Ore-type degree condition of supereulerian digraphs ${ }^{\star}$

Yanmei Hong ${ }^{\text {a }}$, Qinghai Liu ${ }^{\text {b,*, Hong-Jian Lai }}{ }^{\text {c }}$
${ }^{\text {a }}$ College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, China
${ }^{\text {b }}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

ARTICLE INFO

Article history:

Received 19 August 2014
Received in revised form 13 August 2015
Accepted 17 March 2016

Keywords:

Supereulerian
Ore's condition

Abstract

A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. Hong et al. proved that $\delta^{+}(D)+\delta^{-}(D) \geq|V(D)|-4$ implies D is supereulerian except some well-characterized digraph classes if the minimum degree is large enough. In this paper, we characterize the digraphs D which are not supereulerian under the condition $d_{D}^{+}(u)+$ $d_{D}^{-}(v) \geq|V(D)|-4$ for any pair of vertices u and v with $u v \notin A(D)$ without the minimum degree constraint.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple digraphs that do not have loops nor parallel arcs (bi-direction edges are allowed). For undefined terms and notations, refer to [4] for graphs and [1] for digraphs. To avoid possible confusion, we use ditrails, dipaths and dicycles to mean directed trails, paths, and cycles, while trails, paths and cycles refer to undirected graph terminology.

Let D be a digraph. We use $u v$ to denote an arc oriented from a vertex u to a vertex v. For a vertex u of D, the out-degree $d_{D}^{+}(u)$ (in-degree $d_{D}^{-}(u)$) is the number of arcs leaving from u (coming to u). If X and Y are disjoint subsets of $V(D)$, then $\lambda_{D}(X, Y)$ denotes the maximum number of arc-disjoint dipaths from X to Y in D. As in [1], $A(D)$ denotes the set of arcs in D, and $\delta^{+}(D), \delta^{-}(D)$ denote the minimum out-degree and the minimum in-degree of D.

Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [3] in 1977 proposed the supereulerian problem, which seeks to characterize graphs that have spanning eulerian subgraphs, and they indicated that this problem would be very difficult. Pulleyblank [9] later in 1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP-complete. Since then, there have been lots of researches on this topic. Catlin [5] in 1992 presented the first survey on supereulerian graphs. Later Chen et al. [6] gave an update in 1995, specifically on the reduction method associated with the supereulerian problem. A recent survey on supereulerian graphs is given in [8].

It is natural to investigate supereulerian digraphs. A digraph D is said to be eulerian if D is strongly connected and every vertex has a same in-degree and out-degree. If a digraph contains a spanning eulerian subdigraph, then D is said to be supereulerian. In [7], Hong et al. proved that for any strong digraph D with $\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq 4$, if $\delta^{+}(D)+\delta^{-}(D)>n-4$ then D is supereulerian and characterize the counterexample when the equality holds.

Later, Bang-Jensen and Maddaloni [2] gave some sufficient Ore-type conditions to be supereulerian. Let D be a digraph on n vertices. A pair of vertices (u, v) of D is said to be dominating (dominated) if there exists a vertex w such that $u w, v w \in A(D)$ $(w u, u v \in A(D))$. In [2], Bang-Jensen and Maddaloni proved that a strong digraph D is supereulerian if $d_{D}^{+}(x)+d_{D}^{-}(y) \geq n-1$

[^0]for any ordered pair (x, y) of dominated or dominating non-adjacent vertices. Also, in [2], they proved that a strong D is supereulerian if $d_{D}^{+}(x)+d_{D}^{-}(x)+d_{D}^{+}(y)+d_{D}^{-}(y) \geq 2 n-3$ for any pair of non-adjacent vertices. In this paper, we investigate the Ore-type sufficient condition of supereulerian digraphs and obtain the following theorem.

Theorem 1.1. Let D be a strong digraph of order $n \geq 11$. If

$$
\begin{equation*}
d_{D}^{+}(x)+d_{D}^{-}(y) \geq n-4 \text { for any pair of vertices }(x, y) \text { with } x y \notin A(D) \tag{1.1}
\end{equation*}
$$

then D is supereulerian if and only if it does not belong to a well characterized family of exceptional digraphs.
The proof arguments take a different approach from that in [7]. The family of exceptional graphs are also different from that in [7]. For simplicity of the statement, we give some terminologies used in this paper first. For a vertex set $X \subset V(D)$, denote by $N_{D}^{+}(X)$ the set of vertices in $V(D)-X$ which has an in-neighbor in X and by $N_{D}^{-}(X)$ the set of vertices in $V(D)-X$ which has an out-neighbor in X. For simplicity, for a subdigraph H, we write $N_{D}^{+}(H)=N_{D}^{+}(V(H))$ and $N_{D}^{-}(H)=N_{D}^{-}(V(H))$. For a pair of disjoint sets $X, Y \subset V(D),(X, Y)_{D}$ stands the set of all the arcs with tail in X and head in Y. When $Y=V-X$, we use $\partial_{D}^{+}(X)=(X, V-X)_{D}$, and $\partial_{D}^{-}(X)=(V-X, X)_{D}$. When $X=\{v\}$, we also use $\partial_{D}^{+}(v)=\partial_{D}^{+}(\{v\})$ and $N_{D}^{+}(v)=N_{D}^{+}(\{v\})$.

For any disjoint vertex sets X, Y, an (X, Y)-ditrail (or dipath) is a ditrail (or a dipath) from a vertex in X to a vertex in Y and none of whose internal vertex lies in $X \cup Y$. An (X, Y)-segment of a ditrail (or a dipath) P is an (X, Y)-ditrail (or an (X, Y)-dipath) which is a subdigraph of P. When $X=\{x\}$ and $Y=\{y\}$, we may use (x, y)-ditrail (or dipath) instead of ($\{x\},\{y\}$)-ditrail (or dipath).

In Section 2, we apply a necessary condition for a digraph to be supereulerian in [7] to find some candidates of the exceptional graphs for the main result. The proof of the main result is presented in Section 3.

2. Some classes of digraphs

Let D be a strong digraph and $U \subset V(D)$. Then in $D[U]$, the digraph induced by U, we can find some ditrails P_{1}, \ldots, P_{t} such that $\bigcup_{i=1}^{t} V\left(P_{i}\right)=U$ and $A\left(P_{i}\right) \cap A\left(P_{j}\right)=\emptyset$ for any $i \neq j$. Let $\tau(U)$ be the minimum value of such t. Then $c(G(D[U])) \leq \tau(U) \leq|U|$, where $c(G(D[U]))$ is the number of components of the underlying graph of $D[U]$. For any $X \subseteq V(D)-U$, denote $Y:=V(D)-U-X$ and let

$$
\begin{aligned}
& h(U, X):=\min \left\{\left|\partial_{D}^{+}(X)\right|,\left|\partial_{D}^{-}(X)\right|\right\}+\min \left\{\left|(U, Y)_{D}\right|,\left|(Y, U)_{D}\right|\right\}-\tau(U), \text { and } \\
& h(U):=\min \{h(U, X): X \cap U=\emptyset\}
\end{aligned}
$$

In [7], Hong et al. give the following proposition, and use it to find some classes of digraphs which are not supereulerian.
Proposition 2.1 ([7]). If D has a spanning eulerian subdigraph, then for any $U \subset V(D), h(U) \geq 0$.
Hong et al. [7] used this proposition to find the following example digraphs, each of which has a large minimum degree sum but contains no spanning eulerian subdigraphs.

Example 2.2. Let $k_{1}, k_{2} \geq 0, \ell \geq 2$ be integers with $\left(k_{1}+1\right)\left(k_{2}+1\right) \geq \ell-1$, and D_{1} and D_{2} be two disjoint complete digraphs of order $k_{1}+1$ and $k_{2}+1$, respectively. Let U be an independent set disjoint from $V\left(D_{1}\right) \cup V\left(D_{2}\right)$ with $|U|=\ell$. Let $\mathscr{D}\left(k_{1}, k_{2}, \ell\right)$ denote the family of digraphs such that $D \in \mathscr{D}\left(k_{1}, k_{2}, \ell\right)$ if and only if D is the digraph obtained from $D_{1} \cup D_{2} \cup U$ by adding all arcs directed from every vertex in D_{2} to every vertex in $U \cup D_{1}$, and all arcs directed from every vertex in U to every vertex in D_{1}, and then by adding a set of $\ell-1$ arcs from some vertices in D_{1} to some vertices in D_{2}.

Let \mathscr{D}_{1} denote the family $\mathscr{D}\left(k_{1}, k_{2}, 2\right)$, Hong et al. [7] proved if a simple digraph D satisfying $\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq$ 4 and $\delta^{+}(D)+\delta^{-}(D) \geq n-4$, then D is supereulerian if and only if D is not a member in \mathscr{D}_{1}. Moreover, if the condition $\min \left\{\delta^{+}(D), \delta^{-}(D)\right\} \geq 4$ is removed, more new exceptional non-supereulerian digraphs will appear. Let $\mathscr{D}_{2} \subseteq$ $\bigcup_{i=1}^{2} \mathscr{D}\left(i, k_{2}, 3\right) \cup \mathscr{D}\left(k_{1}, i, 3\right)$ be the family of digraphs with minimum out-degree or minimum in-degree 2 . By using Proposition 2.1, Hong et al. [7] proved no digraph in $\mathscr{D}\left(k_{1}, k_{2}, \ell\right)$ is supereulerian, and so every one in $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ is nonsupereulerian.

