Supereulerian graphs with small circumference and 3-connected hamiltonian claw-free graphs

Xiaoling Ma ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\mathrm{a}, \mathrm{b}, *}$, Wei Xiong ${ }^{\mathrm{a}}$, Baoyingdureng Wu ${ }^{\text {a }}$, Xinhui An ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

A R T I C L E I N F O

Article history:

Received 30 September 2014
Received in revised form 13 May 2015
Accepted 28 July 2015
Available online 5 September 2015

Keywords:

Hamiltonian graphs
Forbidden subgraphs
Claw-free graphs
Z_{q}-free graphs
P_{k}-free graphs
Supereulerian graphs

Abstract

A graph G is supereulerian if it has a spanning eulerian subgraph. We prove that every 3-edge-connected graph with the circumference at most 11 has a spanning eulerian subgraph if and only if it is not contractible to the Petersen graph. As applications, we determine collections $\mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3} of graphs to prove each of the following (i) Every 3-connected $\left\{K_{1,3}, Z_{9}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{1}$. (ii) Every 3-connected $\left\{K_{1,3}, P_{12}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{2}$. (iii) Every 3-connected $\left\{K_{1,3}, P_{13}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{3}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs and follow [3] for undefined terminology and notations. In particular, $\kappa(G)$ and $\kappa^{\prime}(G)$ denote connectivity and edge connectivity of G, respectively. We define $\kappa^{\prime}\left(K_{1}\right)=\infty$. For a graph G which contains at least one cycle, the circumference of G, denoted by $c(G)$, is the length of a longest cycle contained in G; and the girth of G, denoted by $g(G)$, is the length of a shortest cycle contained in G. For an integer $i \geq 0$ and $v \in V(G)$, define

$$
D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}, \quad \text { and } \quad E_{G}(v)=\{e \in E(G): e \text { is incident with } v \text { in } G\} .
$$

For a vertex $v \in V(G)$, define $N_{G}(v)=\{u \in V(G): v u \in E(G)\}$, and for $X \subseteq V(G), N_{G}(X)=\cup_{x \in X} N_{G}(x)$. If H is a subgraph of G, the set of vertices of attachment of H in G is

$$
A_{G}(H)=\left\{v \in V(H): N_{G}(v)-V(H) \neq \emptyset\right\} .
$$

The subscript G in the notations above might be omitted if G is understood from the context.
For a graph G, let $O(G)$ denote the set of all odd degree vertices in G. A graph G is eulerian if G is connected with $O(G)=\emptyset$, and G is supereulerian if G has a spanning eulerian subgraph. In 1977, Boesch et al. [2] raised a problem to determine when a graph is supereulerian. They commented in [2] that such a problem would be a difficult one. In 1979, Pulleyblank [25] confirmed this remark by showing that the problem to determine if a graph is supereulerian, even within planar graphs,

[^0]is NP-complete. For more literature on supereulerian graphs, see Catlin's excellent survey [6] and its supplements [11] and [18]. Catlin [7] and Jaeger [16] independently showed that every 4-edge-connected graph is supereulerian. Therefore, the problem is to determine which 3-edge-connected or 2-edge-connected graph is supereulerian. Characterizations of 2 or 3 -edge-connected supereulerian graphs for certain classes of graphs have been widely investigated. See [4,17,20-23], and [30], among others. A main result of this paper is the following.

Theorem 1.1. Let G be a graph with $\kappa^{\prime}(G) \geq 3$. If the circumference of G is at most 11 , then G is supereulerian if and only if G is not contractible to the Petersen graph $P(10)$.

Since $P(10)$ has circumference 9 , Theorem 1.1 immediately implies Theorem 4 of [19] that if a 3-edge-connected graph has circumference at most 8 , then G is supereulerian. Theorem 1.1 also has a number of applications in 3-connected hamiltonian claw-free graphs. For an integer $k>0, P_{k}$ denotes a path of k vertices and Z_{k} denotes the graph obtained from the disjoint union of a P_{k+1} and a 3 -cycle K_{3} by identifying one end vertex of P_{k+1} with a vertex of K_{3}. For graphs $H_{1}, H_{2}, \ldots, H_{s}$, a graph G is $\left\{H_{1}, H_{2}, \ldots, H_{s}\right\}$-free if it contains no induced subgraph isomorphic to a copy of H_{i} for any i. A graph G is called claw-free if it is $K_{1,3}$-free.

