Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the lower bound of *k*-maximal digraphs

Xiaoxia Lin^{a,*}, Suohai Fan^b, Hong-Jian Lai^c, Murong Xu^c

^a School of Sciences, Jimei University, Xiamen, Fujian 361021, China

^b Department of Mathematics, Jinan University, Guangzhou 510632, China

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

ARTICLE INFO

Article history: Received 11 December 2014 Received in revised form 4 April 2016 Accepted 5 April 2016 Available online 18 May 2016

Keywords: Strong arc connectivity Maximum subdigraph arc connectivity Extremal digraphs

ABSTRACT

For a digraph *D*, let $\lambda(D)$ be the arc-strong-connectivity of *D*. For an integer k > 0, a simple digraph *D* with $|V(D)| \ge k + 1$ is *k*-**maximal** if every subdigraph *H* of *D* satisfies $\lambda(H) \le k$ but for adding new arc to *D* results in a subdigraph *H'* with $\lambda(H') \ge k + 1$. We prove that if *D* is a simple *k*-maximal digraph on n > k + 1 > 2 vertices, then

$$|A(D)| \ge \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2}\right).$$

This bound is best possible. Furthermore, all extremal digraphs reaching this lower bound are characterized.

© 2016 Elsevier B.V. All rights reserved.

1. The problem

We consider finite simple graphs and simple digraphs. We generally use *G* to denote a graph and *D* a digraph, and follow [3] and [2] for undefined notation in graphs and in digraphs, respectively. In particular, $\kappa'(G)$ denotes the edge connectivity of a graph *G* and $\lambda(D)$ denotes the arc-strong-connectivity of a digraph *D*. If *G* is a simple graph, then *G^c* denotes the complement of *G*. If $X \subseteq E(G^c)$, then G + X is the simple graph with vertex set V(G) and edge set $E(G) \cup X$. We will use G + e for $G + \{e\}$. Likewise, if *D* is a simple digraph, let D^c denote the complement of *D*. For $X \subseteq A(D^c)$ and $e \in A(D^c)$, we similarly define the simple digraphs D + X and D + e, respectively. If *H*, *K* are subdigraphs of *D*, then $H \cup K$ is the subdigraph of *D* with vertex set $V(H) \cup V(K)$ and arc set $A(H) \cup A(K)$. Throughout this paper, we use the notation (u, v) to denote an arc oriented from *u* to *v* in a digraph. If $W \subseteq V(D)$ or if $W \subseteq A(D)$, then D[W] denotes the subdigraph of *D* induced by *W*. For $v \in V(D)$, we use D - v for $D[V(D) - \{v\}]$. For graphs *H* and *G*, we denote $H \subseteq G$ when *H* is a subgraph of *G*. Similarly, for digraphs *H* and *D*, $H \subseteq D$ means *H* is a subdigraph of *D*. We write $D \cong D'$ to represent the fact that *D* and *D'* are isomorphic digraphs.

Given a graph G, Matula [6–8] first studied the quantity

 $\overline{\kappa}'(G) = \max\{\kappa'(H) : H \subseteq G\}.$

He called $\overline{\kappa}'(G)$ the **strength** of *G*. Mader [5] considered an extremal problem related to $\overline{\kappa}'(G)$. For an integer k > 0, a simple graph *G* with $|V(G)| \ge k + 1$ is *k*-maximal if $\overline{\kappa}'(G) \le k$ but for any edge $e \in E(G^c)$, $\overline{\kappa}'(G + e) > k$. In [5], Mader proved the following.

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.04.007 0012-365X/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: lxx@jmu.edu.cn (X. Lin), tfsh@jnu.edu.cn (S. Fan), hongjianlai@gmail.com (H.-J. Lai), murong.xu009@gmail.com (M. Xu).

Theorem 1.1 (Mader [5]). If G is a k-maximal graph on $n > k \ge 1$ vertices, then

$$|E(G)| \le (n-k)k + \binom{k}{2}.$$

Furthermore, this bound is best possible.

It has been noted that being a *k*-maximal graph requires a certain level of edge density. Towards this direction, the following was proved in 1990.

Theorem 1.2 (Lai, Theorem 2 of [4]). If G is a k-maximal graph on $n > k + 1 \ge 2$ vertices, then

$$|E(G)| \ge (n-1)k - \binom{k}{2} \left\lfloor \frac{n}{k+2} \right\rfloor$$

Furthermore, this bound is best possible.

It is natural to consider extending the theorems above to digraphs. Towards this direction, for a digraph D, we define

 $\overline{\lambda}(D) = \max\{\lambda(H) : H \subseteq D\}.$

Let $k \ge 0$ be an integer. A simple digraph D with $|V(D)| \ge k + 1$ is k-maximal if $\overline{\lambda}(D) \le k$ but for any arc $e \in A(D^c)$, $\overline{\lambda}(D+e) \ge k+1$. Following Matula [6], we may also call $\lambda(D)$ the **strength** of digraph D and so a k-maximal digraph is also called a k-maximal strength digraph. For positive integers n and k satisfying $n \ge k + 1$, define

 $\mathcal{D}(n, k) = \{D : D \text{ is a simple digraph with } |V(D)| = n \text{ and } D \text{ is } k\text{-maximal}\}.$

Thus we are to investigate the upper and lower bounds of the set of numbers $\{|A(D)| : D \in \mathcal{D}(n, k)\}$. For notational convenience, if h < k, we define $\binom{h}{k} = 0$. The following has been obtained.

Theorem 1.3 (Anderson et al. Theorem 1.2 of [1]). Let n and k be positive integers with $n \ge k + 1$. If $D \in \mathcal{D}(n, k)$, then

$$|A(D)| \leq k(2n-k-1) + \binom{n-k}{2}.$$

Furthermore, the bound is best possible.

In fact, all extremal digraphs in $\mathcal{D}(n, k)$ reaching this upper bound are characterized in [1]. The purpose of this research is to determine the lower bound. The following is the main result.

Theorem 1.4. Let *n* and *k* be positive integers with $n \ge k + 1$. If $D \in \mathcal{D}(n, k)$, then

$$|A(D)| \ge \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2}\right).$$

Furthermore, the bound is best possible.

In the next section, we investigate properties of *k*-maximal digraphs. In Section 3, we present a constructive characterization of a family of *k*-maximal digraphs $\mathcal{E}'(k)$. In the last section, we will prove Theorem 1.4 and show that the members in the family $\mathcal{E}'(k)$ are precisely the digraphs attaining the upper bound in Theorem 1.4.

2. Properties of k-maximal digraphs

Throughout this section, *n* and *k* denote integers with $n > k \ge 0$. We present some properties of *k*-maximal digraphs to be utilized later. Let $\mathcal{D}(k)$ be the family of all *k*-maximal digraphs. Thus

$$\mathcal{D}(k) = \bigcup_{n > k+1} \mathcal{D}(n, k).$$

For any integer $n \ge 0$, let K_n^* denote the complete digraph on n vertices. Thus K_n^* is a simple digraph such that for any pair of distinct vertices $u, v \in V(K_n^*)$, both (u, v) and (v, u) are in $A(K_n^*)$. By definition, we observe the following

$$K_{k+1}^* \in \mathcal{D}(k)$$
 and if $H \in \mathcal{D}(k)$ and $|V(H)| = k+1$, then $H \cong K_{k+1}^*$. (1)

Lemma 2.1 (Lemma 2.1 of [1]). A digraph $D \in \mathcal{D}(0)$ if and only if D is an acyclic tournament.

Lemma 2.1 indicates that we may exclude the case k = 0 in our study. Therefore, we will always assume that k > 0 in the rest of this paper. Following [2], if *D* is a digraph and if *X*, $Y \subseteq V(D)$, then define

$$(X, Y)_D = \{(x, y) \in A(D) : x \in X, y \in Y\}.$$

We further define that, for $X \subseteq V(D)$,

 $\partial_D^+(X) = (X, V(D) - X)_D$ and $\partial_D^-(X) = (V(D) - X, X)_D$.

For each $v \in V(D)$, we define

 $N_D^+(v) = \{u \in V(D) : (v, u) \in A(D)\}$ and $N_D^-(v) = \{u \in V(D) : (u, v) \in A(D)\}.$

When the digraph *D* is understood from the context, we sometimes omit the subscript *D* in the notations above. By the definition of arc-strong connectivity in [2], a digraph *D* satisfies $\lambda(D) \geq k$ if and only if for any nonempty proper subset $X \subset V(D)$, $|\partial_D^+(X)| \geq k$.