Next, let \mathscr{D}_{3} be the set of digraphs obtained from digraphs in $\mathscr{D}\left(0, k_{2}, 2\right) \cup \mathscr{D}\left(k_{1}, 0,2\right)$ by replacing a vertex in U by a dicycle $w_{1} w_{2} w_{1}$ of length 2 and adding all the arcs from $\left\{w_{1}, w_{2}\right\}$ to $V\left(D_{1}\right)$ and all the arcs from $V\left(D_{2}\right)$ to $\left\{w_{1}, w_{2}\right\}$. By Proposition 2.1, none of the digraphs in \mathscr{D}_{3} is supereulerian. In fact, let $D \in \mathscr{D}_{3}$, by the construction, $\tau(U)=2$. Let $X=V\left(D_{1}\right)$ and $Y=V\left(D_{2}\right)$. Then $h(U, X)=\min \left\{\left|\partial_{D}^{+}(X)\right|,\left|\partial_{D}^{-}(X)\right|\right\}+\min \left\{\left|(U, Y)_{D}\right|,\left|(Y, U)_{D}\right|\right\}-\tau(U)=1+0-2<0$, and so D is not supereulerian by Proposition 2.1.

Therefore, for $i=1,2$, 3, none of the spanning subdigraphs of digraphs in \mathscr{D}_{i} has a spanning eulerian subdigraph. For $i=1,2,3$, let \mathcal{F}_{i} be the family of digraphs such that $D \in \mathscr{F}_{i}$ if and only if for some member $D^{\prime} \in \mathscr{D}_{i}, D$ is a strong spanning subdigraph of D^{\prime} satisfying (1.1). Then, each \mathscr{F}_{i} is also a family of non-supereulerian digraphs. In next section, we will show that if a digraph D satisfies this Ore-type degree condition (1.1), then D is supereulerian if and only if D is not a member of $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$.

Fig. 1. An example of increment, where the (u, v)-ditrail $Q=u w_{1} w_{2} w_{3} v, \bar{Q}=u w_{1} w_{2} w_{3} w_{4} w_{5} w_{3} v, I_{Q}=\left\{w_{1}, w_{3}, w_{4}, w_{5}\right\}$.

3. An ore-type degree condition for a digraph to be supereulerian

In this section, we characterize the non-supereulerian digraphs D which satisfy (1.1). The main tool used in this paper, called increment, is the same to that in [7]. The formal definition is stated below.

Definition 3.1 ([7]). Let H be a eulerian subdigraph of a digraph D. Suppose for some distinct vertices $u, v \in V(H), Q$ is a (u, v)-ditrail of H. Let H^{\prime} be the connected component of the underlying graph $H-A(Q)$ containing both u and v. Define $I_{Q}=V(H)-V\left(H^{\prime}\right)$, which is called the increment of Q with respect to H. If the eulerian subdigraph H is clear from context, we also say I_{Q} is the increment of Q.

Since H can also be viewed as a closed ditrail, H has a minimum (u, v)-ditrail that contains all arcs in $A\left(H\left[I_{Q}\right]\right) \cup A(Q)$. This ditrail is denoted by \bar{Q}. Note that it is possible that $\bar{Q}=Q$. Also, the underlying graph of $H\left[I_{Q}\right]$ might not be connected (see Fig. 1 for an example).

Using these definitions and notations, we have the following observation stated as the next lemma.
Lemma 3.2 ([7]). Let D be a digraph, H be a eulerian subdigraph of D, and $X, Y \subseteq V(H)$ be two disjoint vertex sets. Then for any (X, Y)-ditrail $Q,\left(V\left(H-I_{Q}\right), I_{Q}\right)_{H} \cup\left(I_{Q}, V\left(H-I_{Q}\right)\right)_{H} \subseteq A(Q)$, and for any two arc-disjoint (X, Y)-ditrails $Q_{1}, Q_{2}, I_{Q_{1}} \cap I_{Q_{2}}=\emptyset$.

In order to make the proof be easier to read, we present a lemma first.
Lemma 3.3. Let D be a strong digraph with order $n \geq 5$. If $\delta^{-}(D) \geq n-3$ or $\delta^{+}(D) \geq n-3$, then for any two vertices u, v there is $a(u, v)$-ditrail P of D such that $|V(P)| \geq n-1$.

Proof. By symmetry, we only prove the case when $\delta^{-}(D) \geq n-3$. Let u, v be two arbitrary vertices of D and P be a (u, v)-ditrail such that $p:=|V(P)|$ is maximized. Denote $P=v_{1} v_{2} \ldots v_{t}$, where $v_{1}=u, v_{t}=v$. Note that t may be greater than p. We first show that $t \geq 3$. In fact, as $\delta^{-}(D) \geq n-3 \geq 2$, there is a vertex $w \in N_{D}^{-}(v)$ different from u. Since D is strong, u has a dipath to w in $D-w v$. By adding the arc $w v$ to the dipath, we obtain a (u, v)-ditrail with at least 2 arcs, which implies $t \geq 3$.

Let $R=V(D)-V(P)$. If $|R| \leq 1$, then we are done. So we may assume $|R| \geq 2$. Since D is strong, we may assume there exists a vertex $w \in R$ such that $w v_{i} \in A(D)$ for some $1 \leq i \leq t$. Choose such w and v_{i} such that i is maximized. Let $X=\left\{v_{1}, \ldots, v_{i}\right\}$ and $Y=V(P)-X$.

If $|X| \geq 3$, then neither $v_{i} w \in A(D)$ nor $v_{i-1} w \in A(D)$. For, otherwise, either $v_{1} \ldots v_{i} w v_{i} \ldots v_{t}$ or $v_{1} \ldots v_{i-1} w v_{i} \ldots v_{t}$ is a (u, v)-ditrail with $p+1$ vertices, contradicts the maximality of p. This, together with the fact $\delta^{-}(D) \geq n-3$, forces $N_{D}^{-}(w)=V(D)-\left\{v_{i-1}, v_{i}, w\right\}$. Pick $w^{\prime} \in R-\{w\}$. Then $w^{\prime} w \in A(D)$. Similar to the above, we may show that $N_{D}^{-}\left(w^{\prime}\right) \cap\left\{v_{i-1}, v_{i}\right\}=\emptyset$. If $v_{i-2} \neq v_{i}$ then $v_{i-2} w^{\prime} \notin A(D)$, since otherwise, $v_{1} \ldots v_{i-2} w^{\prime} w v_{i} \ldots v_{t}$ is a (u, v)-ditrail with $p+1$ vertices, a contradiction. If $v_{i-2}=v_{i}$, then $v_{i-3} w^{\prime} \notin A(D)$, since otherwise, $v_{1} \ldots v_{i-3} w^{\prime} w v_{i-2} \ldots v_{t}$ is a (u, v)-ditrail with $p+2$ vertices (here v_{i-3} exists according to the assumption $|X| \geq 3$), a contradiction. In either cases, $d_{D}^{-}\left(w^{\prime}\right) \leq n-4$, a contradiction to the fact $\delta^{-}(D) \geq n-3$.

If $|X| \leq 2$, then either $i \leq 2$ or $i=3$ and $v_{1}=v_{3}$. Similar to the previous paragraph, it is easy to see that $N_{D}^{-}(w) \cap X=\emptyset$. Thus

$$
\begin{equation*}
\left|N_{D}^{-}(w) \cap Y\right| \geq n-3-(|R|-1)=n-|R|-2 \tag{3.1}
\end{equation*}
$$

Also, by the assumption that $t \geq 3$ and $u \neq v, Y \neq \emptyset$. For any $v_{j} \in Y$, by the choice of v_{i} and $X, j>i$ and thus $N_{D}^{-}\left(v_{j}\right) \cap R=\emptyset$. This, together with the fact $\delta^{-}(D) \geq n-3$, forces $|R|=2$ and $N_{D}^{-}\left(v_{j}\right)=V(P)-\left\{v_{j}\right\}$. By the arbitrary of $v_{j}, D[Y]$ is a complete digraph. We relabel the vertices of Y as $u_{1}, \ldots, u_{m}=v_{t}$. By (3.1), $\left|N_{D}^{-}(w) \cap Y\right| \geq 1$. Assume $u_{j} w \in A(D)$. Then $v_{1} \ldots v_{i} u_{j} w v_{i} u_{1} \ldots u_{j-1} u_{j+1} \ldots u_{m}$ is a (u, v)-ditrail with $p+1$ vertices, a contradiction. This completes the proof.

Theorem 3.4. Let D be a strong digraph of order $n \geq 11$ satisfying (1.1). Then D has a spanning eulerian subdigraph if and only if $D \notin \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$.