The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have a common vertex. Beineke [1] and Robertson [14] showed that line graphs are $K_{1,3}-$ free graphs.

Two fascinating conjectures on hamiltonian line graphs and hamiltonian claw-free graphs have attracted the attention of many researchers.

Conjecture 1.2 (Thomassen, [28]). Every 4-connected line graph is hamiltonian.
Conjecture 1.3 (Matthews and Sumner, [24]). Every 4-connected $K_{1,3}-$ free graph is hamiltonian.
Ryjáček [26] introduced the line graph closure $c l(G)$ of a claw-free graph G and used it to show that Conjectures 1.2 and 1.3 are equivalent. Motivated by Conjectures 1.2 and 1.3, many researchers have investigated forbidden induced subgraph conditions for hamiltonicity. In 1999, Brousek, Ryjáček and Favaron proved the following theorem.

Theorem 1.4 (Brousek, Ryjác̆ek and Favaron, [5]). Every 3-connected $\left\{K_{1,3}, Z_{4}\right\}$-free graph is hamiltonian.
Theorem 1.4 is extended to Theorem 1.5, and further to Theorem 1.6.
Theorem 1.5 (Lai, Xiong, Yan, Yan, [19]). Every 3-connected $\left\{K_{1,3}, Z_{8}\right\}$-free graph is hamiltonian.
Theorem 1.6 (Fujisawa [13]). Let Q^{*} be the graph obtained from the Petersen graph by adding one pendant edge to each vertex. Let G be a 3-connected $\left\{K_{1,3}, Z_{9}\right\}$-free graph. Then G is hamiltonian unless G is the line graph of Q^{*}.

In 2004, Łuczak and Pfender proved another type of forbidden subgraph condition for 3-connected hamiltonian claw-free graphs.

Theorem 1.7 (Łuczak and Pfender, [29]). Every 3-connected $\left\{K_{1,3}, P_{11}\right\}$-free graph is hamiltonian.
As there exist 3-connected nonhamiltonian $\left\{K_{1,3}, Z_{9}\right\}$-free graphs and 3-connected nonhamiltonian $\left\{K_{1,3}, P_{12}\right\}$-free graphs, some natural problems arise: can we characterize 3 -connected nonhamiltonian $\left\{K_{1,3}, Z_{9}\right\}$-free graphs and 3connected nonhamiltonian $\left\{K_{1,3}, P_{12}\right\}$-free graphs? In a later section of this paper, we shall apply Theorem 1.1 to determine collections of graph $\mathcal{F}_{1}, \mathcal{F}_{2}$ and \mathcal{F}_{3} to prove the following. Note that Theorem 1.8(i) provides an independent proof of Theorem 1.6.

Theorem 1.8. Each of the following holds.
(i) Every 3-connected $\left\{K_{1,3}, Z_{9}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{1}$.
(i) Every 3-connected $\left\{K_{1,3}, P_{12}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{2}$.
(i) Every 3-connected $\left\{K_{1,3}, P_{13}\right\}$-free graph is hamiltonian if and only if its closure is not a line graph $L(G)$ for some $G \in \mathcal{F}_{3}$.

Part of our approach is a modification of that in [19]. However, we have noticed that the proof of a key theorem in [19] has a gap: when analyzing Case 1.2 in the proof of Theorem 4 in [19], an important subcase when G_{1} or G_{2} has only three vertices is missing. This subcase turns out to be the most complicated one. In this paper, we will fix this gap by proving Lemma 3.1 and Theorem 1.1. In Section 2, we display the basics of Catlin's reduction method, and utilize this reduction method to prove Theorem 1.1 in the next section. The applications of Theorem 1.1 to Hamiltonian claw-free graphs will be given in the last section.

Fig. 1. The graphs R and R_{1}.

