Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Ore-type degree condition of supereulerian digraphs*

Yanmei Hong^a, Qinghai Liu^{b,*}, Hong-Jian Lai^c

^a College of Mathematics and Computer Science, Fuzhou University, Fuzhou, Fujian 350108, China

^b Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China

^c Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

ARTICLE INFO

Article history: Received 19 August 2014 Received in revised form 13 August 2015 Accepted 17 March 2016

Keywords: Supereulerian Ore's condition

ABSTRACT

A digraph *D* is supereulerian if *D* has a spanning directed eulerian subdigraph. Hong et al. proved that $\delta^+(D) + \delta^-(D) \ge |V(D)| - 4$ implies *D* is supereulerian except some well-characterized digraph classes if the minimum degree is large enough. In this paper, we characterize the digraphs *D* which are not supereulerian under the condition $d_D^+(u) + d_D^-(v) \ge |V(D)| - 4$ for any pair of vertices *u* and *v* with $uv \notin A(D)$ without the minimum degree constraint.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple digraphs that do not have loops nor parallel arcs (bi-direction edges are allowed). For undefined terms and notations, refer to [4] for graphs and [1] for digraphs. To avoid possible confusion, we use ditrails, dipaths and dicycles to mean directed trails, paths, and cycles, while trails, paths and cycles refer to undirected graph terminology.

Let *D* be a digraph. We use uv to denote an arc oriented from a vertex *u* to a vertex *v*. For a vertex *u* of *D*, the *out-degree* $d_D^+(u)$ (*in-degree* $d_D^-(u)$) is the number of arcs leaving from *u* (coming to *u*). If *X* and *Y* are disjoint subsets of *V*(*D*), then $\lambda_D(X, Y)$ denotes the maximum number of arc-disjoint dipaths from *X* to *Y* in *D*. As in [1], *A*(*D*) denotes the set of arcs in *D*, and $\delta^+(D)$, $\delta^-(D)$ denote the minimum out-degree and the minimum in-degree of *D*.

Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [3] in 1977 proposed the supereulerian problem, which seeks to characterize graphs that have spanning eulerian subgraphs, and they indicated that this problem would be very difficult. Pulleyblank [9] later in 1979 proved that determining whether a graph is supereulerian, even within planar graphs, is NP-complete. Since then, there have been lots of researches on this topic. Catlin [5] in 1992 presented the first survey on supereulerian graphs. Later Chen et al. [6] gave an update in 1995, specifically on the reduction method associated with the supereulerian problem. A recent survey on supereulerian graphs is given in [8].

It is natural to investigate supereulerian digraphs. A digraph *D* is said to be *eulerian* if *D* is strongly connected and every vertex has a same in-degree and out-degree. If a digraph contains a spanning eulerian subdigraph, then *D* is said to be *supereulerian*. In [7], Hong et al. proved that for any strong digraph *D* with min{ $\delta^+(D)$, $\delta^-(D)$ } ≥ 4 , if $\delta^+(D) + \delta^-(D) > n-4$ then *D* is supereulerian and characterize the counterexample when the equality holds.

Later, Bang-Jensen and Maddaloni [2] gave some sufficient Ore-type conditions to be supereulerian. Let *D* be a digraph on *n* vertices. A pair of vertices (u, v) of *D* is said to be *dominating* (*dominated*) if there exists a vertex *w* such that uw, $vw \in A(D)$ (*wu*, $uv \in A(D)$). In [2], Bang-Jensen and Maddaloni proved that a strong digraph *D* is supereulerian if $d_D^+(x) + d_D^-(y) \ge n-1$

* Corresponding author.

http://dx.doi.org/10.1016/j.disc.2016.03.015 0012-365X/© 2016 Elsevier B.V. All rights reserved.

[☆] This research is supported by NSFC (No. 11401103, 11301086).

E-mail addresses: qliu@fzu.edu.cn (Y. Hong), qliu@fzu.edu.cn (Q. Liu).

for any ordered pair (x, y) of dominated or dominating non-adjacent vertices. Also, in [2], they proved that a strong *D* is supereulerian if $d_D^+(x) + d_D^-(x) + d_D^+(y) + d_D^-(y) \ge 2n - 3$ for any pair of non-adjacent vertices. In this paper, we investigate the Ore-type sufficient condition of supereulerian digraphs and obtain the following theorem.

Theorem 1.1. Let *D* be a strong digraph of order $n \ge 11$. If

$$d_{D}^{+}(x) + d_{D}^{-}(y) \ge n - 4 \text{ for any pair of vertices } (x, y) \text{ with } xy \notin A(D),$$
(1.1)

then D is supereulerian if and only if it does not belong to a well characterized family of exceptional digraphs.

The proof arguments take a different approach from that in [7]. The family of exceptional graphs are also different from that in [7]. For simplicity of the statement, we give some terminologies used in this paper first. For a vertex set $X \subset V(D)$, denote by $N_D^+(X)$ the set of vertices in V(D) - X which has an in-neighbor in X and by $N_D^-(X)$ the set of vertices in V(D) - X which has an in-neighbor in X and by $N_D^-(X)$ the set of vertices in V(D) - X which has an in-neighbor in X and by $N_D^-(X)$ the set of vertices in V(D) - X which has an out-neighbor in X. For simplicity, for a subdigraph H, we write $N_D^+(H) = N_D^-(V(H))$ and $N_D^-(H) = N_D^-(V(H))$. For a pair of disjoint sets $X, Y \subset V(D)$, $(X, Y)_D$ stands the set of all the arcs with tail in X and head in Y. When Y = V - X, we use $\partial_D^+(X) = (X, V - X)_D$, and $\partial_D^-(X) = (V - X, X)_D$. When $X = \{v\}$, we also use $\partial_D^+(v) = \partial_D^+(\{v\})$ and $N_D^+(v) = N_D^+(\{v\})$.

For any disjoint vertex sets X, Y, an (X, Y)-ditrail (or dipath) is a ditrail (or a dipath) from a vertex in X to a vertex in Y and none of whose internal vertex lies in $X \cup Y$. An (X, Y)-segment of a ditrail (or a dipath) P is an (X, Y)-ditrail (or an (X, Y)-dipath) which is a subdigraph of P. When $X = \{x\}$ and $Y = \{y\}$, we may use (x, y)-ditrail (or dipath) instead of $(\{x\}, \{y\})$ -ditrail (or dipath).

In Section 2, we apply a necessary condition for a digraph to be supereulerian in [7] to find some candidates of the exceptional graphs for the main result. The proof of the main result is presented in Section 3.

2. Some classes of digraphs

Let *D* be a strong digraph and $U \subset V(D)$. Then in D[U], the digraph induced by *U*, we can find some ditrails P_1, \ldots, P_t such that $\bigcup_{i=1}^{t} V(P_i) = U$ and $A(P_i) \cap A(P_j) = \emptyset$ for any $i \neq j$. Let $\tau(U)$ be the minimum value of such *t*. Then $c(G(D[U])) \leq \tau(U) \leq |U|$, where c(G(D[U])) is the number of components of the underlying graph of D[U]. For any $X \subseteq V(D) - U$, denote Y := V(D) - U - X and let

 $h(U, X) := \min\{|\partial_D^+(X)|, |\partial_D^-(X)|\} + \min\{|(U, Y)_D|, |(Y, U)_D|\} - \tau(U), \text{ and } h(U) := \min\{h(U, X) : X \cap U = \emptyset\}.$

In [7], Hong et al. give the following proposition, and use it to find some classes of digraphs which are not supereulerian.

Proposition 2.1 ([7]). If D has a spanning eulerian subdigraph, then for any $U \subset V(D)$, h(U) > 0.

Hong et al. [7] used this proposition to find the following example digraphs, each of which has a large minimum degree sum but contains no spanning eulerian subdigraphs.