Definition 2.2. Let $H \in \mathcal{D}(k)$ and let $\{v_1, v_2, \dots, v_k\} \subset V(H)$ be a subset of k distinct vertices. Let u be a vertex not in V(H). Define a digraph $[H, K_1]_k$ ($[K_1, H]_k$, respectively) as follows:

(i) $V([H, K_1]_k) = V([K_1, H]_k) = V(H) \cup \{u\}.$ (ii) $A([H, K_1]_k) = A(H) \cup \{(v_1, u), (v_2, u), \dots, (v_k, u)\} \cup (\bigcup_{v \in V(H)} \{(u, v)\}). (A([K_1, H]_k) = A(H) \cup \{(u, v_1), (u, v_2), \dots, (u, v_k)\} \cup (\bigcup_{v \in V(H)} \{(v, u)\}),$ respectively).

Note that each of $[H, K_1]_k$ and $[K_1, H]_k$ represents a family of graphs as the set $\{v_1, v_2, \ldots, v_k\} \subset V(H)$ may vary.

Definition 2.3. Let $H_1, H_2 \in \mathcal{D}(k)$, and let $\{u_1, u_2, \ldots, u_k\} \subset V(H_1)$ be a multiset of $V(H_1)$ and $\{v_1, v_2, \ldots, v_k\} \subset V(H_2)$ be a multiset of $V(H_2)$ such that all the arcs $(u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k)$ are distinct. Define a digraph $[H_1, H_2]_k$ as follows. (i) $V([H_1, H_2]_k) = V(H_1) \cup V(H_2)$.

(ii) $A([H_1, H_2]_k) = A(H_1) \cup A(H_2) \cup \{(u_1, v_1), (u_2, v_2), \dots, (u_k, v_k)\} \cup \left(\bigcup_{u \in V(H_1), v \in V(H_2)} \{(v, u)\}\right).$

Note that $[H_1, H_2]_k$ represents a family of digraphs.

Lemma 2.4 (Corollary 2.6 of [1]). Let $D \in \mathcal{D}(k) - \{K_{k+1}^*\}$ be a digraph. Then there exists a nonempty proper subset $X \subseteq V(D)$ such that one of the following holds.

(i) |X| = 1, and for some $H \in \mathcal{D}(k)$, $D \in [K_1, H]_k$.

(ii) |V(D) - X| = 1 and for some $H \in \mathcal{D}(k)$, $D \in [H, K_1]_k$.

(iii) For some $H_1, H_2 \in \mathcal{D}(k)$, we have $D[X] = H_1$ and $D \in [H_1, H_2]_k$.

3. Structure of k-maximal digraphs

Let H(k, 2) be the digraph obtained from K_{k+2}^* by removing an arc from K_{k+2}^* . Note that if $D \cong H(k, 2)$, then D has exactly one vertex (to be denoted $x^-(D)$) of indegree k and exactly one vertex (to be denoted $x^+(D)$) of outdegree k.

Definition 3.1. Let *n* and *k* be positive integers. Define $\delta(n, k)$ to be the set of all integral sequences (s_1, s_2, \ldots, s_m) satisfying $s_1+s_2+\cdots+s_m = n$ such that $s_1 = k+2$, and for $i \ge 2$, $s_i \in \{1, -1, k+2, -(k+2)\}$. For any $\mathbf{s} = (s_1, s_2, \ldots, s_m) \in \delta(n, k)$, define digraphs $L(\mathbf{s}) = L(s_1s_2, \ldots, s_m)$ as follows.

(i) For i = 1, define $L_1 \cong H(k, 2)$.

(ii-A) For $i \ge 2$, if $s_i = 1$ ($s_i = -1$, respectively), then define $L_i \in [L_{i-1}, K_1]_k$ ($L_i \in [K_1, L_{i-1}]_k$, respectively).

(ii-B) For $i \ge 2$, if $s_i = k+2$ ($s_i = -(k+2)$, respectively), then define $L_i \in [L_{i-1}, H(k, 2)]_k$ ($L_i \in [H(k, 2), L_{i-1}]_k$, respectively), in such a way that for any $1 \le t \le i$ with $|s_t| = k + 2$ and with J_t denoting this H(k, 2), we have $d_{L_i}^-(x^-(J_t)) \ge k + 1$ ($d_{L_i}^+(x^+(J_t)) \ge k + 1$, respectively).

(iii) Define $L(\mathbf{s}) = L_m$. By Definitions 2.2 and 2.3, each $L(\mathbf{s})$ represents a collection of digraphs.

(iv) Given $\mathbf{s} = (s_1, s_2, \dots, s_m) \in \mathcal{S}(n, k)$, define $J_i = K_1$ if $|s_i| = 1$ and $J_i = H(k, 2)$ if $|s_i| = k + 2$. Then the sequence of digraphs J_1, J_2, \dots, J_m is called a **construction sequence** of $L(\mathbf{s})$.

(v) Define $\mathcal{E}(n, k) = \{L(\mathbf{s}) : \mathbf{s} \in \mathcal{S}(n, k)\}$ and $\mathcal{E}(k) = \{\bigcup_{n > k+2} (\mathcal{E}(n, k) \cup \{K_{k+1}^*\})\}.$

For a digraph *D*, an arc subset $W = (X, V(D) - X)_D$ for some proper nonempty subset *X* is called an **arc-cut**. If |W| = t and *W* is an arc-cut, then *W* is called a *t*-**arc-cut**.

Observation 3.2. We will make a few observations from Definition 3.1.

(i) By definition, $H(k, 2) \in \{L(\mathbf{s})\}$ with \mathbf{s} being the sequence of only one term k + 2. Since there is only one arc $a \in A(H(k, 2)^c)$, we have $H(k, 2) + a = K_{k+2}^*$ and so

$$H(k, 2) \in \mathcal{D}(k).$$

(2)

(ii) Let $D \in \mathcal{E}(k) - \{H(k, 2)\}$. We may assume that n = |V(D)| > k + 2 and for some $\mathbf{s} = (s_1, s_2, \dots, s_m) \in \mathcal{S}(n, k)$, $D \in L(\mathbf{s})$ with construction sequence J_1, J_2, \dots, J_m . Using the notation in Definition 3.1, we let $L_i = D[\bigcup_{j=1}^i V(J_j)]$. For any k-arc-cut $W = (X, V(D) - X)_D$ of D, there must be an i with $1 \le i < m$ such that $W = (V(L_i), V(J_{i+1}))_D$ or $W = (V(J_{i+1}), V(L_i))_D$.

We will justify Observation 3.2(ii). Since n = |V(D)| > k + 2, we have $m \ge 2$. When m = 2, by Definition 3.1(ii-A) and (ii-B), we observe that if W_1 is a *k*-arc-cut of D, then we must have $W_1 = (V(J_1), V(J_2))_D$ or $W_1 = (V(J_2), V(J_1))_D$. Hence we assume that m > 2. Inductively, assume that for any digraph $D' \in \mathcal{E}(k) - \{H(k, 2)\}$ with |V(D')| < |V(D)| and with construction sequence $J_1', J_2', \ldots, J'_{m'}$, if W' is a *k*-arc-cut of D', then there must be an *i* with $1 \le i < m'$ such that $W' = (\bigcup_{j=1}^i V(j'_j), V(j'_{i+1}))_{D'}$ or $W' = (V(J_{i+1}), \bigcup_{j=1}^i V(J'_j))_{D'}$. Let $W = (X, V(D) - X)_D$ be an *k*-arc-cut of D. If $X \cap V(J_m) = \emptyset$ or if $J_m \subseteq X$, then by Observation 3.2, W is an *k*-arc-cut of L_{m-1} , and so by induction, there must be an *i* with $1 \le i < m - 1$ such that Observation 3.2(ii) holds. Hence we must have $X \cap V(J_m) \ne \emptyset$ and $(V(D) - X) \cap J_m \ne \emptyset$. In this case, as $|V(J_m)| \ge 2$, we must have $s_m = k + 2$ and $J_m = H(k, 2)$. It follows that H(k, 2) contains an arc-cut $X \cap A(J_m)$ of size at most *k*. But by Definition 3.1(ii-B), J_m does not have an arc-cut of size *k*. This contradiction justifies Observation 3.2(ii).

Observation 3.2(i) can be extended, as shown in Theorem 3.6.

