On the lower bound of k-maximal digraphs

Xiaoxia Lin ${ }^{\text {a,* }}$, Suohai Fan ${ }^{\text {b }}$, Hong-Jian Lai ${ }^{\text {c }}$, Murong Xu ${ }^{\text {c }}$
${ }^{\text {a }}$ School of Sciences, Jimei University, Xiamen, Fujian 361021, China
${ }^{\text {b }}$ Department of Mathematics, Jinan University, Guangzhou 510632, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, United States

A R T I CLE IN F O

Article history:

Received 11 December 2014
Received in revised form 4 April 2016
Accepted 5 April 2016
Available online 18 May 2016

Keywords:

Strong arc connectivity
Maximum subdigraph arc connectivity Extremal digraphs

Abstract

For a digraph D, let $\lambda(D)$ be the arc-strong-connectivity of D. For an integer $k>0$, a simple digraph D with $|V(D)| \geq k+1$ is k-maximal if every subdigraph H of D satisfies $\lambda(H) \leq k$ but for adding new arc to D results in a subdigraph H^{\prime} with $\lambda\left(H^{\prime}\right) \geq k+1$. We prove that if D is a simple k-maximal digraph on $n>k+1 \geq 2$ vertices, then $$
|A(D)| \geq\binom{ n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right)
$$

This bound is best possible. Furthermore, all extremal digraphs reaching this lower bound are characterized.

© 2016 Elsevier B.V. All rights reserved.

1. The problem

We consider finite simple graphs and simple digraphs. We generally use G to denote a graph and D a digraph, and follow [3] and [2] for undefined notation in graphs and in digraphs, respectively. In particular, $\kappa^{\prime}(G)$ denotes the edge connectivity of a graph G and $\lambda(D)$ denotes the arc-strong-connectivity of a digraph D. If G is a simple graph, then G^{c} denotes the complement of G. If $X \subseteq E\left(G^{c}\right)$, then $G+X$ is the simple graph with vertex set $V(G)$ and edge set $E(G) \cup X$. We will use $G+e$ for $G+\{e\}$. Likewise, if D is a simple digraph, let D^{c} denote the complement of D. For $X \subseteq A\left(D^{c}\right)$ and $e \in A\left(D^{c}\right)$, we similarly define the simple digraphs $D+X$ and $D+e$, respectively. If H, K are subdigraphs of D, then $H \cup K$ is the subdigraph of D with vertex set $V(H) \cup V(K)$ and $\operatorname{arc} \operatorname{set} A(H) \cup A(K)$. Throughout this paper, we use the notation (u, v) to denote an arc oriented from u to v in a digraph. If $W \subseteq V(D)$ or if $W \subseteq A(D)$, then $D[W]$ denotes the subdigraph of D induced by W. For $v \in V(D)$, we use $D-v$ for $D[V(D)-\{v\}]$. For graphs H and G, we denote $H \subseteq G$ when H is a subgraph of G. Similarly, for digraphs H and $D, H \subseteq D$ means H is a subdigraph of D. We write $D \cong D^{\prime}$ to represent the fact that D and D^{\prime} are isomorphic digraphs.

Given a graph G, Matula [6-8] first studied the quantity

$$
\bar{\kappa}^{\prime}(G)=\max \left\{\kappa^{\prime}(H): H \subseteq G\right\} .
$$

He called $\bar{\kappa}^{\prime}(G)$ the strength of G. Mader [5] considered an extremal problem related to $\bar{\kappa}^{\prime}(G)$. For an integer $k>0$, a simple graph G with $|V(G)| \geq k+1$ is k-maximal if $\bar{\kappa}^{\prime}(G) \leq k$ but for any edge $e \in E\left(G^{c}\right), \bar{\kappa}^{\prime}(G+e)>k$. In [5], Mader proved the following.

[^0]Theorem 1.1 (Mader [5]). If G is a k-maximal graph on $n>k \geq 1$ vertices, then

$$
|E(G)| \leq(n-k) k+\binom{k}{2}
$$

Furthermore, this bound is best possible.
It has been noted that being a k-maximal graph requires a certain level of edge density. Towards this direction, the following was proved in 1990.

Theorem 1.2 (Lai, Theorem 2 of [4]). If G is a k-maximal graph on $n>k+1 \geq 2$ vertices, then

$$
|E(G)| \geq(n-1) k-\binom{k}{2}\left\lfloor\frac{n}{k+2}\right\rfloor
$$

Furthermore, this bound is best possible.
It is natural to consider extending the theorems above to digraphs. Towards this direction, for a digraph D, we define

$$
\bar{\lambda}(D)=\max \{\lambda(H): H \subseteq D\}
$$

Let $k \geq 0$ be an integer. A simple digraph D with $|V(D)| \geq k+1$ is k-maximal if $\bar{\lambda}(D) \leq k$ but for any arc $e \in A\left(D^{c}\right)$, $\bar{\lambda}(D+e) \geq k+1$. Following Matula [6], we may also call $\bar{\lambda}(D)$ the strength of digraph D and so a k-maximal digraph is also called a k-maximal strength digraph. For positive integers n and k satisfying $n \geq k+1$, define

$$
\mathscr{D}(n, k)=\{D: D \text { is a simple digraph with }|V(D)|=n \text { and } D \text { is } k \text {-maximal }\} .
$$

Thus we are to investigate the upper and lower bounds of the set of numbers $\{|A(D)|: D \in \mathscr{D}(n, k)\}$. For notational convenience, if $h<k$, we define $\binom{h}{k}=0$. The following has been obtained.

Theorem 1.3 (Anderson et al. Theorem 1.2 of [1]). Let n and k be positive integers with $n \geq k+1$. If $D \in \mathscr{D}(n, k)$, then

$$
|A(D)| \leq k(2 n-k-1)+\binom{n-k}{2}
$$

Furthermore, the bound is best possible.
In fact, all extremal digraphs in $\mathscr{D}(n, k)$ reaching this upper bound are characterized in [1]. The purpose of this research is to determine the lower bound. The following is the main result.

Theorem 1.4. Let n and k be positive integers with $n \geq k+1$. If $D \in \mathscr{D}(n, k)$, then

$$
|A(D)| \geq\binom{ n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right)
$$

Furthermore, the bound is best possible.
In the next section, we investigate properties of k-maximal digraphs. In Section 3, we present a constructive characterization of a family of k-maximal digraphs $\mathcal{E}^{\prime}(k)$. In the last section, we will prove Theorem 1.4 and show that the members in the family $\mathcal{E}^{\prime}(k)$ are precisely the digraphs attaining the upper bound in Theorem 1.4.

2. Properties of \boldsymbol{k}-maximal digraphs

Throughout this section, n and k denote integers with $n>k \geq 0$. We present some properties of k-maximal digraphs to be utilized later. Let $\mathscr{D}(k)$ be the family of all k-maximal digraphs. Thus

$$
\mathcal{D}(k)=\cup_{n \geq k+1} \mathscr{D}(n, k)
$$

For any integer $n \geq 0$, let K_{n}^{*} denote the complete digraph on n vertices. Thus K_{n}^{*} is a simple digraph such that for any pair of distinct vertices $u, v \in V\left(K_{n}^{*}\right)$, both (u, v) and (v, u) are in $A\left(K_{n}^{*}\right)$. By definition, we observe the following

$$
\begin{equation*}
K_{k+1}^{*} \in \mathscr{D}(k) \text { and if } H \in \mathscr{D}(k) \text { and }|V(H)|=k+1, \quad \text { then } H \cong K_{k+1}^{*} . \tag{1}
\end{equation*}
$$

Lemma 2.1 (Lemma 2.1 of [1]). A digraph $D \in \mathscr{D}(0)$ if and only if D is an acyclic tournament.
Lemma 2.1 indicates that we may exclude the case $k=0$ in our study. Therefore, we will always assume that $k>0$ in the rest of this paper. Following [2], if D is a digraph and if $X, Y \subseteq V(D)$, then define

$$
(X, Y)_{D}=\{(x, y) \in A(D): x \in X, y \in Y\}
$$

We further define that, for $X \subseteq V(D)$,

$$
\partial_{D}^{+}(X)=(X, V(D)-X)_{D} \quad \text { and } \quad \partial_{D}^{-}(X)=(V(D)-X, X)_{D} .
$$

For each $v \in V(D)$, we define

$$
N_{D}^{+}(v)=\{u \in V(D):(v, u) \in A(D)\} \quad \text { and } \quad N_{D}^{-}(v)=\{u \in V(D):(u, v) \in A(D)\} .
$$

When the digraph D is understood from the context, we sometimes omit the subscript D in the notations above. By the definition of arc-strong connectivity in [2], a digraph D satisfies $\lambda(D) \geq k$ if and only if for any nonempty proper subset $X \subset V(D),\left|\partial_{D}^{+}(X)\right| \geq k$.