Example 2.2. Let $k_1, k_2 \ge 0, \ell \ge 2$ be integers with $(k_1 + 1)(k_2 + 1) \ge \ell - 1$, and D_1 and D_2 be two disjoint complete digraphs of order $k_1 + 1$ and $k_2 + 1$, respectively. Let U be an independent set disjoint from $V(D_1) \cup V(D_2)$ with $|U| = \ell$. Let $\mathcal{D}(k_1, k_2, \ell)$ denote the family of digraphs such that $D \in \mathcal{D}(k_1, k_2, \ell)$ if and only if D is the digraph obtained from $D_1 \cup D_2 \cup U$ by adding all arcs directed from every vertex in D_2 to every vertex in $U \cup D_1$, and all arcs directed from every vertex in U to every vertex in D_1 to some vertices in D_2 .

Let \mathcal{D}_1 denote the family $\mathcal{D}(k_1, k_2, 2)$, Hong et al. [7] proved if a simple digraph D satisfying min $\{\delta^+(D), \delta^-(D)\} \ge 4$ and $\delta^+(D) + \delta^-(D) \ge n - 4$, then D is supereulerian if and only if D is not a member in \mathcal{D}_1 . Moreover, if the condition min $\{\delta^+(D), \delta^-(D)\} \ge 4$ is removed, more new exceptional non-supereulerian digraphs will appear. Let $\mathcal{D}_2 \subseteq \bigcup_{i=1}^2 \mathcal{D}(i, k_2, 3) \cup \mathcal{D}(k_1, i, 3)$ be the family of digraphs with minimum out-degree or minimum in-degree 2. By using Proposition 2.1, Hong et al. [7] proved no digraph in $\mathcal{D}(k_1, k_2, \ell)$ is supereulerian, and so every one in $\mathcal{D}_1 \cup \mathcal{D}_2$ is nonsupereulerian.

Next, let \mathcal{D}_3 be the set of digraphs obtained from digraphs in $\mathcal{D}(0, k_2, 2) \cup \mathcal{D}(k_1, 0, 2)$ by replacing a vertex in U by a dicycle $w_1w_2w_1$ of length 2 and adding all the arcs from $\{w_1, w_2\}$ to $V(D_1)$ and all the arcs from $V(D_2)$ to $\{w_1, w_2\}$. By Proposition 2.1, none of the digraphs in \mathcal{D}_3 is superculerian. In fact, let $D \in \mathcal{D}_3$, by the construction, $\tau(U) = 2$. Let $X = V(D_1)$ and $Y = V(D_2)$. Then $h(U, X) = \min\{|\partial_D^+(X)|, |\partial_D^-(X)|\} + \min\{|(U, Y)_D|, |(Y, U)_D|\} - \tau(U) = 1 + 0 - 2 < 0$, and so D is not superculerian by Proposition 2.1.

Therefore, for i = 1, 2, 3, none of the spanning subdigraphs of digraphs in \mathcal{D}_i has a spanning eulerian subdigraph. For i = 1, 2, 3, let \mathcal{F}_i be the family of digraphs such that $D \in \mathcal{F}_i$ if and only if for some member $D' \in \mathcal{D}_i$, D is a strong spanning subdigraph of D' satisfying (1.1). Then, each \mathcal{F}_i is also a family of non-supereulerian digraphs. In next section, we will show that if a digraph D satisfies this Ore-type degree condition (1.1), then D is supereulerian if and only if D is not a member of $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$.

Fig. 1. An example of increment, where the (u, v)-ditrail $Q = uw_1w_2w_3v$, $\bar{Q} = uw_1w_2w_3w_4w_5w_3v$, $I_Q = \{w_1, w_3, w_4, w_5\}$.

3. An ore-type degree condition for a digraph to be supereulerian

In this section, we characterize the non-supereulerian digraphs D which satisfy (1.1). The main tool used in this paper, called *increment*, is the same to that in [7]. The formal definition is stated below.

Definition 3.1 ([7]). Let *H* be a eulerian subdigraph of a digraph *D*. Suppose for some distinct vertices $u, v \in V(H)$, *Q* is a (u, v)-ditrail of *H*. Let *H'* be the connected component of the underlying graph H - A(Q) containing both *u* and *v*. Define $I_Q = V(H) - V(H')$, which is called the *increment of Q with respect to H*. If the eulerian subdigraph *H* is clear from context, we also say I_Q is the increment of *Q*.

Since *H* can also be viewed as a closed ditrail, *H* has a minimum (u, v)-ditrail that contains all arcs in $A(H[I_Q]) \cup A(Q)$. This ditrail is denoted by \bar{Q} . Note that it is possible that $\bar{Q} = Q$. Also, the underlying graph of $H[I_Q]$ might not be connected (see Fig. 1 for an example).

Using these definitions and notations, we have the following observation stated as the next lemma.

Lemma 3.2 ([7]). Let D be a digraph, H be a eulerian subdigraph of D, and X, $Y \subseteq V(H)$ be two disjoint vertex sets. Then for any (X, Y)-ditrail Q, $(V(H - I_Q), I_Q)_H \cup (I_Q, V(H - I_Q))_H \subseteq A(Q)$, and for any two arc-disjoint (X, Y)-ditrails $Q_1, Q_2, I_{Q_1} \cap I_{Q_2} = \emptyset$.

In order to make the proof be easier to read, we present a lemma first.

Lemma 3.3. Let *D* be a strong digraph with order $n \ge 5$. If $\delta^-(D) \ge n - 3$ or $\delta^+(D) \ge n - 3$, then for any two vertices u, v there is a (u, v)-ditrail *P* of *D* such that $|V(P)| \ge n - 1$.

Proof. By symmetry, we only prove the case when $\delta^-(D) \ge n-3$. Let u, v be two arbitrary vertices of D and P be a (u, v)-ditrail such that p := |V(P)| is maximized. Denote $P = v_1 v_2 \dots v_t$, where $v_1 = u, v_t = v$. Note that t may be greater than p. We first show that $t \ge 3$. In fact, as $\delta^-(D) \ge n-3 \ge 2$, there is a vertex $w \in N_D^-(v)$ different from u. Since D is strong, u has a dipath to w in D - wv. By adding the arc wv to the dipath, we obtain a (u, v)-ditrail with at least 2 arcs, which implies $t \ge 3$.

Let R = V(D) - V(P). If $|R| \le 1$, then we are done. So we may assume $|R| \ge 2$. Since *D* is strong, we may assume there exists a vertex $w \in R$ such that $wv_i \in A(D)$ for some $1 \le i \le t$. Choose such *w* and v_i such that *i* is maximized. Let $X = \{v_1, \ldots, v_i\}$ and Y = V(P) - X.

If $|X| \ge 3$, then neither $v_i w \in A(D)$ nor $v_{i-1}w \in A(D)$. For, otherwise, either $v_1 \dots v_i w v_i \dots v_t$ or $v_1 \dots v_{i-1} w v_i \dots v_t$ is a (u, v)-ditrail with p + 1 vertices, contradicts the maximality of p. This, together with the fact $\delta^-(D) \ge n - 3$, forces $N_D^-(w) = V(D) - \{v_{i-1}, v_i, w\}$. Pick $w' \in R - \{w\}$. Then $w'w \in A(D)$. Similar to the above, we may show that $N_D^-(w') \cap \{v_{i-1}, v_i\} = \emptyset$. If $v_{i-2} \ne v_i$ then $v_{i-2}w' \notin A(D)$, since otherwise, $v_1 \dots v_{i-2}w'wv_i \dots v_t$ is a (u, v)-ditrail with p + 1vertices, a contradiction. If $v_{i-2} = v_i$, then $v_{i-3}w' \notin A(D)$, since otherwise, $v_1 \dots v_{i-3}w'wv_{i-2} \dots v_t$ is a (u, v)-ditrail with p + 2 vertices (here v_{i-3} exists according to the assumption $|X| \ge 3$), a contradiction. In either cases, $d_D^-(w') \le n - 4$, a contradiction to the fact $\delta^-(D) \ge n - 3$.

