each x ∈ V (G), let EG(x) be the set of edges in G incident with x. Then dG(x) =
|EG(x)|. Since E(G) ⊇ E(G′

0) ∪ (
⋃

v∈S1
E(Γ(v))),

n = |E(G)| ≥ |E(G′
0)| +

∑
v∈S1

|E(Γ(v))|. (21)

Claim 1. Let M = {y1z1, y2z2, · · · , ytzt} be a matching of size t in Γ(v) (t ≤ α′(Γ(v))). 
Then |E(Γ(v))| ≥ tσ2(G) − t2 − 3.

As an induced subgraph of G, G[{y1, y2, · · · , yt, z1, z2, · · · , zt}] is a K3-free simple 
graph. By Turán’s Theorem, it has at most t2 edges. Then

t∑
i=1

(dG(yi) + dG(zi)) − t2 =
t∑

i=1
(|EG(yi)| + |EG(zi)|) − t2

≤ |
t⋃

(EG(yi) ∪ EG(zi))|.

i=1
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Since 
⋃t

i=1(EG(yi) ∪EG(zi)) ⊆ {e1, e2, e3} ∪E(Γ(v)) and since dG(yi) +dG(zi) ≥ σ2(G),

tσ2(G) − t2 ≤
t∑

i=1
(|EG(yi)| + |EG(zi)|) − t2

≤ |
t⋃

i=1
(EG(yi) ∪ EG(zi))| ≤ 3 + |E(Γ(v))|.

Thus, |E(Γ(v))| ≥ tσ2(G) − t2 − 3. Claim 1 is proved.

For each vertex v ∈ S1, since Γ(v) 	= K1, α′(Γ(v)) ≥ 1. By Claim 1 with t = 1,

|E(Γ(v))| ≥ σ2(G) − 4. (22)

If Γ(v) is a tree, since G is essentially 3-edge-connected, Γ(v) = K1,r where r = |E(Γ(v))|.
If Γ(v) is not a tree, then since G is K3-free and simple, α′(Γ(v)) ≥ 2. By Claim 1,

|E(Γ(v))| ≥ 2σ2(G) − 7. (23)

(a) This is the special case of Theorem 1.1 with p = 11 and ε = 7.
If |S1| = 11, then by Proposition 4.1(d), 11 = |S1| ≤ |V (G′

0)| ≤ 22 − 5 − 7 = 10, 
a contradiction. Thus, |S1| ≤ 10. From the proof of Theorem 5.1, we can see that G′

0 = P

and |S1| = |V (G′
0)| = 10.

Now, we only need to show that Γ(v) is a tree for any v ∈ S1 = V (P ).
To the contrary, suppose that at least one Γ(v) is not a tree. By (21), (22) and (23),

n ≥ |E(P )| +
∑

u∈S1−{v}
|E(Γ(u))| + |E(Γ(v))| ≥ 15 + 9(σ2(G) − 4) + (2σ2(G) − 7),

which yields σ2(G) ≤ n+28
11 , contrary to that σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2 ≥ n+29

11 .
Thus, for all v ∈ V (P ), Γ(v) = K1,r. Thus, H ∈ F1. Corollary 5.2(a) is proved.
(b) This is the special case of Theorem 1.1 with p = 12 and ε = 10.
If |S1| = 12, then by Proposition 4.1(d), 12 = |S1| ≤ |V (G′

0)| ≤ 24 − 5 − 10 = 9, 
a contradiction. Thus, |S1| ≤ 11. It follows from the proof of Theorem 5.1 that G′

0 ∈
{P, P (K2,3)}.
Case 1. G′

0 = P (K2,3).
From the proof of Subcase 2.b of Theorem 5.1, |S1| = 11 and the two vertices of 

degree 3 in K2,3 part are in S1. Again, we just need to show that for all v ∈ S1, Γ(v) is 
a tree.

To the contrary, suppose that at least one Γ(v) is not a tree. By (21), (22) and (23),

n ≥ |E(P (K2,3))| +
∑

u∈S1−{v}
|E(Γ(u))| + |E(Γ(v))|

≥ 21 + 10(σ2(G) − 4) + (2σ2(G) − 7),
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which yields σ2(G) ≤ n+26
12 , contrary to that σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2 ≥

n+34
12 .
Thus, Γ(v) = K1,r where r = |E(Γ(v))| ≥ σ2(G) −4, and so G ∈ F2. Case 1 is proved.

Case 2. G′
0 = P .

Then |S1| = 10. If for any v ∈ S1 = V (P ), Γ(v) = K1,r, then G ∈ F1. We are done.

Next, we assume that Γ(v1) contains a cycle for some v1 ∈ S1.

Claim 2. Γ(v) is a tree for any v ∈ S1 − {v1}.