Definition 2.2. Let $H \in \mathscr{D}(k)$ and let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset V(H)$ be a subset of k distinct vertices. Let u be a vertex not in $V(H)$. Define a digraph $\left[H, K_{1}\right]_{k}\left(\left[K_{1}, H\right]_{k}\right.$, respectively) as follows:
(i) $V\left(\left[H, K_{1}\right]_{k}\right)=V\left(\left[K_{1}, H\right]_{k}\right)=V(H) \cup\{u\}$.
(ii) $A\left(\left[H, K_{1}\right]_{k}\right)=A(H) \cup\left\{\left(v_{1}, u\right),\left(v_{2}, u\right), \ldots,\left(v_{k}, u\right)\right\} \cup\left(\bigcup_{v \in V(H)}\{(u, v)\}\right) .\left(A\left(\left[K_{1}, H\right]_{k}\right)=A(H) \cup\left\{\left(u, v_{1}\right),\left(u, v_{2}\right), \ldots\right.\right.$, $\left.\left(u, v_{k}\right)\right\} \cup\left(\cup_{v \in V(H)}\{(v, u)\}\right)$, respectively).
Note that each of $\left[H, K_{1}\right]_{k}$ and $\left[K_{1}, H\right]_{k}$ represents a family of graphs as the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset V(H)$ may vary.
Definition 2.3. Let $H_{1}, H_{2} \in \mathscr{D}(k)$, and let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subset V\left(H_{1}\right)$ be a multiset of $V\left(H_{1}\right)$ and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subset V\left(H_{2}\right)$ be a multiset of $V\left(H_{2}\right)$ such that all the arcs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$ are distinct. Define a digraph $\left[H_{1}, H_{2}\right]_{k}$ as follows.
(i) $V\left(\left[H_{1}, H_{2}\right]_{k}\right)=V\left(H_{1}\right) \cup V\left(H_{2}\right)$.
(ii) $A\left(\left[H_{1}, H_{2}\right]_{k}\right)=A\left(H_{1}\right) \cup A\left(H_{2}\right) \cup\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)\right\} \cup\left(\cup_{u \in V\left(H_{1}\right), v \in V\left(H_{2}\right)}\{(v, u)\}\right)$.

Note that $\left[H_{1}, H_{2}\right]_{k}$ represents a family of digraphs.
Lemma 2.4 (Corollary 2.6 of [1]). Let $D \in \mathscr{D}(k)-\left\{K_{k+1}^{*}\right\}$ be a digraph. Then there exists a nonempty proper subset $X \subseteq V(D)$ such that one of the following holds.
(i) $|X|=1$, and for some $H \in \mathscr{D}(k), D \in\left[K_{1}, H\right]_{k}$.
(ii) $|V(D)-X|=1$ and for some $H \in \mathscr{D}(k), D \in\left[H, K_{1}\right]_{k}$.
(iii) For some $H_{1}, H_{2} \in \mathscr{D}(k)$, we have $D[X]=H_{1}$ and $D \in\left[H_{1}, H_{2}\right]_{k}$.

3. Structure of \boldsymbol{k}-maximal digraphs

Let $H(k, 2)$ be the digraph obtained from K_{k+2}^{*} by removing an arc from K_{k+2}^{*}. Note that if $D \cong H(k, 2)$, then D has exactly one vertex (to be denoted $x^{-}(D)$) of indegree k and exactly one vertex (to be denoted $x^{+}(D)$) of outdegree k.

Definition 3.1. Let n and k be positive integers. Define $s(n, k)$ to be the set of all integral sequences $\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ satisfying $s_{1}+s_{2}+\cdots+s_{m}=n$ such that $s_{1}=k+2$, and for $i \geq 2, s_{i} \in\{1,-1, k+2,-(k+2)\}$. For any $s=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k)$, define digraphs $L(\mathbf{s})=L\left(s_{1} s_{2}, \ldots, s_{m}\right)$ as follows.
(i) For $i=1$, define $L_{1} \cong H(k, 2)$.
(ii-A) For $i \geq 2$, if $s_{i}=1\left(s_{i}=-1\right.$, respectively), then define $L_{i} \in\left[L_{i-1}, K_{1}\right]_{k}\left(L_{i} \in\left[K_{1}, L_{i-1}\right]_{k}\right.$, respectively $)$.
(ii-B) For $i \geq 2$, if $s_{i}=k+2\left(s_{i}=-(k+2)\right.$, respectively), then define $L_{i} \in\left[L_{i-1}, H(k, 2)\right]_{k}\left(L_{i} \in\left[H(k, 2), L_{i-1}\right]_{k}\right.$, respectively), in such a way that for any $1 \leq t \leq i$ with $\left|s_{t}\right|=k+2$ and with J_{t} denoting this $H(k, 2)$, we have $d_{L_{i}}^{-}\left(x^{-}\left(J_{t}\right)\right) \geq k+1$ $\left(d_{L_{i}}^{+}\left(x^{+}\left(J_{t}\right)\right) \geq k+1\right.$, respectively $)$.
(iii) Define $L(\mathbf{s})=L_{m}$. By Definitions 2.2 and 2.3, each $L(\mathbf{s})$ represents a collection of digraphs.
(iv) Given $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k)$, define $J_{i}=K_{1}$ if $\left|s_{i}\right|=1$ and $J_{i}=H(k, 2)$ if $\left|s_{i}\right|=k+2$. Then the sequence of digraphs $J_{1}, J_{2}, \ldots, J_{m}$ is called a construction sequence of $L(\mathbf{s})$.
(v) Define $\mathcal{E}(n, k)=\{L(\mathbf{s}): \mathbf{s} \in \mathcal{f}(n, k)\}$ and $\mathcal{E}(k)=\left\{\cup_{n \geq k+2}\left(\mathcal{E}(n, k) \cup\left\{K_{k+1}^{*}\right\}\right)\right\}$.

For a digraph D, an arc subset $W=(X, V(D)-X)_{D}$ for some proper nonempty subset X is called an arc-cut. If $|W|=t$ and W is an arc-cut, then W is called a t-arc-cut.

Observation 3.2. We will make a few observations from Definition 3.1.
(i) By definition, $H(k, 2) \in\{L(\mathbf{s})\}$ with \mathbf{s} being the sequence of only one term $k+2$. Since there is only one arc $a \in A\left(H(k, 2)^{c}\right)$, we have $H(k, 2)+a=K_{k+2}^{*}$ and so

$$
\begin{equation*}
H(k, 2) \in \mathscr{D}(k) \tag{2}
\end{equation*}
$$

(ii) Let $D \in \mathcal{E}(k)-\{H(k, 2)\}$. We may assume that $n=|V(D)|>k+2$ and for some $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k), D \in L(\mathbf{s})$ with construction sequence $J_{1}, J_{2}, \ldots, J_{m}$. Using the notation in Definition 3.1, we let $L_{i}=D\left[\cup_{j+1}^{i} V\left(J_{j}\right)\right]$. For any k-arc-cut $W=(X, V(D)-X)_{D}$ of D, there must be an i with $1 \leq i<m$ such that $W=\left(V\left(L_{i}\right), V\left(J_{i+1}\right)\right)_{D}$ or $W=\left(V\left(J_{i+1}\right), V\left(L_{i}\right)\right)_{D}$.

We will justify Observation 3.2(ii). Since $n=|V(D)|>k+2$, we have $m \geq 2$. When $m=2$, by Definition 3.1(ii-A) and (ii-B), we observe that if W_{1} is a k-arc-cut of D, then we must have $W_{1}=\left(V\left(J_{1}\right), V\left(J_{2}\right)\right)_{D}$ or $W_{1}=\left(V\left(J_{2}\right), V\left(J_{1}\right)\right)_{D}$. Hence we assume that $m>2$. Inductively, assume that for any digraph $D^{\prime} \in \mathcal{E}(k)-\{H(k, 2)\}$ with $\left|V\left(D^{\prime}\right)\right|<|V(D)|$ and with construction sequence $J_{1}{ }^{\prime}, J_{2}^{\prime}, \ldots, J_{m^{\prime}}^{\prime}$, if W^{\prime} is a k-arc-cut of D^{\prime}, then there must be an i with $1 \leq i<m^{\prime}$ such that $W^{\prime}=\left(\cup_{j+1}^{i} V\left(J_{j}^{\prime}\right), V\left(J_{i+1}^{\prime}\right)\right)_{D^{\prime}}$ or $W^{\prime}=\left(V\left(J_{i+1}^{\prime}\right), \cup_{j+1}^{i} V\left(J_{j}^{\prime}\right)\right)_{D^{\prime}}$. Let $W=(X, V(D)-X)_{D}$ be an k-arc-cut of D. If $X \cap V\left(J_{m}\right)=\emptyset$ or if $J_{m} \subseteq X$, then by Observation 3.2, W is an k-arc-cut of L_{m-1}, and so by induction, there must be an i with $1 \leq i<m-1$ such that Observation 3.2 (ii) holds. Hence we must have $X \cap V\left(J_{m}\right) \neq \emptyset$ and $(V(D)-X) \cap J_{m} \neq \emptyset$. In this case, as $\left|V\left(J_{m}\right)\right| \geq 2$, we must have $s_{m}=k+2$ and $J_{m}=H(k, 2)$. It follows that $H(k, 2)$ contains an arc-cut $X \cap A\left(J_{m}\right)$ of size at most k. But by Definition 3.1(ii-B), J_{m} does not have an arc-cut of size k. This contradiction justifies Observation 3.2(ii).

Observation 3.2(i) can be extended, as shown in Theorem 3.6.
Lemma 3.3. For any $D \in \mathcal{E}(k)$, we have

$$
\begin{equation*}
\lambda(D)=\bar{\lambda}(D)=k \tag{3}
\end{equation*}
$$

Proof. By Definition 3.1, it suffices to show that if $D=L(\mathbf{s})$ for some $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k)$, then (3) holds. We argue by induction on m. $\operatorname{By}(2)$, (3) holds for $m=1$. Assume that $m>1$ and (3) holds for smaller values of m. We adopt the notation in Definition 3.1 and let $J_{1}, J_{2}, \ldots, J_{m}$ be the construction sequence of D. Let $\mathbf{s}^{\prime}=\left(s_{1}, s_{2}, \ldots, s_{m-1}\right)$ and $D^{\prime}=D-V\left(J_{m}\right)$. Then $\mathbf{s}^{\prime} \in s\left(n-s_{m}, k\right)$, and $D^{\prime}=L\left(\mathbf{s}^{\prime}\right)$. By Definition $3.1, D \in\left[D^{\prime}, J_{m}\right]_{k}$. By induction, $\lambda\left(D^{\prime}\right)=\bar{\lambda}\left(D^{\prime}\right)=k$.