If $|X| \le 2$, then either $i \le 2$ or i = 3 and $v_1 = v_3$. Similar to the previous paragraph, it is easy to see that $N_D^-(w) \cap X = \emptyset$. Thus

$$|N_{D}^{-}(w) \cap Y| \ge n - 3 - (|R| - 1) = n - |R| - 2.$$
(3.1)

Also, by the assumption that $t \ge 3$ and $u \ne v, Y \ne \emptyset$. For any $v_j \in Y$, by the choice of v_i and X, j > i and thus $N_D^-(v_j) \cap R = \emptyset$. This, together with the fact $\delta^-(D) \ge n - 3$, forces |R| = 2 and $N_D^-(v_j) = V(P) - \{v_j\}$. By the arbitrary of $v_j, D[Y]$ is a complete digraph. We relabel the vertices of Y as $u_1, \ldots, u_m = v_t$. By (3.1), $|N_D^-(w) \cap Y| \ge 1$. Assume $u_j w \in A(D)$. Then $v_1 \ldots v_i u_j w v_i u_1 \ldots u_{j-1} u_{j+1} \ldots u_m$ is a (u, v)-ditrail with p + 1 vertices, a contradiction. This completes the proof.

Theorem 3.4. Let *D* be a strong digraph of order $n \ge 11$ satisfying (1.1). Then *D* has a spanning eulerian subdigraph if and only if $D \notin \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$.

Proof. By Example 2.2, no digraph in $\mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ has a spanning eulerian subdigraph, and so the necessity is clear. To prove the sufficiency, we assume that *D* satisfies (1.1) and that

to show that $D \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$. Choose a eulerian subdigraph *H* of *D* such that

|V(H)| is maximized.

For any $u \in N_D^+(H)$, since *D* is strong, there is a dipath from *u* to V(H), which must visit a vertex of $N_D^-(H)$, say *v*. Let *P* be the (u, v)-segment of this dipath. Then there exist $x, y \in V(H)$ such that $xu, vy \in A(D) - (A(H) \cup A(P))$. Furthermore, we may choose *H* as a eulerian subdigraph satisfying (3.3) and choose $u \in N_D^+(H)$, $v \in N_D^-(H)$ and *P* a (u, v)-ditrail in D - A(H) such that

- (1) there exist $x, y \in V(H)$ such that $xu, vy \in A(D) (A(H) \cup A(P))$;
- (2) subject to (1), |V(P) V(H)| is maximized;
- (3) subject to (1)(2), |A(P)| is minimized;
- (4) subject to (1)(2)(3), $d_D^-(u) + d_D^+(v)$ is maximized.

Note that $V(P) \cap V(H) \neq \emptyset$ is possible. Let p = |V(P) - V(H)|. As $u \in V(P) - V(H)$, we have $p \ge 1$. Let $H_0 = D[V(H) \cup \{u, v\}] - A(D[\{u, v\}]) - (A(H) \cup A(P))$ and define

- $X = \{x \in V(H) \mid H_0 \text{ has a dipath from } x \text{ to } u\}, and$
- $Y = \{y \in V(H) \mid H_0 \text{ has a dipath from } v \text{ to } y\}.$

With these definition, we have the following claim.

Claim 1. Each of the following holds.

- (i) Each dicycle of *P* is vertex-disjoint with *H*.
- (ii) $X \neq \emptyset, Y \neq \emptyset, X \cap Y = \emptyset$.
- (iii) $(V(H) X, X)_D \subseteq A(H), (Y, V(H) Y)_D \subseteq A(H).$

(i) Suppose, to the contrary, that *P* contains a dicycle *C* such that $V(H) \cap V(C) \neq \emptyset$. Then $V(C) \subseteq V(H)$. For otherwise, $A(H) \cup A(C)$ induces a eulerian subdigraph of *D* with at least |V(H)| + 1 vertices, contradicts (3.3). Thus P - A(C) is still a ditrail of *D* satisfying (3.4)(1) and (3.4)(2), and containing less arcs, contradicts (3.4)(3). This proves (i).

(ii) By the choice of *P* as described in (3.4), $X, Y \neq \emptyset$. Suppose that there exists $w \in X \cap Y$. Then by the definition of *X* and *Y*, H_0 has a dipath P_1 from *w* to *u* and a dipath P_2 from *v* to *w*. Thus each P_i is arc-disjoint with *P* and *H*. By the definition of *X*, $Y, V(P_1) \subseteq X \cup \{u\}$ and $V(P_2) \subseteq Y \cup \{v\}$. Thus, we may choose $w \in X \cap Y$ such that $A(P_1) \cap A(P_2) = \emptyset$. It follows that $H + wP_1uPvP_2w$ is a eulerian subdigraph with at least |V(H)| + 1 vertices, contradicts (3.3). This proves (ii).

(iii) It follows from the definitions of X and Y, $(V(H) - X, X)_D \cup (Y, V(H) - Y)_D \subseteq A(H) \cup A(P)$. Furthermore, if there is an arc $x'x \in A(P)$ such that $x \in X$ and $x' \notin X$, then by letting P_3 be the dipath from x to u in $H_0, H + xP_3uPx$ is a eulerian subdigraph with at least |V(H)| + 1 vertices, contradicts (3.3). Thus, $(V(H) - X, X)_D \subseteq A(H)$. Similarly, $(Y, V(H) - Y)_D \subseteq A(H)$. Claim 1 is proved. \Box

By the definition of *X* and *Y*, for any $x \in X$ and $y \in Y$, there exist an (x, u)-dipath in H_0 and a (v, y)-dipath in H_0 . By Claim 1, $X \cap Y = \emptyset$. So, in the rest of the proof we may use P_x and P_y to represent the (x, u)-dipath and the (v, y)-dipath, respectively.

Claim 2. $N_D^-(u) \subseteq X \cup V(P), N_D^+(v) \subseteq Y \cup V(P).$

By symmetry, it suffices to show $N_D^-(u) \subseteq X \cup V(P)$. In fact, by the definition of X, it suffices to show that $N_D^-(u) \subseteq V(H) \cup V(P)$. Suppose, to the contrary, that there exists $w \in N_D^-(u) - (V(H) \cup V(P))$. If $w \in N_D^+(H)$, then the dipath P' = wuPv is also a candidate of P with |V(P') - V(H)| = |V(P) - V(H)| + 1, contradicts (3.4). If there exists $w_1 \in N_D^+(H) \cap N_D^-(w)$, then let $x_1 \in V(H)$ such that $x_1w_1 \in A(D)$. If $x_1w_1 \notin A(H) \cup A(P)$, then $P' = w_1wuPv$ is also a candidate of P with |V(P') - V(H)| + 1, contradicts (3.4). So, $x_1w_1 \in A(H) \cup A(P)$. Since $w_1 \notin V(H)$, we must have $x_1w_1 \in A(P)$. Thus $x_1 \in V(H) \cap V(P)$ and $H + x_1w_1wuPx_1$ is a eulerian subdigraph with order at least |V(H)| + 1, contradicts (3.3). Hence, $(N_D^+(H) \cup V(H)) \cap (N_D^-(w) \cup \{w\}) = \emptyset$. It follows that $n \ge |V(H)| + |N_D^+(H)| + |N_D^-(w)| + 1$.

Let $\tilde{H} = D[V(H)] - A(P)$. Then $A(\tilde{H}) \cap A(P) = \emptyset$. We will use Lemma 3.3 to find a long trail in \tilde{H} , which will result in a eulerian subdigraph violating (3.3). First, we need to verify the conditions of Lemma 3.3.

(2A) $d^+_{\bar{\mu}}(x) \ge |V(\bar{H})| - 3$ for all $x \in V(\bar{H})$.

