
Discrete Mathematics 339 (2016) 2500–2510

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the lower bound of k-maximal digraphs
Xiaoxia Lin a,∗, Suohai Fan b, Hong-Jian Lai c, Murong Xu c

a School of Sciences, Jimei University, Xiamen, Fujian 361021, China
b Department of Mathematics, Jinan University, Guangzhou 510632, China
c Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

a r t i c l e i n f o

Article history:
Received 11 December 2014
Received in revised form 4 April 2016
Accepted 5 April 2016
Available online 18 May 2016

Keywords:
Strong arc connectivity
Maximum subdigraph arc connectivity
Extremal digraphs

a b s t r a c t

For a digraph D, let λ(D) be the arc-strong-connectivity of D. For an integer k > 0, a simple
digraph Dwith |V (D)| ≥ k + 1 is k-maximal if every subdigraph H of D satisfies λ(H) ≤ k
but for adding new arc to D results in a subdigraph H ′ with λ(H ′) ≥ k + 1. We prove that
if D is a simple k-maximal digraph on n > k + 1 ≥ 2 vertices, then

|A(D)| ≥

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


.

This bound is best possible. Furthermore, all extremal digraphs reaching this lower bound
are characterized.

© 2016 Elsevier B.V. All rights reserved.

1. The problem

We consider finite simple graphs and simple digraphs. We generally use G to denote a graph and D a digraph, and
follow [3] and [2] for undefined notation in graphs and in digraphs, respectively. In particular, κ ′(G) denotes the edge
connectivity of a graph G and λ(D) denotes the arc-strong-connectivity of a digraphD. If G is a simple graph, then Gc denotes
the complement of G. If X ⊆ E(Gc), then G + X is the simple graph with vertex set V (G) and edge set E(G) ∪ X . We will use
G + e for G + {e}. Likewise, if D is a simple digraph, let Dc denote the complement of D. For X ⊆ A(Dc) and e ∈ A(Dc), we
similarly define the simple digraphs D+X and D+ e, respectively. If H, K are subdigraphs of D, then H ∪K is the subdigraph
of Dwith vertex set V (H)∪V (K) and arc set A(H)∪A(K). Throughout this paper, we use the notation (u, v) to denote an arc
oriented from u to v in a digraph. If W ⊆ V (D) or if W ⊆ A(D), then D[W ] denotes the subdigraph of D induced by W . For
v ∈ V (D), we use D − v for D[V (D) − {v}]. For graphs H and G, we denote H ⊆ G when H is a subgraph of G. Similarly, for
digraphs H and D, H ⊆ Dmeans H is a subdigraph of D. We write D ∼= D′ to represent the fact that D and D′ are isomorphic
digraphs.

Given a graph G, Matula [6–8] first studied the quantity

κ ′(G) = max{κ ′(H) : H ⊆ G}.

He called κ ′(G) the strength of G. Mader [5] considered an extremal problem related to κ ′(G). For an integer k > 0, a simple
graph G with |V (G)| ≥ k + 1 is k-maximal if κ ′(G) ≤ k but for any edge e ∈ E(Gc), κ ′(G + e) > k. In [5], Mader proved the
following.
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Theorem 1.1 (Mader [5]). If G is a k-maximal graph on n > k ≥ 1 vertices, then

|E(G)| ≤ (n − k)k +


k
2


.

Furthermore, this bound is best possible.

It has been noted that being a k-maximal graph requires a certain level of edge density. Towards this direction, the
following was proved in 1990.

Theorem 1.2 (Lai, Theorem 2 of [4]). If G is a k-maximal graph on n > k + 1 ≥ 2 vertices, then

|E(G)| ≥ (n − 1)k −


k
2

 
n

k + 2


.

Furthermore, this bound is best possible.

It is natural to consider extending the theorems above to digraphs. Towards this direction, for a digraph D, we define

λ(D) = max{λ(H) : H ⊆ D}.

Let k ≥ 0 be an integer. A simple digraph D with |V (D)| ≥ k + 1 is k-maximal if λ(D) ≤ k but for any arc e ∈ A(Dc),
λ(D+ e) ≥ k+ 1. Following Matula [6], we may also call λ(D) the strength of digraph D and so a k-maximal digraph is also
called a k-maximal strength digraph. For positive integers n and k satisfying n ≥ k + 1, define

D(n, k) = {D : D is a simple digraph with |V (D)| = n and D is k-maximal}.

Thus we are to investigate the upper and lower bounds of the set of numbers {|A(D)| : D ∈ D(n, k)}. For notational
convenience, if h < k, we define


h
k


= 0. The following has been obtained.

Theorem 1.3 (Anderson et al. Theorem 1.2 of [1]). Let n and k be positive integers with n ≥ k + 1. If D ∈ D(n, k), then

|A(D)| ≤ k(2n − k − 1) +


n − k
2


.

Furthermore, the bound is best possible.

In fact, all extremal digraphs in D(n, k) reaching this upper bound are characterized in [1]. The purpose of this research
is to determine the lower bound. The following is the main result.

Theorem 1.4. Let n and k be positive integers with n ≥ k + 1. If D ∈ D(n, k), then

|A(D)| ≥

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


.

Furthermore, the bound is best possible.

In the next section, we investigate properties of k-maximal digraphs. In Section 3, we present a constructive
characterization of a family of k-maximal digraphs E ′(k). In the last section, we will prove Theorem 1.4 and show that
the members in the family E ′(k) are precisely the digraphs attaining the upper bound in Theorem 1.4.

2. Properties of k-maximal digraphs

Throughout this section, n and k denote integers with n > k ≥ 0. We present some properties of k-maximal digraphs to
be utilized later. Let D(k) be the family of all k-maximal digraphs. Thus

D(k) = ∪n≥k+1 D(n, k).

For any integer n ≥ 0, let K ∗
n denote the complete digraph on n vertices. Thus K ∗

n is a simple digraph such that for any pair
of distinct vertices u, v ∈ V (K ∗

n ), both (u, v) and (v, u) are in A(K ∗
n ). By definition, we observe the following

K ∗

k+1 ∈ D(k) and if H ∈ D(k) and |V (H)| = k + 1, then H ∼= K ∗

k+1. (1)

Lemma 2.1 (Lemma 2.1 of [1]). A digraph D ∈ D(0) if and only if D is an acyclic tournament.

Lemma 2.1 indicates that we may exclude the case k = 0 in our study. Therefore, we will always assume that k > 0 in
the rest of this paper. Following [2], if D is a digraph and if X, Y ⊆ V (D), then define

(X, Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }.
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We further define that, for X ⊆ V (D),

∂+

D (X) = (X, V (D) − X)D and ∂−

D (X) = (V (D) − X, X)D.

For each v ∈ V (D), we define

N+

D (v) = {u ∈ V (D) : (v, u) ∈ A(D)} and N−

D (v) = {u ∈ V (D) : (u, v) ∈ A(D)}.