We argue by contradiction to prove that $\lambda(D) \geq k$, and assume that D has a proper nonempty subset $X \subset V(D)$ such that $\left|\partial_{D}^{+}(X)\right|<k$. If both $X \cap V\left(D^{\prime}\right) \neq \emptyset$ and $V\left(D^{\prime}\right)-X \neq \emptyset$, then by $\lambda\left(D^{\prime}\right)=k$, we have a contradiction $k>\left|\partial_{D}^{+}(X)\right| \geq\left|\left(V\left(D^{\prime}\right) \cap X, V\left(D^{\prime}\right)-X\right)_{D^{\prime}}\right| \geq k$. Hence either $V\left(D^{\prime}\right) \cap X=\emptyset$ or $V\left(D^{\prime}\right) \subseteq X$. Similarly, as $J_{m} \in\left\{K_{1}, H(k, 2)\right\}$, if both $X \cap V\left(J_{m}\right) \neq \emptyset$ and $V\left(J_{m}\right)-X \neq \emptyset$, then $J_{m}=H(k, 2)$, and so $k>\left|\partial_{D}^{+}(X)\right| \geq\left|\left(V\left(J_{m}\right) \cap X, V\left(J_{m}\right)-X\right)_{D^{\prime}}\right| \geq \lambda(H(k, 2))=k$, a contradiction. It follows that we must have $X=V\left(D^{\prime}\right)$ or $X=V\left(J_{m}\right)$. By Definition 2.2 or 2.3, we have again a contradiction: $k>\left|\partial_{D}^{+}(X)\right| \geq \min \left\{\left|\left(V\left(J_{m}\right), V\left(D^{\prime}\right)\right)_{D}\right|,\left|\left(V\left(D^{\prime}\right), V\left(J_{m}\right)\right)_{D}\right|\right\} \geq k$. This proves that $\lambda(D) \geq k$.

We now prove $\bar{\lambda}(D)=k$ by contradiction. Assume that D has a subdigraph H such that $\lambda(H) \geq k+1$. If both $V(H) \cap V\left(D^{\prime}\right) \neq \emptyset$ and $V(H) \cap V\left(J_{m}\right) \neq \emptyset$, then $\lambda(H) \leq\left|\left(V(H) \cap V\left(D^{\prime}\right), V(H) \cap V\left(J_{m}\right)\right)_{H}\right| \leq\left|\left(V\left(D^{\prime}\right), V\left(J_{m}\right)\right)_{D}\right|=k$, contrary to $\lambda(H) \geq k+1$. Thus since $J_{m} \in\left\{K_{1}, H(k, 2)\right\}$, we must have $H \subseteq D^{\prime}$. By induction, $\bar{\lambda}\left(D^{\prime}\right)=k$, and so $\lambda(H) \leq \bar{\lambda}\left(D^{\prime}\right)=k$, contrary to the assumption $\lambda(H) \geq k+1$. This proves the lemma.

A special class of graphs in $\mathcal{E}(k)$ has been studied in [1]. Let $s_{M}(n, k)$ be the subset of $s(n, k)$ such that $\mathbf{s}=$ $\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in \varsigma_{M}(n, k)$ if and only if $\left|s_{2}\right|=\left|s_{3}\right|=\cdots\left|s_{m}\right|=1$. Let $\mathcal{M}(k)=\cup_{n \geq k+2}\left\{L(\mathbf{s}): \mathbf{s} \in \wp_{M}(n, k)\right\}$.

Theorem 3.4 (Anderson et al., Theorem 3.2(ii) of [1]). $\mathcal{M}(k) \subseteq \mathscr{D}(k)$.
The observations stated in Lemma 3.5 follow immediately from Definition 3.1. For example, in Lemma 3.5(i), if for some $2 \leq t \leq m-1$, (4) holds, then the digraph sequence $J_{1}, J_{2}, \ldots, J_{t-1}, J_{t+1}, \ldots, J_{m}, J_{t}$ is also a construction sequence of D such that for $\mathbf{s}^{\prime}=\left(s_{1}, \ldots, s_{t-1}, s_{t+1}, \ldots, s_{m}, s_{t}\right)$, we have then $D \in L\left(\mathbf{s}^{\prime}\right)$. The justification of Lemma $3.5(\mathrm{ii})$ is similar and will be omitted.

Lemma 3.5. Let $D \in L(\mathbf{s})$ for some $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k)$ with a construction sequence $J_{1}, J_{2}, \ldots, J_{m}$. Each of the following holds.
(i) If for some t with $2 \leq t \leq m-1$, and for all j with $t+1 \leq j \leq m$,
either $s_{j}>0$ and $\left(J_{t}, J_{j}\right)_{D}=\emptyset$, or $s_{j}<0$ and $\left(J_{j}, J_{t}\right)_{D}=\emptyset$,
then $D-V\left(J_{t}\right)=L\left(\mathbf{s}^{\prime}\right)$, where $\mathbf{s}^{\prime}=\left(s_{1}, \ldots, s_{t-1}, s_{t+1}, \ldots, s_{m}\right) \in f\left(n-s_{t}, k\right)$.
(ii) Suppose that for some t with $1 \leq t<m$, we have $s_{t+1}=k+2$. If for each j with $t+2 \leq j \leq m$,
either $s_{j}>0$ and $\left(J_{1} \cup J_{2} \cup \cdots \cup J_{t}, J_{j}\right)_{D}=\emptyset$, or $s_{j}<0 \quad$ and $\quad\left(J_{j}, J_{1} \cup J_{2} \cup \cdots \cup J_{t}\right)_{D}=\emptyset$,
then $D-V\left(J_{1} \cup J_{2} \cup \cdots \cup J_{t}\right)=L\left(\mathbf{s}^{\prime}\right)$, where $\mathbf{s}^{\prime}=\left(s_{t+1}, s_{t+2}, \ldots, s_{m}\right) \in s\left(n-\sum_{i=1}^{t} s_{i}, k\right)$.
Lemma 3.5 can be applied in inductive augments involving digraphs in $\mathcal{E}(k)$. This allows us to prove a generalization of Theorem 3.4, as stated in the theorem below.

Theorem 3.6. Let $k \geq 1$ be an integer. Then $\mathcal{E}(k) \subseteq \mathscr{D}(k)$.
Proof. Let $D \in \mathcal{E}(k)$ with $n=|V(D)|$. In the proof arguments below, we shall adopt the notation in Definition 3.1 to use $L_{1}, L_{2}, \ldots, L_{m}$ to denote the graphs in the process to build L_{m}.

We argue by induction on n to prove the theorem. By Definition 3.1, $n \geq k+2$, and $n=k+2$ if and only if $D=H(k, 2)$. By (2), $D=H(k, 2) \in \mathscr{D}(k)$. Thus we may assume that $n>k+2$ and for any digraph $D^{\prime} \in \mathcal{E}(k)$ with $\left|V\left(D^{\prime}\right)\right| \leq n-1$, $D^{\prime} \in \mathscr{D}(k)$. We are to show that if $D \in \mathcal{E}(n, k)$, then $D \in \mathscr{D}(k)$.

By contradiction, we assume that $D \in \mathcal{E}(n, k)-\mathcal{D}(k)$, and so for some $a=(u, v) \in A\left(D^{c}\right)$, we have

$$
\begin{equation*}
\bar{\lambda}(D+a) \leq k \tag{6}
\end{equation*}
$$

Assume that $D=L(\mathbf{s})$ for some $\mathbf{s}=\left(s_{1}, s_{2}, \ldots, s_{m}\right) \in s(n, k)$ with minimized and $a=(u, v) \in A\left(D^{c}\right)$; and let $J_{1}, J_{2}, \ldots, J_{m}$ be the corresponding construction sequence of D. Since $n>k+2$, we have $m \geq 2$. By symmetry, we assume that $D \in\left[L_{m-1}, J_{m}\right]_{k}$. By induction, $L_{m-1} \in \mathscr{D}(k)$. If $u, v \in V\left(L_{m-1}\right)$, then $\bar{\lambda}(D+a) \geq \bar{\lambda}\left(L_{m-1}+a\right) \geq k+1$. Hence we may assume that

$$
\begin{equation*}
u \in V\left(L_{m-1}\right) \quad \text { and } \quad v \in V\left(J_{m}\right) \tag{7}
\end{equation*}
$$

By (6),
there exists a nonempty proper subset $X \subset V(D+a)$, such that $\left|\partial_{D+a}^{+}(X)\right| \leq k$.
By Definition 3.1(ii) or (iii), there are k arcs from L_{m-1} to J_{m}. We assume that $\left(V\left(L_{m-1}\right), V\left(J_{m}\right)\right)_{D}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. Let $a_{i}=\left(v_{i}, w_{i}\right), 1 \leq i \leq k$. By Definition 3.1, $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \subseteq V\left(L_{m-1}\right)$ and $w_{1}, w_{2}, \ldots, w_{k} \in V\left(J_{m}\right)$. If there exists a t with $2 \leq t \leq m-1$, such that $V\left(J_{t}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}=\emptyset$, and such that for all $j>t$, either $s_{j}>0$ and $\left(J_{t}, J_{j}\right)_{D}=\emptyset$, or $s_{j}<0$ and $\left(J_{j}, J_{t}\right)_{D}=\emptyset$, then by Lemma 3.5(i), $D-V\left(J_{t}\right)=L\left(\mathbf{s}^{\prime}\right)$, where $\mathbf{s}^{\prime}=\left(s_{1}, \ldots, s_{t-1}, s_{t+1}, \ldots, s_{m}\right) \in s\left(n-s_{t}, k\right)$. By induction, $D-V\left(J_{t}\right) \in \mathscr{D}(k)$, and so $\bar{\lambda}(D+a) \geq \bar{\lambda}\left(\left(D-V\left(J_{t}\right)\right)+a\right) \geq k+1$, contrary to (6). Hence we may assume that for any t with $1<t \leq m-1$, there exists a $j>t+1$ such that

$$
0< \begin{cases}\left|V\left(J_{t}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}\right|+\left|\left(J_{t}, J_{j}\right)_{D}\right| & \text { if } s_{j}>0 \tag{9}\\ \left|V\left(J_{t}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}\right|+\left|\left(J_{j}, J_{t}\right)_{D}\right| & \text { if } s_{j}<0\end{cases}
$$

