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a b s t r a c t

We investigate the relationship between the eigenvalues of a graph G and fractional
spanning tree packing and coverings of G. Let ω(G) denote the number of components of a
graph G. The strength η(G) and the fractional arboricity γ (G) are defined by

η(G) = min
|X |

ω(G − X) − ω(G)
, and γ (G) = max

|E(H)|

|V (H)| − 1
,

where the optima are taken over all edge subsets X whenever the denominator is non-zero.
The well known spanning tree packing theorem by Nash-Williams and Tutte indicates that
a graph G has k edge-disjoint spanning tree if and only if η(G) ≥ k; and Nash-Williams
proved that a graph G can be covered by at most k forests if and only if γ (G) ≤ k. Let λi(G)
(µi(G), qi(G), respectively) denote the ith largest adjacency (Laplacian, signless Laplacian,
respectively) eigenvalue of G. In this paper, we prove the following.

(1) Let G be a graph with δ ≥ 2s/t . Then η(G) ≥ s/t if µn−1(G) > 2s−1
t(δ+1) , or if

λ2(G) < δ −
2s−1
t(δ+1) , or if q2(G) < 2δ −

2s−1
t(δ+1) .

(2) Suppose that G is a graph with nonincreasing degree sequence d1, d2, . . . , dn and

n ≥ ⌊
2s
t ⌋ + 1. Let β =

2s
t −

1
⌊
2s
t ⌋+1

⌊
2s
t ⌋+1

i=1 di. Then γ (G) ≤ s/t , if β ≥ 1, or if 0 < β < 1,

n > ⌊2s/t⌋ + 1 +
2s−2
tβ and

µn−1(G) >
n(2s/t − 2/t − β(⌊2s/t⌋ + 1))
(⌊2s/t⌋ + 1)(n − ⌊2s/t⌋ − 1)

.

Our result proves a stronger version of a conjecture by Cioabă andWong on the relationship
between eigenvalues and spanning tree packing, and sharpens former results in this area.
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1. Introduction

In this paper, we consider finite undirected simple graphs. Throughout the paper, k, s, t denote positive integers and G
denotes a simple graph. We follow the notations of Bondy and Murty [1], unless otherwise defined. However, we use ω(G)
to denote the number of components of G, which differs from [1].

Let G be an undirected simple graph with vertex set {v1, v2, . . . , vn}. The adjacency matrix of G is an n by nmatrix A(G)
with entry aij = 1 if there is an edge between vi and vj and aij = 0 otherwise, for 1 ≤ i, j ≤ n. We use λi(G) to denote the ith
largest eigenvalue of G; when the graph G is understood from the context, we often use λi for λi(G). With these notations,
we always have λ1 ≥ λ2 ≥ · · · ≥ λn. Let D(G) = (dij) be the degree matrix of G, that is, the n by n diagonal matrix with dii
being the degree of vertex vi in G for 1 ≤ i ≤ n. Thematrices L(G) = D(G)−A(G) and Q (G) = D(G)+A(G) are the Laplacian
matrix and the signless Laplacian matrix of G, respectively. We use µi(G) and qi(G) to denote the ith largest eigenvalue
of L(G) and Q (G), respectively. It is not difficult to see that µn(G) = 0. The second smallest eigenvalue of L(G), µn−1(G), is
known as the algebraic connectivity of G.

For a connected graph G, the spanning tree packing number, denoted by τ(G), is themaximumnumber of edge-disjoint
spanning trees in G. The arboricity a(G) is the minimum number of edge-disjoint forests whose union equals E(G).
Fundamental theorems characterizing graphs G with τ(G) ≥ k and with a(G) ≤ k have been obtained by Nash-Williams
and Tutte, and by Nash-Williams, respectively.

Theorem 1.1. Let G be a connected graph with E(G) ≠ ∅. Each of the following holds.

(i) (Nash-Williams [12] and Tutte [15]). τ(G) ≥ k if and only if for any X ⊆ E(G), |X | ≥ k(ω(G − X) − 1).

(ii) (Nash-Williams [13]). a(G) ≤ k if and only if for any subgraph H of G, |E(H)| ≤ k(|V (H)| − 1).

Following the terminology in [3,14], we define the strength η(G) and the fractional arboricity γ (G) of a graph G
respectively by

η(G) = min
|X |

ω(G − X) − ω(G)
, and γ (G) = max

|E(H)|

|V (H)| − 1
,

where the optima are taken over all edge subsets X whenever the denominator is non-zero. Theorem 1.1 indicates that for
a connected graph G, τ(G) ≥ k if and only if η(G) ≥ k, and, a(G) ≤ k if and only if γ (G) ≤ k. Since η(G) and γ (G) are
possibly fractional, we have τ(G) = ⌊η(G)⌋ and a(G) = ⌈γ (G)⌉. Thus, η(G) is also referred to as the fractional spanning
tree packing number of G.

