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Abstract: Let D be a digraph and let λ(D) be the arc-strong connectivity
of D, and α′(D) be the size of a maximum matching of D. We proved that
if λ(D) ≥ α′(D) > 0, then D has a spanning eulerian subdigraph. C© 2015 Wiley
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1. INTRODUCTION

We consider finite graphs and finite and simple digraphs. Usually, we use G to denote a
graph and D a digraph. Undefined terms and notations will follow [6] for graphs and [2]
for digraphs. In particular, κ(G), κ ′(G), α(G), and α′(G) denote the connectivity, the
edge connectivity, the independence number, and the matching number of a graph G; and
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κ(D) and λ(D) denotes the vertex-strong connectivity and the arc-strong connectivity of a
digraph D, respectively. As it is implied by Corollary 5.4.3 of [2], we have λ(D) ≥ κ(D).
Throughout this article, we use the notation (u, v) to denote an arc oriented from u to v
in a digraph; and use [u, v] to denote either (u, v) or (v, u). When [u, v] ∈ A(D), we say
that u and v are adjacent. If two arcs of D have a common vertex, we say that these two
arcs are adjacent in D.

If D is a digraph, we often use G(D) to denote the underlying undirected graph of D,
the graph obtained from D by erasing all orientation on the arcs of D. The independence
number and the matching number of a digraph D are defined as

α(D) = α(G(D)) and α′(D) = α′(G(D)),

respectively.
For graphs H and G, by H ⊆ G we mean that H is a subgraph of G. Similarly, for

digraphs H and D, by H ⊆ D we mean that H is a subdigraph of D. Following [2], for a
digraph D with X,Y ⊆ V (D), define

(X,Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }.
When Y = V (D) − X , we define

∂+
D (X ) = (X,V (D) − X )D and ∂−

D (X ) = (V (D) − X, X )D.

For a vertex v ∈ V (D), d+
D (v) = |∂+

D ({v})| and d−
D (v) = |∂−

D ({v})| are the out-degree
and the in-degree of v in D, respectively. Finally, we define the following notations:
δ+(D) = min{d+

D (v) : v ∈ V (D)} and δ−(D) = min{d−
D (v) : v ∈ V (D)}. For any ver-

tex v ∈ V (D), define

∂D(v) = ∂+
D (v) ∪ ∂−

D (v), and dD(v) = d+
D (v) + d−

D (v).

When the digraph D is understood from the context, we often omit the subscript D. By
the definition of λ(D) in [2], we note that for any integer k ≥ 0 and a digraph D,

λ(D) ≥ k if and only if for any nonempty proper subset X ⊂ V (D), |∂+
D (X )| ≥ k. (1)

Motivated by the Chinese Postman Problem, Boesch et al. [5] in 1977 proposed the
supereulerian problem, which seeks to characterize graphs that have spanning Eulerian
subgraphs, and they ([5]) indicated that this problem would be very difficult. Pulleyblank
[17] later in 1979 proved that determining whether a graph is supereulerian, even within
planar graphs, is NP-complete. Since then, there have been lots of researches on this
topic. Catlin [7] in 1992 presented the first survey on supereulerian graphs. Later Chen
et al. [8] gave an update in 1995, specifically on the reduction method associated with
the supereulerian problem. A recent survey on supereulerian graphs is given in [14].

It is a natural to consider the supereulerian problem in digraphs. A strong digraph
D is eulerian if for any v ∈ V (D), d+

D (v) = d−
D (v). A strong-connected digraph D is

supereulerian if D contains a spanning eulerian subdigraph. The main problem is to
determine supereulerian digraphs. Several efforts have been made. The earlier studies
were done by Gutin ([10, 11]). Recently, the following have been obtained.

Theorem 1.1 (Hong et al. [13]). Let D be a strong simple digraph on n vertices. If
δ+(D) + δ−(D) ≥ n − 4, then either D is supereulerian, or D belongs to a class of
well-characterized digraphs.
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Theorem 1.2 (J. Bang-Jensen and A. Maddaloni [3]). Let D be a strong simple digraph
on n vertices. If d(x) + d(y) ≥ 2n − 3 for any pair of non adjacent vertices x and y, then
D is supereulerian.