Let $X \subset V(D)$ be a subset satisfying (8). Define $I^{\prime}=\left\{i: 1 \leq i \leq m\right.$ and $\left.V\left(J_{i}\right) \cap X=\emptyset\right\}$ and $I^{\prime \prime}=\left\{i: 1 \leq i \leq m\right.$ and $V\left(J_{i}\right) \cap$ $X \neq \emptyset\}$.
Claim 1. For any i with $1 \leq i \leq m$, if $\left|V\left(J_{i}\right)\right|=k+2$, then either $X \cap V\left(J_{i}\right)=\emptyset$ or $V\left(J_{i}\right)-X=\emptyset$. (As $\left|s_{i}\right| \in\{1, k+2\}$, it follows that for any $1 \leq i \leq m$, either $X \cap V\left(J_{i}\right)=\emptyset$ or $V\left(J_{i}\right)-X=\emptyset$.)
Proof of Claim 1. By contradiction, suppose for some i^{\prime} with $1 \leq i^{\prime} \leq m$ and with $\left|V\left(J_{i^{\prime}}\right)\right|=k+2$, and both $X \cap V\left(J_{i^{\prime}}\right) \neq \emptyset$ and $V\left(J_{i^{\prime}}\right)-X \neq \emptyset$. If $k \geq\left|X \cap V\left(J_{i^{\prime}}\right)\right| \geq 2$, then as $J_{i^{\prime}}=H(k, 2)$, we have $\min \left\{\left|X \cap V\left(J_{i^{\prime}}\right)\right|,\left|V\left(J_{i^{\prime}}\right)-X\right|\right\} \geq 2$. It follows by the definition of $H(k, 2)$ that $\left|\partial_{D+a}^{+}(X)\right| \geq\left|\partial_{J_{i^{\prime}}}^{+}\left(X \cap V\left(J_{i^{\prime}}\right)\right)\right| \geq k+1$, contrary to (8). Hence we may assume that $\left|X \cap V\left(J_{i^{\prime}}\right)\right| \in\{1, k+1\}$, and so $\left|\partial_{J_{i^{\prime}}}^{+}\left(X \cap V\left(J_{i^{\prime}}\right)\right)\right|=k$. By $(7),\left|\{u, v\} \cap V\left(J_{i^{\prime}}\right)\right| \leq 1$ and $\operatorname{so} \min \left\{\left|X \cap V\left(J_{i^{\prime}}\right)\right|,\left|V\left(J_{i^{\prime}}\right)-X\right|\right\}=1$. It follows that

$$
\begin{equation*}
\left|\left(X \cap V\left(J_{i^{\prime}}\right), V\left(J_{i^{\prime}}\right)-X\right)_{D+a}\right|=\left|\left(X \cap V\left(J_{i^{\prime}}\right), V\left(J_{i^{\prime}}\right)-X\right)_{D}\right|=\left|\partial_{J_{i^{\prime}}}^{+}\left(X \cap V\left(J_{i^{\prime}}\right)\right)\right|=k \tag{10}
\end{equation*}
$$

By (10), we must have $\left\{v_{1}, \ldots, v_{k}\right\} \subseteq X \cap V\left(J_{i^{\prime}}\right)$ and $\left\{w_{1}, \ldots, w_{k}\right\} \subseteq V\left(J_{i^{\prime}}\right)-X$. Also by (10), for any $j \neq i^{\prime}$, if $X \cap V\left(J_{j}\right) \neq \emptyset$ and $V\left(J_{j}\right)-X \neq \emptyset$, then $\partial_{J_{j}}^{+}\left(X \cap V\left(J_{j}\right)\right) \neq \bar{\emptyset}$. This, together with (10), implies $\left|\partial_{D+a}^{+}(X)\right| \geq\left|\partial_{J_{i^{\prime}}}^{+}\left(X \cap V\left(J_{i^{\prime}}\right)\right)\right|+\left|\partial_{J_{j}}^{+}\left(X \cap V\left(J_{j}\right)\right)\right| \geq k+1$, contrary to (8). Hence we have

$$
\begin{equation*}
\text { for any } j \neq i^{\prime} \text {, if } X \cap V\left(J_{j}\right) \neq \emptyset \text {, then } V\left(J_{j}\right) \subseteq X \tag{11}
\end{equation*}
$$

Since $J_{i^{\prime}}=H(k, 2)$, $J_{i^{\prime}}$ has a unique vertex $x_{1}=x^{+}\left(J_{i^{\prime}}\right)$ such that $d_{J_{i^{\prime}}}^{+}\left(x_{1}\right)=k$ and a unique vertex $x_{2}=x^{-}\left(J_{i^{\prime}}\right)$ such that $d_{J_{i^{\prime}}}^{-}\left(x_{2}\right)=k$. It follows by (10) that either $V\left(J_{i^{\prime}}\right) \cap X=\left\{x_{1}\right\}$ or $V\left(J_{i^{\prime}}\right)-X=\left\{x_{2}\right\}$.

Assume first that $i^{\prime}>1$ and i_{1} is the smallest integer satisfying $1 \leq i_{1}<i^{\prime}$ such that $i_{1} \in I^{\prime \prime}$. If $i_{1}>1$, then either $s_{i_{1}}>0$, whence by (11), $\cup_{1 \leq t \leq i_{1}-1} V\left(J_{t}\right) \cap X=\emptyset$, and so by Definition 2.2 or $\left.2.3,\left|\partial_{D+a}^{+}(X)\right| \geq \mid V\left(J_{i_{1}}\right), V\left(J_{1}\right)\right)_{D}\left|\geq\left|V\left(J_{1}\right)\right|=k+2\right.$; or $s_{i_{1}}<0$, whence by (10) and by Definition 2.2 or $2.3,\left|\partial_{D+a}^{+}(X)\right| \geq\left|\left(V\left(J_{i^{\prime}}\right) \cap X, V\left(J_{i^{\prime}}\right)-X\right)_{D}\right|+\left|\left(V\left(J_{i_{1}}\right), L_{i_{1}-1}\right)_{D}\right| \geq k+1$. In either case, a contradiction to (8) is obtained. Therefore we assume that $i_{1}=1$. If there exists an $i^{\prime \prime}$ with $1<i^{\prime \prime}<i^{\prime}$ such that $X \cap V\left(J_{i^{\prime \prime}}\right)=\emptyset$, then assume that $i^{\prime \prime}$ is the smallest such integer. By Definition 2.2 or $2.3,\left|\left(V\left(L_{i^{\prime \prime}-1}\right), V\left(J_{i^{\prime \prime}}\right)\right)_{D}\right|>0$. This, together with (10), implies that $\left|\partial_{D+a}^{+}(X)\right| \geq\left|\left(V\left(J_{i^{\prime}}\right) \cap X, V\left(J_{i^{\prime}}\right)-X\right)_{D}\right|+\left|\left(V\left(L_{i^{\prime \prime}-1}\right), V\left(J_{i^{\prime \prime}}\right)\right)_{D}\right| \geq k+1$, contrary to (8). Therefore, no such $i^{\prime \prime}$ exists, and so we conclude that $V\left(L_{i^{\prime}-1}\right) \subseteq X$. It follows by Definition 3.1(ii-B) that $\left|\partial_{D+a}^{+}(X)\right| \geq$ $\min \left\{d_{L_{i^{\prime}}}^{+}\left(x_{1}\right), d_{L_{i^{\prime}}}^{-}\left(x_{2}\right)\right\} \geq k+1$, contrary to (8).

Therefore, we may assume that $i^{\prime}=1$. If for some t with $1<t \leq m,\left|s_{t}\right|=k+2$, then by Definition 3.1(ii-B), we have $\left|\partial_{D+a}^{+}(X)\right| \geq \min \left\{d_{L_{t}}^{+}\left(x_{1}\right), d_{L_{t}}^{-}\left(x_{2}\right)\right\} \geq k+1$, contrary to (8). Hence for all $t>1$, we have $\left|s_{t}\right|=1$. It follows by Theorem 3.4 that $D \in \mathscr{D}(k)$, contrary to (6). This justifies Claim 1.
Claim 2. Suppose that $V\left(J_{1}\right) \cap X=\emptyset$. Let $i_{1}>1$ be the smallest integer such that $V\left(J_{i_{1}}\right) \cap X \neq \emptyset$, and $i_{2} \leq m$ be the largest integer such that for any t with $i_{1} \leq t \leq i_{2}$, we have $V\left(J_{t}\right) \subseteq X$. Each of the following holds.
(i) For any $i \geq 2$, if $V\left(J_{i}\right) \cap X \neq \emptyset$, then $s_{i}<0$.
(ii) $V\left(J_{m}\right) \cap X=\emptyset$.
(iii) $\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D}=\partial_{D+a}^{+}(X)$ and $\left|\partial_{D+a}^{+}(X)\right|=\left|\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D}\right|=k$.
(iv) $u \notin X$.
(v) $\bar{\lambda}(D+a) \geq k+1$. (Thus a contradiction to (6) is obtained.)