For any $x \in V(\bar{H}) = V(H)$, as $xw \notin A(D)$, by (1.1), $d_D^+(x) + d_D^-(w) \ge n - 4$, it follows that $d_D^+(x) \ge n - 4 - |N_D^-(w)| \ge |V(H)| + |N_D^+(H)| - 3$. Thus $d_{\bar{H}}^+(x) \ge d_D^+(x) - |N_D^+(x) \cap N_D^+(H)| - d_P^+(x) \ge |V(H)| + |N_D^+(H) - N_D^+(x)| - d_P^+(x) - 3$.

(3.2)

(3.3)

(3.4)

Fig. 2. An example for z_i^j , where the bold arcs are in *H* but not in Q_i .

If $x \notin V(P)$, then $d_P^+(x) = 0$ and thus $d_{\tilde{H}}^+(x) \ge d_D^+(x) - |N_D^+(H)| \ge |V(H)| - 3 = |V(\tilde{H})| - 3$. So, we may assume $x \in V(P)$. By Claim 1(i), $d_P^+(x) = 1$. Also, if $xu \in A(D)$, then H + xuPx is a eulerian subdigraph with at least |V(H)| + 1 vertices, contradicts (3.3). So, $u \in N_D^+(H) - N_D^+(x)$. Thus $d_{\tilde{u}}^+(x) \ge |V(H)| + |N_D^+(H) - N_D^+(x)| - 4 \ge |V(\tilde{H})| - 3$.

(2B) $|V(\bar{H})| \ge 5$.

Suppose, to the contrary, that $|V(H)| = |V(H)| \le 4$. Then any dicycle of *D* has length at most 4. Let

 $T = v_1 v_2 \dots v_t$ be a longest dipath of *D*.

(3.5)

Then $d_D^+(v_t) = |N_D^+(v_t) \cap V(T)| \le 3$ and $d_D^-(v_1) = |N_D^-(v_1) \cap V(T)| \le 3$. Since $d_D^+(v_t) + d_D^-(v_1) \le 6 < n - 4$, we have $v_t v_1 \in A(D)$, and so $v_1 T v_t v_1$ is a dicycle of D. It follows that $t \le 4$. Since D is strong, there is a vertex $z \in V(D) - V(T)$ such that $zv_i \in A(D)$ for some $1 \le i \le t$. Thus $zv_i \dots v_t v_1 \dots v_{i-1}$ is a dipath with |V(T)| + 1 vertices, contradicts (3.5). Hence, $|V(\bar{H})| = |V(H)| \ge 5$.

So, by Lemma 3.3, for any $x \in N_D^-(u) \cap V(H)$ and any $y \in N_D^+(v) \cap V(H)$, there is a (y, x)-ditrail Q in \overline{H} such that $|V(Q)| \ge |V(H)| - 1$. As $A(Q) \cup A(P) \cup \{xu, vy\}$ induces a eulerian subdigraph of D with at least |V(H)| + p - 1 vertices, by (3.3), p = 1, which implies u = v. Since D is strong, w has a dipath to V(H), which must visit a vertex w_1 of $N_D^-(H)$. Let P' be the (w, w_1) -segment of this dipath. Then $P'' := uwP'w_1$ is also a candidate of P such that $|V(P'') - V(H)| \ge 2 > p$, a contradiction to (3.4). This proves Claim 2. \Box

Let $\lambda_H(X, Y)$ denote the maximum number of arc-disjoint (X, Y)-dipaths in H. By Menger's Theorem (Page 170, Theorem 7.16 of [4]), $\lambda_H(X, Y) = \min\{\partial_H^+(U) \mid X \subset U \text{ and } Y \cap U = \emptyset\}$ and $\lambda_H(Y, X) = \min\{\partial_H^-(U) \mid X \subset U \text{ and } Y \cap U = \emptyset\}$. However, since H is a culerian subdigraph of D, $|\partial_H^+(U)| = |\partial_H^-(U)|$ holds for each $U \subset V(H)$. Therefore, we have $\lambda_H(X, Y) = \lambda_H(Y, X)$. Assume $\lambda_H(X, Y) = k$ and Q_1, \ldots, Q_k are k arc-disjoint (X, Y)-dipaths.

For i = 1, ..., k, let I_{Q_i} be the increment of Q_i . If $I_{Q_i} \cap (X \cup Y) \neq \emptyset$ for some i, then \overline{Q}_i has some internal vertex in $X \cup Y$, where \overline{Q}_i is the minimal ditrail containing $A(Q_i) \cup A(H[I_{Q_i}])$. Thus we may choose an (X, Y)-segment of \overline{Q}_i as Q_i . Then all Q_i 's are still pairwise arc-disjoint and the new \overline{Q}_i contains less arcs. So, we may assume Q_1, \ldots, Q_k arc such arc-disjoint dipaths such that $\sum_{i=1}^k |A(\overline{Q}_i)|$ is minimized. Then $I_{Q_i} \cap (X \cup Y) = \emptyset$ for $i = 1, \ldots, k$.

Notation 3.5. Suppose that Q_i is a dipath from $z_1^i \in X$ to $z_4^i \in Y$ and that z_2^i be the first vertex of \bar{Q}_i in I_{Q_i} , and z_3^i be the last vertex of \bar{Q}_i in I_{Q_i} .

Note that it is possible that $z_1^i \bar{Q}_i z_2^i$ and $z_3^i \bar{Q}_i z_4^i$ contain more than one arcs (see Fig. 2 for example). By Lemma 3.2, $I_{Q_i} \cap I_{Q_j} = \emptyset$ for any $i \neq j$. Let $q_i = |I_{Q_i}|$. We may furthermore assume $q_1 \leq q_2 \leq \cdots \leq q_k$.

Note that $z_1^1 \in X$ and $z_4^1 \in Y$. Let $H' := H - A(\bar{Q}_1) - I_{Q_1} + z_1^1 P_{z_1^1} u P v P_{z_4^1} z_4^1$. Then H' is a eulerian subdigraph of D with at least $|V(H)| - q_1 + p$ vertices. By (3.3), we must have $q_1 \ge p$ and so $q_k \ge \cdots \ge q_1 \ge p$. Let $H_1 = H - \bigcup_{i=1}^k A(\bar{Q}_i) - \bigcup_{i=1}^k I_{Q_i}$. Note that H_1 may not be connected when $k \ge 2$. As H can be viewed as a eulerian ditrail, $\lambda_H(Y, X) = \lambda_H(X, Y) = k$ and there are k arc-disjoint (Y, X)-dipaths in H which are also arc-disjoint with Q_1, \ldots, Q_k . Then by the definition of H_1 , $\lambda_{H_1}(Y, X) = \lambda_H(Y, X) = k$. By Menger's Theorem, there is a partition (X', Y') of $V(H_1)$ such that

$$X \subseteq X', Y \subseteq Y' \quad \text{and} \quad |(Y', X')_{H_1}| = k. \tag{3.6}$$

Furthermore, subject to (3.6), we may also assume the partition (X', Y') satisfies

$$\mu(X',Y') \triangleq |(Y',X')_{D-A(H)}| \left(1+\sum_{i=1}^{k} q_i\right) + \left|\left(Y',\bigcup_{i=1}^{k} I_{Q_i}\right)_D\right| + \left|\left(\bigcup_{i=1}^{k} I_{Q_i}\right),X'\right)_D\right| \text{ is minimized.}$$
(3.7)

As *H* is eulerian, $|(X', Y')_H| = |(Y', X')_H| = k$. Then by the definition of H_1 , it is easy to see that $(X', Y')_{H_1} = \emptyset$. Define

$$R = V(D) - V(H) - V(P)$$
, and $r = |R|$.

Then $n = |X'| + |Y'| + \sum_{i=1}^{k} q_i + p + r$.

Claim 3. For each *i*, $(N_D^-(X) \cup N_D^+(Y)) \cap (R \cup I_{Q_i} \cup (V(P) - V(H))) = \emptyset$.