When the digraph D is understood from the context, we sometimes omit the subscript D in the notations above. By the
definition of arc-strong connectivity in [2], a digraph D satisfies λ(D) ≥ k if and only if for any nonempty proper subset
X ⊂ V (D), |∂+

D (X)| ≥ k.

Definition 2.2. LetH ∈ D(k) and let {v1, v2, . . . , vk} ⊂ V (H) be a subset of k distinct vertices. Let u be a vertex not in V (H).
Define a digraph [H, K1]k ([K1,H]k, respectively) as follows:
(i) V ([H, K1]k) = V ([K1,H]k) = V (H) ∪ {u}.
(ii) A([H, K1]k) = A(H) ∪ {(v1, u), (v2, u), . . . , (vk, u)} ∪


v∈V (H){(u, v)}


. (A([K1,H]k) = A(H) ∪ {(u, v1), (u, v2), . . . ,

(u, vk)} ∪


v∈V (H){(v, u)}

, respectively).

Note that each of [H, K1]k and [K1,H]k represents a family of graphs as the set {v1, v2, . . . , vk} ⊂ V (H) may vary.

Definition 2.3. Let H1,H2 ∈ D(k), and let {u1, u2, . . . , uk} ⊂ V (H1) be a multiset of V (H1) and {v1, v2, . . . , vk} ⊂ V (H2) be
a multiset of V (H2) such that all the arcs (u1, v1), (u2, v2), . . . , (uk, vk) are distinct. Define a digraph [H1,H2]k as follows.
(i) V ([H1,H2]k) = V (H1) ∪ V (H2).

(ii) A([H1,H2]k) = A(H1) ∪ A(H2) ∪ {(u1, v1), (u2, v2), . . . , (uk, vk)} ∪


u∈V (H1),v∈V (H2)

{(v, u)}

.

Note that [H1,H2]k represents a family of digraphs.

Lemma 2.4 (Corollary 2.6 of [1]). Let D ∈ D(k) − {K ∗

k+1} be a digraph. Then there exists a nonempty proper subset X ⊆ V (D)
such that one of the following holds.
(i) |X | = 1, and for some H ∈ D(k), D ∈ [K1,H]k.
(ii) |V (D) − X | = 1 and for some H ∈ D(k), D ∈ [H, K1]k.
(iii) For some H1,H2 ∈ D(k), we have D[X] = H1 and D ∈ [H1,H2]k.

3. Structure of k-maximal digraphs

Let H(k, 2) be the digraph obtained from K ∗

k+2 by removing an arc from K ∗

k+2. Note that if D ∼= H(k, 2), then D has exactly
one vertex (to be denoted x−(D)) of indegree k and exactly one vertex (to be denoted x+(D)) of outdegree k.

Definition 3.1. Let n and k be positive integers. DefineS(n, k) to be the set of all integral sequences (s1, s2, . . . , sm) satisfying
s1+s2+· · ·+sm = n such that s1 = k+2, and for i ≥ 2, si ∈ {1, −1, k+2, −(k+2)}. For any s = (s1, s2, . . . , sm) ∈ S(n, k),
define digraphs L(s) = L(s1s2, . . . , sm) as follows.
(i) For i = 1, define L1 ∼= H(k, 2).
(ii-A) For i ≥ 2, if si = 1 (si = −1, respectively), then define Li ∈ [Li−1, K1]k (Li ∈ [K1, Li−1]k, respectively).
(ii-B) For i ≥ 2, if si = k+2 (si = −(k+2), respectively), then define Li ∈ [Li−1,H(k, 2)]k (Li ∈ [H(k, 2), Li−1]k, respectively),
in such a way that for any 1 ≤ t ≤ i with |st | = k + 2 and with Jt denoting this H(k, 2), we have d−

Li
(x−(Jt)) ≥ k + 1

(d+

Li
(x+(Jt)) ≥ k + 1, respectively).

(iii) Define L(s) = Lm. By Definitions 2.2 and 2.3, each L(s) represents a collection of digraphs.
(iv) Given s = (s1, s2, . . . , sm) ∈ S(n, k), define Ji = K1 if |si| = 1 and Ji = H(k, 2) if |si| = k + 2. Then the sequence of
digraphs J1, J2, . . . , Jm is called a construction sequence of L(s).
(v) Define E(n, k) = {L(s) : s ∈ S(n, k)} and E(k) = {∪n≥k+2(E(n, k) ∪ {K ∗

k+1})}.

For a digraph D, an arc subset W = (X, V (D) − X)D for some proper nonempty subset X is called an arc-cut. If |W | = t
andW is an arc-cut, thenW is called a t-arc-cut.

Observation 3.2. We will make a few observations from Definition 3.1.
(i) By definition, H(k, 2) ∈ {L(s)} with s being the sequence of only one term k + 2. Since there is only one arc a ∈ A(H(k, 2)c),
we have H(k, 2) + a = K ∗

k+2 and so

H(k, 2) ∈ D(k). (2)

(ii) Let D ∈ E(k) − {H(k, 2)}. We may assume that n = |V (D)| > k + 2 and for some s = (s1, s2, . . . , sm) ∈ S(n, k), D ∈ L(s)
with construction sequence J1, J2, . . . , Jm. Using the notation in Definition 3.1, we let Li = D[∪

i
j+1 V (Jj)]. For any k-arc-cut

W = (X, V (D) − X)D of D, there must be an i with 1 ≤ i < m such that W = (V (Li), V (Ji+1))D or W = (V (Ji+1), V (Li))D.
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We will justify Observation 3.2(ii). Since n = |V (D)| > k + 2, we have m ≥ 2. When m = 2, by Definition 3.1(ii-A)
and (ii-B), we observe that if W1 is a k-arc-cut of D, then we must have W1 = (V (J1), V (J2))D or W1 = (V (J2), V (J1))D.
Hence we assume that m > 2. Inductively, assume that for any digraph D′

∈ E(k) − {H(k, 2)} with |V (D′)| < |V (D)| and
with construction sequence J1′, J2′, . . . , J ′m′ , if W ′ is a k-arc-cut of D′, then there must be an i with 1 ≤ i < m′ such that
W ′

= (∪i
j+1 V (J ′j ), V (J ′i+1))D′ orW ′

= (V (J ′i+1), ∪
i
j+1 V (J ′j ))D′ . LetW = (X, V (D) − X)D be an k-arc-cut of D. If X ∩ V (Jm) = ∅

or if Jm ⊆ X , then by Observation 3.2,W is an k-arc-cut of Lm−1, and so by induction, there must be an iwith 1 ≤ i < m − 1
such that Observation 3.2(ii) holds. Hence wemust have X ∩V (Jm) ≠ ∅ and (V (D)−X)∩ Jm ≠ ∅. In this case, as |V (Jm)| ≥ 2,
we must have sm = k + 2 and Jm = H(k, 2). It follows that H(k, 2) contains an arc-cut X ∩ A(Jm) of size at most k. But by
Definition 3.1(ii-B), Jm does not have an arc-cut of size k. This contradiction justifies Observation 3.2(ii).