Theorem 1.3 (J. Bang-Jensen and A. Maddaloni [3]). Let D be a digraph. If λ(D) ≥
α(D), then D has a spanning subdigraph H such that for any v ∈ V (H), d+

H (v) = d−
H (v) >

0.

A well-known theorem of Chvátal and Erdös states that if |V (G)| ≥ 3 and if κ(G) ≥
α(G), then G is hamiltonian. Thomassen [18] gave an infinite family of nonhamiltonian
(but supereulerian) digraphs such that κ(D) = α(D) = 2, showing that the the Chvátal-
Erdös Theorem does not extend to digraphs. This motivates Bang-Jensen and Thommassé
(2011, unpublished, see [3]) to make the following conjecture.

Conjecture 1.4. Let D be a digraph. If λ(D) ≥ α(D), then D is supereulerian.

Theorem 1.3 is an effort towards this conjecture. In [3], Conjecture 1.4 has been
verified in several families of digraphs. There have been investigations on supereulerian
properties of a graph G with given inequality constraints on κ ′(G), α(G), and α′(G), as
seen in [1, 12, 15, 19], and [20], among others. In [3], Bang-Jensen and Maddaloni also
proved that if κ ′(G) ≥ α(G) for a graph G, then G is supereulerian. The main result of
this article is the following.

Theorem 1.5. Let D be a strong digraph. If λ(D) ≥ α′(D), then D is supereulerian.

The following corollary is immediate.

Corollary 1.6. Let D be a strong digraph. If κ(D) ≥ α′(D), then D is supereulerian.

In the next section, we present some of the former theorems and develop a few lemmas
that will be used in our arguments. The proof of the main result will be given in the last
section.

2. TOOLS

In this section, we present some tools needed in our arguments. Let M be a matching in
a graph G. We use V (M) to denote the set of vertices in G that are incident with an edge
in M. (Similarly, we define V (M) if M is a matching in a digraph D). A path P is an
M-augmenting path if the edges of P are alternately in M and in E(G) − M, and if both
end vertices of P are not in V (M). The following theorem is fundamental.

Theorem 2.1 (Berge, [4]). A matching M in G is a maximum matching if and only if G
does not have M-augmenting paths.

The next theorem is on hamiltonian digraphs, will also be needed in our proofs. Note
that hamiltonian digraphs are also supereulerian digraphs.

Theorem 2.2 (Meyniel [16]). A strong digraph D on n vertices satisfying d(x) + d(y) ≥
2n − 1 for all pairs of nonadjacent vertices x, y is hamiltonian.

Two more lemmas will also be needed. Throughout the rest of this section, D always
denotes a digraph.
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Lemma 2.3. Let k > 0 be an integer and D be a digraph with a matching M such
that |M| = k. Suppose that V (D) − V (M) has a subset X with |X | ≥ 2 such that for any
v ∈ X, d(v) ≥ 2k − 1. If X has at least one vertex u such that d(u) ≥ 2k + 1, then there
exists a matching M′ in D such that |M| < |M′|.

Proof. By contradiction, we assume that M is a maximum matching in D. By
Theorem 2.1, D has no M-augmenting path. Let u, v ∈ X be distinct vertices such that
d(u) ≥ 2k + 1. Since M is maximum, u and v are not adjacent in D, and so any vertices
adjacent to u or v must be in V (M). Since D has no M-augmenting path, we have the
following observations.

(A) For each arc e = [x, y] ∈ M, exactly one in {[u, x], [v, y]} can be in A(D), and
exactly one in {[u, y], [v, x]} can be in A(D). If not, by symmetry, we may assume
that [u, x], [v, y] ∈ A(D), and so {[u, x], [x, y], [v, y]} induces an M-augmenting
path in D.

(B) Since d(u) ≥ 2k + 1, we may assume that M has an arc e′ = [x′, y′] such that
[u, x′], [u, y′] ∈ A(D).