2. Preliminaries

Let G be a graph and $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying the two ends of each edge in X and then deleting the resulting loops. We define $G / \emptyset=G$. If K is a subgraph of G, then we write G / K for $G / E(K)$. If K is a connected subgraph of G, and if v_{K} is the vertex in G / K onto which K is contracted, then the subgraph $G[V(K)]$ is the preimage of v_{K} in G, and is denoted by $P I_{G}\left(v_{K}\right)$. The subscript G is often omitted when G is understood from the context. A vertex v in a contraction of G is nontrivial if $\operatorname{PI}(v)$ has at least one edge. If L^{\prime} is a path (or a cycle, respectively) of G / X, then by the definition of contraction, and by the connectedness of each component of $G[X], G$ has a path L (or a cycle, respectively) such that $L /(E(L) \cap X)=L^{\prime}$. We then say that L^{\prime} is lifted to L in G. Note that the same L^{\prime} in G / X may have more than one lifts in G.

In [7], Catlin discovered collapsible graphs. A graph G is collapsible if for any $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a spanning connected subgraph T_{R} with $O\left(T_{R}\right)=R$. Catlin showed in [7] that every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G^{\prime}, is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is reduced if it is the reduction of some graph.

Theorem 2.1 (Catlin, [7]). Let G be a connected graph, let G^{\prime} be the reduction graph of G, H be a collapsible subgraph of G and v_{H} be the vertex in G / H onto which H is contracted. Each of the following holds:
(i) (Theorem 8 of [7]) G is collapsible if and only if G / H is collapsible. In particular, G is collapsible if and only if the reduction G^{\prime} is K_{1}.
(ii) (Theorem 5 of [7]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [7]) $g\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(iv) (Theorem 8 of [7]) If L^{\prime} is an open (or closed, respectively) trail of G / H such that $v_{H} \in V\left(L^{\prime}\right)$, then G has an open (or closed, respectively) trail L with $E\left(L^{\prime}\right) \subseteq E(L)$ and $V(H) \subseteq V(L)$.

Theorem 2.2. Let G be a connected graph and let G^{\prime} be the reduction graph of G. Let $K_{3,3}^{-}$denote the graph obtained from $K_{3,3}$ by removing an edge, let R denote the graph (see Fig. 1) with $V(R)=\left\{x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, y_{2}, v\right\}$ and $E(R)=\left\{x_{0} y_{0}, x_{1} y_{1}, x_{2} y_{2}\right.$, $\left.x_{0} x_{1}, x_{1} x_{2}, y_{0} y_{1}, y_{1} y_{2}, x_{0} v, v y_{2}\right\}$, and let $R_{1}=R /\left\{v y_{2}\right\}$ (see Fig. 1). Then each of the following holds:
(i) (Catlin, Theorem 11 of [8]) The graphs $K_{3}, K_{3,3}^{-}$, and R are collapsible.
(ii) (Catlin, Theorem 7 of [7]) The reduction G^{\prime} does not have a nontrivial collapsible subgraph.
(iii) R_{1} is collapsible.

Proof. (iii) Since R is collapsible, any contraction of R is also collapsible.
Theorem 2.3 (Chen, [10]). If G is a 3-edge-connected simple graph with at most 13 vertices, then either G is supereulerian or G is contractible to the Petersen graph $P(10)$.

Definition 2.4. Let $C=x_{1} x_{2} y_{1} y_{2} x_{1}$ be a 4-cycle in G with a partition $\pi(C)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right\rangle$. Following [8], we define $G / \pi(C)$ to be the graph obtained from $G-E(C)$ by identifying x_{1} and y_{1} to form a vertex v_{1}, by identifying x_{2} and y_{2} to form a vertex v_{2}, and by adding an edge $e_{\pi(C)}=v_{1} v_{2}$.

Theorem 2.5 (Catlin, [8]). Let G be a graph containing a 4-cycle C and let $G / \pi(C)$ be defined as above. Each of the following holds.
(a) If $G / \pi(C)$ is collapsible, then G is collapsible.
(b) If $G / \pi(C)$ has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.

Definition 2.6. Let $s_{1}, s_{2}, s_{3}, m, l, t$ be integers with $t \geq 2$ and $m, l \geq 1, M \cong K_{1,3}$ with $D_{3}(M)=\{a\}$ and $D_{1}(M)=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$. Define $K_{1,3}\left(s_{1}, s_{2}, s_{3}\right)$ to be the graph obtained from M by adding s_{i} vertices with neighbors $\left\{a_{i}, a_{i+1}\right\}$, where $i \equiv 1,2,3(\bmod 3)$. Let $K_{2, t}\left(u, u^{\prime}\right)$ be a $K_{2, t}$ with u, u^{\prime} being the nonadjacent vertices of degree t. Let $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to u^{\prime} only. Let $K_{2, t}^{\prime \prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained

Fig. 2. Some graphs in \mathcal{F} with small parameters.