Lemma 3.3. For any $D \in \mathcal{E}(k)$, we have

$$\lambda(D) = \overline{\lambda}(D) = k.$$

Proof. By Definition 3.1, it suffices to show that if $D = L(\mathbf{s})$ for some $\mathbf{s} = (s_1, s_2, ..., s_m) \in \delta(n, k)$, then (3) holds. We argue by induction on m. By (2), (3) holds for m = 1. Assume that m > 1 and (3) holds for smaller values of m. We adopt the notation in Definition 3.1 and let $J_1, J_2, ..., J_m$ be the construction sequence of D. Let $\mathbf{s}' = (s_1, s_2, ..., s_{m-1})$ and $D' = D - V(J_m)$. Then $\mathbf{s}' \in \delta(n - s_m, k)$, and $D' = L(\mathbf{s}')$. By Definition 3.1, $D \in [D', J_m]_k$. By induction, $\lambda(D') = \overline{\lambda}(D') = k$.

We argue by contradiction to prove that $\lambda(D) \geq k$, and assume that D has a proper nonempty subset $X \subset V(D)$ such that $|\partial_D^+(X)| < k$. If both $X \cap V(D') \neq \emptyset$ and $V(D') - X \neq \emptyset$, then by $\lambda(D') = k$, we have a contradiction $k > |\partial_D^+(X)| \geq |(V(D') \cap X, V(D') - X)_{D'}| \geq k$. Hence either $V(D') \cap X = \emptyset$ or $V(D') \subseteq X$. Similarly, as $J_m \in \{K_1, H(k, 2)\}$, if both $X \cap V(J_m) \neq \emptyset$ and $V(J_m) - X \neq \emptyset$, then $J_m = H(k, 2)$, and so $k > |\partial_D^+(X)| \geq |(V(J_m) \cap X, V(J_m) - X)_{D'}| \geq \lambda(H(k, 2)) = k$, a contradiction. It follows that we must have X = V(D') or $X = V(J_m)$. By Definition 2.2 or 2.3, we have again a contradiction: $k > |\partial_D^+(X)| \geq \min\{|(V(J_m), V(D'))_D|, |(V(D'), V(J_m))_D|\} \geq k$. This proves that $\lambda(D) \geq k$.

We now prove $\overline{\lambda}(D) = k$ by contradiction. Assume that D has a subdigraph H such that $\lambda(H) \ge k + 1$. If both $V(H) \cap V(D') \neq \emptyset$ and $V(H) \cap V(J_m) \neq \emptyset$, then $\lambda(H) \le |(V(H) \cap V(D'), V(H) \cap V(J_m))_H| \le |(V(D'), V(J_m))_D| = k$, contrary to $\lambda(H) \ge k + 1$. Thus since $J_m \in \{K_1, H(k, 2)\}$, we must have $H \subseteq D'$. By induction, $\overline{\lambda}(D') = k$, and so $\lambda(H) \le \overline{\lambda}(D') = k$, contrary to the assumption $\lambda(H) \ge k + 1$. This proves the lemma. \Box

A special class of graphs in $\mathcal{E}(k)$ has been studied in [1]. Let $\mathcal{S}_M(n, k)$ be the subset of $\mathcal{S}(n, k)$ such that $\mathbf{s} = (s_1, s_2, \dots, s_m) \in \mathcal{S}_M(n, k)$ if and only if $|s_2| = |s_3| = \cdots |s_m| = 1$. Let $\mathcal{M}(k) = \bigcup_{n \ge k+2} \{L(\mathbf{s}) : \mathbf{s} \in \mathcal{S}_M(n, k)\}$.

Theorem 3.4 (Anderson et al., Theorem 3.2(ii) of [1]). $\mathcal{M}(k) \subseteq \mathcal{D}(k)$.

The observations stated in Lemma 3.5 follow immediately from Definition 3.1. For example, in Lemma 3.5(i), if for some $2 \le t \le m - 1$, (4) holds, then the digraph sequence $J_1, J_2, \ldots, J_{t-1}, J_{t+1}, \ldots, J_m, J_t$ is also a construction sequence of D such that for $\mathbf{s}' = (s_1, \ldots, s_{t-1}, s_{t+1}, \ldots, s_m, s_t)$, we have then $D \in L(\mathbf{s}')$. The justification of Lemma 3.5(ii) is similar and will be omitted.

Lemma 3.5. Let $D \in L(\mathbf{s})$ for some $\mathbf{s} = (s_1, s_2, ..., s_m) \in \mathscr{S}(n, k)$ with a construction sequence $J_1, J_2, ..., J_m$. Each of the following holds.

(i) If for some t with $2 \le t \le m - 1$, and for all j with $t + 1 \le j \le m$,

either
$$s_j > 0$$
 and $(J_t, J_j)_D = \emptyset$, or $s_j < 0$ and $(J_j, J_t)_D = \emptyset$,

then $D - V(J_t) = L(\mathbf{s}')$, where $\mathbf{s}' = (s_1, \dots, s_{t-1}, s_{t+1}, \dots, s_m) \in \mathcal{S}(n - s_t, k)$.

(ii) Suppose that for some t with $1 \le t < m$, we have $s_{t+1} = k + 2$. If for each j with $t + 2 \le j \le m$,

either
$$s_j > 0$$
 and $(J_1 \cup J_2 \cup \cdots \cup J_t, J_j)_D = \emptyset$, or $s_j < 0$ and $(J_j, J_1 \cup J_2 \cup \cdots \cup J_t)_D = \emptyset$, (5)

then $D - V(J_1 \cup J_2 \cup \cdots \cup J_t) = L(\mathbf{s}')$, where $\mathbf{s}' = (s_{t+1}, s_{t+2}, \dots, s_m) \in \mathscr{S}(n - \sum_{i=1}^t s_i, k)$.

Lemma 3.5 can be applied in inductive augments involving digraphs in $\mathcal{E}(k)$. This allows us to prove a generalization of Theorem 3.4, as stated in the theorem below.

Theorem 3.6. Let $k \ge 1$ be an integer. Then $\mathcal{E}(k) \subseteq \mathcal{D}(k)$.

Proof. Let $D \in \mathcal{E}(k)$ with n = |V(D)|. In the proof arguments below, we shall adopt the notation in Definition 3.1 to use L_1, L_2, \ldots, L_m to denote the graphs in the process to build L_m .

We argue by induction on *n* to prove the theorem. By Definition 3.1, $n \ge k + 2$, and n = k + 2 if and only if D = H(k, 2). By (2), $D = H(k, 2) \in \mathcal{D}(k)$. Thus we may assume that n > k + 2 and for any digraph $D' \in \mathcal{E}(k)$ with $|V(D')| \le n - 1$, $D' \in \mathcal{D}(k)$. We are to show that if $D \in \mathcal{E}(n, k)$, then $D \in \mathcal{D}(k)$.

(3)

(4)

By contradiction, we assume that $D \in \mathcal{E}(n, k) - \mathcal{D}(k)$, and so for some $a = (u, v) \in A(D^c)$, we have

$$\overline{\lambda}(D+a) \le k. \tag{6}$$

Assume that $D = L(\mathbf{s})$ for some $\mathbf{s} = (s_1, s_2, ..., s_m) \in \mathscr{S}(n, k)$ with m minimized and $a = (u, v) \in A(D^c)$; and let $J_1, J_2, ..., J_m$ be the corresponding construction sequence of D. Since n > k + 2, we have $m \ge 2$. By symmetry, we assume that $D \in [L_{m-1}, J_m]_k$. By induction, $L_{m-1} \in \mathcal{D}(k)$. If $u, v \in V(L_{m-1})$, then $\overline{\lambda}(D + a) \ge \overline{\lambda}(L_{m-1} + a) \ge k + 1$. Hence we may assume that

$$u \in V(L_{m-1})$$
 and $v \in V(J_m)$. (7)

By (6),

there exists a nonempty proper subset $X \subset V(D+a)$, such that $|\partial_{D+a}^+(X)| \le k$. (8)