(C) From Observation (A), for each arc e = [x, y] ∈ M, if [u, x] ∈ A(D) and [u, y] ∈
A(D), then [v, x], [v, y] /∈ A(D), and so |({u, v}, {x, y})D ∪ ({x, y}, {u, v})D| ≤ 4.

(D) From Observation (A), for each arc e = [x, y] ∈ M, if [u, x] ∈ A(D) and [v, x] ∈
A(D), then [u, y], [v, y] /∈ A(D), and so |({u, v}, {x, y})D ∪ ({x, y}, {u, v})D| ≤ 4.

(E) From Observation (A), for each arc e = [x, y] ∈ M, if [v, x] ∈ A(D) and [v, y] ∈
A(D), then [u, x], [u, y] /∈ A(D), and so |({u, v}, {x, y})D ∪ ({x, y}, {u, v})D| ≤ 4.

It follows from Observations (C), (D), and (E) that |∂(u) ∪ ∂(v)| ≤ 4|M|. As d(v) ≥
2k − 1 and d(u) ≥ 2k + 1, we have

4k = (2k − 1) + (2k + 1) ≤ |∂(u) ∪ ∂(v)| ≤ 4|M| = 4k.

This implies that every arc in M is adjacent to exactly 4 arcs in ∂D(u) ∪ ∂D(v). From
Observation (B) and by the fact that D has no M-augmenting path, we must have
[v, x′], [v, y′] /∈ A(D), and so v can only be adjacent to V (M) − {x′, y′}. As d(v) ≥
2k − 1 = 2(k − 1) + 1, there must be an arc [x′′, y′′] ∈ M such that [v, x′′], [v, y′′] ∈ A(D).
Define

Mu = {[x, y] ∈ M : [u, x], [u, y] ∈ A(D)} and Mv = {[x, y] ∈ M : [v, x], [v, y] ∈ A(D)}.
Since D has no M-augmenting path, Mu ∩ Mv = ∅. Let M′ = M − (Mu ∪ Mv). Again by
the fact that D has no M-augmenting path, for each arc e = [x, y] ∈ M′, at most one end
of e is adjacent to vertices in {u, v}, and so

|({u}, {x, y})D ∪ ({x, y}, {u})D| ≤ 2 and |({v}, {x, y})D ∪ ({x, y}, {v})D| ≤ 2.

It follows that 4|Mu| + 2|M′| ≥ d(u) ≥ 2k + 1 and 4|Mv| + 2|M′| ≥ d(v) ≥ 2k − 1.
Since 4|Mu| + 2|M′| is even, we must have 4|Mu| + 2|M′| ≥ 2k + 2. It follows that

4k = 4|M| = (4|Mu| + 2|M′|) + (4|Mv| + 2|M′|) ≥ (2k + 2) + (2k − 1) = 4k + 1,

a contradiction. This proves the lemma. �
Corollary 2.4. For every digraph D, λ(D) ≤ 2α′(D).

Proof. Let α′(D) = k. By contradiction, we assume that λ(D) ≥ 2k + 1. Hence
|V (D)| ≥ 2k + 2. Let M denote a maximum matching of D. Then |V (D) − V (M)| ≥
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2k + 2 − 2k = 2. Since λ(D) ≥ 2k + 1, for every vertex u ∈ V (D) − V (M), d(u) ≥
2k + 1. It follows by Lemma 2.3 that M is not a maximum matching of D, and so a
contradiction obtains. �
Lemma 2.5. Let k > 0 be an integer, D be a digraph on n ≥ 2k + 2 vertices and M be
a maximum matching of D with |M| = k. Suppose that

min{d+(v), d−(v)} ≥ k, for every vertex v ∈ V (D). (2)

Let X = V (D) − V (M). Then

for every x ∈ X, we have d+(x) = d−(x) = k. (3)

Moreover, if n ≥ 2k + 3 or if n = 2k + 2 and D is strong, then for every e = [u, v] ∈ M
and for every x ∈ X, we have the following conclusions.