Cioabă andWong [4] investigated the relationship between the second largest adjacency eigenvalue and τ(G) for a regular
graph G, and made Conjecture 1.1(i). Utilizing Theorem 1.1, Cioabă and Wong proved Conjecture 1.1(i) for k ∈ {2, 3}.

Conjecture 1.1(i) was then extended to Conjecture 1.1(ii) for any simple graph G (not necessarily regular). See [5–7,9,11]
for the conjecture and some partial results. Recently, Conjecture 1.1 was settled in [10].

Conjecture 1.1. (i) ([4]) Let k and d be two integers with d ≥ 2k ≥ 4. If G is a d-regular graph with λ2(G) < d −
2k−1
d+1 , then

τ(G) ≥ k.

(ii) ([5,7,9,11]) Let k be an integer with k ≥ 2 and G be a graph with minimum degree δ ≥ 2k. If λ2(G) < δ −
2k−1
δ+1 , then

τ(G) ≥ k.

Motivated by the above conjecture and the corresponding results, we investigate the relationship between η(G) and
eigenvalues of G. We also consider the relationship between the fractional arboricity γ (G) and algebraic connectivity
µn−1(G). Theorems 1.2 and 1.3 are the main results.

Theorem 1.2. Let G be a graph with δ ≥ 2s/t.

(i) If µn−1(G) > 2s−1
t(δ+1) , then η(G) ≥ s/t.

(ii) If λ2(G) < δ −
2s−1
t(δ+1) , then η(G) ≥ s/t.

(iii) If q2(G) < 2δ −
2s−1
t(δ+1) , then η(G) ≥ s/t.

Remark 1. Theorem 1.2 indicates that, for a graph G with δ ≥ 2k, if µn−1(G) > 2k−1
δ+1 , or λ2(G) < δ −

2k−1
δ+1 , or

q2(G) < 2δ −
2k−1
δ+1 , then τ(G) ≥ k. This was proved in [10] and settled Conjecture 1.1.

Theorem 1.3. Suppose that G is a graph with nonincreasing degree sequence d1, d2, . . . , dn and n ≥ ⌊
2s
t ⌋ + 1. Let β =

2s
t −

1
⌊
2s
t ⌋+1

⌊
2s
t ⌋+1

i=1 di.
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(i) If β ≥ 1, then γ (G) ≤ s/t.
(ii) If 0 < β < 1, n > ⌊2s/t⌋ + 1 +

2s−2
tβ and

µn−1(G) >
n(2s/t − 2/t − β(⌊2s/t⌋ + 1))
(⌊2s/t⌋ + 1)(n − ⌊2s/t⌋ − 1)

, (1)

then γ (G) ≤ s/t.

Remark 2. By Theorem 1.1(ii), it is not hard to see for a graph Gwith n vertices, if n ≤ 2k then a(G) ≤ k. When n ≥ 2k + 1,
under the same conditions of Theorem 1.3, we also have a(G) ≤ k.

Corollary 1.4. Let k > 0 be an integer, and G be a d-regular graph. Then a(G) > k if and only if d ≥ 2k.

In Section 2, we display some preliminaries and mechanisms, including eigenvalue interlacing properties and the
quotient matrix, which will be applied in the proofs of the main results, to be presented in Section 3.

2. Preliminaries

In this section, we present some of the preliminaries to be used in our arguments. For a square matrix A, tr(A) denotes
the trace of A. For a graph G, we use d̄(G) to denote the average degree of G. Let U ⊆ V (G), d̄G(U) or simply d̄(U) denotes the
average degree of all vertices of U in G. Thus d̄(G[U]) and d̄(U) are different. The former means the average degree of the
induced subgraph G[U], while the latter is the average degree of all vertices of U in G. The following theorem is commonly
referred to as the Weyl Inequalities. See also page 29 of [2] for the Courant–Weyl inequalities.

Theorem 2.1 (Weyl Inequalities). Let B and C be Hermitian matrices of order n. Then for 1 ≤ i, j ≤ n,
(i) λi(B) + λj(C) ≤ λi+j−n(B + C) if i + j ≥ n + 1.
(ii) λi(B) + λj(C) ≥ λi+j−1(B + C) if i + j ≤ n + 1.

Corollary 2.2. Let δ be the minimum degree of a graph G. Then for i = 1, 2, . . . , n,
(i) µn−i+1 + λi ≥ δ.
(ii) δ + λi ≤ qi.

