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a b s t r a c t

A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. Hong
et al. proved that δ+(D) + δ−(D) ≥ |V (D)| − 4 implies D is supereulerian except some
well-characterized digraph classes if the minimum degree is large enough. In this paper,
we characterize the digraphs D which are not supereulerian under the condition d+

D (u) +

d−

D (v) ≥ |V (D)| − 4 for any pair of vertices u and v with uv ∉ A(D) without the minimum
degree constraint.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Weconsider finite simple digraphs that do not have loops nor parallel arcs (bi-direction edges are allowed). For undefined
terms and notations, refer to [4] for graphs and [1] for digraphs. To avoid possible confusion, we use ditrails, dipaths and
dicycles to mean directed trails, paths, and cycles, while trails, paths and cycles refer to undirected graph terminology.

Let D be a digraph. We use uv to denote an arc oriented from a vertex u to a vertex v. For a vertex u of D, the out-degree
d+

D (u) (in-degree d−

D (u)) is the number of arcs leaving from u (coming to u). If X and Y are disjoint subsets of V (D), then
λD(X, Y ) denotes the maximum number of arc-disjoint dipaths from X to Y in D. As in [1], A(D) denotes the set of arcs in D,
and δ+(D), δ−(D) denote the minimum out-degree and the minimum in-degree of D.

Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [3] in 1977 proposed the supereulerian problem,
which seeks to characterize graphs that have spanning eulerian subgraphs, and they indicated that this problem would be
very difficult. Pulleyblank [9] later in 1979 proved that determining whether a graph is supereulerian, even within planar
graphs, is NP-complete. Since then, there have been lots of researches on this topic. Catlin [5] in 1992 presented the first
survey on supereulerian graphs. Later Chen et al. [6] gave an update in 1995, specifically on the reductionmethod associated
with the supereulerian problem. A recent survey on supereulerian graphs is given in [8].

It is natural to investigate supereulerian digraphs. A digraph D is said to be eulerian if D is strongly connected and every
vertex has a same in-degree and out-degree. If a digraph contains a spanning eulerian subdigraph, then D is said to be
supereulerian. In [7], Hong et al. proved that for any strong digraphDwithmin{δ+(D), δ−(D)} ≥ 4, if δ+(D)+δ−(D) > n−4
then D is supereulerian and characterize the counterexample when the equality holds.

Later, Bang-Jensen andMaddaloni [2] gave some sufficient Ore-type conditions to be supereulerian. LetD be a digraph on
n vertices. A pair of vertices (u, v) ofD is said to be dominating (dominated) if there exists a vertexw such that uw, vw ∈ A(D)
(wu, uv ∈ A(D)). In [2], Bang-Jensen andMaddaloni proved that a strong digraphD is supereulerian if d+

D (x)+d−

D (y) ≥ n−1
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for any ordered pair (x, y) of dominated or dominating non-adjacent vertices. Also, in [2], they proved that a strong D is
supereulerian if d+

D (x)+ d−

D (x)+ d+

D (y)+ d−

D (y) ≥ 2n− 3 for any pair of non-adjacent vertices. In this paper, we investigate
the Ore-type sufficient condition of supereulerian digraphs and obtain the following theorem.

Theorem 1.1. Let D be a strong digraph of order n ≥ 11. If

d+

D (x) + d−

D (y) ≥ n − 4 for any pair of vertices (x, y) with xy ∉ A(D), (1.1)

then D is supereulerian if and only if it does not belong to a well characterized family of exceptional digraphs.

The proof arguments take a different approach from that in [7]. The family of exceptional graphs are also different from
that in [7]. For simplicity of the statement, we give some terminologies used in this paper first. For a vertex set X ⊂ V (D),
denote by N+

D (X) the set of vertices in V (D)− X which has an in-neighbor in X and by N−

D (X) the set of vertices in V (D)− X
which has an out-neighbor in X . For simplicity, for a subdigraph H , we write N+

D (H) = N+

D (V (H)) and N−

D (H) = N−

D (V (H)).
For a pair of disjoint sets X, Y ⊂ V (D), (X, Y )D stands the set of all the arcs with tail in X and head in Y . When Y = V −X , we
use ∂+

D (X) = (X, V − X)D, and ∂−

D (X) = (V − X, X)D. When X = {v}, we also use ∂+

D (v) = ∂+

D ({v}) and N+

D (v) = N+

D ({v}).
For any disjoint vertex sets X, Y , an (X, Y )-ditrail (or dipath) is a ditrail (or a dipath) from a vertex in X to a vertex in

Y and none of whose internal vertex lies in X ∪ Y . An (X, Y )-segment of a ditrail (or a dipath) P is an (X, Y )-ditrail (or an
(X, Y )-dipath) which is a subdigraph of P . When X = {x} and Y = {y}, we may use (x, y)-ditrail (or dipath) instead of
({x}, {y})-ditrail (or dipath).

In Section 2, we apply a necessary condition for a digraph to be supereulerian in [7] to find some candidates of the
exceptional graphs for the main result. The proof of the main result is presented in Section 3.

2. Some classes of digraphs

Let D be a strong digraph and U ⊂ V (D). Then in D[U], the digraph induced by U , we can find some ditrails P1, . . . , Pt
such that

t
i=1 V (Pi) = U and A(Pi) ∩ A(Pj) = ∅ for any i ≠ j. Let τ(U) be the minimum value of such t . Then

c(G(D[U])) ≤ τ(U) ≤ |U|, where c(G(D[U])) is the number of components of the underlying graph of D[U]. For any
X ⊆ V (D) − U , denote Y := V (D) − U − X and let

h(U, X) := min{|∂+

D (X)|, |∂−

D (X)|} + min{|(U, Y )D|, |(Y ,U)D|} − τ(U), and
h(U) := min{h(U, X) : X ∩ U = ∅}.

In [7], Hong et al. give the following proposition, and use it to find some classes of digraphs which are not supereulerian.

Proposition 2.1 ([7]). If D has a spanning eulerian subdigraph, then for any U ⊂ V (D), h(U) ≥ 0.

Hong et al. [7] used this proposition to find the following example digraphs, each of which has a large minimum degree
sum but contains no spanning eulerian subdigraphs.

Example 2.2. Let k1, k2 ≥ 0, ℓ ≥ 2 be integers with (k1 + 1)(k2 + 1) ≥ ℓ − 1, and D1 and D2 be two disjoint complete
digraphs of order k1 + 1 and k2 + 1, respectively. Let U be an independent set disjoint from V (D1)∪ V (D2) with |U| = ℓ. Let
D(k1, k2, ℓ) denote the family of digraphs such thatD ∈ D(k1, k2, ℓ) if and only ifD is the digraph obtained fromD1∪D2∪U
by adding all arcs directed from every vertex in D2 to every vertex in U ∪ D1, and all arcs directed from every vertex in U to
every vertex in D1, and then by adding a set of ℓ − 1 arcs from some vertices in D1 to some vertices in D2.