Observation 3.2(i) can be extended, as shown in Theorem 3.6.

Lemma 3.3. For any D ∈ E(k), we have

λ(D) = λ(D) = k. (3)

Proof. By Definition 3.1, it suffices to show that ifD = L(s) for some s = (s1, s2, . . . , sm) ∈ S(n, k), then (3) holds.We argue
by induction onm. By (2), (3) holds form = 1. Assume thatm > 1 and (3) holds for smaller values ofm.We adopt thenotation
in Definition 3.1 and let J1, J2, . . . , Jm be the construction sequence of D. Let s′ = (s1, s2, . . . , sm−1) and D′

= D − V (Jm).
Then s′ ∈ S(n − sm, k), and D′

= L(s′). By Definition 3.1, D ∈ [D′, Jm]k. By induction, λ(D′) = λ(D′) = k.
We argue by contradiction to prove that λ(D) ≥ k, and assume that D has a proper nonempty subset X ⊂ V (D)

such that |∂+

D (X)| < k. If both X ∩ V (D′) ≠ ∅ and V (D′) − X ≠ ∅, then by λ(D′) = k, we have a contradiction
k > |∂+

D (X)| ≥ |(V (D′) ∩ X, V (D′) − X)D′ | ≥ k. Hence either V (D′) ∩ X = ∅ or V (D′) ⊆ X . Similarly, as Jm ∈ {K1,H(k, 2)}, if
bothX∩V (Jm) ≠ ∅ andV (Jm)−X ≠ ∅, then Jm = H(k, 2), and so k > |∂+

D (X)| ≥ |(V (Jm)∩X, V (Jm)−X)D′ | ≥ λ(H(k, 2)) = k,
a contradiction. It follows thatwemust have X = V (D′) or X = V (Jm). By Definition 2.2 or 2.3, we have again a contradiction:
k > |∂+

D (X)| ≥ min{|(V (Jm), V (D′))D|, |(V (D′), V (Jm))D|} ≥ k. This proves that λ(D) ≥ k.
We now prove λ(D) = k by contradiction. Assume that D has a subdigraph H such that λ(H) ≥ k + 1. If both

V (H) ∩ V (D′) ≠ ∅ and V (H) ∩ V (Jm) ≠ ∅, then λ(H) ≤ |(V (H) ∩ V (D′), V (H) ∩ V (Jm))H | ≤ |(V (D′), V (Jm))D| = k, contrary
to λ(H) ≥ k + 1. Thus since Jm ∈ {K1,H(k, 2)}, we must have H ⊆ D′. By induction, λ(D′) = k, and so λ(H) ≤ λ(D′) = k,
contrary to the assumption λ(H) ≥ k + 1. This proves the lemma. �

A special class of graphs in E(k) has been studied in [1]. Let SM(n, k) be the subset of S(n, k) such that s =

(s1, s2, . . . , sm) ∈ SM(n, k) if and only if |s2| = |s3| = · · · |sm| = 1. Let M(k) = ∪n≥k+2{L(s) : s ∈ SM(n, k)}.

Theorem 3.4 (Anderson et al., Theorem 3.2(ii) of [1]). M(k) ⊆ D(k).

The observations stated in Lemma 3.5 follow immediately from Definition 3.1. For example, in Lemma 3.5(i), if for some
2 ≤ t ≤ m−1, (4) holds, then the digraph sequence J1, J2, . . . , Jt−1, Jt+1, . . . , Jm, Jt is also a construction sequence of D such
that for s′ = (s1, . . . , st−1, st+1, . . . , sm, st), we have then D ∈ L(s′). The justification of Lemma 3.5(ii) is similar and will be
omitted.

Lemma 3.5. Let D ∈ L(s) for some s = (s1, s2, . . . , sm) ∈ S(n, k) with a construction sequence J1, J2, . . . , Jm. Each of the
following holds.
(i) If for some t with 2 ≤ t ≤ m − 1, and for all j with t + 1 ≤ j ≤ m,

either sj > 0 and (Jt , Jj)D = ∅, or sj < 0 and (Jj, Jt)D = ∅, (4)

then D − V (Jt) = L(s′), where s′ = (s1, . . . , st−1, st+1, . . . , sm) ∈ S(n − st , k).
(ii) Suppose that for some t with 1 ≤ t < m, we have st+1 = k + 2. If for each j with t + 2 ≤ j ≤ m,

either sj > 0 and (J1 ∪ J2 ∪ · · · ∪ Jt , Jj)D = ∅, or sj < 0 and (Jj, J1 ∪ J2 ∪ · · · ∪ Jt)D = ∅, (5)

then D − V (J1 ∪ J2 ∪ · · · ∪ Jt) = L(s′), where s′ = (st+1, st+2, . . . , sm) ∈ S(n −
t

i=1 si, k).

Lemma 3.5 can be applied in inductive augments involving digraphs in E(k). This allows us to prove a generalization of
Theorem 3.4, as stated in the theorem below.

Theorem 3.6. Let k ≥ 1 be an integer. Then E(k) ⊆ D(k).

Proof. Let D ∈ E(k) with n = |V (D)|. In the proof arguments below, we shall adopt the notation in Definition 3.1 to use
L1, L2, . . . , Lm to denote the graphs in the process to build Lm.

We argue by induction on n to prove the theorem. By Definition 3.1, n ≥ k + 2, and n = k + 2 if and only if D = H(k, 2).
By (2), D = H(k, 2) ∈ D(k). Thus we may assume that n > k + 2 and for any digraph D′

∈ E(k) with |V (D′)| ≤ n − 1,
D′

∈ D(k). We are to show that if D ∈ E(n, k), then D ∈ D(k).
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By contradiction, we assume that D ∈ E(n, k) − D(k), and so for some a = (u, v) ∈ A(Dc), we have

λ(D + a) ≤ k. (6)

Assume that D = L(s) for some s = (s1, s2, . . . , sm) ∈ S(n, k) with m minimized and a = (u, v) ∈ A(Dc); and let
J1, J2, . . . , Jm be the corresponding construction sequence of D. Since n > k + 2, we have m ≥ 2. By symmetry, we assume
that D ∈ [Lm−1, Jm]k. By induction, Lm−1 ∈ D(k). If u, v ∈ V (Lm−1), then λ(D + a) ≥ λ(Lm−1 + a) ≥ k + 1. Hence we may
assume that

u ∈ V (Lm−1) and v ∈ V (Jm). (7)

By (6),

there exists a nonempty proper subset X ⊂ V (D + a), such that |∂+

D+a(X)| ≤ k. (8)