Proof of Claim 2. (i) Suppose that $V\left(J_{1}\right) \cap X=\emptyset$. By Definition 3.1, $\left|V\left(J_{1}\right)\right|=s_{1}=k+2$. If for some $i \geq 2$ with $V\left(J_{i}\right) \cap X \neq \emptyset$, we have $s_{i}>0$, then by Definition 3.1, for each vertex $x \in V\left(J_{i}\right)$ and for each vertex $y \in V\left(J_{1}\right),(x, y) \in A(D)$. It follows by $\left|V\left(J_{1}\right)\right|=s_{1}=k+2$ and by Claim 1 that $\left|\partial_{D+a}^{+}(X)\right| \geq\left|\left(V\left(J_{i}\right), V\left(J_{1}\right)\right)_{D}\right| \geq k+2$, contrary to (8). This justifies (i).
(ii) Since $D=\left[L_{m-1}, J_{m}\right]_{k}$, we have $s_{m}>0$ and so by Claim 2(i) and by Claim $1, V\left(J_{m}\right) \cap X=\emptyset$.
(iii) By Claim 2(i), $s_{i_{1}}<0$. Thus by Definition 3.1(ii), $\left|\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D}\right|=k$. By the definition of $i_{1}, V\left(L_{i_{1}-1}\right) \cap X=\emptyset$ and $V\left(J_{i_{1}}\right) \subseteq X$. Hence $\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D} \subseteq \partial_{D+a}^{+}(X)$. By (8), we have $\left|\partial_{D+a}^{+}(X)\right|=\left|\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D}\right|=k$, which implies $\left(V\left(J_{i_{1}}\right), V\left(L_{i_{1}-1}\right)\right)_{D}=\partial_{D+a}^{+}(X)$.
(iv) If $u \in X$, then by Claim 2(ii), we have $(u, v) \in \partial_{D}^{+}(X)$. This, together with Claim 2(iii), implies that $\left|\partial_{D+a}^{+}(X)\right| \geq k+1$, contrary to (8).
(v) For any $t>i_{2}$ with $s_{t}>0$, by (8) and Claim 2(iii), we must have

$$
\left(X, V\left(J_{t}\right)\right)_{D+a}=\left(\cup_{i \in I^{\prime \prime}} V\left(J_{i}\right), V\left(J_{t}\right)\right)_{D+a}=\emptyset .
$$

Let $\mathbf{s}^{\prime \prime}$ be a subsequence of \mathbf{s} by deleting all terms s_{i} with $i \in I^{\prime \prime}$ from \mathbf{s}; and let $D^{\prime \prime}=D-X$. It follows that $D^{\prime \prime}=L\left(\mathbf{s}^{\prime \prime}\right)$ and so $D^{\prime \prime} \in s(n-|X|, k)$. Since $I^{\prime \prime} \neq \emptyset$, by induction, $D^{\prime \prime} \in \mathcal{E}(k)$. By Claim 2 (iv), $u \notin X$ and so both ends u and v are in $V\left(D^{\prime \prime}\right)$. Since $D^{\prime \prime} \in \mathcal{E}(k)$, we have $\bar{\lambda}(D+a) \geq \lambda\left(D^{\prime \prime}+a\right) \geq k+1$. This completes the proof for Claim 2 .

Claim 3. Suppose that $V\left(J_{1}\right) \subseteq X$. Let $i_{2} \leq m$ be the largest integer such that for any t with $1 \leq t \leq i_{2}$, we have $V\left(J_{t}\right) \subseteq X$. Each of the following holds.
(i) For any $i>i_{2}$, if $V\left(J_{i}\right) \cap X=\emptyset$, then $s_{i}>0$.
(ii) $\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}=\partial_{D+a}^{+}(X)$ and $\left|\partial_{D+a}^{+}(X)\right|=\left|\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}\right|=k$.
(iii) $m>i_{2}+1$.
(iv) Suppose that $s_{i_{2}+1}=1$ and $t>i_{2}+1$. Then $V\left(J_{t}\right) \cap X=\emptyset$ if and only if $s_{t}>0$; and $V\left(J_{t}\right) \subseteq X$ if and only if $s_{t}<0$. In particular, $V\left(J_{m}\right) \cap X=\emptyset$ and $u \notin X$.
(v) Let $i_{3}>1$ be the largest integer such that $V\left(J_{i_{3}}\right) \subseteq X$. Then $m-1>i_{3}>i_{2}, V\left(J_{i_{3}}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}=\emptyset$, and for any $h>i_{3},\left(V\left(J_{i_{3}}\right), V\left(J_{h}\right)\right)_{D}=\emptyset$.
Proof of Claim 3. (i) Let $i>i_{2}$ be an index such that $V\left(J_{i}\right) \cap X=\emptyset$. If $s_{i}<0$, then by Definition 2.2 or 2.3, for any $x \in V\left(L_{i_{2}}\right)$ and for any $y \in V\left(J_{i}\right)$, we have $(x, y) \in A(D)$. It follows that $\left|\partial_{D+a}^{+}(X)\right| \geq\left|\left(V\left(J_{1}\right), V\left(J_{i}\right)\right)_{D}\right| \geq\left|s_{1}\right|=k+2$, contrary to (6).
(ii) By Claim 3(i), $s_{i_{2}+1}>0$. By Definition 3.1(ii), $\left|\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}\right|=k$. By the definition of $i_{2}, V\left(L_{i_{2}}\right) \cap X=\emptyset$ and $V\left(L_{i_{2}}\right) \subseteq X$. Hence $\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D} \subseteq \partial_{D+a}^{+}(X)$. By (8), we have $\left|\partial_{D+a}^{+}(X)\right|=\left|\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}\right|=k$, which implies $\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}=\partial_{D+a}^{+}(X)$.
(iii) If $i_{2}+1=m$, then we must have $u \in V\left(L_{i_{2}}\right)$, and so $(u, v) \in\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D+a} \subseteq \partial_{D+a}^{+}(X)$. As $(u, v) \notin$ $\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}$, this yields a contradiction to $\left(V\left(L_{i_{2}}\right), V\left(J_{i_{2}+1}\right)\right)_{D}=\partial_{D+a}^{+}(X)$.
(iv) Suppose that $s_{i_{2}+1}=1$ and fix $t>i_{2}+1$. Assume that $V\left(J_{t}\right) \cap X=\emptyset$. By Claim 3(ii) and by $(6),\left(V\left(J_{t}\right), X\right)_{D}=\emptyset$. Hence by the definition of $\left[L_{t-1}, J_{t}\right]_{k}$, we must have $s_{t}>0$. Conversely, assume that both $s_{t}>0$ and $V\left(J_{t}\right) \subseteq X$, then by the definition of $\left[L_{t-1}, J_{t}\right]_{k},\left(V\left(J_{k}\right), V\left(L_{t-1}\right)\right)_{D} \neq \emptyset$, contrary to Claim 3(ii). This proves that $V\left(J_{t}\right) \cap X=\emptyset$ if and only if $s_{t}>0$.

Now assume that $V\left(J_{t}\right) \subseteq X$. If $s_{t}>0$, then $\left(V\left(J_{t}\right), V\left(J_{i_{2}+1}\right)\right)_{D} \neq \emptyset$, by the definition of $\left[L_{t-1}, J_{t}\right]_{k}$, contrary to Claim 3(ii). Therefore, we must have $s_{t}<0$. Conversely, assume that $s_{t}<0$ and $V\left(J_{t}\right) \cap X=\emptyset$. By the definition of $\left[J_{t}, L_{t-1}\right]_{k}$, we have $\left(V\left(L_{t-1}\right), V\left(J_{t}\right)\right)_{D} \neq \emptyset$, again contrary to Claim 3(ii).

As $D=\left[L_{m-1}, J_{m}\right]_{k}$, we have $s_{m}>0$, and so $V\left(J_{m}\right) \cap X=\emptyset$. By Claim 3(ii) and since $v \in V\left(J_{m}\right)$, we conclude that $u \notin X$. This proves (iv).
(v) By Claim 3(iv), $V\left(J_{m}\right) \cap X=\emptyset$, and so $m>i_{3}$. We argue by contradiction to assume that $i_{3}=i_{2}$. Then by the definitions of i_{2} and i_{3}, we have $X=\cup_{t=1}^{i_{3}} V\left(J_{t}\right)=V\left(L_{i_{3}}\right)$. For any $j>i_{3}$, by Claim 5(i), $s_{j}>0$. By Claim 3(iv), $u \in X$. If $m=i_{3}+1$, then u must be in X, a contradiction. Hence $m \geq i_{3}+2$. Similarly, by $k \geq\left|\partial_{D+a}^{+}(X)\right|,\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cap X=\emptyset$. By Claim $3(\mathrm{i}), s_{i_{3}+2}>0$. Since $\left(L_{i_{3}}, J_{i_{3}+1}\right)_{D} \cup\left(L_{i_{3}}, J_{i_{3}+2}\right)_{D} \subseteq \partial_{D+a}^{+}(X)$ and since $\left|\left(L_{i_{3}}, J_{i_{3}+1}\right)_{D}\right|=k$, it follows by $k \geq\left|\partial_{D+a}^{+}(X)\right|$ that $\left|\left(L_{i_{3}}, J_{i_{3}+2}\right)_{D}\right|=0$. This, $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \cap X=\emptyset$, yields a contradiction to (9). This proves that $m>i_{3}>i_{2}$.

We now show the other conclusions of Claim 3(v). By Claim 3(iv), $V\left(J_{m}\right) \cap X=\emptyset$ and $u \notin X$. By Definition 3.1 we have $\left(J_{i_{3}}, J_{i_{3}+1}\right)_{D} \subseteq\left(J_{i_{3}}, J_{i_{3}+1} \cup J_{m}\right)_{D} \subseteq \partial_{D+a}^{+}(X)$, which implies that

$$
k=\left|\left(J_{i_{3}}, J_{i_{3}+1}\right)_{D}\right| \leq\left|\left(J_{i_{3}}, J_{i_{3}+1}\right)_{D}\right|+\left|\left(J_{i_{3}}, J_{m}\right)_{D}\right| \leq\left|\partial_{D+a}^{+}(X)\right| \leq k .
$$

$\left|\left(J_{i_{3}}, J_{m}\right)_{D}\right|=0$. Since $w_{1}, w_{2}, \ldots, w_{k} \in V\left(J_{m}\right)$, it follows that $V\left(J_{i_{3}}\right) \cap\left\{v_{1}, v_{2}, \ldots, v_{k}, u\right\}=\emptyset$. By the choice of i_{3}, for any $h>i_{3}$, we have $V\left(J_{h}\right) \cap X=\emptyset$, and so $\left(V\left(J_{i_{3}}\right), V\left(J_{h}\right)\right)_{D} \subseteq \partial_{D+a}^{+}(X)$. By Claim 3(ii), we must have $\left(V\left(J_{i_{3}}\right), V\left(J_{h}\right)\right)_{D}=\emptyset$. This justifies Claim 3.