(i) There exists exactly one v(e) ∈ {u, v} such that both (v(e), x) and (x, v(e)) are in
A(D), and the vertex u(e) ∈ {u, v} − {v(e)} is not adjacent to any vertex in X.

(ii) The set {u(e) : e ∈ M} is an independent set in D such that d+(u(e)) =
d−(u(e)) = k for any e ∈ M and such that for any e, e′ ∈ M, (u(e), v(e′)),
(v(e′), u(e)) ∈ A(D).

Proof. Let N(X ) denote the set of vertices in D that is adjacent to a vertex in X .
Since M is a maximum matching, by Theorem 2.1

D does not have an M-augmenting path. (4)

By (4), we have N(X ) ⊆ V (M).
Since n ≥ 2k + 2 and |M| = k, we have |X | ≥ 2. Since M is a maximum matching,

it follows by (2) and by Lemma 2.3 that (3) must hold. In the rest of the proof for this
lemma, we consider two cases.

Case 1. D is a digraph with n = |V (D)| ≥ 2k + 3. Let m = |X |. Then m ≥ 3. By (3),

|(X,V (M))D| = mk = |(V (M), X )D|. (5)

We further observed that, by (4),

for any e ∈ M, the vertices of e are incident with at most 2m arcs in

(X,V (M))D ∪ (V (M), X )D. (6)

Let e = [u, v] ∈ M. If u, v ∈ N(X ), then by (4), there must be a unique x ∈ X
such that x is adjacent to both u and v; and for any x′ ∈ X − {x}, x′ is not
adjacent to either u nor v. By (3), x is adjacent to 2k vertices in V (M). As
|({x}, {u, v})D ∪ ({u, v}, {x})D| ≤ 4, it follows by (5) and m ≥ 3 that

|(X,V (M) − {u, v})D| + |(V (M) − {u, v}, X )D|
≥ 2k(m − 1) + (2k − 4) = 2km − 4

≥ 2km − 2m + 2 = 2m(k − 1) + 2 > 2m(k − 1) + 1.

If k > 1, then there must be an arc a ∈ M − {e} such that the vertices of a are
incident with at least 2m + 1 edges in (X,V (M))D ∪ (V (M), X )D, contrary to
(6). Hence in this case we must have k = 1 and M = {e}. As |X | ≥ 3, it follows
from (5) with m ≥ 3 that D must have an M-augmenting path, contrary to (4).
Hence for any e = (u, v) ∈ M, exactly one of u or v is adjacent to vertices in X .

Journal of Graph Theory DOI 10.1002/jgt
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Thus for each e ∈ M, let v(e) denote the unique vertex of e that is adjacent to
vertices in X and u(e) the other vertex of e which is not adjacent to any vertex in
X . Then as |X | = m, |(v(e), X )D ∪ (X, v(e))D| ≤ 2m. It follows from (5) that

2km ≥
∑

e∈M

|(v(e), X )D ∪ (X, v(e))D|=|(X,V (M))D| + |(V (M), X )D| = 2mk.

This implies that for each x ∈ X and for each e ∈ M, both (x, v(e)) and (v(e), x)

are in A(D). This proves (i) for Case 1.
Let Y = {u(e) : e ∈ M} and we shall show that Y is an independent set.
In fact, if for some e1, e2 ∈ M, [u(e1), u(e2)] ∈ A(D), then for any dis-
tinct x1, x2 ∈ X , {[x1, v(e1)], e1, [u(e1), u(e2)], e2, [x2, v(e2)]} induces an M-
augmenting path, contrary to (4). Thus each u(e) ∈ Y can only be adja-
cent to vertices in {v(e) : e ∈ M}. As |{v(e) : e ∈ M}| = k, by (2), we
conclude that for each e ∈ M, d+(u(e)) = d−(u(e)), and for any e, e′ ∈ M,
(u(e), v(e′)), (v(e′), u(e)) ∈ A(D). This proves (ii) for Case 1.

Case 2. D is strong and |V (D)| = 2k + 2.
Then X = {w, z}. Let M = {e1, . . . , ek}. Let Mw ⊆ M denote the arcs in M each
of which has a vertex adjacent to w. We define Mz similarly. By (3), |Mw| ≥ k

2

and |Mz| ≥ k
2 .