By Definition 3.1(ii) or (iii), there are k arcs from Lm−1 to Jm. We assume that (V (Lm−1), V (Jm))D = {a1, a2, . . . , ak}. Let
ai = (vi, wi), 1 ≤ i ≤ k. By Definition 3.1, {v1, v2, . . . , vk} ⊆ V (Lm−1) and w1, w2, . . . , wk ∈ V (Jm). If there exists a t with
2 ≤ t ≤ m − 1, such that V (Jt) ∩ {v1, v2, . . . , vk, u} = ∅, and such that for all j > t , either sj > 0 and (Jt , Jj)D = ∅, or
sj < 0 and (Jj, Jt)D = ∅, then by Lemma 3.5(i), D − V (Jt) = L(s′), where s′ = (s1, . . . , st−1, st+1, . . . , sm) ∈ S(n − st , k). By
induction, D− V (Jt) ∈ D(k), and so λ(D+ a) ≥ λ((D− V (Jt)) + a) ≥ k+ 1, contrary to (6). Hence we may assume that for
any t with 1 < t ≤ m − 1, there exists a j > t + 1 such that

0 <


|V (Jt) ∩ {v1, v2, . . . , vk, u}| + |(Jt , Jj)D| if sj > 0
|V (Jt) ∩ {v1, v2, . . . , vk, u}| + |(Jj, Jt)D| if sj < 0 . (9)

Let X ⊂ V (D) be a subset satisfying (8). Define I ′ = {i : 1 ≤ i ≤ m and V (Ji) ∩ X = ∅} and I ′′ = {i : 1 ≤ i ≤ m and V (Ji) ∩

X ≠ ∅}.

Claim 1. For any i with 1 ≤ i ≤ m, if |V (Ji)| = k + 2, then either X ∩ V (Ji) = ∅ or V (Ji) − X = ∅. (As |si| ∈ {1, k + 2}, it
follows that for any 1 ≤ i ≤ m, either X ∩ V (Ji) = ∅ or V (Ji) − X = ∅.)

Proof of Claim 1. By contradiction, suppose for some i′ with 1 ≤ i′ ≤ m and with |V (Ji′)| = k + 2, and both X ∩ V (Ji′) ≠ ∅

and V (Ji′) − X ≠ ∅. If k ≥ |X ∩ V (Ji′)| ≥ 2, then as Ji′ = H(k, 2), we have min{|X ∩ V (Ji′)|, |V (Ji′) − X |} ≥ 2. It
follows by the definition of H(k, 2) that |∂+

D+a(X)| ≥ |∂+

Ji′
(X ∩ V (Ji′))| ≥ k + 1, contrary to (8). Hence we may assume that

|X ∩ V (Ji′)| ∈ {1, k + 1}, and so |∂+

Ji′
(X ∩ V (Ji′))| = k. By (7), |{u, v} ∩ V (Ji′)| ≤ 1 and so min{|X ∩ V (Ji′)|, |V (Ji′) − X |} = 1.

It follows that

|(X ∩ V (Ji′), V (Ji′) − X)D+a| = |(X ∩ V (Ji′), V (Ji′) − X)D| = |∂+

Ji′
(X ∩ V (Ji′))| = k. (10)

By (10), wemust have {v1, . . . , vk} ⊆ X∩V (Ji′) and {w1, . . . , wk} ⊆ V (Ji′)−X . Also by (10), for any j ≠ i′, if X∩V (Jj) ≠ ∅ and
V (Jj)−X ≠ ∅, then ∂+

Jj
(X∩V (Jj)) ≠ ∅. This, togetherwith (10), implies |∂+

D+a(X)| ≥ |∂+

Ji′
(X∩V (Ji′))|+|∂+

Jj
(X∩V (Jj))| ≥ k+1,

contrary to (8). Hence we have

for any j ≠ i′, if X ∩ V (Jj) ≠ ∅, then V (Jj) ⊆ X . (11)

Since Ji′ = H(k, 2), Ji′ has a unique vertex x1 = x+(Ji′) such that d+

Ji′
(x1) = k and a unique vertex x2 = x−(Ji′) such that

d−

Ji′
(x2) = k. It follows by (10) that either V (Ji′) ∩ X = {x1} or V (Ji′) − X = {x2}.
Assume first that i′ > 1 and i1 is the smallest integer satisfying 1 ≤ i1 < i′ such that i1 ∈ I ′′. If i1 > 1, then either si1 > 0,

whence by (11), ∪1≤t≤i1−1 V (Jt) ∩ X = ∅, and so by Definition 2.2 or 2.3, |∂+

D+a(X)| ≥ |V (Ji1), V (J1))D| ≥ |V (J1)| = k + 2;
or si1 < 0, whence by (10) and by Definition 2.2 or 2.3, |∂+

D+a(X)| ≥ |(V (Ji′) ∩ X, V (Ji′) − X)D| + |(V (Ji1), Li1−1)D| ≥ k + 1.
In either case, a contradiction to (8) is obtained. Therefore we assume that i1 = 1. If there exists an i′′ with 1 < i′′ < i′
such that X ∩ V (Ji′′) = ∅, then assume that i′′ is the smallest such integer. By Definition 2.2 or 2.3, |(V (Li′′−1), V (Ji′′))D| > 0.
This, together with (10), implies that |∂+

D+a(X)| ≥ |(V (Ji′) ∩ X, V (Ji′) − X)D| + |(V (Li′′−1), V (Ji′′))D| ≥ k + 1, contrary to
(8). Therefore, no such i′′ exists, and so we conclude that V (Li′−1) ⊆ X . It follows by Definition 3.1(ii-B) that |∂+

D+a(X)| ≥

min{d+

Li′
(x1), d−

Li′
(x2)} ≥ k + 1, contrary to (8).

Therefore, we may assume that i′ = 1. If for some t with 1 < t ≤ m, |st | = k + 2, then by Definition 3.1(ii-B), we have
|∂+

D+a(X)| ≥ min{d+

Lt (x1), d
−

Lt (x2)} ≥ k + 1, contrary to (8). Hence for all t > 1, we have |st | = 1. It follows by Theorem 3.4
that D ∈ D(k), contrary to (6). This justifies Claim 1.

Claim 2. Suppose that V (J1) ∩ X = ∅. Let i1 > 1 be the smallest integer such that V (Ji1) ∩ X ≠ ∅, and i2 ≤ m be the largest
integer such that for any t with i1 ≤ t ≤ i2, we have V (Jt) ⊆ X . Each of the following holds.
(i) For any i ≥ 2, if V (Ji) ∩ X ≠ ∅, then si < 0.
(ii) V (Jm) ∩ X = ∅.
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(iii) (V (Ji1), V (Li1−1))D = ∂+

D+a(X) and |∂+

D+a(X)| = |(V (Ji1), V (Li1−1))D| = k.
(iv) u ∉ X .
(v) λ(D + a) ≥ k + 1. (Thus a contradiction to (6) is obtained.)