Let D1 denote the family D(k1, k2, 2), Hong et al. [7] proved if a simple digraph D satisfying min{δ+(D), δ−(D)} ≥

4 and δ+(D) + δ−(D) ≥ n − 4, then D is supereulerian if and only if D is not a member in D1. Moreover, if the
condition min{δ+(D), δ−(D)} ≥ 4 is removed, more new exceptional non-supereulerian digraphs will appear. Let D2 ⊆2

i=1 D(i, k2, 3) ∪ D(k1, i, 3) be the family of digraphs with minimum out-degree or minimum in-degree 2. By using
Proposition 2.1, Hong et al. [7] proved no digraph in D(k1, k2, ℓ) is supereulerian, and so every one in D1 ∪ D2 is
nonsupereulerian.

Next, let D3 be the set of digraphs obtained from digraphs in D(0, k2, 2) ∪ D(k1, 0, 2) by replacing a vertex in U by
a dicycle w1w2w1 of length 2 and adding all the arcs from {w1, w2} to V (D1) and all the arcs from V (D2) to {w1, w2}. By
Proposition 2.1, none of the digraphs inD3 is supereulerian. In fact, letD ∈ D3, by the construction, τ(U) = 2. Let X = V (D1)
and Y = V (D2). Then h(U, X) = min{|∂+

D (X)|, |∂−

D (X)|} + min{|(U, Y )D|, |(Y ,U)D|} − τ(U) = 1 + 0 − 2 < 0, and so D is
not supereulerian by Proposition 2.1.

Therefore, for i = 1, 2, 3, none of the spanning subdigraphs of digraphs in Di has a spanning eulerian subdigraph. For
i = 1, 2, 3, let Fi be the family of digraphs such that D ∈ Fi if and only if for some member D′

∈ Di, D is a strong spanning
subdigraph of D′ satisfying (1.1). Then, each Fi is also a family of non-supereulerian digraphs. In next section, we will show
that if a digraph D satisfies this Ore-type degree condition (1.1), then D is supereulerian if and only if D is not a member of
F1 ∪ F2 ∪ F3.
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Fig. 1. An example of increment, where the (u, v)-ditrail Q = uw1w2w3v, Q̄ = uw1w2w3w4w5w3v, IQ = {w1, w3, w4, w5}.

3. An ore-type degree condition for a digraph to be supereulerian

In this section, we characterize the non-supereulerian digraphs D which satisfy (1.1). The main tool used in this paper,
called increment, is the same to that in [7]. The formal definition is stated below.

Definition 3.1 ([7]). Let H be a eulerian subdigraph of a digraph D. Suppose for some distinct vertices u, v ∈ V (H), Q is a
(u, v)-ditrail of H . Let H ′ be the connected component of the underlying graph H − A(Q ) containing both u and v. Define
IQ = V (H) − V (H ′), which is called the increment of Q with respect to H . If the eulerian subdigraph H is clear from context,
we also say IQ is the increment of Q .

Since H can also be viewed as a closed ditrail, H has a minimum (u, v)-ditrail that contains all arcs in A(H[IQ ]) ∪ A(Q ).
This ditrail is denoted by Q̄ . Note that it is possible that Q̄ = Q . Also, the underlying graph of H[IQ ] might not be connected
(see Fig. 1 for an example).

Using these definitions and notations, we have the following observation stated as the next lemma.

Lemma 3.2 ([7]). Let D be a digraph, H be a eulerian subdigraph of D, and X, Y ⊆ V (H) be two disjoint vertex sets. Then for any
(X, Y )-ditrail Q , (V (H − IQ ), IQ )H ∪ (IQ , V (H − IQ ))H ⊆ A(Q ), and for any two arc-disjoint (X, Y )-ditrails Q1,Q2, IQ1 ∩ IQ2 = ∅.

In order to make the proof be easier to read, we present a lemma first.

Lemma 3.3. Let D be a strong digraph with order n ≥ 5. If δ−(D) ≥ n − 3 or δ+(D) ≥ n − 3, then for any two vertices u, v
there is a (u, v)-ditrail P of D such that |V (P)| ≥ n − 1.

Proof. By symmetry, we only prove the case when δ−(D) ≥ n − 3. Let u, v be two arbitrary vertices of D and P be a
(u, v)-ditrail such that p := |V (P)| is maximized. Denote P = v1v2 . . . vt , where v1 = u, vt = v. Note that t may be greater
than p. We first show that t ≥ 3. In fact, as δ−(D) ≥ n − 3 ≥ 2, there is a vertex w ∈ N−

D (v) different from u. Since D is
strong, u has a dipath to w in D − wv. By adding the arc wv to the dipath, we obtain a (u, v)-ditrail with at least 2 arcs,
which implies t ≥ 3.

Let R = V (D) − V (P). If |R| ≤ 1, then we are done. So we may assume |R| ≥ 2. Since D is strong, we may assume
there exists a vertex w ∈ R such that wvi ∈ A(D) for some 1 ≤ i ≤ t . Choose such w and vi such that i is maximized. Let
X = {v1, . . . , vi} and Y = V (P) − X .

If |X | ≥ 3, then neither viw ∈ A(D) nor vi−1w ∈ A(D). For, otherwise, either v1 . . . viwvi . . . vt or v1 . . . vi−1wvi . . . vt
is a (u, v)-ditrail with p + 1 vertices, contradicts the maximality of p. This, together with the fact δ−(D) ≥ n − 3,
forces N−

D (w) = V (D) − {vi−1, vi, w}. Pick w′
∈ R − {w}. Then w′w ∈ A(D). Similar to the above, we may show that

N−

D (w′)∩{vi−1, vi} = ∅. If vi−2 ≠ vi then vi−2w
′
∉ A(D), since otherwise, v1 . . . vi−2w

′wvi . . . vt is a (u, v)-ditrail with p+1
vertices, a contradiction. If vi−2 = vi, then vi−3w

′
∉ A(D), since otherwise, v1 . . . vi−3w

′wvi−2 . . . vt is a (u, v)-ditrail with
p + 2 vertices (here vi−3 exists according to the assumption |X | ≥ 3), a contradiction. In either cases, d−

D (w′) ≤ n − 4, a
contradiction to the fact δ−(D) ≥ n − 3.