Subcase 1. |Mw| = k
2 or |Mz| = k

2 .
Note that in this case, k must be even. We assume, without loss of generality,
that Mw = {e1, . . . , e k

2
}. By (4), we must have Mz = {e k

2 +1, . . . , ek}. Again
by (4), for each x ∈ V (Mw) and y ∈ V (Mz), we conclude that [x, y] /∈ A(D).
Thus

(V (Mw) ∪ {w},V (Mz) ∪ {z})D ∪ (V (Mz) ∪ {z},V (Mw) ∪ {w})D = ∅,

contrary to the assumption that D is strong. This shows that Subcase 1 cannot
occur.

Subcase 2. |Mw| > k
2 and |Mz| > k

2 .
Therefore, Mw ∩ Mz �= ∅. Note that by (4), if an arc e ∈ M whose vertices are
adjacent to both w and z, then exactly one vertex of e can be adjacent to both
w and z. Let M′ = Mw ∩ Mz = {e′

i = [xi, yi], (i = 1, ..., d; 1 ≤ d ≤ k)} ⊆ M.
Without lose of generality, we assume that each e′

i has a unique ver-
tex xi with [xi, w], [xi, z] ∈ A(D). Let M′′ = M − M′ = {e′′

j = [r j, s j], ( j =
1, ..., k − d)}. We justify the following observations.

(A) By (4), for each yi, [yi, w], [yi, z] /∈ A(D).
(B) The set {y1, y2, . . . , yd} must be an independent set. This is warranted by (4).
(C) Suppose that Lemma 2.5(i) or (ii) does not hold. Then d ≤ k − 1.

In fact, if d = k, then M = M′ and each xi is adjacent to both w and z. By (3), for
each ei = [xi, yi] ∈ M, we must have (xi, w), (xi, z), (w, xi), (z, xi) ∈ A(D). Hence
Lemma 2.5(i) must hold. Furthermore, by Observations (A) and (B), each yi can
only be adjacent to {x1, x2, . . . , xd}. By (2), for any i, we must have d+(yi) =
d−(yi) = k, and for any 1 ≤ i, i′ ≤ k, we must have (xi, yi′ ), (yi′, xi) ∈ A(D).
Hence Lemma 2.5(ii) holds as well.

(D) From Observation (A), for each e = [xi, yi] ∈ M′, |({xi, yi}, {w, z})D ∪
({w, z}, {xi, yi})D| ≤ 4.
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(E) For each j with 1 ≤ j ≤ k − d, there exists exactly one vertex in {w, z} that is
adjacent to both r j and s j.
By the definition of M′′, for each j with 1 ≤ j ≤ k − d, there exists at most
one vertex in {w, z} that is adjacent to both r j and s j. By contradiction, we
assume that [r1, s1] ∈ Mw − M′ with [w, r1] ∈ A(D) and [w, s1] /∈ A(D). Then
|({w, z}, {r1, s1})D ∪ ({r1, s1}, {w, z})D| ≤ 2. For any other [r j, s j] ∈ M′′ with j ≥
2, we have |({w, z}, {r j, s j})D ∪ ({r j, s j}, {w, z})D| ≤ 4. It follows from (3) and
Observation (D) that

4k = |({w, z},V (M))D ∪ (V (M), {w, z})D|
= |({w, z},V (M′))D ∪ (V (M′), {w, z})D|

+ |({w, z}, {r1, s1})D ∪ ({r1, s1}, {w, z})D|

+
k−d∑

j=2

|({w, z}, {r j, s j})D ∪ ({r j, s j}, {w, z})D| ≤ 4(k − 1) + 2 < 4k,

a contradiction. This justifies Observation (E).
(F) For any [xi, yi] ∈ M′ and for any [r j, s j] ∈ M′′, [yi, r j], [yi, s j] /∈ A(D). In fact,

if [yi, r j] ∈ A(D), then by Observation (E), we may assume that [r j, s j] ∈ Mw,
and so {[w, s j], [r j, s j], [s j, yi], [xi, yi], [z, xi]} will induce an M-augmenting path,
contrary to (4). This justifies (F).