By Definition 3.1(ii) or (iii), there are k arcs from L_{m-1} to J_m . We assume that $(V(L_{m-1}), V(J_m))_D = \{a_1, a_2, \ldots, a_k\}$. Let $a_i = (v_i, w_i), 1 \le i \le k$. By Definition 3.1, $\{v_1, v_2, \ldots, v_k\} \subseteq V(L_{m-1})$ and $w_1, w_2, \ldots, w_k \in V(J_m)$. If there exists a t with $2 \le t \le m-1$, such that $V(J_t) \cap \{v_1, v_2, \ldots, v_k, u\} = \emptyset$, and such that for all j > t, either $s_j > 0$ and $(J_t, J_j)_D = \emptyset$, or $s_j < 0$ and $(J_j, J_t)_D = \emptyset$, then by Lemma 3.5(i), $D - V(J_t) = L(\mathbf{s}')$, where $\mathbf{s}' = (s_1, \ldots, s_{t-1}, s_{t+1}, \ldots, s_m) \in \delta(n - s_t, k)$. By induction, $D - V(J_t) \in \mathcal{D}(k)$, and so $\overline{\lambda}(D + a) \ge \overline{\lambda}((D - V(J_t)) + a) \ge k + 1$, contrary to (6). Hence we may assume that for any t with $1 < t \le m-1$, there exists a j > t + 1 such that

$$0 < \begin{cases} |V(J_t) \cap \{v_1, v_2, \dots, v_k, u\}| + |(J_t, J_j)_D| & \text{if } s_j > 0\\ |V(J_t) \cap \{v_1, v_2, \dots, v_k, u\}| + |(J_j, J_t)_D| & \text{if } s_j < 0 \end{cases}.$$
(9)

Let $X \subset V(D)$ be a subset satisfying (8). Define $I' = \{i : 1 \le i \le m \text{ and } V(J_i) \cap X = \emptyset\}$ and $I'' = \{i : 1 \le i \le m \text{ and } V(J_i) \cap X \ne \emptyset\}$.

Claim 1. For any *i* with $1 \le i \le m$, if $|V(J_i)| = k + 2$, then either $X \cap V(J_i) = \emptyset$ or $V(J_i) - X = \emptyset$. (As $|s_i| \in \{1, k + 2\}$, it follows that for any $1 \le i \le m$, either $X \cap V(J_i) = \emptyset$ or $V(J_i) - X = \emptyset$.)

Proof of Claim 1. By contradiction, suppose for some i' with $1 \le i' \le m$ and with $|V(J_{i'})| = k + 2$, and both $X \cap V(J_{i'}) \ne \emptyset$ and $V(J_{i'}) - X \ne \emptyset$. If $k \ge |X \cap V(J_{i'})| \ge 2$, then as $J_{i'} = H(k, 2)$, we have $\min\{|X \cap V(J_{i'})|, |V(J_{i'}) - X|\} \ge 2$. It follows by the definition of H(k, 2) that $|\partial_{D+a}^+(X)| \ge |\partial_{J_{i'}}^+(X \cap V(J_{i'}))| \ge k + 1$, contrary to (8). Hence we may assume that $|X \cap V(J_{i'})| \in \{1, k + 1\}$, and so $|\partial_{J_{i'}}^+(X \cap V(J_{i'}))| = k$. By (7), $|\{u, v\} \cap V(J_{i'})| \le 1$ and so $\min\{|X \cap V(J_{i'})|, |V(J_{i'}) - X|\} = 1$. It follows that

$$|(X \cap V(J_{i'}), V(J_{i'}) - X)_{D+a}| = |(X \cap V(J_{i'}), V(J_{i'}) - X)_D| = |\partial_{J_{i'}}^+ (X \cap V(J_{i'}))| = k.$$
(10)

By (10), we must have $\{v_1, \ldots, v_k\} \subseteq X \cap V(J_{i'})$ and $\{w_1, \ldots, w_k\} \subseteq V(J_{i'}) - X$. Also by (10), for any $j \neq i'$, if $X \cap V(J_j) \neq \emptyset$ and $V(J_j) - X \neq \emptyset$, then $\partial_{J_j}^+(X \cap V(J_j)) \neq \emptyset$. This, together with (10), implies $|\partial_{D+a}^+(X)| \ge |\partial_{J_{i'}}^+(X \cap V(J_{i'}))| + |\partial_{J_j}^+(X \cap V(J_j))| \ge k+1$, contrary to (8). Hence we have

for any
$$j \neq i'$$
, if $X \cap V(J_i) \neq \emptyset$, then $V(J_i) \subseteq X$. (11)

Since $J_{i'} = H(k, 2)$, $J_{i'}$ has a unique vertex $x_1 = x^+(J_{i'})$ such that $d^+_{J_{i'}}(x_1) = k$ and a unique vertex $x_2 = x^-(J_{i'})$ such that $d^-_{L_i}(x_2) = k$. It follows by (10) that either $V(J_{i'}) \cap X = \{x_1\}$ or $V(J_{i'}) - X = \{x_2\}$.

Assume first that i' > 1 and i_1 is the smallest integer satisfying $1 \le i_1 < i'$ such that $i_1 \in I''$. If $i_1 > 1$, then either $s_{i_1} > 0$, whence by (11), $\bigcup_{1 \le t \le i_1-1} V(J_t) \cap X = \emptyset$, and so by Definition 2.2 or 2.3, $|\partial_{D+a}^+(X)| \ge |V(J_i), V(J_1)\rangle_D| \ge |V(J_1)| = k + 2$; or $s_{i_1} < 0$, whence by (10) and by Definition 2.2 or 2.3, $|\partial_{D+a}^+(X)| \ge |(V(J_t') \cap X, V(J_t') - X)_D| + |(V(J_{i_1}), L_{i_1-1})_D| \ge k + 1$. In either case, a contradiction to (8) is obtained. Therefore we assume that $i_1 = 1$. If there exists an i'' with 1 < i'' < i' such that $X \cap V(J_{i''}) = \emptyset$, then assume that i'' is the smallest such integer. By Definition 2.2 or 2.3, $|(V(L_{i''-1}), V(J_{i''}))_D| > 0$. This, together with (10), implies that $|\partial_{D+a}^+(X)| \ge |(V(J_t') \cap X, V(J_t') - X)_D| + |(V(L_{i''-1}), V(J_{i''}))_D| \ge k + 1$, contrary to (8). Therefore, no such i'' exists, and so we conclude that $V(L_{i'-1}) \subseteq X$. It follows by Definition 3.1(ii-B) that $|\partial_{D+a}^+(X)| \ge \min\{d_{L_{i'}}^+(x_1), d_{L_{i'}}^-(x_2)\} \ge k + 1$, contrary to (8).

Therefore, we may assume that i' = 1. If for some t with $1 < t \le m$, $|s_t| = k + 2$, then by Definition 3.1(ii-B), we have $|\partial_{D+a}^+(X)| \ge \min\{d_{L_t}^+(x_1), d_{L_t}^-(x_2)\} \ge k + 1$, contrary to (8). Hence for all t > 1, we have $|s_t| = 1$. It follows by Theorem 3.4 that $D \in \mathcal{D}(k)$, contrary to (6). This justifies Claim 1.

Claim 2. Suppose that $V(J_1) \cap X = \emptyset$. Let $i_1 > 1$ be the smallest integer such that $V(J_{i_1}) \cap X \neq \emptyset$, and $i_2 \leq m$ be the largest integer such that for any t with $i_1 \leq t \leq i_2$, we have $V(J_t) \subseteq X$. Each of the following holds. (i) For any $i \geq 2$, if $V(J_i) \cap X \neq \emptyset$, then $s_i < 0$. (ii) $V(J_m) \cap X = \emptyset$. (iii) $(V(J_{i_1}), V(L_{i_1-1}))_D = \partial_{D+a}^+(X)$ and $|\partial_{D+a}^+(X)| = |(V(J_{i_1}), V(L_{i_1-1}))_D| = k$.

(iv) $u \notin X$.

(v) $\overline{\lambda}(D + a) \ge k + 1$. (Thus a contradiction to (6) is obtained.)

Proof of Claim 2. (i) Suppose that $V(J_1) \cap X = \emptyset$. By Definition 3.1, $|V(J_1)| = s_1 = k+2$. If for some $i \ge 2$ with $V(J_i) \cap X \ne \emptyset$, we have $s_i > 0$, then by Definition 3.1, for each vertex $x \in V(J_i)$ and for each vertex $y \in V(J_1)$, $(x, y) \in A(D)$. It follows by $|V(J_1)| = s_1 = k+2$ and by Claim 1 that $|\partial_{D+a}^+(X)| \ge |(V(J_i), V(J_1))_D| \ge k+2$, contrary to (8). This justifies (i).

(ii) Since $D = [L_{m-1}, J_m]_k$, we have $s_m > 0$ and so by Claim 2(i) and by Claim 1, $V(J_m) \cap X = \emptyset$.