If |X | ≤ 2, then either i ≤ 2 or i = 3 and v1 = v3. Similar to the previous paragraph, it is easy to see that N−

D (w)∩X = ∅.
Thus

|N−

D (w) ∩ Y | ≥ n − 3 − (|R| − 1) = n − |R| − 2. (3.1)

Also, by the assumption that t ≥ 3 and u ≠ v, Y ≠ ∅. For any vj ∈ Y , by the choice of vi and X , j > i and thusN−

D (vj)∩R = ∅.
This, together with the fact δ−(D) ≥ n − 3, forces |R| = 2 and N−

D (vj) = V (P) − {vj}. By the arbitrary of vj, D[Y ] is a
complete digraph. We relabel the vertices of Y as u1, . . . , um = vt . By (3.1), |N−

D (w) ∩ Y | ≥ 1. Assume ujw ∈ A(D). Then
v1 . . . viujwviu1 . . . uj−1uj+1 . . . um is a (u, v)-ditrail with p + 1 vertices, a contradiction. This completes the proof. �

Theorem 3.4. Let D be a strong digraph of order n ≥ 11 satisfying (1.1). Then D has a spanning eulerian subdigraph if and only
if D ∉ F1 ∪ F2 ∪ F3.
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Proof. By Example 2.2, no digraph in F1 ∪ F2 ∪ F3 has a spanning eulerian subdigraph, and so the necessity is clear. To
prove the sufficiency, we assume that D satisfies (1.1) and that

D is not supereulerian (3.2)

to show that D ∈ F1 ∪ F2 ∪ F3. Choose a eulerian subdigraph H of D such that

|V (H)| is maximized. (3.3)

For any u ∈ N+

D (H), since D is strong, there is a dipath from u to V (H), which must visit a vertex of N−

D (H), say v. Let P be
the (u, v)-segment of this dipath. Then there exist x, y ∈ V (H) such that xu, vy ∈ A(D) − (A(H) ∪ A(P)). Furthermore, we
may choose H as a eulerian subdigraph satisfying (3.3) and choose u ∈ N+

D (H), v ∈ N−

D (H) and P a (u, v)-ditrail in D− A(H)
such that

(1) there exist x, y ∈ V (H) such that xu, vy ∈ A(D) − (A(H) ∪ A(P));
(2) subject to (1), |V (P) − V (H)| is maximized;
(3) subject to (1)(2), |A(P)| is minimized;
(4) subject to (1)(2)(3), d−

D (u) + d+

D (v) is maximized.

(3.4)

Note that V (P) ∩ V (H) ≠ ∅ is possible. Let p = |V (P) − V (H)|. As u ∈ V (P) − V (H), we have p ≥ 1. Let H0 =

D[V (H) ∪ {u, v}] − A(D[{u, v}]) −

A(H) ∪ A(P)


and define

X = {x ∈ V (H) | H0 has a dipath from x to u}, and
Y = {y ∈ V (H) | H0 has a dipath from v to y}.

With these definition, we have the following claim.

Claim 1. Each of the following holds.

(i) Each dicycle of P is vertex-disjoint with H .
(ii) X ≠ ∅, Y ≠ ∅, X ∩ Y = ∅.
(iii) (V (H) − X, X)D ⊆ A(H), (Y , V (H) − Y )D ⊆ A(H).

(i) Suppose, to the contrary, that P contains a dicycle C such that V (H) ∩ V (C) ≠ ∅. Then V (C) ⊆ V (H). For otherwise,
A(H) ∪ A(C) induces a eulerian subdigraph of D with at least |V (H)| + 1 vertices, contradicts (3.3). Thus P − A(C) is still a
ditrail of D satisfying (3.4)(1) and (3.4)(2), and containing less arcs, contradicts (3.4)(3). This proves (i).

(ii) By the choice of P as described in (3.4), X, Y ≠ ∅. Suppose that there exists w ∈ X ∩ Y . Then by the definition
of X and Y , H0 has a dipath P1 from w to u and a dipath P2 from v to w. Thus each Pi is arc-disjoint with P and H .
By the definition of X, Y , V (P1) ⊆ X ∪{u} and V (P2) ⊆ Y ∪{v}. Thus, wemay choosew ∈ X ∩Y such that A(P1)∩A(P2) = ∅.
It follows that H + wP1uPvP2w is a eulerian subdigraph with at least |V (H)| + 1 vertices, contradicts (3.3). This proves (ii).

(iii) It follows from the definitions of X and Y , (V (H)−X, X)D∪(Y , V (H)−Y )D ⊆ A(H)∪A(P). Furthermore, if there is an
arc x′x ∈ A(P) such that x ∈ X and x′

∉ X , then by letting P3 be the dipath from x to u inH0,H+xP3uPx is a eulerian subdigraph
with at least |V (H)|+1 vertices, contradicts (3.3). Thus, (V (H)−X, X)D ⊆ A(H). Similarly, (Y , V (H)−Y )D ⊆ A(H). Claim 1
is proved. �

By the definition of X and Y , for any x ∈ X and y ∈ Y , there exist an (x, u)-dipath in H0 and a (v, y)-dipath in H0. By
Claim 1, X ∩ Y = ∅. So, in the rest of the proof we may use Px and Py to represent the (x, u)-dipath and the (v, y)-dipath,
respectively.

Claim 2. N−

D (u) ⊆ X ∪ V (P),N+

D (v) ⊆ Y ∪ V (P).
By symmetry, it suffices to show N−

D (u) ⊆ X ∪ V (P). In fact, by the definition of X , it suffices to show that N−

D (u) ⊆

V (H)∪V (P). Suppose, to the contrary, that there existsw ∈ N−

D (u)−(V (H)∪V (P)). Ifw ∈ N+

D (H), then thedipath P ′
= wuPv

is also a candidate of P with |V (P ′) − V (H)| = |V (P) − V (H)| + 1, contradicts (3.4). If there exists w1 ∈ N+

D (H) ∩ N−

D (w),
then let x1 ∈ V (H) such that x1w1 ∈ A(D). If x1w1 ∉ A(H) ∪ A(P), then P ′

= w1wuPv is also a candidate of P with
|V (P ′)−V (H)| ≥ |V (P)−V (H)|+1, contradicts (3.4). So, x1w1 ∈ A(H)∪A(P). Sincew1 ∉ V (H), wemust have x1w1 ∈ A(P).
Thus x1 ∈ V (H)∩V (P) and H + x1w1wuPx1 is a eulerian subdigraph with order at least |V (H)|+1, contradicts (3.3). Hence,
(N+

D (H) ∪ V (H)) ∩ (N−

D (w) ∪ {w}) = ∅. It follows that n ≥ |V (H)| + |N+

D (H)| + |N−

D (w)| + 1.
Let H̄ = D[V (H)] − A(P). Then A(H̄) ∩ A(P) = ∅. We will use Lemma 3.3 to find a long trail in H̄ , which will result in a

eulerian subdigraph violating (3.3). First, we need to verify the conditions of Lemma 3.3.