Proof. (i) By the definition, L(G) = D(G) − A(G). Then L(G) + A(G) = D(G). By Theorem 2.1(ii), λn−i+1(L(G)) + λi(A(G)) ≥

λn(D(G)), i.e., µn−i+1 + λi ≥ δ.
(i) By the definition, Q (G) = D(G) + A(G). By Theorem 2.1(i), λn(D(G)) + λi(A(G)) ≤ λi(Q (G)), i.e., δ + λi ≤ qi. �

Given two real sequences θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηm with n > m, the second sequence is said to
interlace the first one if θi ≥ ηi ≥ θn−m+i, for i = 1, 2, . . . ,m. When we say the eigenvalues of a matrix B interlace the
eigenvalues of a matrix A, it means the non-increasing eigenvalue sequence of B interlaces that of A.

Theorem 2.3 (Cauchy Interlacing). Let A be a real symmetric matrix and B be a principal submatrix of A. Then the eigenvalues
of B interlace the eigenvalues of A.

Given a partition π = {X1, X2, . . . , Xs} of the set {1, 2, . . . , n} and a matrix A whose rows and columns are labeled with
elements in {1, 2, . . . , n}, A can be expressed as the following partitioned matrix

A =

A11 · · · A1s
...

...
...

As1 · · · Ass


with respect toπ . The quotientmatrix Aπ of Awith respect toπ is an s by smatrix (bij) such that each entry bij is the average
row sum of Aij.

Theorem 2.4 (Haemers, Corollary 2.3 in [8]). The eigenvalues of any quotient matrix of a real symmetric matrix A interlace the
eigenvalues of A.

Corollary 2.5. Suppose that G is a simple graph and π is a partition of V (G) with |π | = s. Let Lπ be the quotient matrix of L(G)
with respect to π . Then µn−1 ≤ λs−1(Lπ ).

Proof. By Theorem 2.4, λs−1(Lπ ) ≥ λn−s+(s−1)(L(G)), i.e., µn−1 ≤ λs−1(Lπ ). �

For any subset U ⊆ V (G), ∂(U) denotes the set of edges each of which has one end in U and the other end in V (G) \ U .

Lemma 2.6 (Lemma 3.2 of [10]). Suppose that X, Y ⊂ V (G) with X ∩ Y = ∅. If µn−1(G) ≥ max{ |∂(X)|

|X |
,

|∂(Y )|

|Y |
}, then

[e(X, Y )]2 ≥ |X | · |Y |(µn−1 −
|∂(X)|

|X |
)(µn−1 −

|∂(Y )|

|Y |
).
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3. The proofs of main results

In this section, we present the proofs of the main results. We begin with a useful lemma.

Lemma 3.1. Let G be a graph and U be a non-empty proper subset of V (G). Suppose that d̄(U) is the average degree of U in G.
If |∂(U)| < d̄(U), then |U| > d̄(U).

Proof. By contradiction, we assume that |U| ≤ d̄(U). Then |U|(|U|−1)+|∂(U)| ≥ |U|d̄(U) by counting the incidences in U
in twoways. But |U|(|U|−1)+|∂(U)| < d̄(U)(|U|−1)+ d̄(U) = |U|d̄(U), contrary to the fact that |U|(|U|−1)+|∂(U)| ≥

|U|d̄(U). Thus |U| > d̄(U). �

Proof of Theorem 1.2. By the definition of η(G), it suffices to show for any X ⊆ E(G),

t|X | ≥ s(ω(G − X) − ω(G)).

Without loss of generality, we may assume that G is connected and so ω(G) = 1. Let ω = ω(G − X) and Vi be the
vertex set of each component of G − X for 1 ≤ i ≤ ω, respectively. Without loss of generality, we may assume that
|∂(V1)| ≤ |∂(V2)| ≤ · · · ≤ |∂(Vω)|. If t|∂(V2)| ≥ 2s, then t|X | ≥ t


1≤i≤ω |∂(Vi)|/2 ≥ s(ω−1), done. Thus, we assume that

t|∂(V2)| ≤ 2s − 1.
Let q be the largest index such that t|∂(Vq)| ≤ 2s − 1. Then 2 ≤ q ≤ ω. By Lemma 3.1, |Vi| ≥ δ + 1 for 1 ≤ i ≤ q.

By Lemma 2.6, for 2 ≤ i ≤ q,

[e(V1, Vi)]
2

≥ |V1||Vi|


µn−1 −

|∂(V1)|

|V1|


µn−1 −

|∂(Vi)|

|Vi|


>


2s − 1

t
− |∂(V1)|


2s − 1

t
− |∂(Vi)|


≥


2s − 1

t
− |∂(Vi)|

2

.