Proof. By Example 2.2, no digraph in $\mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ has a spanning eulerian subdigraph, and so the necessity is clear. To prove the sufficiency, we assume that D satisfies (1.1) and that
D is not supereulerian
to show that $D \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$. Choose a eulerian subdigraph H of D such that
$|V(H)|$ is maximized.
For any $u \in N_{D}^{+}(H)$, since D is strong, there is a dipath from u to $V(H)$, which must visit a vertex of $N_{D}^{-}(H)$, say v. Let P be the (u, v)-segment of this dipath. Then there exist $x, y \in V(H)$ such that $x u, v y \in A(D)-(A(H) \cup A(P))$. Furthermore, we may choose H as a eulerian subdigraph satisfying (3.3) and choose $u \in N_{D}^{+}(H), v \in N_{D}^{-}(H)$ and P a (u, v)-ditrail in $D-A(H)$ such that
(1) there exist $x, y \in V(H)$ such that $x u, v y \in A(D)-(A(H) \cup A(P))$;
(2) subject to (1), $|V(P)-V(H)|$ is maximized;
(3) subject to (1)(2), $|A(P)|$ is minimized;
(4) subject to (1)(2)(3), $d_{D}^{-}(u)+d_{D}^{+}(v)$ is maximized.

Note that $V(P) \cap V(H) \neq \emptyset$ is possible. Let $p=|V(P)-V(H)|$. As $u \in V(P)-V(H)$, we have $p \geq 1$. Let $H_{0}=$ $D[V(H) \cup\{u, v\}]-A(D[\{u, v\}])-(A(H) \cup A(P))$ and define
$X=\left\{x \in V(H) \mid H_{0}\right.$ has a dipath from x to $\left.u\right\}$, and
$Y=\left\{y \in V(H) \mid H_{0}\right.$ has a dipath from v to $\left.y\right\}$.
With these definition, we have the following claim.
Claim 1. Each of the following holds.
(i) Each dicycle of P is vertex-disjoint with H.
(ii) $X \neq \emptyset, Y \neq \emptyset, X \cap Y=\emptyset$.
(iii) $(V(H)-X, X)_{D} \subseteq A(H),(Y, V(H)-Y)_{D} \subseteq A(H)$.
(i) Suppose, to the contrary, that P contains a dicycle C such that $V(H) \cap V(C) \neq \emptyset$. Then $V(C) \subseteq V(H)$. For otherwise, $A(H) \cup A(C)$ induces a eulerian subdigraph of D with at least $|V(H)|+1$ vertices, contradicts (3.3). Thus $P-A(C)$ is still a ditrail of D satisfying (3.4)(1) and (3.4)(2), and containing less arcs, contradicts (3.4)(3). This proves (i).
(ii) By the choice of P as described in (3.4), $X, Y \neq \emptyset$. Suppose that there exists $w \in X \cap Y$. Then by the definition of X and Y, H_{0} has a dipath P_{1} from w to u and a dipath P_{2} from v to w. Thus each P_{i} is arc-disjoint with P and H. By the definition of $X, Y, V\left(P_{1}\right) \subseteq X \cup\{u\}$ and $V\left(P_{2}\right) \subseteq Y \cup\{v\}$. Thus, we may choose $w \in X \cap Y$ such that $A\left(P_{1}\right) \cap A\left(P_{2}\right)=\emptyset$. It follows that $H+w P_{1} u P v P_{2} w$ is a eulerian subdigraph with at least $|V(H)|+1$ vertices, contradicts (3.3). This proves (ii).
(iii) It follows from the definitions of X and $Y,(V(H)-X, X)_{D} \cup(Y, V(H)-Y)_{D} \subseteq A(H) \cup A(P)$. Furthermore, if there is an $\operatorname{arc} x^{\prime} x \in A(P)$ such that $x \in X$ and $x^{\prime} \notin X$, then by letting P_{3} be the dipath from x to u in $H_{0}, H+x P_{3} u P x$ is a eulerian subdigraph with at least $|V(H)|+1$ vertices, contradicts (3.3). Thus, $(V(H)-X, X)_{D} \subseteq A(H)$. Similarly, $(Y, V(H)-Y)_{D} \subseteq A(H)$. Claim 1 is proved.

By the definition of X and Y, for any $x \in X$ and $y \in Y$, there exist an (x, u)-dipath in H_{0} and a (v, y)-dipath in H_{0}. By Claim $1, X \cap Y=\emptyset$. So, in the rest of the proof we may use P_{x} and P_{y} to represent the (x, u)-dipath and the (v, y)-dipath, respectively.

Claim 2. $N_{D}^{-}(u) \subseteq X \cup V(P), N_{D}^{+}(v) \subseteq Y \cup V(P)$.
By symmetry, it suffices to show $N_{D}^{-}(u) \subseteq X \cup V(P)$. In fact, by the definition of X, it suffices to show that $N_{D}^{-}(u) \subseteq$ $V(H) \cup V(P)$. Suppose, to the contrary, that there exists $w \in N_{D}^{-}(u)-(V(H) \cup V(P))$. If $w \in N_{D}^{+}(H)$, then the dipath $P^{\prime}=w u P v$ is also a candidate of P with $\left|V\left(P^{\prime}\right)-V(H)\right|=|V(P)-V(H)|+1$, contradicts (3.4). If there exists $w_{1} \in N_{D}^{+}(H) \cap N_{D}^{-}(w)$, then let $x_{1} \in V(H)$ such that $x_{1} w_{1} \in A(D)$. If $x_{1} w_{1} \notin A(H) \cup A(P)$, then $P^{\prime}=w_{1} w u P v$ is also a candidate of P with $\left|V\left(P^{\prime}\right)-V(H)\right| \geq|V(P)-V(H)|+1$, contradicts (3.4). So, $x_{1} w_{1} \in A(H) \cup A(P)$. Since $w_{1} \notin V(H)$, we must have $x_{1} w_{1} \in A(P)$. Thus $x_{1} \in V(H) \cap V(P)$ and $H+x_{1} w_{1} w u P x_{1}$ is a eulerian subdigraph with order at least $|V(H)|+1$, contradicts (3.3). Hence, $\left(N_{D}^{+}(H) \cup V(H)\right) \cap\left(N_{D}^{-}(w) \cup\{w\}\right)=\emptyset$. It follows that $n \geq|V(H)|+\left|N_{D}^{+}(H)\right|+\left|N_{D}^{-}(w)\right|+1$.

Let $\bar{H}=D[V(H)]-A(P)$. Then $A(\bar{H}) \cap A(P)=\emptyset$. We will use Lemma 3.3 to find a long trail in \bar{H}, which will result in a eulerian subdigraph violating (3.3). First, we need to verify the conditions of Lemma 3.3.
(2A) $d_{\bar{H}}^{+}(x) \geq|V(\bar{H})|-3$ for all $x \in V(\bar{H})$.
For any $x \in V(\bar{H})=V(H)$, as $x w \notin A(D)$, by (1.1), $d_{D}^{+}(x)+d_{D}^{-}(w) \geq n-4$, it follows that $d_{D}^{+}(x) \geq n-4-\left|N_{D}^{-}(w)\right| \geq$ $|V(H)|+\left|N_{D}^{+}(H)\right|-3$. Thus $d_{\bar{H}}^{+}(x) \geq d_{D}^{+}(x)-\left|N_{D}^{+}(x) \cap N_{D}^{+}(H)\right|-d_{P}^{+}(x) \geq|V(H)|+\left|N_{D}^{+}(H)-N_{D}^{+}(x)\right|-d_{P}^{+}(x)-3$.

Fig. 2. An example for z_{i}^{j}, where the bold arcs are in H but not in Q_{i}.
If $x \notin V(P)$, then $d_{P}^{+}(x)=0$ and thus $d_{\bar{H}}^{+}(x) \geq d_{D}^{+}(x)-\left|N_{D}^{+}(H)\right| \geq|V(H)|-3=|V(\bar{H})|-3$. So, we may assume $x \in V(P)$. By Claim 1(i), $d_{P}^{+}(x)=1$. Also, if $x u \in A(D)$, then $H+x u P x$ is a eulerian subdigraph with at least $|V(H)|+1$ vertices, contradicts (3.3). So, $u \in N_{D}^{+}(H)-N_{D}^{+}(x)$. Thus $d_{\bar{H}}^{+}(x) \geq|V(H)|+\left|N_{D}^{+}(H)-N_{D}^{+}(x)\right|-4 \geq|V(\bar{H})|-3$.
(2B) $|V(\bar{H})| \geq 5$.
Suppose, to the contrary, that $|V(H)|=|V(\bar{H})| \leq 4$. Then any dicycle of D has length at most 4. Let

$$
\begin{equation*}
T=v_{1} v_{2} \ldots v_{t} \text { be a longest dipath of } D . \tag{3.5}
\end{equation*}
$$

Then $d_{D}^{+}\left(v_{t}\right)=\left|N_{D}^{+}\left(v_{t}\right) \cap V(T)\right| \leq 3$ and $d_{D}^{-}\left(v_{1}\right)=\left|N_{D}^{-}\left(v_{1}\right) \cap V(T)\right| \leq 3$. Since $d_{D}^{+}\left(v_{t}\right)+d_{D}^{-}\left(v_{1}\right) \leq 6<n-4$, we have $v_{t} v_{1} \in A(D)$, and so $v_{1} T v_{t} v_{1}$ is a dicycle of D. It follows that $t \leq 4$. Since D is strong, there is a vertex $z \in V(D)-V(T)$ such that $z v_{i} \in A(D)$ for some $1 \leq i \leq t$. Thus $z v_{i} \ldots v_{t} v_{1} \ldots v_{i-1}$ is a dipath with $|V(T)|+1$ vertices, contradicts (3.5). Hence, $|V(\bar{H})|=|V(H)| \geq 5$.