(2A) d+

H̄
(x) ≥ |V (H̄)| − 3 for all x ∈ V (H̄).

For any x ∈ V (H̄) = V (H), as xw ∉ A(D), by (1.1), d+

D (x) + d−

D (w) ≥ n − 4, it follows that d+

D (x) ≥ n − 4 − |N−

D (w)| ≥

|V (H)| + |N+

D (H)| − 3. Thus d+

H̄
(x) ≥ d+

D (x) − |N+

D (x) ∩ N+

D (H)| − d+

P (x) ≥ |V (H)| + |N+

D (H) − N+

D (x)| − d+

P (x) − 3.
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Fig. 2. An example for z ji , where the bold arcs are in H but not in Qi .

If x ∉ V (P), then d+

P (x) = 0 and thus d+

H̄
(x) ≥ d+

D (x) − |N+

D (H)| ≥ |V (H)| − 3 = |V (H̄)| − 3. So, we may assume x ∈ V (P).
By Claim 1(i), d+

P (x) = 1. Also, if xu ∈ A(D), then H + xuPx is a eulerian subdigraph with at least |V (H)| + 1 vertices,
contradicts (3.3). So, u ∈ N+

D (H) − N+

D (x). Thus d+

H̄
(x) ≥ |V (H)| + |N+

D (H) − N+

D (x)| − 4 ≥ |V (H̄)| − 3.

(2B) |V (H̄)| ≥ 5.

Suppose, to the contrary, that |V (H)| = |V (H̄)| ≤ 4. Then any dicycle of D has length at most 4. Let

T = v1v2 . . . vt be a longest dipath of D. (3.5)

Then d+

D (vt) = |N+

D (vt) ∩ V (T )| ≤ 3 and d−

D (v1) = |N−

D (v1) ∩ V (T )| ≤ 3. Since d+

D (vt) + d−

D (v1) ≤ 6 < n − 4, we have
vtv1 ∈ A(D), and so v1Tvtv1 is a dicycle of D. It follows that t ≤ 4. Since D is strong, there is a vertex z ∈ V (D) − V (T ) such
that zvi ∈ A(D) for some 1 ≤ i ≤ t . Thus zvi . . . vtv1 . . . vi−1 is a dipath with |V (T )| + 1 vertices, contradicts (3.5). Hence,
|V (H̄)| = |V (H)| ≥ 5.

So, by Lemma 3.3, for any x ∈ N−

D (u) ∩ V (H) and any y ∈ N+

D (v) ∩ V (H), there is a (y, x)-ditrail Q in H̄ such that
|V (Q )| ≥ |V (H)| − 1. As A(Q ) ∪ A(P) ∪ {xu, vy} induces a eulerian subdigraph of D with at least |V (H)| + p − 1 vertices,
by (3.3), p = 1, which implies u = v. Since D is strong, w has a dipath to V (H), which must visit a vertex w1 of N−

D (H). Let
P ′ be the (w, w1)-segment of this dipath. Then P ′′

:= uwP ′w1 is also a candidate of P such that |V (P ′′) − V (H)| ≥ 2 > p, a
contradiction to (3.4). This proves Claim 2. �

Let λH(X, Y ) denote themaximumnumber of arc-disjoint (X, Y )-dipaths inH . ByMenger’s Theorem (Page 170, Theorem
7.16 of [4]),λH(X, Y ) = min{∂+

H (U) | X ⊂ U and Y∩U = ∅} andλH(Y , X) = min{∂−

H (U) | X ⊂ U and Y∩U = ∅}. However,
sinceH is a eulerian subdigraph ofD, |∂+

H (U)| = |∂−

H (U)| holds for eachU ⊂ V (H). Therefore, we have λH(X, Y ) = λH(Y , X).
Assume λH(X, Y ) = k and Q1, . . . ,Qk are k arc-disjoint (X, Y )-dipaths.

For i = 1, . . . , k, let IQi be the increment of Qi. If IQi ∩ (X ∪ Y ) ≠ ∅ for some i, then Q̄i has some internal vertex in X ∪ Y ,
where Q̄i is the minimal ditrail containing A(Qi)∪ A(H[IQi ]). Thus wemay choose an (X, Y )-segment of Q̄i as Qi. Then all Qi’s
are still pairwise arc-disjoint and the new Q̄i contains less arcs. So, we may assume Q1, . . . ,Qk arc such arc-disjoint dipaths
such that

k
i=1 |A(Q̄i)| is minimized. Then IQi ∩ (X ∪ Y ) = ∅ for i = 1, . . . , k.

Notation 3.5. Suppose that Qi is a dipath from z i1 ∈ X to z i4 ∈ Y and that z i2 be the first vertex of Q̄i in IQi , and z i3 be the last
vertex of Q̄i in IQi .

Note that it is possible that z i1Q̄iz i2 and z i3Q̄iz i4 containmore thanone arcs (see Fig. 2 for example). By Lemma3.2, IQi∩IQj = ∅

for any i ≠ j. Let qi = |IQi |. We may furthermore assume q1 ≤ q2 ≤ · · · ≤ qk.
Note that z11 ∈ X and z14 ∈ Y . Let H ′

:= H − A(Q̄1) − IQ1 + z11Pz11uPvPz14 z
1
4 . Then H ′ is a eulerian subdigraph of D with at

least |V (H)|− q1 + p vertices. By (3.3), we must have q1 ≥ p and so qk ≥ · · · ≥ q1 ≥ p. Let H1 = H −
k

i=1 A(Q̄i)−
k

i=1 IQi .
Note that H1 may not be connected when k ≥ 2. As H can be viewed as a eulerian ditrail, λH(Y , X) = λH(X, Y ) = k
and there are k arc-disjoint (Y , X)-dipaths in H which are also arc-disjoint with Q1, . . . ,Qk. Then by the definition of H1,
λH1(Y , X) = λH(Y , X) = k. By Menger’s Theorem, there is a partition (X ′, Y ′) of V (H1) such that

X ⊆ X ′, Y ⊆ Y ′ and |(Y ′, X ′)H1 | = k. (3.6)

Furthermore, subject to (3.6), we may also assume the partition (X ′, Y ′) satisfies

µ(X ′, Y ′) , |(Y ′, X ′)D−A(H)|


1 +

k
i=1

qi


+

Y ′,

k
i=1

IQi


D

+  k
i=1

IQi


, X ′


D

 is minimized. (3.7)



Y. Hong et al. / Discrete Mathematics 339 (2016) 2042–2050 2047

As H is eulerian, |(X ′, Y ′)H | = |(Y ′, X ′)H | = k. Then by the definition of H1, it is easy to see that (X ′, Y ′)H1 = ∅. Define

R = V (D) − V (H) − V (P), and r = |R|.