Thus e(V1, Vi) > 2s−1
t − |∂(Vi)|, which implies that t · e(V1, Vi) > 2s− 1− t|∂(Vi)|, and so t · e(V1, Vi) ≥ 2s− t|∂(Vi)|. Then

t|∂(V1)| ≥ t


2≤i≤q e(V1, Vi) ≥


2≤i≤q(2s − t|∂(Vi)|). Hence t


1≤i≤q |∂(Vi)| ≥ 2s(q − 1). Thus

t|X | ≥ t


1≤i≤ω

|∂(Vi)|/2 =
1
2


t

1≤i≤q

|∂(Vi)| + t


q+1≤i≤ω

|∂(Vi)|



≥
1
2
[2s(q − 1) + 2s(ω − q)]

= s(ω − 1),

which finishes the proof of (i). By Corollary 2.2, (ii) and (iii) follows from (i). �

Proof of Theorem 1.3. (i) Assume that γ (G) > s/t . By the definition of γ (G), G has a nontrivial subgraph H with |E(H)| >
(|V (H)|−1)s/t . Since H is simple, |V (H)|(|V (H)|−1) ≥ 2|E(H)| > 2(|V (H)|−1)s/t , and so |V (H)| > 2s/t . Thus |V (H)| ≥

⌊2s/t⌋+1. Let d̄H be the average degree of the subgraphH . Then 1
⌊2s/t⌋+1

⌊2s/t⌋+1
i=1 di ≥ d̄H =

2|E(H)|

|V (H)|
>

2(|V (H)|−1)s/t
|V (H)|

> 2s
t −1.

It follows that β =
2s
t −

1
⌊2s/t⌋+1

⌊2s/t⌋+1
i=1 di < 1, contrary to β ≥ 1.

(ii)We argue by contradiction and assume that γ (G) > s/t . By the definition of γ (G), G has a nontrivial subgraph H with
|E(H)| > (|V (H)| − 1)s/t . It implies that t|E(H)| > (|V (H)| − 1)s, or in other words, t|E(H)| ≥ (|V (H)| − 1)s + 1. Thus

|E(H)| ≥ (|V (H)| − 1)s/t + 1/t. (2)

Since H is simple, |V (H)|(|V (H)| − 1) ≥ 2|E(H)| > 2(|V (H)| − 1)s/t , and so |V (H)| > 2s/t . Thus

|V (H)| ≥ ⌊2s/t⌋ + 1. (3)

Let V1 = V (H) and d̄1 be the average degree of V1 in G. Since |V1| ≥ ⌊2s/t⌋ + 1,

d̄1 ≤
1

⌊2s/t⌋ + 1

⌊2s/t⌋+1
i=1

di ≤ 2s/t − β. (4)

By (2) and counting the incidences of vertices of V1 in G, we have

|∂(V1)| = |V1|d̄1 − 2|E(H)| ≤ |V1|d̄1 − 2(|V1| − 1)s/t − 2/t. (5)
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By (4), (5) and by the definition of β ,

|∂(V1)| ≤ |V1|(2s/t − β) − 2(|V1| − 1)s/t − 2/t = 2s/t − 2/t − β|V1|

≤ 2s/t − 2/t − β(⌊2s/t⌋ + 1). (6)

By (5), |V1|d̄1 − 2(|V1| − 1)s/t − 2/t ≥ 0. It follows that |V1| ≤ (2s/t − 2/t)/(2s/t − d̄1) ≤
2s/t−2/t

β
, and so

both |V1| ≤
2s − 2
tβ

and |V \ V1| ≥ n −
2s − 2
tβ

. (7)

Moreover, by (5),

|∂(V1)| ≤ |V1|d̄1 − 2(|V1| − 1)s/t − 2/t < |V1|d̄1 − d̄1(|V1| − 1) − 2/t < d̄1. (8)

By (8) and Lemma 3.1,

|V1| ≥ dn + 1. (9)

Let r = |∂(V1)| andV ′
= V\V1. The quotientmatrix of the Laplacianmatrix L(G)with respect to the partitionπ = (V1, V ′)

is

Aπ =


r

|V1|
−

r
|V1|

−
r

|V ′|

r
|V ′|

 .

By Corollary 2.5,

µn−1(G) ≤ λ1(Aπ ) ≤ tr(Aπ ) =
r

|V1|
+

r
|V ′|

=
(|V1| + |V ′

|)r
|V1||V ′|

=
nr

|V1||V ′|
. (10)

By (3) and (9), we have |V1| ≥ max{⌊2s/t⌋ + 1, dn + 1} = ⌊2s/t⌋ + 1. By (7), |V ′
| ≥ n−

2s−2
tβ . As n > ⌊2s/t⌋ + 1+

2s−2
tβ ,

it follows that |V1| · |V ′
| is minimized when |V1| = ⌊2s/t⌋ + 1. Thus by (6) and (10),

µn−1(G) ≤
n(2s/t − 2/t − β(⌊2s/t⌋ + 1))
(⌊2s/t⌋ + 1)(n − ⌊2s/t⌋ − 1)

,

contrary to (1). This proves (ii). �
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