By the symmetry between X and Y, we only show the case when $N_D^-(X) \cap (R \cup I_{Q_i} \cup (V(P) - V(H))) = \emptyset$. Suppose, to the contrary, that there exist $x_1 \in X$ and $w \in R \cup I_{Q_i} \cup (V(P) - V(H))$ such that $wx_1 \in A(D)$. Then $wx_1 \notin A(Q_i)$. By Lemma 3.2, we have $wx_1 \notin A(H)$, Then, by Claim 1(iii), $w \notin V(H) - X$ and so $w \in R \cup (V(P) - V(H))$.

If $w \in V(P) - V(H)$, then $H + x_1P_{x_1}uPwx_1$ is a eulerian subdigraph of D with at least |V(H)| + 1 vertices, contradicts (3.3). Hence, $w \in R$. Then as D is strong, there is a dipath P_1 from a vertex $x \in V(H)$ to w, none of whose inner vertex lies in V(H). If $V(P_1) \cap V(P) \neq \emptyset$, then let $w_1 \in V(P)$ be the first vertex of P_1 and thus $H + x_1P_{x_1}uPw_1P_1wx_1$ is a eulerian subdigraph of D with at least |V(H)| + 1 vertices, contradicts (3.3). So, $V(P_1) \cap V(P) = \emptyset$. Let w_2 be the successor of x on P_1 . Then $w_2 \notin V(H)$, and so $P' = w_2P_1wx_1P_{x_1}uPv$ is a candidate of P with |V(P') - V(H)| > |V(P) - V(H)|, contradicts (3.4). This proves Claim 3. \Box

For any vertex $x \in X$, by Claim 3, $d_D^-(x) \le |X'| - 1 + |N_D^-(x) \cap Y'|$. By Claim 2, $d_D^+(v) \le |Y| + p - 1 + |N_D^+(v) \cap V(P) \cap V(H)|$. In fact, if there exists $w \in N_D^+(v) \cap V(P) \cap V(H)$, then H + wPvw is a eulerian subdigraph with at least |V(H)| + 1 vertices, contradicts (3.3). Thus $d_D^+(v) \le |Y| + p - 1$. Moreover, by Claim 3, $vx \notin A(D)$. So, $n - 4 \le d_D^+(v) + d_D^-(x) \le |X'| + |Y| + p + |N_D^-(x) \cap Y'| - 2 = n - \sum_{i=1}^k q_i - |Y' - Y| - r + |N_D^-(x) \cap Y'| - 2$. It follows that

$$\sum_{i=1}^{k} q_i + |Y' - Y| + r \le 2 + |N_D^-(x) \cap Y'|.$$
(3.8)

Similarly, for any $y \in Y$, by considering the pair (y, u), we also have

$$\sum_{i=1}^{k} q_i + |X' - X| + r \le 2 + |N_D^+(y) \cap X'|.$$
(3.9)

Combining (3.8) and (3.9), we have

$$2\sum_{i=1}^{k} q_i + |X' - X| + |Y' - Y| + 2r \le 4 + |N_D^-(x) \cap Y'| + |N_D^+(y) \cap X'|.$$
(3.10)

Note that every arc in $(Y, X')_D \cup (Y', X)_D - \{yx\}$ contributes at most 1 to $|N_D^-(x) \cap Y'| + |N_D^+(y) \cap X'|$ and the arc yx (if exists) contributes 2 to $|N_D^-(x) \cap Y'| + |N_D^+(x) \cap Y'|$. Thus $|N_D^-(x) \cap X'| + |N_D^+(y) \cap Y'| \le |(Y, X')_D \cup (Y', X)_D| + 1$. By Claim 1(iii), $|(Y, X')_D \cup (Y', X)_D| = |(Y, X')_H \cup (Y', X)_H| \le |(Y', X')_{H_1}| = k$. Thus, by (3.10), $2\sum_{i=1}^k q_i + |X' - X| + |Y' - Y| + 2r \le 4 + |N_D^-(x) \cap X'| + |N_D^+(y) \cap Y'| \le k + 5$. It follows that

$$|X| + |Y| = n - |X' - X| - |Y' - Y| - \sum_{i=1}^{k} q_i - p - r$$

$$\geq n - k - 5 + \sum_{i=1}^{k} q_i - p + r$$

$$\geq n - 5 + (k - 1)p - k + r$$

$$\geq n + r - 6$$

$$\geq 5.$$
(3.11)

Claim 4. p = 1 and $|X| + |Y| \ge 6$.

Firstly, we show that $|(Y, X)_D| < |Y| \cdot |X|$. Suppose this is not true. Then $k = |(Y', X')_{H_1}| \ge |(Y, X)_{H_1}| = |(Y, X)_D| = |X| \cdot |Y|$. On the other hand, by (3.9), $k \le \sum_{i=1}^k q_i \le 2 + |N_D^+(y) \cap X'| - |X' - X| \le 2 + |X|$. It follows that $|X| \ge k - 2$. Similarly, $|Y| \ge k - 2$. Hence, if $k \ge 2$, then $k \ge |X| \cdot |Y| \ge (k - 2)^2$ and thus $k \le 4$. So, $k \le 4$ anyway. By (3.11), we have $|X| + |Y| \ge 5$. This, together with $|X| \cdot |Y| \le k \le 4$, forces that k = 4 and either |X| = 1, |Y| = 4 or |X| = 4, |Y| = 1. However, we have deduced that $|X| \ge k - 2 = 2$ and $|Y| \ge k - 2 = 2$, a contradiction. So, $|(Y, X)_D| < |Y| \cdot |X|$, which implies there is a vertex $x_1 \in X$ and a vertex $y_1 \in Y$ such that $y_1x_1 \notin A(D)$. So, $d_D^-(x_1) + d_D^+(y_1) \ge n - 4$. On the other hand,

by Claim 3, $d_D^-(x_1) \le |X'| - 1 + |N_D^-(x_1) \cap Y'|$ and $d_D^+(y_1) \le |Y'| - 1 + |N_D^+(y_1) \cap X'|$. Hence,

$$n-4 \le |X'| + |Y'| - 2 + |N_D^-(x_1) \cap X'| + |N_D^-(y_1) \cap Y'|$$

= $n - \sum_{i=1}^k q_i - p - r - 2 + |N_D^-(x_1) \cap X'| + |N_D^+(y_1) \cap Y'|.$

It follows that $\sum_{i=1}^{k} q_i + p + r \le 2 + |N_D^-(x_1) \cap Y'| + |N_D^+(y_1) \cap X'|$. As every arc in $(Y', X')_D$ contributes at most 1 to $|N_D^-(x_1) \cap Y'| + |N_D^+(y_1) \cap X'| \le |(Y', X)_D \cup (Y, X')_D| = |(Y', X)_H \cup (Y, X')_H| \le k$. Thus $\sum_{i=1}^{k} q_i + p + r \le k + 2$, and so $(k + 1)_P \le k + 2$, which implies p = 1. Also, by using the pair (y_1, x_1) instead (y, x) in (3.10), similar to (3.11), we also deduce that $|X| + |Y| \ge 6$, which completes the proof of the claim. \Box

By Claim 4, u = v. If $V(P) \cap V(H) \neq \emptyset$, then H + uPu is a eulerian subdigraph with |V(H)| + 1 vertices, contradicts (3.3). So, $V(P) \cap V(H) = \emptyset$ and thus P is in fact a trivial dipath.

Claim 5. $k \le 2$ and $|X| + |Y| \ge n - 4$.