Fig. 3. These graphs are for Lemma 2.8.
from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to a vertex of degree 2 of $K_{2, t}$. Hence $u^{\prime \prime}$ has degree 1 and both u and u^{\prime} have degree t in $K_{2, t}^{\prime \prime}\left(u, u^{\prime \prime}\right)$. We shall use $K_{2, t}^{\prime}$ and $K_{2, t}^{\prime \prime}$ for a $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ and a $K_{2, t}^{\prime \prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$, respectively. Let $S(m, l)$ be the graph obtained from a $K_{2, m}\left(u, u^{\prime}\right)$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying u with w, and $w^{\prime \prime}$ with u^{\prime}; let $J(m, l)$ denote the graph obtained from a $K_{2, m+1}$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying $w, w^{\prime \prime}$ with the two ends of an edge in $K_{2, m+1}$, respectively; let $J^{\prime}(m, l)$ denote the graph obtained from a $K_{2, m+2}$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying $w, w^{\prime \prime}$ with two vertices of degree 2 in $K_{2, m+2}$, respectively. See Fig. 2 for examples of these graphs. Let

$$
\mathcal{F}=\left\{K_{1}, K_{2}, K_{2, t}, K_{2, t}^{\prime}, K_{2, t}^{\prime \prime}, K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right), S(m, l), J(m, l), J^{\prime}(m, l), P(10)\right\}
$$

where $t, s, s^{\prime}, s^{\prime \prime}, m, l \geq 0$ are integers.
For a graph G, let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees.

Theorem 2.7 (Catlin, [7]). (i) If G is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.
(ii) (Catlin et al., Theorem 1.3 of [9]) If G is 2-edge-connected, and if $F(G) \leq 2$, then the reduction of G is either K_{1} or a $K_{2, t}$ for some integer $t \geq 2$.
(iii) (Chen and Lai, Theorem 2.4 of [12]) If G is connected reduced graph with $|V(G)| \leq 11$ and $F(G) \leq 3$, then $G \in \mathcal{F}$, where \mathcal{F} is defined as above.

Lemma 2.8 (Lemma 2.1 of [22]). Let G be a connected simple graph with $n \leq 8$ vertices and with $D_{1}(G)=\emptyset,\left|D_{2}(G)\right| \leq 2$. Then either G is one of three graphs depicted in Fig. 3, or the reduction of G is K_{1} or K_{2}.

Theorem 2.9 (Theorem 4 of [19]). Let G be a graph. If $\kappa^{\prime}(G) \geq 3$ and $c(G) \leq 8$, then G is supereulerian.
It should be noted that the proof of Theorem 4 in [19] misses a case. This gap will be filled by the validity of Lemma 3.1. Therefore, Theorem 2.9 remains a valid statement.

3. Proof of Theorem 1.1

Let $P=v_{0} v_{1} v_{2} \cdots v_{n}$ denote a path in a graph G. For any $0 \leq i<j \leq n$, we use the following notations of subpaths in our proof:

$$
\begin{aligned}
& P\left[v_{i}, v_{j}\right]=v_{i} v_{i+1} v_{i+2} \cdots v_{j}, \quad P\left(v_{i}, v_{j}\right]=v_{i+1} v_{i+2} \cdots v_{j}, \\
& P\left[v_{i}, v_{j}\right)=v_{i} v_{i+1} v_{i+2} \cdots v_{j-1} \quad \text { and } \quad P\left(v_{i}, v_{j}\right)=v_{i+1} v_{i+2} \cdots v_{j-1} .
\end{aligned}
$$

Thus P is also denoted by $P\left[v_{0}, v_{n}\right]$, usually referred as a $\left(v_{0}, v_{n}\right)$-path. For discussion convenience, cycles are often given with an orientation. For a cycle $C=u_{1} u_{2} \cdots u_{l} u_{1}$, we use the following notations in our proof:

$$
\begin{aligned}
& C\left[u_{i}, u_{j}\right]=u_{i} u_{i+1} u_{i+2} \cdots u_{j}, \quad C\left(u_{i}, u_{j}\right]=C\left[u_{i}, u_{j}\right]-\left\{u_{i}\right\}, \\
& C\left[u_{i}, u_{j}\right)=C\left[u_{i}, u_{j}\right]-\left\{u_{j}\right\} \quad \text { and } \quad C\left(u_{i}, u_{j}\right)=C\left[u_{i}, u_{j}\right]-\left\{u_{i}, u_{j}\right\} .
\end{aligned}
$$