Proof of Claim 2. (i) Suppose that V (J1)∩X = ∅. By Definition 3.1, |V (J1)| = s1 = k+2. If for some i ≥ 2with V (Ji)∩X ≠ ∅,
we have si > 0, then by Definition 3.1, for each vertex x ∈ V (Ji) and for each vertex y ∈ V (J1), (x, y) ∈ A(D). It follows by
|V (J1)| = s1 = k + 2 and by Claim 1 that |∂+

D+a(X)| ≥ |(V (Ji), V (J1))D| ≥ k + 2, contrary to (8). This justifies (i).
(ii) Since D = [Lm−1, Jm]k, we have sm > 0 and so by Claim 2(i) and by Claim 1, V (Jm) ∩ X = ∅.
(iii) By Claim 2(i), si1 < 0. Thus by Definition 3.1(ii), |(V (Ji1), V (Li1−1))D| = k. By the definition of i1, V (Li1−1) ∩ X = ∅

and V (Ji1) ⊆ X . Hence (V (Ji1), V (Li1−1))D ⊆ ∂+

D+a(X). By (8), we have |∂+

D+a(X)| = |(V (Ji1), V (Li1−1))D| = k, which implies
(V (Ji1), V (Li1−1))D = ∂+

D+a(X).

(iv) If u ∈ X , then by Claim 2(ii), we have (u, v) ∈ ∂+

D (X). This, together with Claim 2(iii), implies that |∂+

D+a(X)| ≥ k + 1,
contrary to (8).
(v) For any t > i2 with st > 0, by (8) and Claim 2(iii), we must have

(X, V (Jt))D+a = (∪i∈I ′′ V (Ji), V (Jt))D+a = ∅.

Let s′′ be a subsequence of s by deleting all terms si with i ∈ I ′′ from s; and let D′′
= D − X . It follows that D′′

= L(s′′) and
so D′′

∈ S(n − |X |, k). Since I ′′ ≠ ∅, by induction, D′′
∈ E(k). By Claim 2(iv), u ∉ X and so both ends u and v are in V (D′′).

Since D′′
∈ E(k), we have λ(D + a) ≥ λ(D′′

+ a) ≥ k + 1. This completes the proof for Claim 2.

Claim 3. Suppose that V (J1) ⊆ X . Let i2 ≤ m be the largest integer such that for any t with 1 ≤ t ≤ i2, we have V (Jt) ⊆ X .
Each of the following holds.
(i) For any i > i2, if V (Ji) ∩ X = ∅, then si > 0.
(ii) (V (Li2), V (Ji2+1))D = ∂+

D+a(X) and |∂+

D+a(X)| = |(V (Li2), V (Ji2+1))D| = k.
(iii) m > i2 + 1.
(iv) Suppose that si2+1 = 1 and t > i2 + 1. Then V (Jt) ∩ X = ∅ if and only if st > 0; and V (Jt) ⊆ X if and only if st < 0. In
particular, V (Jm) ∩ X = ∅ and u ∉ X .
(v) Let i3 > 1 be the largest integer such that V (Ji3) ⊆ X . Thenm− 1 > i3 > i2, V (Ji3) ∩ {v1, v2, . . . , vk, u} = ∅, and for any
h > i3, (V (Ji3), V (Jh))D = ∅.

Proof of Claim 3. (i) Let i > i2 be an index such that V (Ji) ∩ X = ∅. If si < 0, then by Definition 2.2 or 2.3, for any x ∈ V (Li2)
and for any y ∈ V (Ji), we have (x, y) ∈ A(D). It follows that |∂+

D+a(X)| ≥ |(V (J1), V (Ji))D| ≥ |s1| = k + 2, contrary to (6).
(ii) By Claim 3(i), si2+1 > 0. By Definition 3.1(ii), |(V (Li2), V (Ji2+1))D| = k. By the definition of i2, V (Li2) ∩ X = ∅ and
V (Li2) ⊆ X . Hence (V (Li2), V (Ji2+1))D ⊆ ∂+

D+a(X). By (8), we have |∂+

D+a(X)| = |(V (Li2), V (Ji2+1))D| = k, which implies
(V (Li2), V (Ji2+1))D = ∂+

D+a(X).

(iii) If i2 + 1 = m, then we must have u ∈ V (Li2), and so (u, v) ∈ (V (Li2), V (Ji2+1))D+a ⊆ ∂+

D+a(X). As (u, v) ∉

(V (Li2), V (Ji2+1))D, this yields a contradiction to (V (Li2), V (Ji2+1))D = ∂+

D+a(X).
(iv) Suppose that si2+1 = 1 and fix t > i2+1. Assume that V (Jt)∩X = ∅. By Claim 3(ii) and by (6), (V (Jt), X)D = ∅. Hence by
the definition of [Lt−1, Jt ]k, we must have st > 0. Conversely, assume that both st > 0 and V (Jt) ⊆ X , then by the definition
of [Lt−1, Jt ]k, (V (Jk), V (Lt−1))D ≠ ∅, contrary to Claim 3(ii). This proves that V (Jt) ∩ X = ∅ if and only if st > 0.

Now assume that V (Jt) ⊆ X . If st > 0, then (V (Jt), V (Ji2+1))D ≠ ∅, by the definition of [Lt−1, Jt ]k, contrary to Claim 3(ii).
Therefore, we must have st < 0. Conversely, assume that st < 0 and V (Jt) ∩ X = ∅. By the definition of [Jt , Lt−1]k, we have
(V (Lt−1), V (Jt))D ≠ ∅, again contrary to Claim 3(ii).

As D = [Lm−1, Jm]k, we have sm > 0, and so V (Jm) ∩ X = ∅. By Claim 3(ii) and since v ∈ V (Jm), we conclude that u ∉ X .
This proves (iv).
(v) By Claim 3(iv), V (Jm) ∩ X = ∅, and so m > i3. We argue by contradiction to assume that i3 = i2. Then by the definitions
of i2 and i3, we have X = ∪

i3
t=1 V (Jt) = V (Li3). For any j > i3, by Claim 5(i), sj > 0. By Claim 3(iv), u ∈ X . If m = i3 + 1,

then u must be in X , a contradiction. Hence m ≥ i3 + 2. Similarly, by k ≥ |∂+

D+a(X)|, {v1, v2, . . . , vk} ∩ X = ∅. By Claim
3(i), si3+2 > 0. Since (Li3 , Ji3+1)D ∪ (Li3 , Ji3+2)D ⊆ ∂+

D+a(X) and since |(Li3 , Ji3+1)D| = k, it follows by k ≥ |∂+

D+a(X)| that
|(Li3 , Ji3+2)D| = 0. This, {v1, v2, . . . , vk} ∩ X = ∅, yields a contradiction to (9). This proves thatm > i3 > i2.