So, by Lemma 3.3, for any $x \in N_{D}^{-}(u) \cap V(H)$ and any $y \in N_{D}^{+}(v) \cap V(H)$, there is a (y, x)-ditrail Q in \bar{H} such that $|V(Q)| \geq|V(H)|-1$. As $A(Q) \cup A(P) \cup\{x u, v y\}$ induces a eulerian subdigraph of D with at least $|V(H)|+p-1$ vertices, by (3.3), $p=1$, which implies $u=v$. Since D is strong, w has a dipath to $V(H)$, which must visit a vertex w_{1} of $N_{D}^{-}(H)$. Let P^{\prime} be the $\left(w, w_{1}\right)$-segment of this dipath. Then $P^{\prime \prime}:=u w P^{\prime} w_{1}$ is also a candidate of P such that $\left|V\left(P^{\prime \prime}\right)-V(H)\right| \geq 2>p$, a contradiction to (3.4). This proves Claim 2.

Let $\lambda_{H}(X, Y)$ denote the maximum number of arc-disjoint (X, Y)-dipaths in H. By Menger's Theorem (Page 170, Theorem 7.16 of [4]), $\lambda_{H}(X, Y)=\min \left\{\partial_{H}^{+}(U) \mid X \subset U\right.$ and $\left.Y \cap U=\emptyset\right\}$ and $\lambda_{H}(Y, X)=\min \left\{\partial_{H}^{-}(U) \mid X \subset U\right.$ and $\left.Y \cap U=\emptyset\right\}$. However, since H is a eulerian subdigraph of $D,\left|\partial_{H}^{+}(U)\right|=\left|\partial_{H}^{-}(U)\right|$ holds for each $U \subset V(H)$. Therefore, we have $\lambda_{H}(X, Y)=\lambda_{H}(Y, X)$. Assume $\lambda_{H}(X, Y)=k$ and Q_{1}, \ldots, Q_{k} are k arc-disjoint (X, Y)-dipaths.

For $i=1, \ldots, k$, let $I_{Q_{i}}$ be the increment of Q_{i}. If $I_{Q_{i}} \cap(X \cup Y) \neq \emptyset$ for some i, then \bar{Q}_{i} has some internal vertex in $X \cup Y$, where \bar{Q}_{i} is the minimal ditrail containing $A\left(Q_{i}\right) \cup A\left(H\left[I_{Q_{i}}\right]\right)$. Thus we may choose an (X, Y)-segment of \bar{Q}_{i} as Q_{i}. Then all Q_{i} 's are still pairwise arc-disjoint and the new \bar{Q}_{i} contains less arcs. So, we may assume Q_{1}, \ldots, Q_{k} arc such arc-disjoint dipaths such that $\sum_{i=1}^{k}\left|A\left(\bar{Q}_{i}\right)\right|$ is minimized. Then $I_{Q_{i}} \cap(X \cup Y)=\emptyset$ for $i=1, \ldots, k$.

Notation 3.5. Suppose that Q_{i} is a dipath from $z_{1}^{i} \in X$ to $z_{4}^{i} \in Y$ and that z_{2}^{i} be the first vertex of \bar{Q}_{i} in $I_{Q_{i}}$, and z_{3}^{i} be the last vertex of \bar{Q}_{i} in $I_{Q_{i}}$.

Note that it is possible that $z_{1}^{i} \bar{Q}_{i} z_{2}^{i}$ and $z_{3}^{i} \bar{Q}_{i} z_{4}^{i}$ contain more than one arcs (see Fig. 2 for example). By Lemma $3.2, I_{Q_{i}} \cap I_{Q_{j}}=\emptyset$ for any $i \neq j$. Let $q_{i}=\left|I_{Q_{i}}\right|$. We may furthermore assume $q_{1} \leq q_{2} \leq \cdots \leq q_{k}$.

Note that $z_{1}^{1} \in X$ and $z_{4}^{1} \in Y$. Let $H^{\prime}:=H-A\left(\bar{Q}_{1}\right)-I_{Q_{1}}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}^{1}} z_{4}^{1}$. Then H^{\prime} is a eulerian subdigraph of D with at least $|V(H)|-q_{1}+p$ vertices. By (3.3), we must have $q_{1} \geq p$ and so $q_{k} \geq \cdots \geq q_{1} \geq p$. Let $H_{1}=H-\bigcup_{i=1}^{k} A\left(\bar{Q}_{i}\right)-\bigcup_{i=1}^{k} I_{Q_{i}}$. Note that H_{1} may not be connected when $k \geq 2$. As H can be viewed as a eulerian ditrail, $\lambda_{H}(Y, X)=\lambda_{H}(X, Y)=k$ and there are k arc-disjoint (Y, X)-dipaths in \bar{H} which are also arc-disjoint with Q_{1}, \ldots, Q_{k}. Then by the definition of H_{1}, $\lambda_{H_{1}}(Y, X)=\lambda_{H}(Y, X)=k$. By Menger's Theorem, there is a partition $\left(X^{\prime}, Y^{\prime}\right)$ of $V\left(H_{1}\right)$ such that

$$
\begin{equation*}
X \subseteq X^{\prime}, Y \subseteq Y^{\prime} \quad \text { and } \quad\left|\left(Y^{\prime}, X^{\prime}\right)_{H_{1}}\right|=k \tag{3.6}
\end{equation*}
$$

Furthermore, subject to (3.6), we may also assume the partition $\left(X^{\prime}, Y^{\prime}\right)$ satisfies

$$
\begin{equation*}
\left.\mu\left(X^{\prime}, Y^{\prime}\right) \triangleq\left|\left(Y^{\prime}, X^{\prime}\right)_{D-A(H)}\right|\left(1+\sum_{i=1}^{k} q_{i}\right)+\left|\left(Y^{\prime}, \bigcup_{i=1}^{k} I_{Q_{i}}\right)_{D}\right|+\mid\left(\bigcup_{i=1}^{k} I_{Q_{i}}\right), X^{\prime}\right)_{D} \mid \text { is minimized. } \tag{3.7}
\end{equation*}
$$

As H is eulerian, $\left|\left(X^{\prime}, Y^{\prime}\right)_{H}\right|=\left|\left(Y^{\prime}, X^{\prime}\right)_{H}\right|=k$. Then by the definition of H_{1}, it is easy to see that $\left(X^{\prime}, Y^{\prime}\right)_{H_{1}}=\emptyset$. Define

$$
R=V(D)-V(H)-V(P), \quad \text { and } \quad r=|R|
$$

Then $n=\left|X^{\prime}\right|+\left|Y^{\prime}\right|+\sum_{i=1}^{k} q_{i}+p+r$.
Claim 3. For each $i,\left(N_{D}^{-}(X) \cup N_{D}^{+}(Y)\right) \cap\left(R \cup I_{Q_{i}} \cup(V(P)-V(H))\right)=\emptyset$.
By the symmetry between X and Y, we only show the case when $N_{D}^{-}(X) \cap\left(R \cup I_{Q_{i}} \cup(V(P)-V(H))\right)=\emptyset$. Suppose, to the contrary, that there exist $x_{1} \in X$ and $w \in R \cup I_{Q_{i}} \cup(V(P)-V(H))$ such that $w x_{1} \in A(D)$. Then $w x_{1} \notin A\left(Q_{i}\right)$. By Lemma 3.2, we have $w x_{1} \notin A(H)$, Then, by Claim 1(iii), $w \notin V(H)-X$ and so $w \in R \cup(V(P)-V(H))$.

If $w \in V(P)-V(H)$, then $H+x_{1} P_{x_{1}} u P w x_{1}$ is a eulerian subdigraph of D with at least $|V(H)|+1$ vertices, contradicts (3.3). Hence, $w \in R$. Then as D is strong, there is a dipath P_{1} from a vertex $x \in V(H)$ to w, none of whose inner vertex lies in $V(H)$. If $V\left(P_{1}\right) \cap V(P) \neq \emptyset$, then let $w_{1} \in V(P)$ be the first vertex of P_{1} and thus $H+x_{1} P_{x_{1}} u P w_{1} P_{1} w x_{1}$ is a eulerian subdigraph of D with at least $|V(H)|+1$ vertices, contradicts (3.3). So, $V\left(P_{1}\right) \cap V(P)=\emptyset$. Let w_{2} be the successor of x on P_{1}. Then $w_{2} \notin V(H)$, and so $P^{\prime}=w_{2} P_{1} w x_{1} P_{x_{1}} u P v$ is a candidate of P with $\left|V\left(P^{\prime}\right)-V(H)\right|>|V(P)-V(H)|$, contradicts (3.4). This proves Claim 3.