We now continue the proof of the theorem. By Claim 2(v), we may assume that $s_{1}=-(k+2)$, and so Claim 3 applies. By Claim 3(iv) and with i_{3} being defined in Claim 3(v), we conclude that $s_{h}>0$, for any $h>i_{3}$. Therefore, Claim 3(v) presents a contradiction to (9). This proves the theorem.

To determine the extremal graphs of Theorem 1.4, we need to construct a new family of digraphs.
Definition 3.7. For an integer $k>0$, define $\varepsilon_{1}(k)$ to be the family consisting of digraphs satisfying each of the following.
(A) $\mathcal{E}(k) \subset \mathcal{E}_{1}(k)$.
(B) If digraphs H and H^{\prime} satisfy

$$
\begin{equation*}
H, H^{\prime} \in \varepsilon_{1}(k) \cup\left\{K_{1}\right\} \quad \text { with }|V(H)|+\left|V\left(H^{\prime}\right)\right|>2 \tag{12}
\end{equation*}
$$

then $\left[H, H^{\prime}\right]_{k} \subset \varepsilon_{1}(k)$.
Lemma 3.8. For any $D \in \varepsilon_{1}(k)$.
(i) $|V(D)| \geq k+2$.
(ii) $\lambda(D)=k$.
(iii) For any k-arc-cut W of D, there exist two digraphs H and H^{\prime} satisfying (12) such that $D \in\left[H, H^{\prime}\right]_{k}$ and $W=\left(V(H), V\left(H^{\prime}\right)\right)_{D}$.

Proof. By Definition 3.7 and by induction on $|V(D)|$ for a digraph $D \in \varepsilon_{1}(k)$, Lemma 3.8(i) and (ii) hold. To prove Lemma 3.8(iii), we assume that D has a k-arc-cut $W=\left\{\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)\right\}$. Thus for some nonempty subsets $X, V(D)-X$, we have $W=(X, V(D)-X)_{D}$. If $D \in \mathscr{E}(k)$, then by Observation 3.2(ii), Lemma 3.8(iii) must hold. Hence by Definition 3.7, we assume that $D \in\left[H, H^{\prime}\right]_{k}$ for some H, H^{\prime} satisfying (12); and that Lemma 3.8(iii) holds for digraphs in $\mathcal{E}_{1}(k)$ with smaller order than D. Let $Z=\left(V(H), V\left(H^{\prime}\right)\right)_{D}$.
Case 1. $X \cap V\left(H^{\prime}\right)=\emptyset$, or $(V(D)-X) \cap V\left(H^{\prime}\right)=\emptyset$.
By symmetry, we assume that $X \cap V\left(H^{\prime}\right)=\emptyset$. Then X is a k-arc-cut of H. By induction, there exist digraphs L, L^{\prime} satisfying (12) such that $H \in\left[L, L^{\prime}\right]_{k}$ and $W=\left(V(L), V\left(L^{\prime}\right)\right)_{H}$. As $X \cap V\left(H^{\prime}\right)=\emptyset$, we have $V(L)=X$. Since W is an arc-cut of D, $W \cap Z=\emptyset$ and so $D \in\left[L, L^{\prime \prime}\right]_{k}$ with $W=\left(V(L), V\left(L^{\prime \prime}\right)\right)_{D}, L^{\prime \prime}=D-X \in\left[L^{\prime}, H^{\prime}\right]_{k}$ and $Z=(V(L), V(D)-X)_{L^{\prime \prime}}$. Since $L^{\prime}, H^{\prime} \in \varepsilon_{1}(k) \cup\left\{K_{1}\right\}$, it follows by Definition 3.7 that $L^{\prime \prime} \in \varepsilon_{1}(k)$. This implies that Lemma 3.8(iii) holds.
Case 2. $X \cap V\left(H^{\prime}\right) \neq \emptyset$ and $(V(D)-X) \cap V\left(H^{\prime}\right) \neq \emptyset$.
Let $W_{1}=(X \cap V(H), V(H)-X)_{H}$ and $W_{2}=\left(X \cap V\left(H^{\prime}\right), V\left(H^{\prime}\right)-X\right)_{H^{\prime}}$. Thus $W=W_{1} \cup W_{2}$ and $\left|W_{1}\right|+\left|W_{2}\right|=|W|=k$. If both $H, H^{\prime} \in \varepsilon_{1}(k)$, then by Lemma 3.8(ii), we must have $\left|W_{1}\right| \geq k$ and $\left|W_{2}\right| \geq k$, contrary to the fact that $\left|W_{1}\right|+\left|W_{2}\right|=$ $|W|=k$. Hence either $H=K_{1}$ or $H^{\prime}=K_{1}$. Suppose that $H=K_{1}$ with $V(H)=\{v\}$. By the definition of $\left[H, H^{\prime}\right]_{k}$, for any $v^{\prime} \in X \cap V\left(H^{\prime}\right),\left(v^{\prime}, v\right) \in A(D)$.

Thus if $v \notin X$, then $X \subset V\left(H^{\prime}\right)$ and so $W \subseteq(X,\{v\})_{D} \cup\left(X, V\left(H^{\prime}\right)-X\right)_{D}$. It follows from Lemma 3.8(ii) that $k=|W|=\left|(X,\{v\})_{D}\right|+\left|\left(X, V\left(H^{\prime}\right)-X\right)_{D}\right| \geq\left|(X,\{v\})_{D}\right|+k$, and so $(X,\{v\})_{D}=\emptyset$ and $D \in\left[\{v\}, H^{\prime}\right]_{k}$. By induction, there exist digraphs L, L^{\prime} satisfying (12) such that $H^{\prime} \in\left[L, L^{\prime}\right]_{k}$ and $W=\left(V(L), V\left(L^{\prime}\right)\right)_{H^{\prime}}$. Let $L^{\prime \prime} \in\left[\{v\}, L^{\prime}\right]_{k}$. Then $L^{\prime \prime} \in \mathcal{E}_{1}(k)$ and $D \in\left[L, L^{\prime \prime}\right]_{k}$ with $W=\left(V(L), V\left(L^{\prime \prime}\right)\right)_{D}$. Hence Lemma 3.8(iii) holds.

Therefore, we must have $v \in X$, which implies that $\left(\{v\}, V\left(H^{\prime}\right)-X\right)_{D} \neq \emptyset$. It follows that $k=|W|=\mid\left(\{v\}, V\left(H^{\prime}\right)-\right.$ $X)_{D}\left|+\left|\left(X-\{v\}, V\left(H^{\prime}\right)-X\right)_{D}\right|>\left|\left(X-\{v\}, V\left(H^{\prime}\right)-X\right)_{D}\right|\right.$. This implies that $\lambda\left(H^{\prime}\right) \leq\left|\left(X-\{v\}, V\left(H^{\prime}\right)-X\right)_{D}\right|<k$, contrary to Lemma 3.8(ii). This completes the proof of the lemma.

Lemma 3.9. For any integer $k>1$, we have $\varepsilon_{1}(k) \subseteq \mathscr{D}(k)$.
Proof. Let $D \in \mathcal{E}_{1}(k)$. We need to show that $D \in \mathscr{D}(k)$. If $D \in \mathcal{E}(k)$, then by Theorem 3.6, $D \in \mathscr{D}(k)$. Hence we assume that $D \in \varepsilon_{1}(k)-\mathcal{E}(k)$, and Lemma 3.9 holds for graphs in $\varepsilon_{1}(k)$ with smaller order.

For any $e \in A\left(D^{c}\right)$, if $\lambda(D+e) \geq k+1$, then $D \in \mathscr{D}(k)$. Hence we assume that $\lambda(D+e) \leq k+1$. Let W be a j-arc-cut of $D+e$ for some $j \leq k$. By Lemma 3.8 (ii), $e \notin W$ and so by Lemma 3.8(iii), for some digraphs H, H^{\prime} satisfying (12), $D \in[H, H]_{k}$ and $W=\left(V(H), V\left(H^{\prime}\right)\right)_{D}$. Let $e=(u, v)$. Since $e \notin W$, we cannot have $u \in V(H)$ and $v \in V\left(H^{\prime}\right)$. By the definition of [$\left.H, H^{\prime}\right]_{k}$, we cannot have $v \in V(H)$ and $u \in V\left(H^{\prime}\right)$. Hence either $u, v \in V(H)$ or $u, v \in \underline{V}\left(H^{\prime}\right)$. Without loss of generality, we assume that $u, v \in V(H)$, and so $e \in A\left(H^{c}\right)$. By (12), $H \in \varepsilon_{1}(l)$ and so by induction, $\bar{\lambda}(H+e) \geq k+1$. It follows that $\bar{\lambda}(D+e) \geq \bar{\lambda}(H+e) \geq k+1$, and so by definition, $D \in \mathscr{D}(k)$.