Then n = |X ′
| + |Y ′

| +
k

i=1 qi + p + r .

Claim 3. For each i,

N−

D (X) ∪ N+

D (Y )

∩

R ∪ IQi ∪ (V (P) − V (H))


= ∅.

By the symmetry between X and Y , we only show the case when N−

D (X)∩ (R∪ IQi ∪ (V (P)−V (H))) = ∅. Suppose, to the
contrary, that there exist x1 ∈ X and w ∈ R ∪ IQi ∪ (V (P) − V (H)) such that wx1 ∈ A(D). Then wx1 ∉ A(Qi). By Lemma 3.2,
we have wx1 ∉ A(H), Then, by Claim 1(iii), w ∉ V (H) − X and so w ∈ R ∪


V (P) − V (H)


.

If w ∈ V (P) − V (H), then H + x1Px1uPwx1 is a eulerian subdigraph of D with at least |V (H)| + 1 vertices, contradicts
(3.3). Hence, w ∈ R. Then as D is strong, there is a dipath P1 from a vertex x ∈ V (H) to w, none of whose inner vertex
lies in V (H). If V (P1) ∩ V (P) ≠ ∅, then let w1 ∈ V (P) be the first vertex of P1 and thus H + x1Px1uPw1P1wx1 is a eulerian
subdigraph of Dwith at least |V (H)| + 1 vertices, contradicts (3.3). So, V (P1) ∩ V (P) = ∅. Let w2 be the successor of x on P1.
Then w2 ∉ V (H), and so P ′

= w2P1wx1Px1uPv is a candidate of P with |V (P ′) − V (H)| > |V (P) − V (H)|, contradicts (3.4).
This proves Claim 3. �

For any vertex x ∈ X , by Claim 3, d−

D (x) ≤ |X ′
|−1+|N−

D (x)∩Y ′
|. By Claim 2, d+

D (v) ≤ |Y |+p−1+|N+

D (v)∩V (P)∩V (H)|.
In fact, if there exists w ∈ N+

D (v) ∩ V (P) ∩ V (H), then H + wPvw is a eulerian subdigraph with at least |V (H)| + 1
vertices, contradicts (3.3). Thus d+

D (v) ≤ |Y | + p − 1. Moreover, by Claim 3, vx ∉ A(D). So, n − 4 ≤ d+

D (v) + d−

D (x) ≤

|X ′
| + |Y | + p + |N−

D (x) ∩ Y ′
| − 2 = n −

k
i=1 qi − |Y ′

− Y | − r + |N−

D (x) ∩ Y ′
| − 2. It follows that

k
i=1

qi + |Y ′
− Y | + r ≤ 2 + |N−

D (x) ∩ Y ′
|. (3.8)

Similarly, for any y ∈ Y , by considering the pair (y, u), we also have

k
i=1

qi + |X ′
− X | + r ≤ 2 + |N+

D (y) ∩ X ′
|. (3.9)

Combining (3.8) and (3.9), we have

2
k

i=1

qi + |X ′
− X | + |Y ′

− Y | + 2r ≤ 4 + |N−

D (x) ∩ Y ′
| + |N+

D (y) ∩ X ′
|. (3.10)

Note that every arc in (Y , X ′)D ∪ (Y ′, X)D − {yx} contributes at most 1 to |N−

D (x) ∩ Y ′
| + |N+

D (y) ∩ X ′
| and the arc yx

(if exists) contributes 2 to |N−

D (x)∩Y ′
|+|N+

D (x)∩Y ′
|. Thus |N−

D (x)∩X ′
|+|N+

D (y)∩Y ′
| ≤ |(Y , X ′)D∪(Y ′, X)D|+1. By Claim1(iii),

|(Y , X ′)D ∪ (Y ′, X)D| = |(Y , X ′)H ∪ (Y ′, X)H | ≤ |(Y ′, X ′)H1 | = k. Thus, by (3.10), 2
k

i=1 qi + |X ′
− X | + |Y ′

− Y | + 2r ≤

4 + |N−

D (x) ∩ X ′
| + |N+

D (y) ∩ Y ′
| ≤ k + 5. It follows that

|X | + |Y | = n − |X ′
− X | − |Y ′

− Y | −

k
i=1

qi − p − r

≥ n − k − 5 +

k
i=1

qi − p + r

≥ n − 5 + (k − 1)p − k + r

≥ n + r − 6

≥ 5. (3.11)

Claim 4. p = 1 and |X | + |Y | ≥ 6.
Firstly, we show that |(Y , X)D| < |Y | · |X |. Suppose this is not true. Then k = |(Y ′, X ′)H1 | ≥ |(Y , X)H1 | = |(Y , X)D| =

|X | · |Y |. On the other hand, by (3.9), k ≤
k

i=1 qi ≤ 2 + |N+

D (y) ∩ X ′
| − |X ′

− X | ≤ 2 + |X |. It follows that |X | ≥ k − 2.
Similarly, |Y | ≥ k − 2. Hence, if k ≥ 2, then k ≥ |X | · |Y | ≥ (k − 2)2 and thus k ≤ 4. So, k ≤ 4 anyway. By (3.11), we have
|X | + |Y | ≥ 5. This, together with |X | · |Y | ≤ k ≤ 4, forces that k = 4 and either |X | = 1, |Y | = 4 or |X | = 4, |Y | = 1.
However, we have deduced that |X | ≥ k − 2 = 2 and |Y | ≥ k − 2 = 2, a contradiction. So, |(Y , X)D| < |Y | · |X |, which
implies there is a vertex x1 ∈ X and a vertex y1 ∈ Y such that y1x1 ∉ A(D). So, d−

D (x1) + d+

D (y1) ≥ n − 4. On the other hand,
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by Claim 3, d−

D (x1) ≤ |X ′
| − 1 + |N−

D (x1) ∩ Y ′
| and d+

D (y1) ≤ |Y ′
| − 1 + |N+

D (y1) ∩ X ′
|. Hence,

n − 4 ≤ |X ′
| + |Y ′

| − 2 + |N−

D (x1) ∩ X ′
| + |N−

D (y1) ∩ Y ′
|

= n −

k
i=1

qi − p − r − 2 + |N−

D (x1) ∩ X ′
| + |N+

D (y1) ∩ Y ′
|.