We argue by contradiction to prove (i) and (ii). As M′ = Mw ∩ Mz �= ∅, d ≥ 1
and so y1 exists. By Observations (A), (B), and (F), y1 can only be adjacent to
{x1, x2, . . . , xd}. Hence d(y1) ≤ 2|{x1, x2, . . . , xd}| = 2d. By (2) and by Observation (C),
that 2k ≤ d(y1) ≤ 2d ≤ 2(k − 1), a contradiction. This implies that we must have d = k,
and so by Observation (C), this proves the lemma for Case 2. �

3. PROOF OF THE MAIN RESULT

Throughout this section, D denotes a digraph and k ≥ 1 be an integer. In this section,
we shall prove a slightly stronger version than Theorem 1.5, stated as Theorem 3.1
below. By (1), Theorem 1.5 follows immediately from Theorem 3.1(i). As a byproduct
in the argument, we also prove that if for every vertex v ∈ V (D), min{d+(v), d−(v)} ≥
α′(D) > 0, then λ(D) ≥ α′(D), as stated in Theorem 3.1(ii) below.

Theorem 3.1. Let k > 0 be an integer, D be a digraph on n ≥ 2k vertices with α′(D) =
k. Suppose that if n ≤ 2k + 2, then D is strong. If

min{d+(v), d−(v)} ≥ k, for every vertex v ∈ V (D). (7)

then each of the following holds.

(i) D is supereulerian.
(ii) λ(D) ≥ k.

Proof. Let M be a matching of maximum size of D. We proceed our proof in the
following cases.

Journal of Graph Theory DOI 10.1002/jgt
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Case 1. 2k ≤ n ≤ 2k + 1.
If n = 2k, then by theorem 2.2, D is hamiltonian, and so D is also supereulerian.
If n = 2k + 1, then by Theorem 1.2, D is also supereulerian. It remains to prove
that λ(D) ≥ k.
Let X be an arbitrary nonempty proper subset of V (D), and let Y = V (D) − X .
Since |X | + |Y | = n ≤ 2k + 1, either 1 ≤ |X | ≤ k or 1 ≤ |Y | ≤ k. By symmetry,
we may assume that 1 ≤ |X | = m ≤ k. By (7), for each x ∈ X . |({x},Y )D| ≥
k − (m − 1). Thus |∂+

D (X )| ≥ m(k − (m − 1)) = −m2 + m(k + 1). As this is
a quadratic function with 1 ≤ m ≤ k, it follows that |∂+

D (X )| ≥ −m2 + m(k +
1) ≥ k, and so by (1), λ(D) ≥ k. This proves Case 1.

Case 2. n ≥ 2k + 2.

(i). Since k ≥ 1, by (7), D must has an eulerian subdigraph. Let S be an eulerian
subdigraph of D with

|V (S)| is maximized among all eulerian subdigraphs of D. (8)

Let s = |V (S)|. If s = n, then S is a spanning eulerian subdigraph of D and we are
done. By contradiction, we assume that n > s ≥ 1. Hence V (D) − V (S) �= ∅. We
are to prove (i) in the following two subcases.

Subcase 2.1. (V (D) − V (S)) − V (M) �= ∅.
Pick v ∈ (V (D) − V (S)) − V (M). Since A(S) �= ∅, we pick an arc e =
[x, y] ∈ A(S). Since M is a maximum matching of D, V (M) ∩ {x, y} �=
∅, and so we may assume that x ∈ V (M). Therefore, there exists an arc
a = [x, z] ∈ M. If x, z ∈ V (S), then by Lemma 2.5(i), there exists a vertex
v(a) ∈ {x, z} such that (v, v(a)), (v(a), v) ∈ A(D). It follows that A(S) ∪
{(v, v(a)), (v(a), v)} induces an eulerian subdigraph S1 with |V (S1)| >

|V (S)|, contrary to (8). Hence we may assume that z /∈ V (S). By Lemma
2.5(ii), we have (x, z), (z, x) ∈ A(D), and so A(S) ∪ {(x, z), (z, x)} induces
an eulerian subdigraph S1 with |V (S1)| > |V (S)|, contrary to (8) also. This
completes the proof for Subcase 2.1.