(iii) By Claim 2(i), $s_{i_1} < 0$. Thus by Definition 3.1(ii), $|(V(J_{i_1}), V(L_{i_1-1}))_D| = k$. By the definition of $i_1, V(L_{i_1-1}) \cap X = \emptyset$ and $V(J_{i_1}) \subseteq X$. Hence $(V(J_{i_1}), V(L_{i_1-1}))_D \subseteq \partial^+_{D+a}(X)$. By (8), we have $|\partial^+_{D+a}(X)| = |(V(J_{i_1}), V(L_{i_1-1}))_D| = k$, which implies $(V(J_{i_1}), V(L_{i_1-1}))_D = \partial^+_{D+a}(X)$.

(iv) If $u \in X$, then by Claim 2(ii), we have $(u, v) \in \partial_D^+(X)$. This, together with Claim 2(iii), implies that $|\partial_{D+a}^+(X)| \ge k + 1$, contrary to (8).

(v) For any $t > i_2$ with $s_t > 0$, by (8) and Claim 2(iii), we must have

$$(X, V(J_t))_{D+a} = (\bigcup_{i \in I''} V(J_i), V(J_t))_{D+a} = \emptyset.$$

Let \mathbf{s}'' be a subsequence of \mathbf{s} by deleting all terms s_i with $i \in I''$ from \mathbf{s} ; and let D'' = D - X. It follows that $D'' = L(\mathbf{s}'')$ and so $D'' \in \mathscr{E}(n - |X|, k)$. Since $I'' \neq \emptyset$, by induction, $D'' \in \mathscr{E}(k)$. By Claim 2(iv), $u \notin X$ and so both ends u and v are in V(D''). Since $D'' \in \mathscr{E}(k)$, we have $\overline{\lambda}(D + a) \ge \lambda(D'' + a) \ge k + 1$. This completes the proof for Claim 2.

Claim 3. Suppose that $V(J_1) \subseteq X$. Let $i_2 \leq m$ be the largest integer such that for any t with $1 \leq t \leq i_2$, we have $V(J_t) \subseteq X$. Each of the following holds.

(i) For any $i > i_2$, if $V(J_i) \cap X = \emptyset$, then $s_i > 0$.

(ii) $(V(L_{i_2}), V(J_{i_2+1}))_D = \partial_{D+a}^+(X)$ and $|\partial_{D+a}^+(X)| = |(V(L_{i_2}), V(J_{i_2+1}))_D| = k$.

(iii)
$$m > i_2 + 1$$

(iv) Suppose that $s_{i_2+1} = 1$ and $t > i_2 + 1$. Then $V(J_t) \cap X = \emptyset$ if and only if $s_t > 0$; and $V(J_t) \subseteq X$ if and only if $s_t < 0$. In particular, $V(J_m) \cap X = \emptyset$ and $u \notin X$.

(v) Let $i_3 > 1$ be the largest integer such that $V(J_{i_3}) \subseteq X$. Then $m - 1 > i_3 > i_2$, $V(J_{i_3}) \cap \{v_1, v_2, ..., v_k, u\} = \emptyset$, and for any $h > i_3$, $(V(J_{i_3}), V(J_h))_D = \emptyset$.

Proof of Claim 3. (i) Let $i > i_2$ be an index such that $V(J_i) \cap X = \emptyset$. If $s_i < 0$, then by Definition 2.2 or 2.3, for any $x \in V(L_{i_2})$ and for any $y \in V(J_i)$, we have $(x, y) \in A(D)$. It follows that $|\partial_{D+a}^+(X)| \ge |(V(J_1), V(J_i))_D| \ge |s_1| = k + 2$, contrary to (6).

(ii) By Claim 3(i), $s_{i_2+1} > 0$. By Definition 3.1(ii), $|(V(L_{i_2}), V(J_{i_2+1}))_D| = k$. By the definition of $i_2, V(L_{i_2}) \cap X = \emptyset$ and $V(L_{i_2}) \subseteq X$. Hence $(V(L_{i_2}), V(J_{i_2+1}))_D \subseteq \partial^+_{D+a}(X)$. By (8), we have $|\partial^+_{D+a}(X)| = |(V(L_{i_2}), V(J_{i_2+1}))_D| = k$, which implies $(V(L_{i_2}), V(J_{i_2+1}))_D = \partial^+_{D+a}(X)$.

(iii) If $i_2 + 1 = m$, then we must have $u \in V(L_{i_2})$, and so $(u, v) \in (V(L_{i_2}), V(J_{i_2+1}))_{D+a} \subseteq \partial^+_{D+a}(X)$. As $(u, v) \notin (V(L_{i_2}), V(J_{i_2+1}))_D$, this yields a contradiction to $(V(L_{i_2}), V(J_{i_2+1}))_D = \partial^+_{D+a}(X)$.

(iv) Suppose that $s_{i_2+1} = 1$ and fix $t > i_2 + 1$. Assume that $V(J_t) \cap X = \emptyset$. By Claim 3(ii) and by (6), $(V(J_t), X)_D = \emptyset$. Hence by the definition of $[L_{t-1}, J_t]_k$, we must have $s_t > 0$. Conversely, assume that both $s_t > 0$ and $V(J_t) \subseteq X$, then by the definition of $[L_{t-1}, J_t]_k$, $(V(J_k), V(L_{t-1}))_D \neq \emptyset$, contrary to Claim 3(ii). This proves that $V(J_t) \cap X = \emptyset$ if and only if $s_t > 0$.

Now assume that $V(J_t) \subseteq X$. If $s_t > 0$, then $(V(J_t), V(J_{i_2+1}))_D \neq \emptyset$, by the definition of $[L_{t-1}, J_t]_k$, contrary to Claim 3(ii). Therefore, we must have $s_t < 0$. Conversely, assume that $s_t < 0$ and $V(J_t) \cap X = \emptyset$. By the definition of $[J_t, L_{t-1}]_k$, we have $(V(L_{t-1}), V(J_t))_D \neq \emptyset$, again contrary to Claim 3(ii).

As $D = [L_{m-1}, J_m]_k$, we have $s_m > 0$, and so $V(J_m) \cap X = \emptyset$. By Claim 3(ii) and since $v \in V(J_m)$, we conclude that $u \notin X$. This proves (iv).

(v) By Claim 3(iv), $V(J_m) \cap X = \emptyset$, and so $m > i_3$. We argue by contradiction to assume that $i_3 = i_2$. Then by the definitions of i_2 and i_3 , we have $X = \bigcup_{t=1}^{i_3} V(J_t) = V(L_{i_3})$. For any $j > i_3$, by Claim 5(i), $s_j > 0$. By Claim 3(iv), $u \in X$. If $m = i_3 + 1$, then u must be in X, a contradiction. Hence $m \ge i_3 + 2$. Similarly, by $k \ge |\partial_{D+a}^+(X)|$, $\{v_1, v_2, \ldots, v_k\} \cap X = \emptyset$. By Claim 3(i), $s_{i_3+2} > 0$. Since $(L_{i_3}, J_{i_3+1})_D \cup (L_{i_3}, J_{i_3+2})_D \subseteq \partial_{D+a}^+(X)$ and since $|(L_{i_3}, J_{i_3+1})_D| = k$, it follows by $k \ge |\partial_{D+a}^+(X)|$ that $|(L_{i_3}, J_{i_3+2})_D| = 0$. This, $\{v_1, v_2, \ldots, v_k\} \cap X = \emptyset$, yields a contradiction to (9). This proves that $m > i_3 > i_2$.

We now show the other conclusions of Claim 3(v). By Claim 3(iv), $V(J_m) \cap X = \emptyset$ and $u \notin X$. By Definition 3.1 we have $(J_{i_3}, J_{i_3+1})_D \subseteq (J_{i_3}, J_{i_3+1} \cup J_m)_D \subseteq \partial^+_{D+a}(X)$, which implies that

$$k = |(J_{i_3}, J_{i_3+1})_D| \le |(J_{i_3}, J_{i_3+1})_D| + |(J_{i_3}, J_m)_D| \le |\partial_{D+a}^+(X)| \le k.$$

 $|(J_{i_3}, J_m)_D| = 0$. Since $w_1, w_2, \ldots, w_k \in V(J_m)$, it follows that $V(J_{i_3}) \cap \{v_1, v_2, \ldots, v_k, u\} = \emptyset$. By the choice of i_3 , for any $h > i_3$, we have $V(J_h) \cap X = \emptyset$, and so $(V(J_{i_3}), V(J_h))_D \subseteq \partial^+_{D+a}(X)$. By Claim 3(ii), we must have $(V(J_{i_3}), V(J_h))_D = \emptyset$. This justifies Claim 3.