It follows that
k

i=1 qi + p + r ≤ 2 + |N−

D (x1) ∩ Y ′
| + |N+

D (y1) ∩ X ′
|. As every arc in (Y ′, X ′)D contributes at most 1 to

|N−

D (x1) ∩ Y ′
| + |N+

D (y1) ∩ X ′
| (note that y1x1 ∉ A(D)), we have |N−

D (x1) ∩ Y ′
| + |N+

D (y1) ∩ X ′
| ≤ |(Y ′, X)D ∪ (Y , X ′)D| =

|(Y ′, X)H ∪ (Y , X ′)H | ≤ k. Thus
k

i=1 qi + p + r ≤ k + 2, and so (k + 1)p ≤ k + 2, which implies p = 1. Also, by using the
pair (y1, x1) instead (y, x) in (3.10), similar to (3.11), we also deduce that |X | + |Y | ≥ 6, which completes the proof of the
claim. �

By Claim 4, u = v. If V (P) ∩ V (H) ≠ ∅, then H + uPu is a eulerian subdigraph with |V (H)| + 1 vertices, contradicts (3.3).
So, V (P) ∩ V (H) = ∅ and thus P is in fact a trivial dipath.

Claim 5. k ≤ 2 and |X | + |Y | ≥ n − 4.
By Claim 4, we may assume, without loss of generality, that |X | ≥ 3. Then there is a vertex x1 ∈ X such that

|N−

D (x1)∩Y ′
| ≤ k/|X | ≤ k/3. By (3.8), |Y ′

−Y |+k+r ≤ |Y ′
−Y |+

k
i=1 qi+r ≤ 2+k/3. It follows that k ≤ 3−3(r+|Y ′

−Y |)/2.
If k ≥ 3, then |X | = k = 3, r = |Y ′

− Y | = 0 and q3 = q2 = q1 = p = 1. By Claim 4, |Y | ≥ 6 − |X | = 3. Similarly, we also
have |Y | = k = 3 and |X ′

− X | = 0, which implies n = |X | + |Y | + q1 + q2 + q3 + p = 10, contradicts the assumption that
n ≥ 11. Hence, k ≤ 2. Thus N−

D (x1) ∩ Y ′
= ∅.

For the second part of the claim, if q1 = 1, then z12 = z13 . Let H ′
= H − z11 Q̄1z41 + z11Pz11uPvPz14 z

1
4 and P ′

= z12 .
It is easy to verify that H ′ is a eulerian digraph with maximum number of vertices and P ′ is a dipath satisfying (3.4)(1),
(3.4)(2) and (3.4)(3). Thus d+

D (z12) + d−

D (z12) ≤ d+

D (v) + d−

D (u) ≤ |X | + |Y |. As z12u, vz
1
2 ∉ A(D), we have 2(|X | + |Y |) ≥

d+

D (z12)+ d−

D (u)+ d+

D (v)+ d−

D (z12) ≥ 2(n− 4) and the result follows. So, wemay assume that q1 ≥ 2. Then
k

i=1 qi ≥ 2k. By
(3.9), |X ′

−X | ≤ 2+|N+

D (y)∩X ′
|−
k

i=1 qi ≤ 2+k−2k ≤ 1. Then, as vx1 ∉ A(D), n−4 ≤ d+

D (v)+d−

D (x1) ≤ |Y |+ |X ′
|−1.

It follows that |X | + |Y | ≥ n − 4. �

Claim 6. (Y ′, X ′)D−A(H) = ∅.
Suppose, to the contrary, that there exist x′

∈ X ′ and y′
∈ Y ′ such that y′x′

∈ A(D) − A(H). Then by Claim 1, x′
∈ X ′

− X
and y′

∈ Y ′
− Y . By Claim 5, |X ′

− X | = |Y ′
− Y | = q1 = p = k = 1. Assume y0 ∈ Y ′ such that N+

H1
(y0) ∩ X ′

≠ ∅.
If N+

H1
(y′) ∩ Y = ∅, then, by y′

∉ IQ1 , d
+

H1
(y′) ≥ 1, which forces y′

= y0 and |N−

H1
(y′) ∩ Y | = d−

H1
(y′) = d+

H1
(y′) =

|N+

H1
(y′) ∩ X | = 1. Thus |(Y , X ′

∪ {y′
})H1 | = |(Y ′, X ′)H1 | and (Y , X ′

∪ {y′
})D−A(H) = ∅ by Claim 1(iii). However, noting that

k = 1,

µ(X ′, Y ′) − µ(X ′
∪ {y′

}, Y ) = |(Y ′, X ′)D−A(H)|(1 + q1) + |(Y ′, IQ1)D| + |(IQ1 , X
′)D| − |(Y , IQ1)D| − |(IQ1 , X

′
∪ {y′

})D|

≥ (1 + q1) − |(IQ1 , {y
′
})D| > 0,

contradicts (3.7). Hence, N+

H1
(y′)∩Y ≠ ∅. Similarly, N−

H1
(x′)∩X ≠ ∅. Furthermore, if there exists y1 ∈ N+

H1
(y′)∩N−

H1
(y′)∩Y ,

then picking x1 ∈ N−

H1
(x′) ∩ X , we observe that H − y′y1y′

− x1x′
+ x1Px1uPvPy1y1y

′x′ is a spanning eulerian subdigraph of
D, a contradiction. So, N+

H1
(y′) ∩ N−

H1
(y′) ∩ Y = ∅. Moreover, for any y ∈ Y − {y0}, as yu ∉ A(D), d+

D (y) ≥ n − 4 − d−

D (u) ≥

n − |Y ′
− Y | − |X ′

− X | − q1 − p − |X | ≥ |Y |. This forces yy′
∈ A(D) and, furthermore, yy′

∈ A(H1) by Claim 1(iii), and so
y′y ∉ A(H1). Thus d−

H1
(y′) ≥ |Y − {y0}| and d+

H1
(y′) ≤ 1. So, |Y | ≤ 2. Similarly, |X | ≤ 2, a contradiction to Claim 4. �

By Claims 1 and 6, we see that |(Y ′, X ′)D| = k. Next, we show that X ′ (and Y ′) together with some vertices of
k

i=1 IQi
will take places of D2 (and D1) in Example 2.2 and the rest of the vertices will take places of U in Example 2.2, as shown in
the cases below based on the values of k and q1.

Case 1. k = 2.
In this case, we will show D ∈ F2. By Claim 4, without loss of generality, we may assume that |Y | ≥ 3 > k. Then there

exists a vertex y0 ∈ Y such that N+

D (y0) ∩ X ′
= ∅. Applying (3.9) to the vertex y0, |X ′

− X | +
k

i=1 qi + r ≤ 2. It follows that
X ′

= X , r = 0 and q1 = q2 = 1. Then z12 = z13 and z22 = z23 . By Claim 5, |Y ′
− Y | ≤ 1.