To the contrary, suppose that, for some v2 ∈ S1 − {v1}, Γ(v2) is not a tree. By (21), 
(22) and (23),

n ≥ |E(P )| +
∑

u∈S1−{v1,v2}
|E(Γ(u))| + |E(Γ(v1))| + |E(Γ(v2))|

≥ 15 + 8(σ2(G) − 4) + 2(2σ2(G) − 7),

which yields σ2(G) ≤ n+31
12 , contrary to that σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2 ≥ n+34

12 . 
Claim 2 is proved.

Next we show that Γ(v1) = K2,t, a connected spanning subgraph of K2,t.

Claim 3. α′(Γ(v1)) = 2.

To the contrary, suppose that α′(Γ(v1)) ≥ 3. By Claim 1 with t = 3, |E(Γ(v1))| ≥
3σ2(G) − 12. Then by (21) and (22),

n ≥ |E(P )| +
∑

u∈S1−{v1}
|E(Γ(u))| + |E(Γ(v1))| ≥ 15 + 9(σ2(G) − 4) + 3σ2(G) − 12,

which yields σ2(G) ≤ n+33
12 , contrary to that σ2(G) = δ(cl(H)) + 2 ≥ δ(H) + 2 ≥ n+34

12 . 
Claim 3 is proved.

Let Ct = x1x2x3x4 · · ·xtx1 be a shortest cycle in Γ(v1). Claim 3 and the fact that 
G is K3-free imply that min{dΓ(v1)(xi) | xi ∈ {x1, x2, x3}} = 2, otherwise, Γ(v1) would 
have a matching of size at least 3.

Without lost of generality, we assume that dΓ(v1)(x2) = 2. Then NΓ(v1)(x2) = {x1, x3}
and for each xi ∈ NΓ(v1)(x2) (i = 1, 3), |EG(xi)| ≥ σ2(G) − 2 > 3. Combin-
ing this with the fact that G is K3-free and α′(Γ(v)) = 2, we have that for each 
z ∈ NΓ(v1)(x1) ∪ NΓ(v1)(x3), either dΓ(v1)(z) = 1 or NΓ(v1)(z) = {x1, x3}, which im-
plies that Ct = x1x2x3x4x1.

Let X = {x1, x3} and let Y = NΓ(v1)(x1) ∪NΓ(v1)(x3). Then Γ(v1) is a bipartite graph 
with bipartition X ∪ Y . Thus, Γ(v1) = K2,t and so G ∈ F2. The proof is completed. �
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Fig. 5.2. Graphs to show that Corollary 5.2 and Theorem 5.1 are best possible.

Remark. Corollary 5.2 and Theorem 5.1 are best possible as explained in the following 
examples. In the graphs depicted in Fig. 5.2, we assume that the degree of each vertex 
marked with 

⊙
is r + 3, where r > 0 is the number of pendant edges incident with the 

vertex. Then none of the graphs in Fig. 5.2 has a dominating Eulerian subgraph. Also 
graph Gb is a counterexample to Conjecture A.

(a) For graph Ga, n = |E(Ga)| = 11r+17 and σ2(Ga) ≥ r+4 = n+28
11 . Let Ha = L(Ga). 

Then n = |V (Ha)| and δ(Ha) = σ2(Ga) − 2 ≥ n+6
11 . But Ha is non-Hamiltonian and 

Ha /∈ F1. Thus, the condition δ(H) ≥ n+7
11 in Corollary 5.2(a) is best possible.

(b) For graph Gb, n = |E(Gb)| = 12r+15 and σ2(Gb) ≥ r+4 = n+33
12 . Let Hb = L(Gb). 

Then n = |V (Hb)| and δ(Hb) = σ2(Gb) − 2 ≥ n+9
12 . But Hb is non-Hamiltonian 

and Hb /∈ F1 ∪ F2 ∪ F3. Thus, the condition δ(H) ≥ n+10
12 in Corollary 5.2(b) is 

best possible, and contrary to what the author [17] guessed, the bound on δ(H) in 
Theorem H can not be relaxed to δ(H) ≥ (n + 6)/12 and Conjecture A is false.

(c) For graph Gc, n = |E(Gc)| = 13r + 27 and σ2(Gc) ≥ r + 4 = n+25
13 . Let Hc =

L(Gc). Then n = |V (Hc)|. For a given ε, let r ≥ ε − 1. Then n > 14 + 13ε and 
δ(Hc) = σ2(Gc) − 2 ≥ n−1

13 ≥ n+ε
14 . But Hc is non-Hamiltonian and the preimage 

Gc of Hc = L(Gc) cannot be contracted to the Petersen graph in the way stated in 
Theorem 5.1 (since one of the vertices in P is not a contracted vertex). Thus, p = 13
in Theorem 5.1 cannot be replaced by p = 14.
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