We now show the other conclusions of Claim 3(v). By Claim 3(iv), V (Jm) ∩ X = ∅ and u ∉ X . By Definition 3.1 we have
(Ji3 , Ji3+1)D ⊆ (Ji3 , Ji3+1 ∪ Jm)D ⊆ ∂+

D+a(X), which implies that

k = |(Ji3 , Ji3+1)D| ≤ |(Ji3 , Ji3+1)D| + |(Ji3 , Jm)D| ≤ |∂+

D+a(X)| ≤ k.

|(Ji3 , Jm)D| = 0. Since w1, w2, . . . , wk ∈ V (Jm), it follows that V (Ji3) ∩ {v1, v2, . . . , vk, u} = ∅. By the choice of i3, for any
h > i3, we have V (Jh) ∩ X = ∅, and so (V (Ji3), V (Jh))D ⊆ ∂+

D+a(X). By Claim 3(ii), we must have (V (Ji3), V (Jh))D = ∅. This
justifies Claim 3.
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We now continue the proof of the theorem. By Claim 2(v), wemay assume that s1 = −(k+2), and so Claim 3 applies. By
Claim 3(iv) and with i3 being defined in Claim 3(v), we conclude that sh > 0, for any h > i3. Therefore, Claim 3(v) presents
a contradiction to (9). This proves the theorem. �

To determine the extremal graphs of Theorem 1.4, we need to construct a new family of digraphs.

Definition 3.7. For an integer k > 0, define E1(k) to be the family consisting of digraphs satisfying each of the following.
(A) E(k) ⊂ E1(k).
(B) If digraphs H and H ′ satisfy

H,H ′
∈ E1(k) ∪ {K1} with |V (H)| + |V (H ′)| > 2, (12)

then [H,H ′
]k ⊂ E1(k).

Lemma 3.8. For any D ∈ E1(k).
(i) |V (D)| ≥ k + 2.
(ii) λ(D) = k.
(iii) For any k-arc-cut W of D, there exist two digraphsH andH ′ satisfying (12) such that D ∈ [H,H ′

]k andW = (V (H), V (H ′))D.

Proof. By Definition 3.7 and by induction on |V (D)| for a digraph D ∈ E1(k), Lemma 3.8(i) and (ii) hold. To prove
Lemma 3.8(iii), we assume that D has a k-arc-cut W = {(u1, v1), (u2, v2), . . . , (uk, vk)}. Thus for some nonempty subsets
X, V (D) − X , we have W = (X, V (D) − X)D. If D ∈ E(k), then by Observation 3.2(ii), Lemma 3.8(iii) must hold. Hence by
Definition 3.7, we assume that D ∈ [H,H ′

]k for some H,H ′ satisfying (12); and that Lemma 3.8(iii) holds for digraphs in
E1(k) with smaller order than D. Let Z = (V (H), V (H ′))D.
Case 1. X ∩ V (H ′) = ∅, or (V (D) − X) ∩ V (H ′) = ∅.

By symmetry, we assume that X ∩V (H ′) = ∅. Then X is a k-arc-cut ofH . By induction, there exist digraphs L, L′ satisfying
(12) such that H ∈ [L, L′

]k and W = (V (L), V (L′))H . As X ∩ V (H ′) = ∅, we have V (L) = X . Since W is an arc-cut of D,
W ∩ Z = ∅ and so D ∈ [L, L′′

]k with W = (V (L), V (L′′))D, L′′
= D − X ∈ [L′,H ′

]k and Z = (V (L), V (D) − X)L′′ . Since
L′,H ′

∈ E1(k) ∪ {K1}, it follows by Definition 3.7 that L′′
∈ E1(k). This implies that Lemma 3.8(iii) holds.

Case 2. X ∩ V (H ′) ≠ ∅ and (V (D) − X) ∩ V (H ′) ≠ ∅.
LetW1 = (X ∩ V (H), V (H)− X)H andW2 = (X ∩ V (H ′), V (H ′)− X)H ′ . ThusW = W1 ∪W2 and |W1|+ |W2| = |W | = k.

If both H,H ′
∈ E1(k), then by Lemma 3.8(ii), we must have |W1| ≥ k and |W2| ≥ k, contrary to the fact that |W1| + |W2| =

|W | = k. Hence either H = K1 or H ′
= K1. Suppose that H = K1 with V (H) = {v}. By the definition of [H,H ′

]k, for any
v′

∈ X ∩ V (H ′), (v′, v) ∈ A(D).
Thus if v ∉ X , then X ⊂ V (H ′) and so W ⊆ (X, {v})D ∪ (X, V (H ′) − X)D. It follows from Lemma 3.8(ii) that

k = |W | = |(X, {v})D| + |(X, V (H ′) − X)D| ≥ |(X, {v})D| + k, and so (X, {v})D = ∅ and D ∈ [{v},H ′
]k. By induction,

there exist digraphs L, L′ satisfying (12) such that H ′
∈ [L, L′

]k and W = (V (L), V (L′))H ′ . Let L′′
∈ [{v}, L′

]k. Then L′′
∈ E1(k)

and D ∈ [L, L′′
]k with W = (V (L), V (L′′))D. Hence Lemma 3.8(iii) holds.

Therefore, we must have v ∈ X , which implies that ({v}, V (H ′) − X)D ≠ ∅. It follows that k = |W | = |({v}, V (H ′) −

X)D| + |(X − {v}, V (H ′) − X)D| > |(X − {v}, V (H ′) − X)D|. This implies that λ(H ′) ≤ |(X − {v}, V (H ′) − X)D| < k, contrary
to Lemma 3.8(ii). This completes the proof of the lemma. �

Lemma 3.9. For any integer k > 1, we have E1(k) ⊆ D(k).

Proof. Let D ∈ E1(k). We need to show that D ∈ D(k). If D ∈ E(k), then by Theorem 3.6, D ∈ D(k). Hence we assume that
D ∈ E1(k) − E(k), and Lemma 3.9 holds for graphs in E1(k) with smaller order.