By Claim 4, we may assume, without loss of generality, that $|X| \ge 3$. Then there is a vertex $x_1 \in X$ such that $|N_D^-(x_1) \cap Y'| \le k/|X| \le k/3$. By (3.8), $|Y'-Y|+k+r \le |Y'-Y|+\sum_{i=1}^k q_i+r \le 2+k/3$. It follows that $k \le 3-3(r+|Y'-Y|)/2$. If $k \ge 3$, then |X| = k = 3, r = |Y' - Y| = 0 and $q_3 = q_2 = q_1 = p = 1$. By Claim 4, $|Y| \ge 6 - |X| = 3$. Similarly, we also have |Y| = k = 3 and |X' - X| = 0, which implies $n = |X| + |Y| + q_1 + q_2 + q_3 + p = 10$, contradicts the assumption that $n \ge 11$. Hence, $k \le 2$. Thus $N_D^-(x_1) \cap Y' = \emptyset$.

For the second part of the claim, if $q_1 = 1$, then $z_2^1 = z_3^1$. Let $H' = H - z_1^1 \bar{Q}_1 z_1^4 + z_1^1 P_{z_1^1} u P v P_{z_4^1} z_4^1$ and $P' = z_2^1$. It is easy to verify that H' is a culerian digraph with maximum number of vertices and P' is a dipath satisfying (3.4)(1), (3.4)(2) and (3.4)(3). Thus $d_D^+(z_2^1) + d_D^-(z_2^1) \le d_D^+(v) + d_D^-(u) \le |X| + |Y|$. As $z_2^1 u, vz_2^1 \notin A(D)$, we have $2(|X| + |Y|) \ge d_D^+(z_2^1) + d_D^-(z_2^1) \ge 2(n-4)$ and the result follows. So, we may assume that $q_1 \ge 2$. Then $\sum_{i=1}^k q_i \ge 2k$. By (3.9), $|X' - X| \le 2 + |N_D^+(v) \cap X'| - \sum_{i=1}^k q_i \le 2 + k - 2k \le 1$. Then, as $vx_1 \notin A(D)$, $n-4 \le d_D^+(v) + d_D^-(x_1) \le |Y| + |X'| - 1$. It follows that $|X| + |Y| \ge n - 4$.

Claim 6. $(Y', X')_{D-A(H)} = \emptyset$.

Suppose, to the contrary, that there exist $x' \in X'$ and $y' \in Y'$ such that $y'x' \in A(D) - A(H)$. Then by Claim 1, $x' \in X' - X$ and $y' \in Y' - Y$. By Claim 5, $|X' - X| = |Y' - Y| = q_1 = p = k = 1$. Assume $y_0 \in Y'$ such that $N_{H_1}^+(y_0) \cap X' \neq \emptyset$. If $N_{H_1}^+(y') \cap Y = \emptyset$, then, by $y' \notin I_{Q_1}$, $d_{H_1}^+(y') \ge 1$, which forces $y' = y_0$ and $|N_{H_1}^-(y') \cap Y| = d_{H_1}^-(y') = d_{H_1}^+(y') = 0$.

If $N_{H_1}^+(y') \cap Y = \emptyset$, then, by $y' \notin I_{Q_1}$, $d_{H_1}^+(y') \ge 1$, which forces $y' = y_0$ and $|N_{H_1}^-(y') \cap Y| = d_{H_1}^-(y') = d_{H_1}^+(y') = |N_{H_1}^+(y') \cap X| = 1$. Thus $|(Y, X' \cup \{y'\})_{H_1}| = |(Y', X')_{H_1}|$ and $(Y, X' \cup \{y'\})_{D-A(H)} = \emptyset$ by Claim 1(iii). However, noting that k = 1,

$$\mu(X',Y') - \mu(X' \cup \{y'\},Y) = |(Y',X')_{D-A(H)}|(1+q_1) + |(Y',I_{Q_1})_D| + |(I_{Q_1},X')_D| - |(Y,I_{Q_1})_D| - |(I_{Q_1},X' \cup \{y'\})_D|$$

$$\ge (1+q_1) - |(I_{Q_1},\{y'\})_D| > 0,$$

contradicts (3.7). Hence, $N_{H_1}^+(y') \cap Y \neq \emptyset$. Similarly, $N_{H_1}^-(x') \cap X \neq \emptyset$. Furthermore, if there exists $y_1 \in N_{H_1}^+(y') \cap N_{H_1}^-(y') \cap Y$, then picking $x_1 \in N_{H_1}^-(x') \cap X$, we observe that $H - y'y_1y' - x_1x' + x_1P_{x_1}uPvP_{y_1}y_1y'x'$ is a spanning eulerian subdigraph of D, a contradiction. So, $N_{H_1}^+(y') \cap N_{H_1}^-(y') \cap Y = \emptyset$. Moreover, for any $y \in Y - \{y_0\}$, as $yu \notin A(D)$, $d_D^+(y) \ge n - 4 - d_D^-(u) \ge n - |Y' - Y| - |X' - X| - q_1 - p - |X| \ge |Y|$. This forces $yy' \in A(D)$ and, furthermore, $yy' \in A(H_1)$ by Claim 1(iii), and so $y'y \notin A(H_1)$. Thus $d_{H_1}^-(y') \ge |Y - \{y_0\}$ and $d_{H_1}^+(y') \le 1$. So, $|Y| \le 2$. Similarly, $|X| \le 2$, a contradiction to Claim 4. \Box

By Claims 1 and 6, we see that $|(Y', X')_D| = k$. Next, we show that X' (and Y') together with some vertices of $\bigcup_{i=1}^k I_{Q_i}$ will take places of D_2 (and D_1) in Example 2.2 and the rest of the vertices will take places of U in Example 2.2, as shown in the cases below based on the values of k and q_1 .

Case 1. k = 2.

In this case, we will show $D \in \mathcal{F}_2$. By Claim 4, without loss of generality, we may assume that $|Y| \ge 3 > k$. Then there exists a vertex $y_0 \in Y$ such that $N_D^+(y_0) \cap X' = \emptyset$. Applying (3.9) to the vertex y_0 , $|X' - X| + \sum_{i=1}^k q_i + r \le 2$. It follows that X' = X, r = 0 and $q_1 = q_2 = 1$. Then $z_2^1 = z_3^1$ and $z_2^2 = z_3^2$. By Claim 5, $|Y' - Y| \le 1$.

Recall that the z_i^j 's are defined in Notation 3.5. It suffices to show that $(Y' - Y, \{z_2^1, z_2^2\})_D = \emptyset$ and $z_2^1 z_2^2, z_2^2 z_2^1 \notin A(D)$ and $|X| \le 2$. In fact, if $z_2^1 z_2^2 \in A(D)$, then by $z_2^1 z_2^2 \in A(D) - A(H)$. Thus $D - z_1^1 \overline{Q}_1 z_4^1 - z_1^2 \overline{Q}_2 z_4^2 + z_1^1 \overline{Q}_1 z_2^1 z_2^2 \overline{Q}_2 z_4^2 + z_1^2 P_{z_1^2} uPvP_{z_4^1} z_4^1$ is a spanning eulerian subdigraph, contradicts (3.2). Similarly, $z_2^2 z_2^1 \notin A(D)$. Furthermore, suppose that there exists a vertex $y' \in Y' - Y$ such that $y'z_2^1 \in A(D)$. If $z_2^1 y' \in A(D)$, then by Lemma 3.2, $z_2^1 y', y'z_2^1 \notin A(H_1)$. Thus $H - z_1^1 \overline{Q}_1 z_4^1 + z_1^1 P_{z_1^1} uPvP_{z_4^1} z_4^1 + y'z_2^1 y'$ is a spanning eulerian subdigraph, contradicts (3.2). Hence, $N_D^+(z_2^1) \subseteq Y' - \{y'\}$ by Claim 3. Note that