Definition 3.10. Let n and k be integers with $n>k>0$ and q, r be nonnegative integers satisfying $n=q(k+2)+r$ with $0 \leq r \leq k+1$,
(i) Define $s^{\prime}(n, k)$ to be the set of all integral sequences $\left(s_{1}, s_{2}, \ldots, s_{q+r}\right)$ such that $s_{1}=k+2$, and for $i \geq 2,\left|s_{i}\right| \in\{1, k+2\}$. Note that if $\left(s_{1}, s_{2}, \ldots, s_{q+r}\right) \in s^{\prime}(n, k)$, then as $q(k+2)+r=n=\sum_{i=1}^{q+r}\left|s_{i}\right|$, there are exactly r of the $\left|s_{i}\right|$'s equaling one and q of the $\left|s_{i}\right|$'s equaling $k+2$. Define $\mathcal{E}^{\prime}(n, k)=\left\{L(\mathbf{s}): \mathbf{s} \in \delta^{\prime}(n, k)\right\}$ and $\mathcal{E}^{\prime}(k)=\cup_{n \geq k+2} \mathcal{E}^{\prime}(n, k)$.
(ii) Define $\varepsilon_{1}^{\prime}(k)$ to be the family consisting of digraphs satisfying each of the following.
$\left(\right.$ ii-A) $\mathcal{E}^{\prime}(k) \subset \mathcal{E}_{1}^{\prime}(k)$.
(ii-B) For $H, H^{\prime} \in \S_{1}^{\prime}(k) \cup\left\{K_{1}\right\}$ satisfying $\left|V\left(H_{1}\right)\right|+\left|V\left(H_{2}\right)\right|>2$ and $\left\lfloor\frac{n}{k+2}\right\rfloor=\left\lfloor\frac{\left|V\left(H_{1}\right)\right|}{k+2}\right\rfloor+\left\lfloor\frac{\left|V\left(H_{2}\right)\right|}{k+2}\right\rfloor,\left[H, H^{\prime}\right]_{k} \subset \varepsilon_{1}^{\prime}(k)$.

By Definition 3.10, the corollary below follows immediately from Theorem 3.6 and Lemma 3.9.

Corollary 3.11. $\mathscr{E}_{1}^{\prime}(k) \subseteq \mathscr{D}(k)$.
Given the structure of digraphs in $\varepsilon_{1}^{\prime}(k)$, we can compute the size of digraphs in $\varepsilon_{1}^{\prime}(k)$.
Lemma 3.12. Let $n>k+1 \geq 2$ be integers. For any digraph $D \in \varepsilon_{1}^{\prime}(k)$, we have

$$
\begin{equation*}
|A(D)|=\binom{n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) . \tag{13}
\end{equation*}
$$

Proof. We first assume that $D \in \mathcal{E}^{\prime}(k)$ with $|V(D)|=n$ and $n>k+1 \geq 2$. If $n=k+2$, then by Definition 3.10, we have $D=H(k, 2)$, and so $|A(D)|=(k+2)(k+1)-1$. Thus (13) holds. Assume that $n>k+2$ and (13) holds for smaller values of n. Let q, r be nonnegative integers satisfying $n=q(k+2)+r$ with $0 \leq r \leq k+1$. By Definitions 3.1 and 3.10 , we have $\left|s_{q+r}\right| \in\{1, k+2\}$.
Case 1. $\left|s_{q+r}\right|=1$.
By Definition 3.10, we may assume that $s_{q+r}=1$ and $D \in\left[H, K_{1}\right]_{k}$ for some $H \in \mathcal{E}^{\prime}(k)$. Denote $V\left(K_{1}\right)=\{v\}$. Since $s_{q+r}=1$, we have $r \geq 1$, and so $n-1=q(k+2)+r-1$, which implies $\left\lfloor\frac{n}{k+2}\right\rfloor=\left\lfloor\frac{n-1}{k+2}\right\rfloor$. By induction, we have

$$
\begin{aligned}
|A(D)| & =|A(H)|+k+(n-1) \\
& =\binom{n-1}{2}+(n-2) k+\left\lfloor\frac{n-1}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right)+k+(n-1) \\
& =\binom{n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) .
\end{aligned}
$$

Case 2. $\left|s_{q+r}\right|=k+2$.
By Definition 3.10, we may assume that $s_{q+r}=k+2$ and $D=[H, H(k, 2)]_{k}$ for some $H \in \mathcal{E}^{\prime}(k)$. Since $s_{1}=k+2$ and $s_{q+r}=k+2$, we have $q \geq 2$, and so $n-(k+2)=(q-1)(k+2)+r$, which implies $\left\lfloor\frac{n}{k+2}\right\rfloor=\left\lfloor\frac{n-(k+2)}{k+2}\right\rfloor+1$. By induction, we have

$$
\begin{aligned}
|A(D)|= & |A(H)|+k+(n-(k+2))(k+2)+|A(H(k, 2))| \\
= & \binom{n-(k+2)}{2}+(n-(k+2)-1) k+\left\lfloor\frac{n-(k+2)}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) \\
& +k+[n-(k+2)](k+2)+(k+2)(k+1)-1 \\
= & \binom{n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) .
\end{aligned}
$$

Thus, (13) holds for any $D \in \mathcal{E}^{\prime}(k)$. Next, we assume that $D \in \mathcal{E}_{1}^{\prime}(k)-\mathcal{E}^{\prime}(k)$. By Definition 3.10, there exist $H, H^{\prime} \in \varepsilon_{1}^{\prime}(k)$ satisfying Definition $3.10(\mathrm{ii}-\mathrm{B})$. Let $n_{1}=|V(H)|$ and $n_{2}=\left|V\left(H^{\prime}\right)\right|$. Thus $n=n_{1}+n_{2}$ and $\left\lfloor\frac{n}{k+2}\right\rfloor=\left\lfloor\frac{n_{1}}{k+2}\right\rfloor+\left\lfloor\frac{n_{2}}{k+2}\right\rfloor$. By induction, we have

$$
\begin{aligned}
|A(D)|= & |A(H)|+k+n_{1} n_{2}+\left|A\left(H^{\prime}\right)\right|\binom{n_{1}}{2}+\left(n_{1}-1\right) k+\left\lfloor\frac{n_{1}}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right)+k+n_{1} n_{2} \\
& +\binom{n_{2}}{2}+\left(n_{2}-1\right) k+\left\lfloor\frac{n_{2}}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) \\
= & \binom{n_{1}}{2}+\binom{n_{2}}{2}+n_{1} n_{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) \\
= & \binom{n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) .
\end{aligned}
$$

By induction, (13) holds for any $D \in \mathcal{E}_{1}^{\prime}(k)$.
The following lemma gives us more information on the structure of digraphs in $\mathfrak{D}(k)$.

Lemma 3.13. Let $k \geq 2$ be an integer. If $D \in \mathscr{D}(k)$ and if for some $H_{1}, H_{2} \in \mathscr{D}(k)$, we have $D \in\left[H_{1}, H_{2}\right]_{k}$, then for each $i \in\{1,2\}, H_{i} \neq K_{k+1}^{*}$.

Proof. By contradiction, we assume that $H_{2} \cong K_{k+1}^{*}$ and $D \in\left[H_{1}, H_{2}\right]_{k}$, and so $D \in \mathscr{D}(k)$. Let $V\left(H_{2}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}$. By Definition 2.2, we may assume that $\left|\left(H_{1}, H_{2}\right)_{D}\right|=k$, and so we may assume that $N_{D}^{+}\left(V\left(H_{1}\right), V\left(H_{2}\right)\right) \subseteq\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Since $H_{1}, H_{2} \in \mathscr{D}(k)$, both $\left|V\left(H_{1}\right)\right| \geq k+1$ and $\left|V\left(H_{2}\right)\right| \geq k+1$. Thus there must be a vertex $u \in V\left(H_{1}\right)$ and an integer i with $1 \leq i \leq k$, such that $a=\left(u, v_{i}\right) \notin A(D)$. Since $D \in \mathscr{D}(k), D+a$ has a subdigraph D^{\prime} with $\lambda\left(D^{\prime}\right) \geq k+1$. Note that $d_{D+a}^{-}\left(v_{k+1}\right)=d_{D}^{-}\left(v_{k+1}\right)=k, v_{k+1} \notin V\left(D^{\prime}\right)$. Since, for each j with $1 \leq j \leq k$ and $j \neq i, d_{D+a-v_{k+1}}^{-}\left(v_{j}\right) \leq d_{D-v_{k+1}}^{-}\left(v_{j}\right)+1 \leq k$, it follows that $v_{j} \notin V\left(D^{\prime}\right)$ for each j with $1 \leq j \leq k$ and $j \neq i$. Since $k \geq 2, d_{D+a-v_{k+1}}^{-}\left(v_{i}\right) \leq k$, and $v_{i} \notin V\left(D^{\prime}\right)$ as well. This implies that $a \notin A\left(D^{\prime}\right)$, and so $D^{\prime} \subseteq D$. Contrary to the assumption that $D \in \mathscr{D}(k)$. This proves the lemma.

4. The extremal function

The main result of this section is Theorem 4.1, which clearly implies Theorem 1.4.

Theorem 4.1. Let n, k be integers with $n>k+1 \geq 2$. Then for any $D \in \mathscr{D}(n, k)$, we have

$$
\begin{equation*}
|A(D)| \geq\binom{ n}{2}+(n-1) k+\left\lfloor\frac{n}{k+2}\right\rfloor\left(1+2 k-\binom{k+2}{2}\right) . \tag{14}
\end{equation*}
$$

Furthermore, equality holds in (14) if and only if $D \in \varepsilon_{1}^{\prime}(k)$.
Proof. We argue by induction to prove (14) on $n=|V(D)|$. If $n=k+2$, then $D=H(k, 2)$. Thus we have $|A(D)|=$ $(k+2)(k+1)-1$, and so (14) holds. Assume that $n>k+2$ and (14) holds for smaller values of n. Let $q, r \geq 0$ be integers satisfying $n=q(k+2)+r$ with $0 \leq r \leq k+1$.