We now continue the proof of the theorem. By Claim 2(v), we may assume that $s_1 = -(k+2)$, and so Claim 3 applies. By Claim 3(iv) and with i_3 being defined in Claim 3(v), we conclude that $s_h > 0$, for any $h > i_3$. Therefore, Claim 3(v) presents a contradiction to (9). This proves the theorem. \Box

To determine the extremal graphs of Theorem 1.4, we need to construct a new family of digraphs.

Definition 3.7. For an integer k > 0, define $\mathcal{E}_1(k)$ to be the family consisting of digraphs satisfying each of the following. (A) $\mathcal{E}(k) \subset \mathcal{E}_1(k)$.

(12)

(B) If digraphs *H* and *H*' satisfy

$$H, H' \in \mathcal{E}_1(k) \cup \{K_1\}$$
 with $|V(H)| + |V(H')| > 2$,

then $[H, H']_k \subset \mathcal{E}_1(k)$.

Lemma 3.8. For any $D \in \mathcal{E}_1(k)$.

(i) $|V(D)| \ge k + 2$. (ii) $\lambda(D) = k$.

(iii) For any k-arc-cut W of D, there exist two digraphs H and H' satisfying (12) such that $D \in [H, H']_k$ and $W = (V(H), V(H'))_D$.

Proof. By Definition 3.7 and by induction on |V(D)| for a digraph $D \in \mathcal{E}_1(k)$, Lemma 3.8(i) and (ii) hold. To prove Lemma 3.8(ii), we assume that D has a k-arc-cut $W = \{(u_1, v_1), (u_2, v_2), \ldots, (u_k, v_k)\}$. Thus for some nonempty subsets X, V(D) - X, we have $W = (X, V(D) - X)_D$. If $D \in \mathcal{E}(k)$, then by Observation 3.2(ii), Lemma 3.8(iii) must hold. Hence by Definition 3.7, we assume that $D \in [H, H']_k$ for some H, H' satisfying (12); and that Lemma 3.8(iii) holds for digraphs in $\mathcal{E}_1(k)$ with smaller order than D. Let $Z = (V(H), V(H'))_D$.

Case 1. $X \cap V(H') = \emptyset$, or $(V(D) - X) \cap V(H') = \emptyset$.

By symmetry, we assume that $X \cap V(H') = \emptyset$. Then X is a k-arc-cut of H. By induction, there exist digraphs L, L' satisfying (12) such that $H \in [L, L']_k$ and $W = (V(L), V(L'))_H$. As $X \cap V(H') = \emptyset$, we have V(L) = X. Since W is an arc-cut of D, $W \cap Z = \emptyset$ and so $D \in [L, L'']_k$ with $W = (V(L), V(L''))_D$, $L'' = D - X \in [L', H']_k$ and $Z = (V(L), V(D) - X)_{L''}$. Since L', $H' \in \mathcal{E}_1(k) \cup \{K_1\}$, it follows by Definition 3.7 that $L'' \in \mathcal{E}_1(k)$. This implies that Lemma 3.8(iii) holds.

Case 2. $X \cap V(H') \neq \emptyset$ and $(V(D) - X) \cap V(H') \neq \emptyset$.

Let $W_1 = (X \cap V(H), V(H) - X)_H$ and $W_2 = (X \cap V(H'), V(H') - X)_{H'}$. Thus $W = W_1 \cup W_2$ and $|W_1| + |W_2| = |W| = k$. If both $H, H' \in \mathcal{E}_1(k)$, then by Lemma 3.8(ii), we must have $|W_1| \ge k$ and $|W_2| \ge k$, contrary to the fact that $|W_1| + |W_2| = |W| = k$. If both $H, H' \in \mathcal{E}_1(k)$, then by Lemma 3.8(ii), we must have $|W_1| \ge k$ and $|W_2| \ge k$, contrary to the fact that $|W_1| + |W_2| = |W| = k$. If both $H, H' \in \mathcal{E}_1(k)$, then by Lemma 3.8(ii), we must have $|W_1| \ge k$ and $|W_2| \ge k$, contrary to the fact that $|W_1| + |W_2| = |W| = k$. Hence either $H = K_1$ or $H' = K_1$. Suppose that $H = K_1$ with $V(H) = \{v\}$. By the definition of $[H, H']_k$, for any $v' \in X \cap V(H'), (v', v) \in A(D)$.

Thus if $v \notin X$, then $X \subset V(H')$ and so $W \subseteq (X, \{v\})_D \cup (X, V(H') - X)_D$. It follows from Lemma 3.8(ii) that $k = |W| = |(X, \{v\})_D| + |(X, V(H') - X)_D| \ge |(X, \{v\})_D| + k$, and so $(X, \{v\})_D = \emptyset$ and $D \in [\{v\}, H']_k$. By induction, there exist digraphs L, L' satisfying (12) such that $H' \in [L, L']_k$ and $W = (V(L), V(L'))_{H'}$. Let $L'' \in [\{v\}, L']_k$. Then $L'' \in \mathcal{E}_1(k)$ and $D \in [L, L'']_k$ with $W = (V(L), V(L''))_D$. Hence Lemma 3.8(ii) holds.

Therefore, we must have $v \in X$, which implies that $(\{v\}, V(H') - X)_D \neq \emptyset$. It follows that $k = |W| = |(\{v\}, V(H') - X)_D| + |(X - \{v\}, V(H') - X)_D| > |(X - \{v\}, V(H') - X)_D|$. This implies that $\lambda(H') \le |(X - \{v\}, V(H') - X)_D| < k$, contrary to Lemma 3.8(ii). This completes the proof of the lemma. \Box

Lemma 3.9. For any integer k > 1, we have $\mathcal{E}_1(k) \subseteq \mathcal{D}(k)$.

Proof. Let $D \in \mathcal{E}_1(k)$. We need to show that $D \in \mathcal{D}(k)$. If $D \in \mathcal{E}(k)$, then by Theorem 3.6, $D \in \mathcal{D}(k)$. Hence we assume that $D \in \mathcal{E}_1(k) - \mathcal{E}(k)$, and Lemma 3.9 holds for graphs in $\mathcal{E}_1(k)$ with smaller order.

For any $e \in A(D^c)$, if $\lambda(D + e) \ge k + 1$, then $D \in \mathcal{D}(k)$. Hence we assume that $\lambda(D + e) \le k + 1$. Let W be a *j*-arc-cut of D + e for some $j \le k$. By Lemma 3.8(ii), $e \notin W$ and so by Lemma 3.8(iii), for some digraphs H, H' satisfying $(12), D \in [H, H]_k$ and $W = (V(H), V(H'))_D$. Let e = (u, v). Since $e \notin W$, we cannot have $u \in V(H)$ and $v \in V(H')$. By the definition of $[H, H']_k$, we cannot have $v \in V(H)$ and $u \in V(H')$. Hence either $u, v \in V(H)$ or $u, v \in V(H')$. Without loss of generality, we assume that $u, v \in V(H)$, and so $e \in A(H^c)$. By $(12), H \in \mathcal{E}_1(l)$ and so by induction, $\overline{\lambda}(H + e) \ge k + 1$. It follows that $\overline{\lambda}(D + e) \ge \overline{\lambda}(H + e) \ge k + 1$, and so by definition, $D \in \mathcal{D}(k)$.

Definition 3.10. Let *n* and *k* be integers with n > k > 0 and *q*, *r* be nonnegative integers satisfying n = q(k + 2) + r with $0 \le r \le k + 1$,

(i) Define $\delta'(n, k)$ to be the set of all integral sequences $(s_1, s_2, \ldots, s_{q+r})$ such that $s_1 = k+2$, and for $i \ge 2$, $|s_i| \in \{1, k+2\}$. Note that if $(s_1, s_2, \ldots, s_{q+r}) \in \delta'(n, k)$, then as $q(k+2) + r = n = \sum_{i=1}^{q+r} |s_i|$, there are exactly r of the $|s_i|$'s equaling one and q of the $|s_i|$'s equaling k + 2. Define $\mathcal{E}'(n, k) = \{L(\mathbf{s}) : \mathbf{s} \in \delta'(n, k)\}$ and $\mathcal{E}'(k) = \bigcup_{n \ge k+2} \mathcal{E}'(n, k)$.

(ii) Define $\mathcal{E}'_1(k)$ to be the family consisting of digraphs satisfying each of the following.

(ii-A) $\mathcal{E}'(k) \subset \mathcal{E}'_1(k)$.