 $\begin{aligned} &d_{D}^{+}(z_{2}^{1}) \geq n-4-d_{D}^{-}(u) \geq |Y'|-1. \text{ This forces that } N_{D}^{+}(z_{2}^{1}) = Y'-\{y'\}. \text{ If there exists } y_{1} \in N_{H_{1}}^{+}(y') \cap Y, \text{ then } z_{2}^{1}y_{1} \in A(D). \text{ Thus } H' = \left(H-z_{1}^{1}\bar{Q}_{1}z_{4}^{1}+z_{1}^{1}P_{z_{1}^{1}}uPvP_{z_{4}^{1}}z_{4}^{1}\right)-y'y_{1}+y'z_{2}^{1}y_{1} \text{ is a spanning eulerian subdigraph, contradicts (3.2). So, } N_{H_{1}}^{+}(y') \cap Y = \emptyset. \text{ It follows that } |N_{H_{1}}^{-}(y') \cap Y| = d_{H_{1}}^{-}(y') = d_{H_{1}}^{+}(y') = |N_{H_{1}}^{+}(y') \cap X|, \text{ and so we have both } |(Y, X' \cup \{y'\})_{H_{1}}| = |(Y', X')_{H_{1}}| \text{ and } |(Y, X' \cup \{y'\})_{D-A(H)}| = 0. \text{ By } (3.7), \end{aligned}$

$$\begin{aligned} 0 &\leq \mu(X \cup \{y'\}, Y) - \mu(X', Y') \\ &= |(Y, \{z_2^1, z_2^2\})_D| + |(\{z_2^1, z_2^2\}, X \cup \{y'\})_D| - |(Y', \{z_2^1, z_2^2\})_D| - |(\{z_2^1, z_2^2\}, X')_D| \\ &= |(\{z_2^1, z_2^2\}, \{y'\})_D| - |(\{y'\}, \{z_2^1, z_2^2\})_D|. \end{aligned}$$

Thus $z_2^2 y' \in A(D)$ since $y'z_2^1 \in A(D)$ and $z_2^1 y' \notin A(D)$. Then $H - z_1^1 \bar{Q}_1 z_4^1 - z_1^2 \bar{Q}_2 z_2^2 y' z_2^1 \bar{Q}_1 z_4^1 + z_1^1 P_{z_1^1} u P v P_{z_4^2} z_4^2$ is a spanning eulerian subdigraph, contradicts (3.2).

Finally, if $|X| \ge 3$, then as k = 2, there exists a vertex $x_0 \in X$ such that $N_D^-(x_0) \cap Y' = \emptyset$. Then $n - 4 \le d_D^+(y_0) + d_D^-(x_0) \le |Y'| - 1 + |X'| - 1 = n - 5$, a contradiction. So, $D \in \mathcal{F}_2$.

Case 2. k = 1 and $q_1 = 2$.

In this case, we will show that either $D \in \mathcal{F}_1$ or $D \in \mathcal{F}_3$. By Claim 4, without loss of generality, we may assume that $|Y| \ge 3 > k$. Thus there exists a vertex $y_0 \in Y$ such that $N_D^+(y_0) \cap X' = \emptyset$. Applying (3.9) to the vertex $y_0, |X'-X|+q_1+r \le 2$. It follows that X' = X, r = 0 and $q_1 = 2$. Let $I_{Q_1} = \{z_2, z_3\}$, where $z_2 = z_2^1$. Note that $z_3^1 = z_2$ is possible. By Claim 5, $|Y' - Y| \le 1$. Moreover, we claim that |X| = 1 and thus $X = \{z_1^1\}$. For otherwise, there exists a vertex $x_0 \in X$ such that $N_D^-(x_0) \cap Y' = \emptyset$, then as $y_0x_0 \notin A(D)$, $n - 4 \le d_D^-(x_0) + d_D^+(y_0) \le |X| - 1 + |Y'| - 1 = n - 5$, a contradiction. If $(Y' - Y, I_{Q_1})_D = \emptyset$, then by Claims 3 and 6, $D \in \mathcal{F}_3$, where $\{z_2, z_3\}$ take the place of the set of vertices of the 2-cycle in Example 2.2. So, we may assume that $Y' - Y = \{y'\}$ and either $y'z_2 \in A(D)$ or $y'z_3 \in A(D)$. As k = 1, let $y_1 \in Y'$ such that $N_D^+(y_1) \cap X' \ne \emptyset$. For any $y \in Y - \{y_1\}$, as $yu \notin A(D), d_D^+(y) \ge n - 4 - d_D^-(u) \ge |Y'| - 1$.

As k = 1, let $y_1 \in Y'$ such that $N_D^+(y_1) \cap X' \neq \emptyset$. For any $y \in Y - \{y_1\}$, as $yu \notin A(D)$, $d_D^+(y) \ge n - 4 - d_D^-(u) \ge |Y'| - 1$. This implies $D[Y - \{y_1\}]$ is a complete digraph and $Y - \{y_1\} \subseteq N_D^-(y') \cap N_D^-(y_1)$. So, it is easy to find a (z_4^1, y_1) -dipath P_1 and a (z_4^1, y') -dipath P_2 such that $A(P_1) \cap A(P_2) = \emptyset$ and $V(P_1) \cup V(P_2) = Y'$. Thus, if $z_3z_2 \in A(D)$ then, as either $y'z_2 \in A(D)$ or $y'z_3 \in A(D)$, $y_1z_1^1uPvP_{z_4^1}z_4^1P_2y'(z_3)z_2\bar{Q}_1z_4^1P_1y_1$ is a spanning eulerian subdigraph, contradicts (3.2). So, $z_3z_2 \notin A(D)$ and thus $D \in \mathcal{F}_1$ where $Y' \cup \{z_3\}$ takes the place of D_1 and X takes the place of D_2 in Example 2.2.

Case 3. k = 1 and $q_1 = 1$.

In this case, we show that $D \in \mathcal{F}_1$. Assume $x_0 \in X'$, $y_0 \in Y'$ such that $y_0x_0 \in A(H_1)$. Then by Claim 6 y_0x_0 is the only arc from Y' to X' in D and it suffices to show $(Y' - Y, I_{Q_1})_D = (I_{Q_1}, X' - X)_D = \emptyset$. Suppose, to the contrary, that $y'z_1^2 \in A(D)$, where $y' \in Y' - Y$. If $z_2^1y' \in A(D)$, $H - z_1^1\bar{Q}_1z_4^1 + z_1^1P_{z_1^1}uPvP_{z_4^1}z_4^1 + y'z_2^1y'$ is a spanning eulerian subdigraph, contradicts (3.2). Hence $z_2^1y' \notin A(D)$. Moreover, for any $y \in Y - \{y_0\}$, as $yu \notin A(D)$, $d_D^+(y) \ge n - 4 - d_D^-(u) \ge |X' - X| + |Y'| - 2$. Next, we consider two subcases.

Subcase 3.1 $X' - X \neq \emptyset$.

Then $d_D^+(y) \ge |Y'| - 1$ for all $y \in Y - \{y_0\}$, which implies $D[Y - \{y_0\}]$ is a complete digraph and $Y - \{y_0\} = N_D^-(y') \cap Y = N_D^-(y_0) \cap Y$. It is easy to see that there is a (z_4^1, y') -dipath P_1 and a (z_4^1, y_0) -dipath P_2 such that $A(P_1) \cap A(P_2) = \emptyset$ and $V(P_1) \cup V(P_2) = Y'$. Let T be the (x_0, z_1^1) -ditrail in H. Then T spans all the vertices in X'. Thus $y_0x_0Tz_1^1P_{z_1}uPvP_{z_4}z_4^1P_1y'z_2^1\bar{Q}_1z_4^1P_2y_0$ is a spanning eulerian subdigraph, contradicts (3.2). This proves that this subcase cannot occur.

Subcase 3.2 $X' - X = \emptyset$.