Recall that the z ji ’s are defined in Notation 3.5. It suffices to show that (Y ′
− Y , {z12 , z

2
2})D = ∅ and z12z

2
2 , z

2
2z

1
2 ∉ A(D) and

|X | ≤ 2. In fact, if z12z
2
2 ∈ A(D), then by z12z

2
2 ∈ A(D) − A(H). Thus D − z11 Q̄1z14 − z21 Q̄2z24 + z11 Q̄1z12z

2
2 Q̄2z24 + z21Pz21uPvPz14 z

1
4

is a spanning eulerian subdigraph, contradicts (3.2). Similarly, z22z
1
2 ∉ A(D). Furthermore, suppose that there exists a

vertex y′
∈ Y ′

− Y such that y′z12 ∈ A(D). If z12y
′

∈ A(D), then by Lemma 3.2, z12y
′, y′z12 ∉ A(H1). Thus H − z11 Q̄1z14 +

z11Pz11uPvPz14 z
1
4 + y′z12y

′ is a spanning eulerian subdigraph, contradicts (3.2). Hence, N+

D (z12) ⊆ Y ′
−{y′

} by Claim 3. Note that
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d+

D (z12) ≥ n−4−d−

D (u) ≥ |Y ′
|−1. This forces thatN+

D (z12) = Y ′
−{y′

}. If there exists y1 ∈ N+

H1
(y′)∩Y , then z12y1 ∈ A(D). Thus

H ′
=

H − z11 Q̄1z14 + z11Pz11uPvPz14 z

1
4


−y′y1 +y′z12y1 is a spanning eulerian subdigraph, contradicts (3.2). So, N+

H1
(y′)∩Y = ∅.

It follows that |N−

H1
(y′) ∩ Y | = d−

H1
(y′) = d+

H1
(y′) = |N+

H1
(y′) ∩ X |, and so we have both |(Y , X ′

∪ {y′
})H1 | = |(Y ′, X ′)H1 | and

|(Y , X ′
∪ {y′

})D−A(H)| = 0. By (3.7),

0 ≤µ(X ∪ {y′
}, Y ) − µ(X ′, Y ′)

=|(Y , {z12 , z
2
2})D| + |({z12 , z

2
2}, X ∪ {y′

})D| − |(Y ′, {z12 , z
2
2})D| − |({z12 , z

2
2}, X

′)D|

=|({z12 , z
2
2}, {y

′
})D| − |({y′

}, {z12 , z
2
2})D|.

Thus z22y
′
∈ A(D) since y′z12 ∈ A(D) and z12y

′
∉ A(D). Then H − z11 Q̄1z14 − z21 Q̄2z24 + z21 Q̄2z22y

′z12 Q̄1z14 + z11Pz11uPvPz24 z
2
4 is a

spanning eulerian subdigraph, contradicts (3.2).
Finally, if |X | ≥ 3, then as k = 2, there exists a vertex x0 ∈ X such that N−

D (x0)∩Y ′
= ∅. Then n−4 ≤ d+

D (y0)+d−

D (x0) ≤

|Y ′
| − 1 + |X ′

| − 1 = n − 5, a contradiction. So, D ∈ F2.

Case 2. k = 1 and q1 = 2.
In this case, we will show that either D ∈ F1 or D ∈ F3. By Claim 4, without loss of generality, we may assume that

|Y | ≥ 3 > k. Thus there exists a vertex y0 ∈ Y such thatN+

D (y0)∩X ′
= ∅. Applying (3.9) to the vertex y0, |X ′

−X |+q1+r ≤ 2.
It follows that X ′

= X , r = 0 and q1 = 2. Let IQ1 = {z2, z3}, where z2 = z12 . Note that z13 = z2 is possible. By Claim 5,
|Y ′

− Y | ≤ 1. Moreover, we claim that |X | = 1 and thus X = {z11}. For otherwise, there exists a vertex x0 ∈ X such that
N−

D (x0) ∩ Y ′
= ∅, then as y0x0 ∉ A(D), n − 4 ≤ d−

D (x0) + d+

D (y0) ≤ |X | − 1 + |Y ′
| − 1 = n − 5, a contradiction. If

(Y ′
− Y , IQ1)D = ∅, then by Claims 3 and 6, D ∈ F3, where {z2, z3} take the place of the set of vertices of the 2-cycle in

Example 2.2. So, we may assume that Y ′
− Y = {y′

} and either y′z2 ∈ A(D) or y′z3 ∈ A(D).
As k = 1, let y1 ∈ Y ′ such that N+

D (y1) ∩ X ′
≠ ∅. For any y ∈ Y − {y1}, as yu ∉ A(D), d+

D (y) ≥ n − 4 − d−

D (u) ≥ |Y ′
| − 1.

This implies D[Y −{y1}] is a complete digraph and Y −{y1} ⊆ N−

D (y′)∩N−

D (y1). So, it is easy to find a (z14 , y1)-dipath P1 and
a (z14 , y

′)-dipath P2 such that A(P1) ∩ A(P2) = ∅ and V (P1) ∪ V (P2) = Y ′. Thus, if z3z2 ∈ A(D) then, as either y′z2 ∈ A(D) or
y′z3 ∈ A(D), y1z11uPvPz14 z

1
4P2y

′(z3)z2Q̄1z14P1y1 is a spanning eulerian subdigraph, contradicts (3.2). So, z3z2 ∉ A(D) and thus
D ∈ F1 where Y ′

∪ {z3} takes the place of D1 and X takes the place of D2 in Example 2.2.

Case 3. k = 1 and q1 = 1.
In this case, we show that D ∈ F1. Assume x0 ∈ X ′, y0 ∈ Y ′ such that y0x0 ∈ A(H1). Then by Claim 6 y0x0 is the only arc

from Y ′ to X ′ in D and it suffices to show (Y ′
− Y , IQ1)D = (IQ1 , X

′
− X)D = ∅. Suppose, to the contrary, that y′z12 ∈ A(D),

where y′
∈ Y ′

− Y . If z12y
′
∈ A(D), H − z11 Q̄1z14 + z11Pz11uPvPz14 z

1
4 + y′z12y

′ is a spanning eulerian subdigraph, contradicts (3.2).

Hence z12y
′
∉ A(D). Moreover, for any y ∈ Y − {y0}, as yu ∉ A(D), d+

D (y) ≥ n − 4 − d−

D (u) ≥ |X ′
− X | + |Y ′

| − 2. Next, we
consider two subcases.

Subcase 3.1 X ′
− X ≠ ∅.