For any vertex $x \in X$, by Claim 3, $d_{D}^{-}(x) \leq\left|X^{\prime}\right|-1+\left|N_{D}^{-}(x) \cap Y^{\prime}\right|$. By Claim 2, $d_{D}^{+}(v) \leq|Y|+p-1+\left|N_{D}^{+}(v) \cap V(P) \cap V(H)\right|$. In fact, if there exists $w \in N_{D}^{+}(v) \cap V(P) \cap V(H)$, then $H+w P v w$ is a eulerian subdigraph with at least $|V(H)|+1$ vertices, contradicts (3.3). Thus $d_{D}^{+}(v) \leq|Y|+p-1$. Moreover, by Claim 3, $v x \notin A(D)$. So, $n-4 \leq d_{D}^{+}(v)+d_{D}^{-}(x) \leq$ $\left|X^{\prime}\right|+|Y|+p+\left|N_{D}^{-}(x) \cap Y^{\prime}\right|-2=n-\sum_{i=1}^{k} q_{i}-\left|Y^{\prime}-Y\right|-r+\left|N_{D}^{-}(x) \cap Y^{\prime}\right|-2$. It follows that

$$
\begin{equation*}
\sum_{i=1}^{k} q_{i}+\left|Y^{\prime}-Y\right|+r \leq 2+\left|N_{D}^{-}(x) \cap Y^{\prime}\right| \tag{3.8}
\end{equation*}
$$

Similarly, for any $y \in Y$, by considering the pair (y, u), we also have

$$
\begin{equation*}
\sum_{i=1}^{k} q_{i}+\left|X^{\prime}-X\right|+r \leq 2+\left|N_{D}^{+}(y) \cap X^{\prime}\right| \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), we have

$$
\begin{equation*}
2 \sum_{i=1}^{k} q_{i}+\left|X^{\prime}-X\right|+\left|Y^{\prime}-Y\right|+2 r \leq 4+\left|N_{D}^{-}(x) \cap Y^{\prime}\right|+\left|N_{D}^{+}(y) \cap X^{\prime}\right| \tag{3.10}
\end{equation*}
$$

Note that every arc in $\left(Y, X^{\prime}\right)_{D} \cup\left(Y^{\prime}, X\right)_{D}-\{y x\}$ contributes at most 1 to $\left|N_{D}^{-}(x) \cap Y^{\prime}\right|+\left|N_{D}^{+}(y) \cap X^{\prime}\right|$ and the arc $y x$ (if exists) contributes 2 to $\left|N_{D}^{-}(x) \cap Y^{\prime}\right|+\left|N_{D}^{+}(x) \cap Y^{\prime}\right|$. Thus $\left|N_{D}^{-}(x) \cap X^{\prime}\right|+\left|N_{D}^{+}(y) \cap Y^{\prime}\right| \leq\left|\left(Y, X^{\prime}\right)_{D} \cup\left(Y^{\prime}, X\right)_{D}\right|+1$. By Claim 1(iii), $\left|\left(Y, X^{\prime}\right)_{D} \cup\left(Y^{\prime}, X\right)_{D}\right|=\left|\left(Y, X^{\prime}\right)_{H} \cup\left(Y^{\prime}, X\right)_{H}\right| \leq\left|\left(Y^{\prime}, X^{\prime}\right)_{H_{1}}\right|=k$. Thus, by (3.10), $2 \sum_{i=1}^{k} q_{i}+\left|X^{\prime}-X\right|+\left|Y^{\prime}-Y\right|+2 r \leq$ $4+\left|N_{D}^{-}(x) \cap X^{\prime}\right|+\left|N_{D}^{+}(y) \cap Y^{\prime}\right| \leq k+5$. It follows that

$$
\begin{align*}
|X|+|Y| & =n-\left|X^{\prime}-X\right|-\left|Y^{\prime}-Y\right|-\sum_{i=1}^{k} q_{i}-p-r \\
& \geq n-k-5+\sum_{i=1}^{k} q_{i}-p+r \\
& \geq n-5+(k-1) p-k+r \\
& \geq n+r-6 \\
& \geq 5 \tag{3.11}
\end{align*}
$$

Claim 4. $p=1$ and $|X|+|Y| \geq 6$.
Firstly, we show that $\left|(Y, X)_{D}\right|<|Y| \cdot|X|$. Suppose this is not true. Then $k=\left|\left(Y^{\prime}, X^{\prime}\right)_{H_{1}}\right| \geq\left|(Y, X)_{H_{1}}\right|=\left|(Y, X)_{D}\right|=$ $|X| \cdot|Y|$. On the other hand, by (3.9), $k \leq \sum_{i=1}^{k} q_{i} \leq 2+\left|N_{D}^{+}(y) \cap X^{\prime}\right|-\left|X^{\prime}-X\right| \leq 2+|X|$. It follows that $|X| \geq k-2$. Similarly, $|Y| \geq k-2$. Hence, if $k \geq 2$, then $k \geq|X| \cdot|Y| \geq(k-2)^{2}$ and thus $k \leq 4$. So, $k \leq 4$ anyway. By (3.11), we have $|X|+|Y| \geq 5$. This, together with $|X| \cdot|Y| \leq k \leq 4$, forces that $k=4$ and either $|X|=1,|Y|=4$ or $|X|=4,|Y|=1$. However, we have deduced that $|X| \geq k-2=2$ and $|Y| \geq k-2=2$, a contradiction. So, $\left|(Y, X)_{D}\right|<|Y| \cdot|X|$, which implies there is a vertex $x_{1} \in X$ and a vertex $y_{1} \in Y$ such that $y_{1} x_{1} \notin A(D)$. So, $d_{D}^{-}\left(x_{1}\right)+d_{D}^{+}\left(y_{1}\right) \geq n-4$. On the other hand,
by Claim 3, $d_{D}^{-}\left(x_{1}\right) \leq\left|X^{\prime}\right|-1+\left|N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}\right|$ and $d_{D}^{+}\left(y_{1}\right) \leq\left|Y^{\prime}\right|-1+\left|N_{D}^{+}\left(y_{1}\right) \cap X^{\prime}\right|$. Hence,

$$
\begin{aligned}
n-4 & \leq\left|X^{\prime}\right|+\left|Y^{\prime}\right|-2+\left|N_{D}^{-}\left(x_{1}\right) \cap X^{\prime}\right|+\left|N_{D}^{-}\left(y_{1}\right) \cap Y^{\prime}\right| \\
& =n-\sum_{i=1}^{k} q_{i}-p-r-2+\left|N_{D}^{-}\left(x_{1}\right) \cap X^{\prime}\right|+\left|N_{D}^{+}\left(y_{1}\right) \cap Y^{\prime}\right| .
\end{aligned}
$$

It follows that $\sum_{i=1}^{k} q_{i}+p+r \leq 2+\left|N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}\right|+\left|N_{D}^{+}\left(y_{1}\right) \cap X^{\prime}\right|$. As every arc in $\left(Y^{\prime}, X^{\prime}\right)_{D}$ contributes at most 1 to $\left|N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}\right|+\left|N_{D}^{+}\left(y_{1}\right) \cap X^{\prime}\right|$ (note that $y_{1} x_{1} \notin A(D)$), we have $\left|N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}\right|+\left|N_{D}^{+}\left(y_{1}\right) \cap X^{\prime}\right| \leq\left|\left(Y^{\prime}, X\right)_{D} \cup\left(Y, X^{\prime}\right)_{D}\right|=$ $\left|\left(Y^{\prime}, X\right)_{H} \cup\left(Y, X^{\prime}\right)_{H}\right| \leq k$. Thus $\sum_{i=1}^{k} q_{i}+p+r \leq k+2$, and so $(k+1) p \leq k+2$, which implies $p=1$. Also, by using the pair $\left(y_{1}, x_{1}\right)$ instead (y, x) in (3.10), similar to (3.11), we also deduce that $|X|+|Y| \geq 6$, which completes the proof of the claim.

By Claim $4, u=v$. If $V(P) \cap V(H) \neq \emptyset$, then $H+u P u$ is a eulerian subdigraph with $|V(H)|+1$ vertices, contradicts (3.3). So, $V(P) \cap V(H)=\emptyset$ and thus P is in fact a trivial dipath.

Claim 5. $k \leq 2$ and $|X|+|Y| \geq n-4$.
By Claim 4, we may assume, without loss of generality, that $|X| \geq 3$. Then there is a vertex $x_{1} \in X$ such that $\left|N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}\right| \leq k /|X| \leq k / 3 . \operatorname{By}(3.8),\left|Y^{\prime}-Y\right|+k+r \leq\left|Y^{\prime}-Y\right|+\sum_{i=1}^{k} q_{i}+r \leq 2+k / 3$. It follows that $k \leq 3-3\left(r+\left|Y^{\prime}-Y\right|\right) / 2$. If $k \geq 3$, then $|X|=k=3, r=\left|Y^{\prime}-Y\right|=0$ and $q_{3}=q_{2}=q_{1}=p=1$. By Claim $4,|Y| \geq 6-|X|=3$. Similarly, we also have $|Y|=k=3$ and $\left|X^{\prime}-X\right|=0$, which implies $n=|X|+|Y|+q_{1}+q_{2}+q_{3}+p=10$, contradicts the assumption that $n \geq 11$. Hence, $k \leq 2$. Thus $N_{D}^{-}\left(x_{1}\right) \cap Y^{\prime}=\emptyset$.