As $n>k+2, D \not \equiv K_{k+2}^{*}$. By Lemma 2.4, one of the three conclusions of Lemma 2.4 must hold.
Claim 1. If Lemma 2.4(i) or (ii) holds, then (14) holds as well. Moreover, if $r=0$, then (14) holds with strict inequality.
Without loss of generality, we assume that $D \in\left[H, K_{1}\right]_{k}$ for some $H \in \mathscr{D}(k)$ with $V\left(K_{1}\right)=\{v\}$. As $|V(D)|=n-1$, by Definition 2.2, $\left|\partial_{D}^{+}(v)\right|=n-1$ and $\left|\partial_{D}^{-}(v)\right|=k$.
Case 1: $r=0$.
Then $q-1=\left\lfloor\frac{n-1}{k+2}\right\rfloor$. By induction, we have

$$
\begin{aligned}
|A(D)| & =|A(H)|+k+(n-1) \\
& \geq\binom{ n-1}{2}+(n-2) k+(q-1)\left(1+2 k-\binom{k+2}{2}\right)+k+(n-1) \\
& =\binom{n}{2}+(n-1) k+(q-1)\left(1+2 k-\binom{k+2}{2}\right) \\
& >\binom{n}{2}+(n-1) k+q\left(1+2 k-\binom{k+2}{2}\right) .
\end{aligned}
$$

Thus (14) holds with strict inequality in this case.
Case 2: $r>0$.
Then $q=\left\lfloor\frac{n-1}{k+1}\right\rfloor$. By induction,

$$
\begin{align*}
|A(D)| & =|A(H)|+k+(n-1) \\
& \geq\binom{ n-1}{2}+(n-2) k+q\left(1+2 k-\binom{k+2}{2}\right)+k+(n-1) \\
& =\binom{n}{2}+(n-1) k+q\left(1+2 k-\binom{k+2}{2}\right) . \tag{15}
\end{align*}
$$

Thus (14) holds in this case as well, and so Claim 1 follows.
By Claim 1, we may assume that Lemma $2.4(\mathrm{iii})$ holds. Thus $D \in\left\{\left[H_{1}, H_{2}\right]_{k},\left[H_{2}, H_{1}\right]_{k}\right\}$ for some $H_{1}, H_{2} \in \mathscr{D}(k)$. Let $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$. Then $n=n_{1}+n_{2}$. Without loss of generality, we assume that $n_{1} \geq n_{2}$. By Lemma 3.13, $n_{2} \geq k+2$. Let $q_{1}, q_{2} \geq 1, r_{1}, r_{2}$ be integers satisfying $n_{1}=q_{1}(k+2)+r_{1}, 0 \leq r_{1} \leq k+1$, and $n_{2}=q_{2}(k+2)+r_{2}$, $0 \leq r_{2} \leq k+1$. Thus $q_{1}=\left\lfloor\frac{n_{1}}{k+2}\right\rfloor$ and $q_{2}=\left\lfloor\frac{n_{2}}{k+2}\right\rfloor$.

Claim 2. If Lemma 2.4(iii) holds, then (14) holds. Moreover, if $r_{1}+r_{2} \geq k+2$, then (14) holds with strict inequality.

Since $n=n_{1}+n_{2}=\left(q_{1}+q_{2}\right)(k+2)+\left(r_{1}+r_{2}\right)$, we observe that $r_{1}+r_{2} \leq k+1$ if and only if $q_{1}+q_{2}=q$, and if and only if $r=r_{1}+r_{2}$. With this observation, we consider the following two cases. Note that if $n_{1} \geq 2$ and $n_{2} \geq 2$, then $\binom{n_{1}}{2}+\binom{n_{2}}{2}+n_{1} n_{2}=\binom{n}{2}$.
Case 1: $r_{1}+r_{2} \leq k+1$.
Then $q_{1}+q_{2}=q$. By Induction,

$$
\begin{align*}
|A(D)|= & \left|A\left(H_{1}\right)\right|+k+n_{1} n_{2}+\left|A\left(H_{2}\right)\right| \\
\geq & \binom{n_{1}}{2}+\left(n_{1}-1\right) k+q_{1}\left(1+2 k-\binom{k+2}{2}\right)+k+n_{1} n_{2}+\binom{n_{2}}{2} \\
& +\left(n_{2}-1\right) k+q_{2}\left(1+2 k-\binom{k+2}{2}\right) \\
= & \binom{n}{2}+(n-1) k+q\left(1+2 k-\binom{k+2}{2}\right) . \tag{16}
\end{align*}
$$

Hence (14) holds in this case.
Case 2: $r_{1}+r_{2} \geq k+2$.
Then $q_{1}+q_{2}=q-1$ and $r=r_{1}+r_{2}-(k+2)$. Observe that for any $k \geq 1,1+2 k<\binom{k+2}{2}$, and so by induction,

$$
\begin{aligned}
|A(D)|= & \left|A\left(H_{1}\right)\right|+k+n_{1} n_{2}+\left|A\left(H_{2}\right)\right| \\
\geq & \binom{n_{1}}{2}+\left(n_{1}-1\right) k+q_{1}\left(1+2 k-\binom{k+2}{2}\right)+k+n_{1} n_{2}+\binom{n_{2}}{2} \\
& +\left(n_{2}-1\right) k+q_{2}\left(1+2 k-\binom{k+2}{2}\right) \\
= & \binom{n}{2}+(n-1) k+(q-1)\left(1+2 k-\binom{k+2}{2}\right) \\
> & \binom{n}{2}+(n-1) k+q\left(1+2 k-\binom{k+2}{2}\right) .
\end{aligned}
$$

Thus (14) holds with strict inequality in this case, and so Claim 2 is justified.

Claim 3. If equality holds in (14) for a digraph $D \in \mathscr{D}(k, n)$, then $D \in \mathcal{E}_{1}^{\prime}(k)$.
Let $D \in \mathscr{D}(k, n)$ be a digraph satisfying equality in (14). We argue by induction on $n=|V(D)| \geq k+2$. If $n=k+2$, then $D=H(k, 2) \in \mathcal{E}^{\prime}(k)$. Assume that $n>k+2$ and that Claim 3 holds for smaller values of n. Since $n>k+2$, by Lemma 2.4, one of the conclusions of Lemma 2.4 must hold.

If D satisfies Lemma $2.4(\mathrm{i})$ or (ii), without loss of generality, we assume that $D \in\left[H, K_{1}\right]_{k}$ for some $H \in \mathcal{E}^{\prime}(k)$ with $V\left(K_{1}\right)=v$. By Claim 1, if equality holds in (14), then $r>0$, which implies that $n-1=q(k+2)+(r-1)$, with $0 \leq r-1 \leq k$. Since equality in (14) holds, it follows by (15) that $|A(H)|=\binom{n-1}{2}+(n-2) k+(q-1)\left(1+2 k-\binom{k+2}{2}\right)$. By induction, $H \in \xi_{1}^{\prime}(n-1, k)$. By Definition $3.10, D \in \mathcal{E}^{\prime}(n, k)$, and so $D \in \mathcal{E}^{\prime}(k)$ in this case.

Hence we may assume that D satisfies Lemma 2.4(iii), and so $D \in\left[H_{1}, H_{2}\right]_{k}$ for some $H_{1}, H_{2} \in \mathcal{E}^{\prime}(k)$. Again, let $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right| ;$ and let $q_{1}, q_{2} \geq 1, r_{1}, r_{2}$ be integers satisfying $n_{1}=q_{1}(k+2)+r_{1}, 0 \leq r_{1} \leq k+1$, and $n_{2}=q_{2}(k+2)+r_{2}, 0 \leq r_{2} \leq k+1$. By Claim 2, if equality holds in (14), then $r_{1}+r_{2} \leq k+1$, which implies that $q=q_{1}+q_{2}$ and $r=r_{1}+r_{2}$. Since equality in (14) holds, it follows by (15) that both $\left|A\left(H_{1}\right)\right|=\binom{n_{1}}{2}+\left(n_{1}-1\right) k+q_{1}\left(1+2 k-\binom{k+2}{2}\right)$ and $\left|A\left(H_{2}\right)\right|=\binom{n_{2}}{2}+\left(n_{2}-1\right) k+q_{2}\left(1+2 k-\binom{k+2}{2}\right)$. Therefore by induction, $H_{1}, H_{2} \in \varepsilon_{1}^{\prime}(k)$. By Definition $3.10, D \in\left[H_{1}, H_{2}\right]_{k}$, which is in $\varepsilon_{1}^{\prime}(n, k)$, and so $D \in \varepsilon_{1}^{\prime}(k)$. This induction argument justifies the claim.

Now Theorem 4.1 follows from Lemma 3.12 and Claims 1-3.

Acknowledgments

The research of Xiaoxia Lin is supported in part by the Natural Science Foundation of Fujian Province of China (No.2016J01666) and by Shang-Da Li Fund of Jimei University, China (ZC2013014). The research of Suohai Fan is supported in part by the National Natural Science Foundation of China (Grant No.61572233).

References

[1] J. Anderson, H.-J. Lai, X. Lin, M. Xu, On k-maximal strength digraphs, J. Graph Theory, http://dx.doi.org/10.1002/jgt.22008 (online publication).
[2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, second ed., Springer-Verlag, London, 2009.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[4] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187-197.
[5] W. Mader, Minimale n-fach kantenzusammenhïngende Graphen, Math. Ann. 191 (1971) 21-28.
[6] D.W. Matula, The cohesive strength of graphs, in: G. Chartrand, S.F. Kapoor (Eds.), in: The Many Faces of Graph Theory, Lecture Notes in Mathematics, vol. 110, Springer-Verlag, berlin, 1969, pp. 215-221.
[7] D. Matula, K-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 459-480.
[8] D.W. Matula, Subgraph connectivity number of a graph, in: G. Chartrand, S.F. Kapoor (Eds.), in: Theorey and Applications of Graphs, Lecture Notes in Mathematics, vol. 642, Springer-Verlag, berlin, 1976, pp. 371-383.

[^0]: * Corresponding author.

 E-mail addresses: lxx@jmu.edu.cn (X. Lin), tfsh@jnu.edu.cn (S. Fan), hongjianlai@gmail.com (H.-J. Lai), murong.xu009@gmail.com (M. Xu).