(ii-B) For $H, H' \in \mathcal{E}'_1(k) \cup \{K_1\}$ satisfying $|V(H_1)| + |V(H_2)| > 2$ and $\lfloor \frac{n}{k+2} \rfloor = \lfloor \frac{|V(H_1)|}{k+2} \rfloor + \lfloor \frac{|V(H_2)|}{k+2} \rfloor, [H, H']_k \subset \mathcal{E}'_1(k).$

By Definition 3.10, the corollary below follows immediately from Theorem 3.6 and Lemma 3.9.

Corollary 3.11. $\mathcal{E}'_1(k) \subseteq \mathcal{D}(k)$.

Given the structure of digraphs in $\mathcal{E}'_1(k)$, we can compute the size of digraphs in $\mathcal{E}'_1(k)$.

Lemma 3.12. Let $n > k + 1 \ge 2$ be integers. For any digraph $D \in \mathcal{E}'_1(k)$, we have

$$|A(D)| = \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2} \right).$$

$$\tag{13}$$

Proof. We first assume that $D \in \mathcal{E}'(k)$ with |V(D)| = n and $n > k + 1 \ge 2$. If n = k + 2, then by Definition 3.10, we have D = H(k, 2), and so |A(D)| = (k + 2)(k + 1) - 1. Thus (13) holds. Assume that n > k + 2 and (13) holds for smaller values of n. Let q, r be nonnegative integers satisfying n = q(k + 2) + r with $0 \le r \le k + 1$. By Definitions 3.1 and 3.10, we have $|s_{q+r}| \in \{1, k + 2\}$.

Case 1. $|s_{q+r}| = 1$.

By Definition 3.10, we may assume that $s_{q+r} = 1$ and $D \in [H, K_1]_k$ for some $H \in \mathcal{E}'(k)$. Denote $V(K_1) = \{v\}$. Since $s_{q+r} = 1$, we have $r \ge 1$, and so n - 1 = q(k+2) + r - 1, which implies $\lfloor \frac{n}{k+2} \rfloor = \lfloor \frac{n-1}{k+2} \rfloor$. By induction, we have

$$\begin{aligned} |A(D)| &= |A(H)| + k + (n-1) \\ &= \binom{n-1}{2} + (n-2)k + \left\lfloor \frac{n-1}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2} \right) + k + (n-1) \\ &= \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2} \right) \end{aligned}$$

Case 2. $|s_{q+r}| = k + 2$.

By Definition 3.10, we may assume that $s_{q+r} = k + 2$ and $D = [H, H(k, 2)]_k$ for some $H \in \mathcal{E}'(k)$. Since $s_1 = k + 2$ and $s_{q+r} = k + 2$, we have $q \ge 2$, and so n - (k+2) = (q-1)(k+2) + r, which implies $\lfloor \frac{n}{k+2} \rfloor = \lfloor \frac{n-(k+2)}{k+2} \rfloor + 1$. By induction, we have

$$\begin{aligned} |A(D)| &= |A(H)| + k + (n - (k+2))(k+2) + |A(H(k,2))| \\ &= \binom{n - (k+2)}{2} + (n - (k+2) - 1)k + \left\lfloor \frac{n - (k+2)}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2}\right) \\ &+ k + [n - (k+2)](k+2) + (k+2)(k+1) - 1 \\ &= \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2}\right). \end{aligned}$$

Thus, (13) holds for any $D \in \mathcal{E}'(k)$. Next, we assume that $D \in \mathcal{E}'_1(k) - \mathcal{E}'(k)$. By Definition 3.10, there exist $H, H' \in \mathcal{E}'_1(k)$ satisfying Definition 3.10(ii-B). Let $n_1 = |V(H)|$ and $n_2 = |V(H')|$. Thus $n = n_1 + n_2$ and $\lfloor \frac{n}{k+2} \rfloor = \lfloor \frac{n_1}{k+2} \rfloor + \lfloor \frac{n_2}{k+2} \rfloor$. By induction, we have

$$\begin{aligned} |A(D)| &= |A(H)| + k + n_1 n_2 + |A(H')| \binom{n_1}{2} + (n_1 - 1)k + \left\lfloor \frac{n_1}{k + 2} \right\rfloor \left(1 + 2k - \binom{k + 2}{2} \right) \right) + k + n_1 n_2 \\ &+ \binom{n_2}{2} + (n_2 - 1)k + \left\lfloor \frac{n_2}{k + 2} \right\rfloor \left(1 + 2k - \binom{k + 2}{2} \right) \right) \\ &= \binom{n_1}{2} + \binom{n_2}{2} + n_1 n_2 + (n - 1)k + \left\lfloor \frac{n}{k + 2} \right\rfloor \left(1 + 2k - \binom{k + 2}{2} \right) \right) \\ &= \binom{n}{2} + (n - 1)k + \left\lfloor \frac{n}{k + 2} \right\rfloor \left(1 + 2k - \binom{k + 2}{2} \right) \right). \end{aligned}$$

By induction, (13) holds for any $D \in \mathcal{E}'_1(k)$. \Box

The following lemma gives us more information on the structure of digraphs in $\mathcal{D}(k)$.

Lemma 3.13. Let $k \ge 2$ be an integer. If $D \in \mathcal{D}(k)$ and if for some $H_1, H_2 \in \mathcal{D}(k)$, we have $D \in [H_1, H_2]_k$, then for each $i \in \{1, 2\}, H_i \ne K_{k+1}^*$.

Proof. By contradiction, we assume that $H_2 \cong K_{k+1}^*$ and $D \in [H_1, H_2]_k$, and so $D \in \mathcal{D}(k)$. Let $V(H_2) = \{v_1, v_2, \ldots, v_{k+1}\}$. By Definition 2.2, we may assume that $|(H_1, H_2)_D| = k$, and so we may assume that $N_D^+(V(H_1), V(H_2)) \subseteq \{v_1, v_2, \ldots, v_k\}$. Since $H_1, H_2 \in \mathcal{D}(k)$, both $|V(H_1)| \ge k + 1$ and $|V(H_2)| \ge k + 1$. Thus there must be a vertex $u \in V(H_1)$ and an integer i with $1 \le i \le k$, such that $a = (u, v_i) \notin A(D)$. Since $D \in \mathcal{D}(k)$, D + a has a subdigraph D' with $\lambda(D') \ge k + 1$. Note that $d_{D+a}^-(v_{k+1}) = d_D^-(v_{k+1}) = k$, $v_{k+1} \notin V(D')$. Since, for each j with $1 \le j \le k$ and $j \ne i$, $d_{D+a-v_{k+1}}^-(v_j) \le d_{D-v_{k+1}}^-(v_j) + 1 \le k$, it follows that $v_j \notin V(D')$ for each j with $1 \le j \le k$ and $j \ne i$. Since $k \ge 2$, $d_{D+a-v_{k+1}}^-(v_i) \le k$, and $v_i \notin V(D')$ as well. This implies that $a \notin A(D')$, and so $D' \subseteq D$. Contrary to the assumption that $D \in \mathcal{D}(k)$. This proves the lemma. \Box

4. The extremal function

The main result of this section is Theorem 4.1, which clearly implies Theorem 1.4.

Theorem 4.1. Let n, k be integers with $n > k + 1 \ge 2$. Then for any $D \in \mathcal{D}(n, k)$, we have

$$|A(D)| \ge \binom{n}{2} + (n-1)k + \left\lfloor \frac{n}{k+2} \right\rfloor \left(1 + 2k - \binom{k+2}{2} \right).$$

$$(14)$$

Furthermore, equality holds in (14) if and only if $D \in \mathcal{E}'_1(k)$.

Proof. We argue by induction to prove (14) on n = |V(D)|. If n = k + 2, then D = H(k, 2). Thus we have |A(D)| = (k+2)(k+1) - 1, and so (14) holds. Assume that n > k + 2 and (14) holds for smaller values of n. Let $q, r \ge 0$ be integers satisfying n = q(k+2) + r with $0 \le r \le k + 1$.

As n > k + 2, $D \ncong K_{k+2}^*$. By Lemma 2.4, one of the three conclusions of Lemma 2.4 must hold.

Claim 1. If Lemma 2.4(i) or (ii) holds, then (14) holds as well. Moreover, if r = 0, then (14) holds with strict inequality.

Without loss of generality, we assume that $D \in [H, K_1]_k$ for some $H \in \mathcal{D}(k)$ with $V(K_1) = \{v\}$. As |V(D)| = n - 1, by Definition 2.2, $|\partial_D^+(v)| = n - 1$ and $|\partial_D^-(v)| = k$.