For the second part of the claim, if $q_{1}=1$, then $z_{2}^{1}=z_{3}^{1}$. Let $H^{\prime}=H-z_{1}^{1} \bar{Q}_{1} z_{1}^{4}+z_{1}^{1} P_{z_{1}} u P v P_{z_{4}^{11}} z_{4}^{1}$ and $P^{\prime}=z_{2}^{1}$. It is easy to verify that H^{\prime} is a eulerian digraph with maximum number of vertices and P^{\prime} is a dipath satisfying (3.4)(1), (3.4)(2) and (3.4)(3). Thus $d_{D}^{+}\left(z_{2}^{1}\right)+d_{D}^{-}\left(z_{2}^{1}\right) \leq d_{D}^{+}(v)+d_{D}^{-}(u) \leq|X|+|Y|$. As $z_{2}^{1} u, v z_{2}^{1} \notin A(D)$, we have $2(|X|+|Y|) \geq$ $d_{D}^{+}\left(z_{2}^{1}\right)+d_{D}^{-}(u)+d_{D}^{+}(v)+d_{D}^{-}\left(z_{2}^{1}\right) \geq 2(n-4)$ and the result follows. So, we may assume that $q_{1} \geq 2$. Then $\sum_{i=1}^{k} q_{i} \geq 2 k$. By (3.9), $\left|X^{\prime}-X\right| \leq 2+\left|N_{D}^{+}(y) \cap X^{\prime}\right|-\sum_{i=1}^{k} q_{i} \leq 2+k-2 k \leq 1$. Then, as $v x_{1} \notin A(D), n-4 \leq d_{D}^{+}(v)+d_{D}^{-}\left(x_{1}\right) \leq|Y|+\left|X^{\prime}\right|-1$. It follows that $|X|+|Y| \geq n-4$.

Claim 6. $\left(Y^{\prime}, X^{\prime}\right)_{D-A(H)}=\emptyset$.
Suppose, to the contrary, that there exist $x^{\prime} \in X^{\prime}$ and $y^{\prime} \in Y^{\prime}$ such that $y^{\prime} x^{\prime} \in A(D)-A(H)$. Then by Claim $1, x^{\prime} \in X^{\prime}-X$ and $y^{\prime} \in Y^{\prime}-Y$. By Claim 5, $\left|X^{\prime}-X\right|=\left|Y^{\prime}-Y\right|=q_{1}=p=k=1$. Assume $y_{0} \in Y^{\prime}$ such that $N_{H_{1}}^{+}\left(y_{0}\right) \cap X^{\prime} \neq \emptyset$.

If $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y=\emptyset$, then, by $y^{\prime} \notin I_{Q_{1}}, d_{H_{1}}^{+}\left(y^{\prime}\right) \geq 1$, which forces $y^{\prime}=y_{0}$ and $\left|N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y\right|=d_{H_{1}}^{-}\left(y^{\prime}\right)=d_{H_{1}}^{+}\left(y^{\prime}\right)=$ $\left|N_{H_{1}}^{+}\left(y^{\prime}\right) \cap X\right|=1$. Thus $\left|\left(Y, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{H_{1}}\right|=\left|\left(Y^{\prime}, X^{\prime}\right)_{H_{1}}\right|$ and $\left(Y, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{D-A(H)}=\emptyset$ by Claim 1(iii). However, noting that $k=1$,

$$
\begin{aligned}
\mu\left(X^{\prime}, Y^{\prime}\right)-\mu\left(X^{\prime} \cup\left\{y^{\prime}\right\}, Y\right) & =\left|\left(Y^{\prime}, X^{\prime}\right)_{D-A(H)}\right|\left(1+q_{1}\right)+\left|\left(Y^{\prime}, I_{Q_{1}}\right)_{D}\right|+\left|\left(I_{Q_{1}}, X^{\prime}\right)_{D}\right|-\left|\left(Y, I_{Q_{1}}\right)_{D}\right|-\left|\left(I_{Q_{1}}, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{D}\right| \\
& \geq\left(1+q_{1}\right)-\left|\left(I_{Q_{1}},\left\{y^{\prime}\right\}\right)_{D}\right|>0,
\end{aligned}
$$

contradicts (3.7). Hence, $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y \neq \emptyset$. Similarly, $N_{H_{1}}^{-}\left(x^{\prime}\right) \cap X \neq \emptyset$. Furthermore, if there exists $y_{1} \in N_{H_{1}}^{+}\left(y^{\prime}\right) \cap N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y$, then picking $x_{1} \in N_{H_{1}}^{-}\left(x^{\prime}\right) \cap X$, we observe that $H-y^{\prime} y_{1} y^{\prime}-x_{1} x^{\prime}+x_{1} P_{x_{1}} u P v P_{y_{1}} y_{1} y^{\prime} x^{\prime}$ is a spanning eulerian subdigraph of D, a contradiction. So, $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y=\emptyset$. Moreover, for any $y \in Y-\left\{y_{0}\right\}$, as $y u \notin A(D), d_{D}^{+}(y) \geq n-4-d_{D}^{-}(u) \geq$ $n-\left|Y^{\prime}-Y\right|-\left|X^{\prime}-X\right|-q_{1}-p-|X| \geq|Y|$. This forces $y y^{\prime} \in A(D)$ and, furthermore, $y y^{\prime} \in A\left(H_{1}\right)$ by Claim 1(iii), and so $y^{\prime} y \notin A\left(H_{1}\right)$. Thus $d_{H_{1}}^{-}\left(y^{\prime}\right) \geq\left|Y-\left\{y_{0}\right\}\right|$ and $d_{H_{1}}^{+}\left(y^{\prime}\right) \leq 1$. So, $|Y| \leq 2$. Similarly, $|X| \leq 2$, a contradiction to Claim 4.

By Claims 1 and 6 , we see that $\left|\left(Y^{\prime}, X^{\prime}\right)_{D}\right|=k$. Next, we show that X^{\prime} (and Y^{\prime}) together with some vertices of $\bigcup_{i=1}^{k} I_{Q_{i}}$ will take places of D_{2} (and D_{1}) in Example 2.2 and the rest of the vertices will take places of U in Example 2.2, as shown in the cases below based on the values of k and q_{1}.

Case 1. $k=2$.

In this case, we will show $D \in \mathcal{F}_{2}$. By Claim 4, without loss of generality, we may assume that $|Y| \geq 3>k$. Then there exists a vertex $y_{0} \in Y$ such that $N_{D}^{+}\left(y_{0}\right) \cap X^{\prime}=\emptyset$. Applying (3.9) to the vertex $y_{0},\left|X^{\prime}-X\right|+\sum_{i=1}^{k} q_{i}+r \leq 2$. It follows that $X^{\prime}=X, r=0$ and $q_{1}=q_{2}=1$. Then $z_{2}^{1}=z_{3}^{1}$ and $z_{2}^{2}=z_{3}^{2}$. By Claim $5,\left|Y^{\prime}-Y\right| \leq 1$.

Recall that the z_{i}^{j},s are defined in Notation 3.5. It suffices to show that $\left(Y^{\prime}-Y,\left\{z_{2}^{1}, z_{2}^{2}\right\}\right)_{D}=\emptyset$ and $z_{2}^{1} z_{2}^{2}, z_{2}^{2} z_{2}^{1} \notin A(D)$ and $|X| \leq 2$. In fact, if $z_{2}^{1} z_{2}^{2} \in A(D)$, then by $z_{2}^{1} z_{2}^{2} \in A(D)-A(H)$. Thus $D-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}-z_{1}^{2} \bar{Q}_{2} z_{4}^{2}+z_{1}^{1} \bar{Q}_{1} z_{2}^{1} z_{2}^{2} \bar{Q}_{2} z_{4}^{2}+z_{1}^{2} P_{z_{1}^{2}} u P v P_{z_{4}} z_{4}^{1}$ is a spanning eulerian subdigraph, contradicts (3.2). Similarly, $z_{2}^{2} z_{2}^{1} \notin A(D)$. Furthermore, suppose that there exists a vertex $y^{\prime} \in Y^{\prime}-Y$ such that $y^{\prime} z_{2}^{1} \in A(D)$. If $z_{2}^{1} y^{\prime} \in A(D)$, then by Lemma 3.2, $z_{2}^{1} y^{\prime}, y^{\prime} z_{2}^{1} \notin A\left(H_{1}\right)$. Thus $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+$ $z_{1}^{1} P_{z_{1}^{1}} u v v P_{z_{4}} z_{4}^{1}+y^{\prime} z_{2}^{1} y^{\prime}$ is a spanning eulerian subdigraph, contradicts (3.2). Hence, $N_{D}^{+}\left(z_{2}^{1}\right) \subseteq Y^{\prime}-\left\{y^{\prime}\right\}$ by Claim 3. Note that
$d_{D}^{+}\left(z_{2}^{1}\right) \geq n-4-d_{D}^{-}(u) \geq\left|Y^{\prime}\right|-1$. This forces that $N_{D}^{+}\left(z_{2}^{1}\right)=Y^{\prime}-\left\{y^{\prime}\right\}$. If there exists $y_{1} \in N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y$, then $z_{2}^{1} y_{1} \in A(D)$. Thus $H^{\prime}=\left(H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}^{1}} z_{4}^{1}\right)-y^{\prime} y_{1}+y^{\prime} z_{2}^{1} y_{1}$ is a spanning eulerian subdigraph, contradicts (3.2). So, $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y=\emptyset$. It follows that $\left|N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y\right|=d_{H_{1}}^{-}\left(y^{\prime}\right)=d_{H_{1}}^{+}\left(y^{\prime}\right)=\left|N_{H_{1}}^{+}\left(y^{\prime}\right) \cap X\right|$, and so we have both $\left|\left(Y, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{H_{1}}\right|=\left|\left(Y^{\prime}, X^{\prime}\right)_{H_{1}}\right|$ and $\left|\left(Y, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{D-A(H)}\right|=0$. By (3.7),

$$
\begin{aligned}
0 & \leq \mu\left(X \cup\left\{y^{\prime}\right\}, Y\right)-\mu\left(X^{\prime}, Y^{\prime}\right) \\
& =\left|\left(Y,\left\{z_{2}^{1}, z_{2}^{2}\right\}\right)_{D}\right|+\left|\left(\left\{z_{2}^{1}, z_{2}^{2}\right\}, X \cup\left\{y^{\prime}\right\}\right)_{D}\right|-\left|\left(Y^{\prime},\left\{z_{2}^{1}, z_{2}^{2}\right\}\right)_{D}\right|-\left|\left(\left\{z_{2}^{1}, z_{2}^{2}\right\}, X^{\prime}\right)_{D}\right| \\
& =\left|\left(\left\{z_{2}^{1}, z_{2}^{2}\right\},\left\{y^{\prime}\right\}\right)_{D}\right|-\left|\left(\left\{y^{\prime}\right\},\left\{z_{2}^{1}, z_{2}^{2}\right\}\right)_{D}\right|
\end{aligned}
$$