For any e ∈ A(Dc), if λ(D + e) ≥ k + 1, then D ∈ D(k). Hence we assume that λ(D + e) ≤ k + 1. Let W be a j-arc-cut of
D+ e for some j ≤ k. By Lemma 3.8(ii), e ∉ W and so by Lemma 3.8(iii), for some digraphs H,H ′ satisfying (12), D ∈ [H,H]k
and W = (V (H), V (H ′))D. Let e = (u, v). Since e ∉ W , we cannot have u ∈ V (H) and v ∈ V (H ′). By the definition of
[H,H ′

]k, we cannot have v ∈ V (H) and u ∈ V (H ′). Hence either u, v ∈ V (H) or u, v ∈ V (H ′). Without loss of generality,
we assume that u, v ∈ V (H), and so e ∈ A(Hc). By (12), H ∈ E1(l) and so by induction, λ(H + e) ≥ k + 1. It follows that
λ(D + e) ≥ λ(H + e) ≥ k + 1, and so by definition, D ∈ D(k). �

Definition 3.10. Let n and k be integers with n > k > 0 and q, r be nonnegative integers satisfying n = q(k + 2) + r with
0 ≤ r ≤ k + 1,
(i) Define S′(n, k) to be the set of all integral sequences (s1, s2, . . . , sq+r) such that s1 = k+2, and for i ≥ 2, |si| ∈ {1, k+2}.
Note that if (s1, s2, . . . , sq+r) ∈ S′(n, k), then as q(k + 2) + r = n =

q+r
i=1 |si|, there are exactly r of the |si|’s equaling one

and q of the |si|’s equaling k + 2. Define E ′(n, k) = {L(s) : s ∈ S′(n, k)} and E ′(k) = ∪n≥k+2 E ′(n, k).
(ii) Define E ′

1(k) to be the family consisting of digraphs satisfying each of the following.
(ii-A) E ′(k) ⊂ E ′

1(k).

(ii-B) For H,H ′
∈ E ′

1(k) ∪ {K1} satisfying |V (H1)| + |V (H2)| > 2 and ⌊
n

k+2⌋ = ⌊
|V (H1)|
k+2 ⌋ + ⌊

|V (H2)|
k+2 ⌋, [H,H ′

]k ⊂ E ′

1(k).
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By Definition 3.10, the corollary below follows immediately from Theorem 3.6 and Lemma 3.9.

Corollary 3.11. E ′

1(k) ⊆ D(k).

Given the structure of digraphs in E ′

1(k), we can compute the size of digraphs in E ′

1(k).

Lemma 3.12. Let n > k + 1 ≥ 2 be integers. For any digraph D ∈ E ′

1(k), we have

|A(D)| =

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


. (13)

Proof. We first assume that D ∈ E ′(k) with |V (D)| = n and n > k + 1 ≥ 2. If n = k + 2, then by Definition 3.10, we have
D = H(k, 2), and so |A(D)| = (k + 2)(k + 1) − 1. Thus (13) holds. Assume that n > k + 2 and (13) holds for smaller values
of n. Let q, r be nonnegative integers satisfying n = q(k + 2) + r with 0 ≤ r ≤ k + 1. By Definitions 3.1 and 3.10, we have
|sq+r | ∈ {1, k + 2}.

Case 1. |sq+r | = 1.
By Definition 3.10, we may assume that sq+r = 1 and D ∈ [H, K1]k for some H ∈ E ′(k). Denote V (K1) = {v}. Since

sq+r = 1, we have r ≥ 1, and so n − 1 = q(k + 2) + r − 1, which implies ⌊
n

k+2⌋ = ⌊
n−1
k+2 ⌋. By induction, we have

|A(D)| = |A(H)| + k + (n − 1)

=


n − 1
2


+ (n − 2)k +


n − 1
k + 2

 
1 + 2k −


k + 2
2


+ k + (n − 1)

=

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


.

Case 2. |sq+r | = k + 2.
By Definition 3.10, we may assume that sq+r = k + 2 and D = [H,H(k, 2)]k for some H ∈ E ′(k). Since s1 = k + 2 and

sq+r = k + 2, we have q ≥ 2, and so n − (k + 2) = (q − 1)(k + 2) + r , which implies ⌊
n

k+2⌋ = ⌊
n−(k+2)

k+2 ⌋ + 1. By induction,
we have

|A(D)| = |A(H)| + k + (n − (k + 2))(k + 2) + |A(H(k, 2))|

=


n − (k + 2)

2


+ (n − (k + 2) − 1)k +


n − (k + 2)

k + 2

 
1 + 2k −


k + 2
2


+ k + [n − (k + 2)](k + 2) + (k + 2)(k + 1) − 1

=

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


.

Thus, (13) holds for any D ∈ E ′(k). Next, we assume that D ∈ E ′

1(k) − E ′(k). By Definition 3.10, there exist H,H ′
∈ E ′

1(k)
satisfying Definition 3.10(ii-B). Let n1 = |V (H)| and n2 = |V (H ′)|. Thus n = n1 + n2 and ⌊

n
k+2⌋ = ⌊

n1
k+2⌋ + ⌊

n2
k+2⌋. By

induction, we have

|A(D)| = |A(H)| + k + n1n2 + |A(H ′)|
n1

2


+ (n1 − 1)k +


n1

k + 2

 
1 + 2k −


k + 2
2


+ k + n1n2

+

n2

2


+ (n2 − 1)k +


n2

k + 2

 
1 + 2k −


k + 2
2


=

n1

2


+

n2

2


+ n1n2 + (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


=

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


.

By induction, (13) holds for any D ∈ E ′

1(k). �

The following lemma gives us more information on the structure of digraphs in D(k).

Lemma 3.13. Let k ≥ 2 be an integer. If D ∈ D(k) and if for some H1,H2 ∈ D(k), we have D ∈ [H1,H2]k, then for each
i ∈ {1, 2}, Hi ≠ K ∗

k+1.
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Proof. By contradiction, we assume that H2 ∼= K ∗

k+1 and D ∈ [H1,H2]k, and so D ∈ D(k). Let V (H2) = {v1, v2, . . . , vk+1}.
By Definition 2.2, we may assume that |(H1,H2)D| = k, and so we may assume that N+

D (V (H1), V (H2)) ⊆ {v1, v2, . . . , vk}.
Since H1,H2 ∈ D(k), both |V (H1)| ≥ k + 1 and |V (H2)| ≥ k + 1. Thus there must be a vertex u ∈ V (H1) and an integer i
with 1 ≤ i ≤ k, such that a = (u, vi) ∉ A(D). Since D ∈ D(k), D + a has a subdigraph D′ with λ(D′) ≥ k + 1. Note that
d−

D+a(vk+1) = d−

D (vk+1) = k, vk+1 ∉ V (D′). Since, for each j with 1 ≤ j ≤ k and j ≠ i, d−

D+a−vk+1
(vj) ≤ d−

D−vk+1
(vj) + 1 ≤ k,

it follows that vj ∉ V (D′) for each j with 1 ≤ j ≤ k and j ≠ i. Since k ≥ 2, d−

D+a−vk+1
(vi) ≤ k, and vi ∉ V (D′) as well. This

implies that a ∉ A(D′), and so D′
⊆ D. Contrary to the assumption that D ∈ D(k). This proves the lemma. �

4. The extremal function

The main result of this section is Theorem 4.1, which clearly implies Theorem 1.4.

Theorem 4.1. Let n, k be integers with n > k + 1 ≥ 2. Then for any D ∈ D(n, k), we have

|A(D)| ≥

n
2


+ (n − 1)k +


n

k + 2

 
1 + 2k −


k + 2
2


. (14)

Furthermore, equality holds in (14) if and only if D ∈ E ′

1(k).