In this case, $d_D^+(y) \ge |Y'| - 2$ for all $y \in Y - \{y_0\}$. Also, as $z_2^{1}u \notin A(D)$, $d_D^+(z_2^1) \ge n - 4 - d_D^-(u) \ge |Y'| - 2$. If $N_{H_1}^+(y') \cap Y' = \emptyset$, then as $d_{H_1}^+(y') \ge 1$, $y' = y_0$ and thus $|N_{H_1}^-(y') \cap Y'| = |N_{H_1}^-(y')| = |N_{H_1}^+(y')| = |N_{H_1}^+(y') \cap X'| = 1$. So $(X' \cup \{y'\}, Y' - \{y'\})$ is a partition of $V(H_1)$ so that $|(Y' - \{y'\}, X' \cup \{y'\})_D| = 1$. Moreover, if there is a vertex $y_1 \in Y'$ such that $y_1y' \in A(D) - A(H)$, then by Claim 1(iii) $y_1 \notin Y$. Thus, by the fact $d_{H_1}^+(y_1) > 0$ and $d_{H_1}^-(y') = 1$, there is a vertex $y_2 \in Y$ such that $y_1y_2 \in A(H_1)$. Thus, $H - z_1^1 \overline{Q}_1 z_1^4 + z_1^1 P_{z_1^1} u P v_{P_{z_1^1}} z_1^4 - y_1 y_2 + y_1 y' z_2^1 y_2$ is a spanning eulerian subdigraph, a contradiction. Hence, $(Y' - \{y'\}, X' \cup \{y'\})_{D-A(H)} = \emptyset$. Then, by the facts $y' z_2^1 \in A(D)$ and $z_2^1 y' \notin A(D)$,

$$\mu(X' \cup \{y'\}, Y' - \{y'\}) - \mu(X', Y') = |(I_{Q_1}, \{y'\})_D| - |(\{y'\}, I_{Q_1})_D| < 0,$$

a contradiction to (3.7). Hence, $|N_{H_1}^+(y') \cap Y'| \ge 1$. Also, $N_{H_1}^+(y') \cap N_D^+(z_2^1) \cap Y' = \emptyset$, since otherwise, let $y_1 \in N_{H_1}^+(y') \cap N_D^+(z_2^1) \cap Y'$ and then $H - z_1^1 \bar{Q}_1 z_1^4 + z_1^1 P_{z_1^1} u P v P_{z_1^1} z_1^4 - y' y_1 + y' z_2^1 y_1$ is a spanning eulerian subdigraph, contradicts (3.2). This, together with $|N_D^+(z_2^1) \cap Y'| = d_D^+(z_2^1) \ge |Y'| - 2$, forces $|N_{H_1}^+(y') \cap Y'| = 1$, say $N_{H_1}^+(y') \cap Y' = \{y_1'\}$, and $N_D^+(z_2^1) = Y' - \{y', y_1'\}$. Denote $\{y_2'\} = N_{H_1}^-(y') \cap Y'$ as $d_{H_1}^-(y') = 1$.

Moreover, we claim that |X| = 1. For otherwise, there exists a vertex $x_1 \in X - \{x_0\}$ and thus as $z_2^1 x_1 \notin A(D)$, $n - 4 \le d_D^-(x_1) + d_D^+(z_2^1) \le |X| - 1 + |Y'| - 2 = n - 5$, a contradiction. So, |X| = 1. Thus, by Claim 5 $|Y'| \ge |Y| + 1 \ge n - 4 - |X| + 1 \ge 7$.

For any $y \in Y' - \{y', y'_1, y'_2, y_0\}$, as $d_D^+(y) \ge |Y'| - 2$, we see that either $yy' \in A(D)$ or $yy'_1 \in A(D)$. If $yy' \in A(D)$, then $yy' \notin A(H_1)$ and thus $H - z_1^1 \bar{Q}_1 z_4^1 + z_1^1 P_{z_1^1} uPv P_{z_4^1} z_4^1 + y' z_2^1 yy'$ is a spanning eulerian subdigraph, contradicts (3.2). So, $yy'_1 \in A(D)$. Furthermore, if $yy'_1 \notin A(H_1)$, then $H - z_1^1 \bar{Q}_1 z_4^1 + z_1^1 P_{z_1^1} uPv P_{z_4^1} z_4^1 - yy'_1 + y' z_2^1 yy'_1$ is a spanning eulerian subdigraph, contradicts (3.2). So, $yy'_1 \in A(D)$. Furthermore, if $yy'_1 \notin A(H_1)$, then $H - z_1^1 \bar{Q}_1 z_4^1 + z_1^1 P_{z_1^1} uPv P_{z_4^1} z_4^1 - yy'_1 + y' z_2^1 yy'_1$ is a spanning eulerian subdigraph, contradicts (3.2) again. Hence, $yy'_1 \in A(H_1)$. Then, as y is arbitrary, we have $d_{H_1}^+(y'_1) = d_{H_1}^-(y'_1) \ge |N_{H_1}^-(y'_1) \cap Y'| \ge |Y' - \{y'_1, y'_2, y_0\}| \ge |Y'| - 3 \ge 4$. This forces there exists a vertex $y'_3 \in N_{H_1}^-(y'_1) \cap N_{H_1}^+(y'_1) \cap Y$. Thus $H - z_1^1 \bar{Q}_1 z_4^1 + z_1^1 P_{z_1^1} uPv P_{z_4^1} z_4^1 - y'y'_1 y'_3 + y' z_2^1 y'_3$ is a spanning eulerian subdigraph, contradicts (3.2) once more.

Similarly, $(I_{0_1}, X' - X)_D = \emptyset$ and $D \in \mathcal{F}_1$. The proof is completed.

Let $\mathcal{D}_4 = \mathcal{D}(k_1, 0, 2) \cup \mathcal{D}(0, k_2, 2)$. Then $\mathcal{D}_4 \subseteq \mathcal{D}_1$. It is easy to verify that every digraph D in $(\mathcal{D}_1 - \mathcal{D}_4) \cup \mathcal{D}_2 \cup \mathcal{D}_3$ has a pair of vertices (u, v) such that $uv \notin A(D)$ and $d_D^+(u) + d_D^-(v) = n - 4$. So only the digraph in \mathcal{D}_4 may satisfies the condition $d_D^+(u) + d_D^-(v) \ge n - 3$ for every two vertices u, v with $uv \notin A(D)$. Let \mathcal{F}_4 be the family of spanning subdigraphs of digraphs in \mathcal{D}_4 such that $D \in \mathcal{F}_4$ if and only if D is strong and $d_D^+(u) + d_D^-(v) \ge n - 3$ for every pair of vertices (u, v) with $uv \notin A(D)$. Then we have the following corollary.

Corollary 3.6. Let *D* be a digraph of order $n \ge 11$. If $d_D^+(u) + d_D^-(v) \ge n - 3$ for every two vertices u, v with $uv \notin A(D)$, then either $D \in \mathcal{F}_4$ or *D* has a spanning eulerian subdigraph.

Also, note that digraphs in \mathcal{F}_4 have minimum degree 1. So, we get the following corollary.

Corollary 3.7. Let *D* be a digraph with order $n \ge 11$ and $\min\{\delta^+, \delta^-\} \ge 2$. If $d_D^+(u) + d_D^-(v) \ge n - 3$ for every two vertices u, v with $uv \notin A(D)$, then *D* is supereulerian.

Another consequence of the main results is the following degree sum condition, which is a stronger version of the main result of [7].

Corollary 3.8 ([7]). Let D be a digraph of order $n \ge 11$. If $\delta^+(D) + \delta^-(D) \ge n - 4$ then either $D \in \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ or D has a spanning eulerian subdigraph.

References

- [1] J. Bang-Jensen, G. Gutin, Digraphs, second ed., Springer, London, 2008.
- [2] J. Bang-Jensen, A. Maddaloni, Sufficient conditions for a digraph to be supereulerian, J. Graph Theory 79 (2015) 8–20.
- [3] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79–84.
- [4] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Newyork, 2008.
- [5] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177–196.
- [6] Z.H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics (a survey), in: Combinatorics and Graph Theory 95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, 1995, pp. 53–69.
- [7] Y. Hong, H.-J. Lai, Q. Liu, Supereulerian subdigraphs, Discrete Math. 330 (2014) 87–95.
- [8] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926–940.
- [9] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309–310.