Then d+

D (y) ≥ |Y ′
|−1 for all y ∈ Y −{y0}, which implies D[Y −{y0}] is a complete digraph and Y −{y0} = N−

D (y′)∩Y =

N−

D (y0)∩Y . It is easy to see that there is a (z14 , y
′)-dipath P1 and a (z14 , y0)-dipath P2 such that A(P1)∩A(P2) = ∅ and V (P1)∪

V (P2) = Y ′. Let T be the (x0, z11)-ditrail in H . Then T spans all the vertices in X ′. Thus y0x0Tz11Pz11uPvPz14 z
1
4P1y

′z12 Q̄1z14P2y0 is
a spanning eulerian subdigraph, contradicts (3.2). This proves that this subcase cannot occur.

Subcase 3.2 X ′
− X = ∅.

In this case, d+

D (y) ≥ |Y ′
| − 2 for all y ∈ Y − {y0}. Also, as z12u ∉ A(D), d+

D (z12) ≥ n − 4 − d−

D (u) ≥ |Y ′
| − 2. If

N+

H1
(y′) ∩ Y ′

= ∅, then as d+

H1
(y′) ≥ 1, y′

= y0 and thus |N−

H1
(y′) ∩ Y ′

| = |N−

H1
(y′)| = |N+

H1
(y′)| = |N+

H1
(y′) ∩ X ′

| = 1. So
(X ′

∪{y′
}, Y ′

−{y′
}) is a partition of V (H1) so that |(Y ′

−{y′
}, X ′

∪{y′
})D| = 1. Moreover, if there is a vertex y1 ∈ Y ′ such that

y1y′
∈ A(D) − A(H), then by Claim 1(iii) y1 ∉ Y . Thus, by the fact d+

H1
(y1) > 0 and d−

H1
(y′) = 1, there is a vertex y2 ∈ Y such

that y1y2 ∈ A(H1). Thus, H − z11 Q̄1z14 + z11Pz11uPvPz14 z
1
4 − y1y2 + y1y′z12y2 is a spanning eulerian subdigraph, a contradiction.

Hence, (Y ′
− {y′

}, X ′
∪ {y′

})D−A(H) = ∅. Then, by the facts y′z12 ∈ A(D) and z12y
′
∉ A(D),

µ(X ′
∪ {y′

}, Y ′
− {y′

}) − µ(X ′, Y ′) = |(IQ1 , {y
′
})D| − |({y′

}, IQ1)D| < 0,

a contradiction to (3.7). Hence, |N+

H1
(y′) ∩ Y ′

| ≥ 1. Also, N+

H1
(y′) ∩ N+

D (z12) ∩ Y ′
= ∅, since otherwise, let y1 ∈ N+

H1
(y′) ∩

N+

D (z12)∩ Y ′ and then H − z11 Q̄1z14 + z11Pz11uPvPz14 z
1
4 − y′y1 + y′z12y1 is a spanning eulerian subdigraph, contradicts (3.2). This,

togetherwith |N+

D (z12)∩Y ′
| = d+

D (z12) ≥ |Y ′
|−2, forces |N+

H1
(y′)∩Y ′

| = 1, sayN+

H1
(y′)∩Y ′

= {y′

1}, andN+

D (z12) = Y ′
−{y′, y′

1}.
Denote {y′

2} = N−

H1
(y′) ∩ Y ′ as d−

H1
(y′) = d+

H1
(y′) = 1.

Moreover, we claim that |X | = 1. For otherwise, there exists a vertex x1 ∈ X − {x0} and thus as z12x1 ∉ A(D), n − 4 ≤

d−

D (x1)+d+

D (z12) ≤ |X |−1+|Y ′
|−2 = n−5, a contradiction. So, |X | = 1. Thus, by Claim5 |Y ′

| ≥ |Y |+1 ≥ n−4−|X |+1 ≥ 7.
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For any y ∈ Y ′
− {y′, y′

1, y
′

2, y0}, as d+

D (y) ≥ |Y ′
| − 2, we see that either yy′

∈ A(D) or yy′

1 ∈ A(D). If yy′
∈ A(D), then

yy′
∉ A(H1) and thusH−z11 Q̄1z14+z11Pz11uPvPz14 z

1
4+y′z12yy

′ is a spanning eulerian subdigraph, contradicts (3.2). So, yy′

1 ∈ A(D).

Furthermore, if yy′

1 ∉ A(H1), thenH−z11 Q̄1z14 +z11Pz11uPvPz14 z
1
4 −yy′

1+y′z12yy
′

1 is a spanning eulerian subdigraph, contradicts

(3.2) again. Hence, yy′

1 ∈ A(H1). Then, as y is arbitrary, we have d+

H1
(y′

1) = d−

H1
(y′

1) ≥ |N−

H1
(y′

1) ∩ Y ′
| ≥ |Y ′

− {y′

1, y
′

2, y0}| ≥

|Y ′
|−3 ≥ 4. This forces there exists a vertex y′

3 ∈ N−

H1
(y′

1)∩N+

H1
(y′

1)∩Y . ThusH − z11 Q̄1z14 + z11Pz11uPvPz14 z
1
4 −y′y′

1y
′

3 +y′z12y
′

3

is a spanning eulerian subdigraph, contradicts (3.2) once more.
Similarly, (IQ1 , X

′
− X)D = ∅ and D ∈ F1. The proof is completed. �

Let D4 = D(k1, 0, 2) ∪ D(0, k2, 2). Then D4 ⊆ D1. It is easy to verify that every digraph D in (D1 − D4) ∪ D2 ∪ D3
has a pair of vertices (u, v) such that uv ∉ A(D) and d+

D (u) + d−

D (v) = n − 4. So only the digraph in D4 may satisfies the
condition d+

D (u) + d−

D (v) ≥ n − 3 for every two vertices u, v with uv ∉ A(D). Let F4 be the family of spanning subdigraphs
of digraphs in D4 such that D ∈ F4 if and only if D is strong and d+

D (u) + d−

D (v) ≥ n− 3 for every pair of vertices (u, v) with
uv ∉ A(D). Then we have the following corollary.

Corollary 3.6. Let D be a digraph of order n ≥ 11. If d+

D (u) + d−

D (v) ≥ n − 3 for every two vertices u, v with uv ∉ A(D), then
either D ∈ F4 or D has a spanning eulerian subdigraph.

Also, note that digraphs in F4 have minimum degree 1. So, we get the following corollary.

Corollary 3.7. Let D be a digraph with order n ≥ 11 and min{δ+, δ−
} ≥ 2. If d+

D (u) + d−

D (v) ≥ n − 3 for every two vertices
u, v with uv ∉ A(D), then D is supereulerian.

Another consequence of the main results is the following degree sum condition, which is a stronger version of the main
result of [7].

Corollary 3.8 ([7]). Let D be a digraph of order n ≥ 11. If δ+(D) + δ−(D) ≥ n − 4 then either D ∈ F1 ∪ F2 ∪ F3 or D has a
spanning eulerian subdigraph.
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