Proof. We argue by induction to prove (14) on n = |V (D)|. If n = k + 2, then D = H(k, 2). Thus we have |A(D)| =

(k + 2)(k + 1) − 1, and so (14) holds. Assume that n > k + 2 and (14) holds for smaller values of n. Let q, r ≥ 0 be integers
satisfying n = q(k + 2) + r with 0 ≤ r ≤ k + 1.

As n > k + 2, D � K ∗

k+2. By Lemma 2.4, one of the three conclusions of Lemma 2.4 must hold.

Claim 1. If Lemma 2.4(i) or (ii) holds, then (14) holds as well. Moreover, if r = 0, then (14) holds with strict inequality.

Without loss of generality, we assume that D ∈ [H, K1]k for some H ∈ D(k) with V (K1) = {v}. As | V (D) |= n − 1, by
Definition 2.2, |∂+

D (v)| = n − 1 and |∂−

D (v)| = k.

Case 1: r = 0.
Then q − 1 = ⌊

n−1
k+2 ⌋. By induction, we have

|A(D)| = |A(H)| + k + (n − 1)

≥


n − 1
2


+ (n − 2)k + (q − 1)


1 + 2k −


k + 2
2


+ k + (n − 1)

=

n
2


+ (n − 1)k + (q − 1)


1 + 2k −


k + 2
2


>

n
2


+ (n − 1)k + q


1 + 2k −


k + 2
2


.

Thus (14) holds with strict inequality in this case.

Case 2: r > 0.
Then q = ⌊

n−1
k+1 ⌋. By induction,

|A(D)| = |A(H)| + k + (n − 1)

≥


n − 1
2


+ (n − 2)k + q


1 + 2k −


k + 2
2


+ k + (n − 1)

=

n
2


+ (n − 1)k + q


1 + 2k −


k + 2
2


. (15)

Thus (14) holds in this case as well, and so Claim 1 follows.
By Claim 1, we may assume that Lemma 2.4(iii) holds. Thus D ∈ {[H1,H2]k, [H2,H1]k} for some H1,H2 ∈ D(k). Let

n1 =| V (H1) | and n2 =| V (H2) |. Then n = n1 + n2. Without loss of generality, we assume that n1 ≥ n2. By Lemma 3.13,
n2 ≥ k + 2. Let q1, q2 ≥ 1, r1, r2 be integers satisfying n1 = q1(k + 2) + r1, 0 ≤ r1 ≤ k + 1, and n2 = q2(k + 2) + r2,
0 ≤ r2 ≤ k + 1. Thus q1 = ⌊

n1
k+2⌋ and q2 = ⌊

n2
k+2⌋.

Claim 2. If Lemma 2.4(iii) holds, then (14) holds. Moreover, if r1 + r2 ≥ k + 2, then (14) holds with strict inequality.



X. Lin et al. / Discrete Mathematics 339 (2016) 2500–2510 2509

Since n = n1 + n2 = (q1 + q2)(k + 2) + (r1 + r2), we observe that r1 + r2 ≤ k + 1 if and only if q1 + q2 = q, and if
and only if r = r1 + r2. With this observation, we consider the following two cases. Note that if n1 ≥ 2 and n2 ≥ 2, then n1

2


+

 n2
2


+ n1n2 =

 n
2


.

Case 1: r1 + r2 ≤ k + 1.
Then q1 + q2 = q. By Induction,

|A(D)| = |A(H1)| + k + n1n2 + |A(H2)|

≥

n1

2


+ (n1 − 1)k + q1


1 + 2k −


k + 2
2


+ k + n1n2 +

n2

2


+ (n2 − 1)k + q2


1 + 2k −


k + 2
2


=

n
2


+ (n − 1)k + q


1 + 2k −


k + 2
2


. (16)

Hence (14) holds in this case.

Case 2: r1 + r2 ≥ k + 2.

Then q1 + q2 = q − 1 and r = r1 + r2 − (k + 2). Observe that for any k ≥ 1, 1 + 2k <


k+2
2


, and so by induction,

|A(D)| = |A(H1)| + k + n1n2 + |A(H2)|

≥

n1

2


+ (n1 − 1)k + q1


1 + 2k −


k + 2
2


+ k + n1n2 +

n2

2


+ (n2 − 1)k + q2


1 + 2k −


k + 2
2


=

n
2


+ (n − 1)k + (q − 1)


1 + 2k −


k + 2
2


>

n
2


+ (n − 1)k + q


1 + 2k −


k + 2
2


.

Thus (14) holds with strict inequality in this case, and so Claim 2 is justified.

Claim 3. If equality holds in (14) for a digraph D ∈ D(k, n), then D ∈ E ′

1(k).

Let D ∈ D(k, n) be a digraph satisfying equality in (14). We argue by induction on n =| V (D) |≥ k+ 2. If n = k+ 2, then
D = H(k, 2) ∈ E ′(k). Assume that n > k + 2 and that Claim 3 holds for smaller values of n. Since n > k + 2, by Lemma 2.4,
one of the conclusions of Lemma 2.4 must hold.

If D satisfies Lemma 2.4(i) or (ii), without loss of generality, we assume that D ∈ [H, K1]k for some H ∈ E ′(k) with
V (K1) = v. By Claim 1, if equality holds in (14), then r > 0, which implies that n − 1 = q(k + 2) + (r − 1), with
0 ≤ r − 1 ≤ k. Since equality in (14) holds, it follows by (15) that |A(H)| =


n−1
2


+ (n− 2)k+ (q− 1)


1 + 2k −


k+2
2


.

By induction, H ∈ E ′

1(n − 1, k). By Definition 3.10, D ∈ E ′(n, k), and so D ∈ E ′(k) in this case.
Hence we may assume that D satisfies Lemma 2.4(iii), and so D ∈ [H1,H2]k for some H1,H2 ∈ E ′(k). Again, let

n1 = |V (H1)| and n2 = |V (H2)|; and let q1, q2 ≥ 1, r1, r2 be integers satisfying n1 = q1(k + 2) + r1, 0 ≤ r1 ≤ k + 1, and
n2 = q2(k+2)+r2, 0 ≤ r2 ≤ k+1. By Claim2, if equality holds in (14), then r1+r2 ≤ k+1,which implies that q = q1+q2 and
r = r1 + r2. Since equality in (14) holds, it follows by (15) that both |A(H1)| =

 n1
2


+ (n1 − 1)k+ q1


1 + 2k −


k+2
2


and

|A(H2)| =
 n2

2


+(n2−1)k+q2


1 + 2k −


k+2
2


. Therefore by induction,H1,H2 ∈ E ′

1(k). By Definition 3.10,D ∈ [H1,H2]k,

which is in E ′

1(n, k), and so D ∈ E ′

1(k). This induction argument justifies the claim.
Now Theorem 4.1 follows from Lemma 3.12 and Claims 1–3. �
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