Thus $z_{2}^{2} y^{\prime} \in A(D)$ since $y^{\prime} z_{2}^{1} \in A(D)$ and $z_{2}^{1} y^{\prime} \notin A(D)$. Then $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}-z_{1}^{2} \bar{Q}_{2} z_{4}^{2}+z_{1}^{2} \bar{Q}_{2} z_{2}^{2} y^{\prime} z_{2}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}} z_{4}^{2}$ is a spanning eulerian subdigraph, contradicts (3.2).

Finally, if $|X| \geq 3$, then as $k=2$, there exists a vertex $x_{0} \in X$ such that $N_{D}^{-}\left(x_{0}\right) \cap Y^{\prime}=\emptyset$. Then $n-4 \leq d_{D}^{+}\left(y_{0}\right)+d_{D}^{-}\left(x_{0}\right) \leq$ $\left|Y^{\prime}\right|-1+\left|X^{\prime}\right|-1=n-5$, a contradiction. So, $D \in \mathcal{F}_{2}$.
Case 2. $k=1$ and $q_{1}=2$.
In this case, we will show that either $D \in \mathcal{F}_{1}$ or $D \in \mathcal{F}_{3}$. By Claim 4, without loss of generality, we may assume that $|Y| \geq 3>k$. Thus there exists a vertex $y_{0} \in Y$ such that $N_{D}^{+}\left(y_{0}\right) \cap X^{\prime}=\emptyset$. Applying (3.9) to the vertex $y_{0},\left|X^{\prime}-X\right|+q_{1}+r \leq 2$. It follows that $X^{\prime}=X, r=0$ and $q_{1}=2$. Let $I_{Q_{1}}=\left\{z_{2}, z_{3}\right\}$, where $z_{2}=z_{2}^{1}$. Note that $z_{3}^{1}=z_{2}$ is possible. By Claim 5, $\left|Y^{\prime}-Y\right| \leq 1$. Moreover, we claim that $|X|=1$ and thus $X=\left\{z_{1}^{1}\right\}$. For otherwise, there exists a vertex $x_{0} \in X$ such that $N_{D}^{-}\left(x_{0}\right) \cap Y^{\prime}=\emptyset$, then as $y_{0} x_{0} \notin A(D), n-4 \leq d_{D}^{-}\left(x_{0}\right)+d_{D}^{+}\left(y_{0}\right) \leq|X|-1+\left|Y^{\prime}\right|-1=n-5$, a contradiction. If $\left(Y^{\prime}-Y, I_{Q_{1}}\right)_{D}=\emptyset$, then by Claims 3 and $6, D \in \mathcal{F}_{3}$, where $\left\{z_{2}, z_{3}\right\}$ take the place of the set of vertices of the 2-cycle in Example 2.2. So, we may assume that $Y^{\prime}-Y=\left\{y^{\prime}\right\}$ and either $y^{\prime} z_{2} \in A(D)$ or $y^{\prime} z_{3} \in A(D)$.

As $k=1$, let $y_{1} \in Y^{\prime}$ such that $N_{D}^{+}\left(y_{1}\right) \cap X^{\prime} \neq \emptyset$. For any $y \in Y-\left\{y_{1}\right\}$, as $y u \notin A(D), d_{D}^{+}(y) \geq n-4-d_{D}^{-}(u) \geq\left|Y^{\prime}\right|-1$. This implies $D\left[Y-\left\{y_{1}\right\}\right]$ is a complete digraph and $Y-\left\{y_{1}\right\} \subseteq N_{D}^{-}\left(y^{\prime}\right) \cap N_{D}^{-}\left(y_{1}\right)$. So, it is easy to find a $\left(z_{4}^{1}, y_{1}\right)$-dipath P_{1} and a $\left(z_{4}^{1}, y^{\prime}\right)$-dipath P_{2} such that $A\left(P_{1}\right) \cap A\left(P_{2}\right)=\emptyset$ and $V\left(P_{1}\right) \cup V\left(P_{2}\right)=Y^{\prime}$. Thus, if $z_{3} z_{2} \in A(D)$ then, as either $y^{\prime} z_{2} \in A(D)$ or $y^{\prime} z_{3} \in A(D), y_{1} z_{1}^{1} u P v P_{z_{4}^{1}} z_{4}^{1} P_{2} y^{\prime}\left(z_{3}\right) z_{2} \bar{Q}_{1} z_{4}^{1} P_{1} y_{1}$ is a spanning eulerian subdigraph, contradicts (3.2). So, $z_{3} z_{2} \notin A(D)$ and thus $D \in \mathcal{F}_{1}$ where $Y^{\prime} \cup\left\{z_{3}\right\}$ takes the place of D_{1} and X takes the place of D_{2} in Example 2.2.

Case 3. $k=1$ and $q_{1}=1$.
In this case, we show that $D \in \mathcal{F}_{1}$. Assume $x_{0} \in X^{\prime}, y_{0} \in Y^{\prime}$ such that $y_{0} x_{0} \in A\left(H_{1}\right)$. Then by Claim $6 y_{0} x_{0}$ is the only arc from Y^{\prime} to X^{\prime} in D and it suffices to show $\left(Y^{\prime}-Y, I_{Q_{1}}\right)_{D}=\left(I_{Q_{1}}, X^{\prime}-X\right)_{D}=\emptyset$. Suppose, to the contrary, that $y^{\prime} z_{2}^{1} \in A(D)$, where $y^{\prime} \in Y^{\prime}-Y$. If $z_{2}^{1} y^{\prime} \in A(D), H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}^{1}} z_{4}^{1}+y^{\prime} z_{2}^{1} y^{\prime}$ is a spanning eulerian subdigraph, contradicts (3.2). Hence $z_{2}^{1} y^{\prime} \notin A(D)$. Moreover, for any $y \in Y-\left\{y_{0}\right\}$, as $y u \notin A(D), d_{D}^{+}(y) \geq n-4-d_{D}^{-}(u) \geq\left|X^{\prime}-X\right|+\left|Y^{\prime}\right|-2$. Next, we consider two subcases.

Subcase $3.1 X^{\prime}-X \neq \emptyset$.
Then $d_{D}^{+}(y) \geq\left|Y^{\prime}\right|-1$ for all $y \in Y-\left\{y_{0}\right\}$, which implies $D\left[Y-\left\{y_{0}\right\}\right]$ is a complete digraph and $Y-\left\{y_{0}\right\}=N_{D}^{-}\left(y^{\prime}\right) \cap Y=$ $N_{D}^{-}\left(y_{0}\right) \cap Y$. It is easy to see that there is a $\left(z_{4}^{1}, y^{\prime}\right)$-dipath P_{1} and a $\left(z_{4}^{1}, y_{0}\right)$-dipath P_{2} such that $A\left(P_{1}\right) \cap A\left(P_{2}\right)=\emptyset$ and $V\left(P_{1}\right) \cup$ $V\left(P_{2}\right)=Y^{\prime}$. Let T be the (x_{0}, z_{1}^{1})-ditrail in H. Then T spans all the vertices in X^{\prime}. Thus $y_{0} x_{0} T z_{1}^{1} P_{z_{1}} u P v P_{z_{4}^{1}} z_{4}^{1} P_{1} y^{\prime} z_{2}^{1} \bar{Q}_{1} z_{4}^{1} P_{2} y_{0}$ is a spanning eulerian subdigraph, contradicts (3.2). This proves that this subcase cannot occur.