Case 1: *r* = 0.

L

Then $q - 1 = \lfloor \frac{n-1}{k+2} \rfloor$. By induction, we have

$$\begin{split} A(D)| &= |A(H)| + k + (n-1) \\ &\geq \binom{n-1}{2} + (n-2)k + (q-1)\left(1 + 2k - \binom{k+2}{2}\right) + k + (n-1) \\ &= \binom{n}{2} + (n-1)k + (q-1)\left(1 + 2k - \binom{k+2}{2}\right) \\ &> \binom{n}{2} + (n-1)k + q\left(1 + 2k - \binom{k+2}{2}\right) . \end{split}$$

Thus (14) holds with strict inequality in this case.

Case 2: *r* > 0.

Then $q = \lfloor \frac{n-1}{k+1} \rfloor$. By induction,

$$|A(D)| = |A(H)| + k + (n - 1)$$

$$\geq \binom{n-1}{2} + (n-2)k + q\left(1 + 2k - \binom{k+2}{2}\right) + k + (n - 1)$$

$$= \binom{n}{2} + (n - 1)k + q\left(1 + 2k - \binom{k+2}{2}\right).$$
(15)

Thus (14) holds in this case as well, and so Claim 1 follows.

By Claim 1, we may assume that Lemma 2.4(iii) holds. Thus $D \in \{[H_1, H_2]_k, [H_2, H_1]_k\}$ for some $H_1, H_2 \in \mathcal{D}(k)$. Let $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Then $n = n_1 + n_2$. Without loss of generality, we assume that $n_1 \ge n_2$. By Lemma 3.13, $n_2 \ge k + 2$. Let $q_1, q_2 \ge 1$, r_1, r_2 be integers satisfying $n_1 = q_1(k+2) + r_1$, $0 \le r_1 \le k+1$, and $n_2 = q_2(k+2) + r_2$, $0 \le r_2 \le k+1$. Thus $q_1 = \lfloor \frac{n_1}{k+2} \rfloor$ and $q_2 = \lfloor \frac{n_2}{k+2} \rfloor$.

Claim 2. If Lemma 2.4(iii) holds, then (14) holds. Moreover, if $r_1 + r_2 \ge k + 2$, then (14) holds with strict inequality.

Since $n = n_1 + n_2 = (q_1 + q_2)(k + 2) + (r_1 + r_2)$, we observe that $r_1 + r_2 \le k + 1$ if and only if $q_1 + q_2 = q$, and if and only if $r = r_1 + r_2$. With this observation, we consider the following two cases. Note that if $n_1 \ge 2$ and $n_2 \ge 2$, then $\binom{n_1}{2} + \binom{n_2}{2} + n_1 n_2 = \binom{n}{2}$.

Case 1: $r_1 + r_2 \le k + 1$.

Then $q_1 + q_2 = q$. By Induction,

$$|A(D)| = |A(H_1)| + k + n_1n_2 + |A(H_2)|$$

$$\geq \binom{n_1}{2} + (n_1 - 1)k + q_1 \left(1 + 2k - \binom{k+2}{2}\right) + k + n_1n_2 + \binom{n_2}{2} + (n_2 - 1)k + q_2 \left(1 + 2k - \binom{k+2}{2}\right)$$

$$= \binom{n}{2} + (n - 1)k + q \left(1 + 2k - \binom{k+2}{2}\right).$$
(16)

Hence (14) holds in this case.

Case 2: $r_1 + r_2 \ge k + 2$.

Then $q_1 + q_2 = q - 1$ and $r = r_1 + r_2 - (k + 2)$. Observe that for any $k \ge 1$, $1 + 2k < \binom{k+2}{2}$, and so by induction,

$$\begin{split} |A(D)| &= |A(H_1)| + k + n_1 n_2 + |A(H_2)| \\ &\geq \binom{n_1}{2} + (n_1 - 1)k + q_1 \left(1 + 2k - \binom{k+2}{2} \right) + k + n_1 n_2 + \binom{n_2}{2} \\ &+ (n_2 - 1)k + q_2 \left(1 + 2k - \binom{k+2}{2} \right) \right) \\ &= \binom{n}{2} + (n - 1)k + (q - 1) \left(1 + 2k - \binom{k+2}{2} \right) \right) \\ &> \binom{n}{2} + (n - 1)k + q \left(1 + 2k - \binom{k+2}{2} \right) \right). \end{split}$$

Thus (14) holds with strict inequality in this case, and so Claim 2 is justified.

Claim 3. If equality holds in (14) for a digraph $D \in \mathcal{D}(k, n)$, then $D \in \mathcal{E}'_1(k)$.

Let $D \in \mathcal{D}(k, n)$ be a digraph satisfying equality in (14). We argue by induction on $n = |V(D)| \ge k + 2$. If n = k + 2, then $D = H(k, 2) \in \mathcal{E}'(k)$. Assume that n > k + 2 and that Claim 3 holds for smaller values of n. Since n > k + 2, by Lemma 2.4, one of the conclusions of Lemma 2.4 must hold.

If *D* satisfies Lemma 2.4(i) or (ii), without loss of generality, we assume that $D \in [H, K_1]_k$ for some $H \in \mathcal{E}'(k)$ with $V(K_1) = v$. By Claim 1, if equality holds in (14), then r > 0, which implies that n - 1 = q(k + 2) + (r - 1), with $0 \le r - 1 \le k$. Since equality in (14) holds, it follows by (15) that $|A(H)| = \binom{n-1}{2} + (n-2)k + (q-1)\left(1 + 2k - \binom{k+2}{2}\right)$. By induction, $H \in \mathcal{E}'_1(n - 1, k)$. By Definition 3.10, $D \in \mathcal{E}'(n, k)$, and so $D \in \mathcal{E}'(k)$ in this case.

Hence we may assume that *D* satisfies Lemma 2.4(iii), and so $D \in [H_1, H_2]_k$ for some $H_1, H_2 \in \mathscr{E}'(k)$. Again, let $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$; and let $q_1, q_2 \ge 1, r_1, r_2$ be integers satisfying $n_1 = q_1(k+2) + r_1, 0 \le r_1 \le k+1$, and $n_2 = q_2(k+2) + r_2, 0 \le r_2 \le k+1$. By Claim 2, if equality holds in (14), then $r_1 + r_2 \le k+1$, which implies that $q = q_1 + q_2$ and $r = r_1 + r_2$. Since equality in (14) holds, it follows by (15) that both $|A(H_1)| = \binom{n_1}{2} + (n_1 - 1)k + q_1 \left(1 + 2k - \binom{k+2}{2}\right)$ and $|A(H_2)| = \binom{n_2}{2} + (n_2 - 1)k + q_2 \left(1 + 2k - \binom{k+2}{2}\right)$. Therefore by induction, $H_1, H_2 \in \mathscr{E}'_1(k)$. By Definition 3.10, $D \in [H_1, H_2]_k$,

which is in $\mathcal{E}'_1(n, k)$, and so $D \in \mathcal{E}'_1(k)$. This induction argument justifies the claim.

Now Theorem 4.1 follows from Lemma 3.12 and Claims 1−3. □

Acknowledgments

The research of Xiaoxia Lin is supported in part by the Natural Science Foundation of Fujian Province of China (No.2016J01666) and by Shang-Da Li Fund of Jimei University, China (ZC2013014). The research of Suohai Fan is supported in part by the National Natural Science Foundation of China (Grant No.61572233).

References

- [1] J. Anderson, H.-J. Lai, X. Lin, M. Xu, On k-maximal strength digraphs, J. Graph Theory, http://dx.doi.org/10.1002/jgt.22008 (online publication).
- [2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, second ed., Springer-Verlag, London, 2009.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.

- [4] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187–197.
 [5] W. Mader, Minimale n-fach kantenzusammenhöngende Graphen, Math. Ann. 191 (1971) 21–28.
 [6] D.W. Matula, The cohesive strength of graphs, in: G. Chartrand, S.F. Kapoor (Eds.), in: The Many Faces of Graph Theory, Lecture Notes in Mathematics, vol. 110, Springer-Verlag, berlin, 1969, pp. 215-221.
- [7] D. Matula, *K*-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 459–480.
 [8] D.W. Matula, Subgraph connectivity number of a graph, in: G. Chartrand, S.F. Kapoor (Eds.), in: Theorey and Applications of Graphs, Lecture Notes in Mathematics, vol. 642, Springer-Verlag, berlin, 1976, pp. 371–383.