Subcase 2.2. V (D) − V (S) ⊆ V (M).
Pick v ∈ V (D) − V (S). Since v ∈ V (M), there must be an arc a =
[u, v] ∈ M. If u ∈ V (S), then by Lemma 2.5(ii), both (u, v), (v, u) ∈ A(D).
Hence A(S) ∪ {(u, v), (v, u)} induces an eulerian subdigraph S6 of D with
|V (S6)| > |V (S)|, contrary to (8). Therefore, we must have u /∈ V (S).
Since n ≥ 2k + 2 = |V (M)| + 2, there must be a vertex w ∈ V (D) −
V (M). Since V (D) − V (S) ⊆ V (M), w ∈ V (S). By Lemma 2.5(i), there
must be a v(a) ∈ {u, v} such that (w, v(a)), (v(a), w) ∈ A(D). It follows
that A(S) ∪ {(w, v(a)), (v(a), w)} induces an eulerian subdigraph S7 of D
with |V (S7)| > |V (S)|, contrary to (8). This completes the proof of Theo-
rem 3.1(i).

(ii). Let X satisfying ∅ �= X ⊂ V (D) be an arbitrary nonempty proper vertex subset.
We are to prove |∂+

D (X )| ≥ k.
Let Z = V (D) − V (M). By Lemma 2.5 (i), for any e = [u, v] ∈ M, there exists a
unique v(e) ∈ {u, v} such that for any z ∈ Z, (z, v(e)), (v(e), z) ∈ A(D). Let Mv =
{v(e) : e ∈ M}, and Mu = V (M) − Mv. Let m ≥ 2 be the integer satisfying n =
2k + m. By Lemma 2.5, for each v ∈ Mv, and for any u ∈ Z ∪ Mu, (v, u), (u, v) ∈

Journal of Graph Theory DOI 10.1002/jgt



SUPEREULERIAN DIGRAPHS WITH LARGE ARC-STRONG CONNECTIVITY 401

A(D). It follows by Lemma 2.5 that

min{d+(v), d−(v)} ≥ k + m, for any v ∈ Mv; and d+(z) = d−(z)

= k for any z ∈ Mu ∪ Z. (9)

We consider the following cases.

Case 1. (Mu ∪ Z) ⊆ X (or (Mu ∪ Z) ∩ X = ∅). We assume that Mu ∪ Z ⊆ X as by sym-
metry, the proof for Mu ∪ Z ∩ X = ∅ is similar. As V (D) = Mu ∪ Mv ∪ Z,
there exists a y ∈ Mv − X ⊂ V (D) − X . By Lemma 2.5, |∂+

D (X )| ≥ |(Mu ∪
Z, {y})D| = |Z| + |Mu| = k + m > k.

Case 2. Mv ⊆ X (or Mv ⊆ V (D) − X). We assume that Mv ⊆ X , as by symmetry, the
proof for Mv ⊆ V (D) − X is similar. Then Mu ∪ Z − X �= ∅. Pick y ∈ Mu ∪ Z −
X . Then by Lemma 2.5, |∂+

D (X )| ≥ |(Mv, {y})D| = |Mv| = k.
Case 3. Both Mu ∪ Z − X �= ∅ and X ∩ (Mu ∪ Z) �= ∅, and both Mv − X �= ∅ and X ∩

Mv �= ∅.

Pick x ∈ X ∩ (Mu ∪ Z) and y ∈ (Mu ∪ Z) − X . Then by Lemma 2.5,

|∂+
D (X )| ≥ |({x}, Mv − X )D| + |(Mv ∩ X, {y})D| = |Mv − X | + |Mv ∩ X | = |Mv| = k.

It follows that we always have |∂+
D (X )| ≥ k, and so λ(D) ≥ k. This proves (ii). �
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