Subcase 3.2 $X^{\prime}-X=\emptyset$.
In this case, $d_{D}^{+}(y) \geq\left|Y^{\prime}\right|-2$ for all $y \in Y-\left\{y_{0}\right\}$. Also, as $z_{2}^{1} u \notin A(D), d_{D}^{+}\left(z_{2}^{1}\right) \geq n-4-d_{D}^{-}(u) \geq\left|Y^{\prime}\right|-2$. If $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y^{\prime}=\emptyset$, then as $d_{H_{1}}^{+}\left(y^{\prime}\right) \geq 1, y^{\prime}=y_{0}$ and thus $\left|N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y^{\prime}\right|=\left|N_{H_{1}}^{-}\left(y^{\prime}\right)\right|=\left|N_{H_{1}}^{+}\left(y^{\prime}\right)\right|=\left|N_{H_{1}}^{+}\left(y^{\prime}\right) \cap X^{\prime}\right|=1$. So $\left(X^{\prime} \cup\left\{y^{\prime}\right\}, Y^{\prime}-\left\{y^{\prime}\right\}\right)$ is a partition of $V\left(H_{1}\right)$ so that $\left|\left(Y^{\prime}-\left\{y^{\prime}\right\}, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{D}\right|=1$. Moreover, if there is a vertex $y_{1} \in Y^{\prime}$ such that $y_{1} y^{\prime} \in A(D)-A(H)$, then by Claim 1(iii) $y_{1} \notin Y$. Thus, by the fact $d_{H_{1}}^{+}\left(y_{1}\right)>0$ and $d_{H_{1}}^{-}\left(y^{\prime}\right)=1$, there is a vertex $y_{2} \in Y$ such that $y_{1} y_{2} \in A\left(H_{1}\right)$. Thus, $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}} u P v P_{z_{4}^{1}} z_{4}^{1}-y_{1} y_{2}+y_{1} y^{\prime} z_{2}^{1} y_{2}$ is a spanning eulerian subdigraph, a contradiction. Hence, $\left(Y^{\prime}-\left\{y^{\prime}\right\}, X^{\prime} \cup\left\{y^{\prime}\right\}\right)_{D-A(H)}=\emptyset$. Then, by the facts $y^{\prime} z_{2}^{1} \in A(D)$ and $z_{2}^{1} y^{\prime} \notin A(D)$,

$$
\mu\left(X^{\prime} \cup\left\{y^{\prime}\right\}, Y^{\prime}-\left\{y^{\prime}\right\}\right)-\mu\left(X^{\prime}, Y^{\prime}\right)=\left|\left(I_{Q_{1}},\left\{y^{\prime}\right\}\right)_{D}\right|-\left|\left(\left\{y^{\prime}\right\}, I_{Q_{1}}\right)_{D}\right|<0
$$

a contradiction to (3.7). Hence, $\left|N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y^{\prime}\right| \geq 1$. Also, $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap N_{D}^{+}\left(z_{2}^{1}\right) \cap Y^{\prime}=\emptyset$, since otherwise, let $y_{1} \in N_{H_{1}}^{+}\left(y^{\prime}\right) \cap$ $N_{D}^{+}\left(z_{2}^{1}\right) \cap Y^{\prime}$ and then $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{1}^{1}} z_{4}^{1}-y^{\prime} y_{1}+y^{\prime} z_{2}^{1} y_{1}$ is a spanning eulerian subdigraph, contradicts (3.2). This, together with $\left|N_{D}^{+}\left(z_{2}^{1}\right) \cap Y^{\prime}\right|=d_{D}^{+}\left(z_{2}^{1}\right) \geq\left|Y^{\prime}\right|-2$, forces $\left|N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y^{\prime}\right|=1$, say $N_{H_{1}}^{+}\left(y^{\prime}\right) \cap Y^{\prime}=\left\{y_{1}^{\prime}\right\}$, and $N_{D}^{+}\left(z_{2}^{1}\right)=Y^{\prime}-\left\{y^{\prime}, y_{1}^{\prime}\right\}$. Denote $\left\{y_{2}^{\prime}\right\}=N_{H_{1}}^{-}\left(y^{\prime}\right) \cap Y^{\prime}$ as $d_{H_{1}}^{-}\left(y^{\prime}\right)=d_{H_{1}}^{+}\left(y^{\prime}\right)=1$.

Moreover, we claim that $|X|=1$. For otherwise, there exists a vertex $x_{1} \in X-\left\{x_{0}\right\}$ and thus as $z_{2}^{1} x_{1} \notin A(D), n-4 \leq$ $d_{D}^{-}\left(x_{1}\right)+d_{D}^{+}\left(z_{2}^{1}\right) \leq|X|-1+\left|Y^{\prime}\right|-2=n-5$, a contradiction. So, $|X|=1$. Thus, by Claim $5\left|Y^{\prime}\right| \geq|Y|+1 \geq n-4-|X|+1 \geq 7$.

For any $y \in Y^{\prime}-\left\{y^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{0}\right\}$, as $d_{D}^{+}(y) \geq\left|Y^{\prime}\right|-2$, we see that either $y y^{\prime} \in A(D)$ or $y y_{1}^{\prime} \in A(D)$. If $y y^{\prime} \in A(D)$, then $y y^{\prime} \notin A\left(H_{1}\right)$ and thus $H-z_{1}^{1} Q_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}^{1}} z_{4}^{1}+y^{\prime} z_{2}^{1} y y^{\prime}$ is a spanning eulerian subdigraph, contradicts (3.2). So, $y y_{1}^{\prime} \in A(D)$. Furthermore, if $y y_{1}^{\prime} \notin A\left(H_{1}\right)$, then $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}^{1}} z_{4}^{1}-y y_{1}^{\prime}+y^{\prime} z_{2}^{1} y y_{1}^{\prime}$ is a spanning eulerian subdigraph, contradicts (3.2) again. Hence, $y y_{1}^{\prime} \in A\left(H_{1}\right)$. Then, as y is arbitrary, we have $d_{H_{1}}^{+}\left(y_{1}^{\prime}\right)=d_{H_{1}}^{-}\left(y_{1}^{\prime}\right) \geq\left|N_{H_{1}}^{-}\left(y_{1}^{\prime}\right) \cap Y^{\prime}\right| \geq\left|Y^{\prime}-\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{0}\right\}\right| \geq$ $\left|Y^{\prime}\right|-3 \geq 4$. This forces there exists a vertex $y_{3}^{\prime} \in N_{H_{1}}^{-}\left(y_{1}^{\prime}\right) \cap N_{H_{1}}^{+}\left(y_{1}^{\prime}\right) \cap Y$. Thus $H-z_{1}^{1} \bar{Q}_{1} z_{4}^{1}+z_{1}^{1} P_{z_{1}^{1}} u P v P_{z_{4}} z_{4}^{1}-y^{\prime} y_{1}^{\prime} y_{3}^{\prime}+y^{\prime} z_{2}^{1} y_{3}^{\prime}$ is a spanning eulerian subdigraph, contradicts (3.2) once more.

Similarly, $\left(I_{Q_{1}}, X^{\prime}-X\right)_{D}=\emptyset$ and $D \in \mathcal{F}_{1}$. The proof is completed.
Let $\mathscr{D}_{4}=\mathscr{D}\left(k_{1}, 0,2\right) \cup \mathscr{D}\left(0, k_{2}, 2\right)$. Then $\mathscr{D}_{4} \subseteq \mathscr{D}_{1}$. It is easy to verify that every digraph D in $\left(D_{1}-D_{4}\right) \cup D_{2} \cup D_{3}$ has a pair of vertices (u, v) such that $u v \notin A(D)$ and $d_{D}^{+}(u)+d_{D}^{-}(v)=n-4$. So only the digraph in \mathscr{D}_{4} may satisfies the condition $d_{D}^{+}(u)+d_{D}^{-}(v) \geq n-3$ for every two vertices u, v with $u v \notin A(D)$. Let \mathcal{F}_{4} be the family of spanning subdigraphs of digraphs in \mathscr{D}_{4} such that $D \in \mathcal{F}_{4}$ if and only if D is strong and $d_{D}^{+}(u)+d_{D}^{-}(v) \geq n-3$ for every pair of vertices (u, v) with $u v \notin A(D)$. Then we have the following corollary.

Corollary 3.6. Let D be a digraph of order $n \geq 11$. If $d_{D}^{+}(u)+d_{D}^{-}(v) \geq n-3$ for every two vertices u, v with $u v \notin A(D)$, then either $D \in \mathcal{F}_{4}$ or D has a spanning eulerian subdigraph.

Also, note that digraphs in \mathcal{F}_{4} have minimum degree 1 . So, we get the following corollary.
Corollary 3.7. Let D be a digraph with order $n \geq 11$ and $\min \left\{\delta^{+}, \delta^{-}\right\} \geq 2$. If $d_{D}^{+}(u)+d_{D}^{-}(v) \geq n-3$ for every two vertices u, v with $u v \notin A(D)$, then D is supereulerian.

Another consequence of the main results is the following degree sum condition, which is a stronger version of the main result of [7].

Corollary 3.8 ([7]). Let D be a digraph of order $n \geq 11$. If $\delta^{+}(D)+\delta^{-}(D) \geq n-4$ then either $D \in \mathcal{F}_{1} \cup \mathcal{F}_{2} \cup \mathcal{F}_{3}$ or D has a spanning eulerian subdigraph.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs, second ed., Springer, London, 2008.
[2] J. Bang-Jensen, A. Maddaloni, Sufficient conditions for a digraph to be supereulerian, J. Graph Theory 79 (2015) 8-20.
[3] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79-84.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Newyork, 2008.
[5] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177-196.
[6] Z.H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics (a survey), in: Combinatorics and Graph Theory 95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, 1995, pp. 53-69.
[7] Y. Hong, H.-J. Lai, Q. Liu, Supereulerian subdigraphs, Discrete Math. 330 (2014) 87-95.
[8] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926-940.
[9] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309-310.

[^0]: This research is supported by NSFC (No. 11401103, 11301086).

 * Corresponding author.

 E-mail addresses: qliu@fzu.edu.cn (Y. Hong), qliu@fzu.edu.cn (Q. Liu).