We also view $P=v_{0} v_{1} v_{2} \cdots v_{n}$ as a path with an orientation. The path with the same vertices but in the reverse order is denoted by \overleftarrow{P}. If $X, Y \subseteq V(G)$, then for any $x \in X$ and $y \in Y$, an (x, y)-path is called an (X, Y)-path; when $X=\{x\}$, then an (x, y)-path is also called an (x, Y)-path.

Lemma 3.1. Let G be a graph with $c(G) \leq 11$ such that

$$
\begin{equation*}
\kappa(G) \geq 2, \kappa^{\prime}(G) \geq 3, \text { and } G \text { is reduced. } \tag{1}
\end{equation*}
$$

Let $C=x_{1} x_{2} y_{1} y_{2} x_{1}$ be a 4-cycle in G with a partition $\pi(C)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{x_{2}, y_{2}\right\}\right\rangle$. Each of the following holds.
(i) $\kappa^{\prime}(G / \pi(C)) \geq 2$.
(ii) If
the choice of C maximizes $\kappa^{\prime}(G / \pi(C))$,
then $\kappa^{\prime}(G / \pi(C)) \geq 3$.
Proof. (i) Assume that by contradiction, $e_{\pi(C)}$ is a cut edge of $G / \pi(C)$. Thus $G-E(C)$ has two components G_{1} and G_{2}. We may assume that $x_{i}, y_{i} \in V\left(G_{i}\right),(i \in\{1,2\})$. For each $i \in\{1,2\}$, let $P_{i}\left[x_{i}, y_{i}\right]$ be a longest $\left(x_{i}, y_{i}\right)$-path in G_{i} with length $p_{i} \geq 2$. By (1), G is simple, and so as $\kappa^{\prime}(G) \geq 3$, we have $\left|V\left(G_{i}\right)\right| \geq 4,(1 \leq i \leq 2)$.

Claim 1. For each $i \in\{1,2\}, p_{i} \geq 5$.
By symmetry, it suffices to show that $p_{1} \geq 5$. If $p_{1}=2$, then every $w \in V\left(G_{1}\right)-\left\{x_{1}, y_{1}\right\}$ must be adjacent to both x_{1} and y_{1}, and so by $\kappa^{\prime}(G) \geq 3, G_{1}$ must have a cycle of length at most 3 , contrary to (1).

Claim 1 Case A. $p_{1}=3$.
Denote $P_{1}=x_{1} w_{1} w_{2} y_{1}$. Since $\kappa^{\prime}(G) \geq 3$, and by (1), there must be a vertex $w^{\prime} \in N_{G_{1}}\left(w_{2}\right)-\left\{x_{1}, y_{1}, w_{1}\right\}$. By $\kappa(G) \geq 2$, $G-w_{2}$ has a $\left(w^{\prime}, w^{\prime \prime}\right)$-path Q_{1} with such that $V\left(Q_{1}\right) \cap\left\{x_{1}, y_{1}, w_{1}\right\}=\left\{w^{\prime \prime}\right\}$. If $w^{\prime \prime} \in\left\{y_{1}, w_{1}\right\}$, then by (1), G contains no 3-cycles and so $\left|E\left(Q_{1}\right)\right| \geq 2$. Let

$$
Q_{1}^{\prime}= \begin{cases}x_{1} w_{1} w_{2} Q_{1}\left[w^{\prime}, y_{1}\right] & \text { if } w^{\prime \prime}=y_{1} \\ x_{1} \overleftarrow{Q_{1}}\left[w_{1}, w^{\prime}\right] w_{2} y_{1} & \text { if } w^{\prime \prime}=w_{1}\end{cases}
$$

Then as $\left|E\left(Q_{1}\right)\right| \geq 2,\left|E\left(Q_{1}^{\prime}\right)\right| \geq 5$, contrary to the assumption that $p_{1}=3$. Hence we must have $w^{\prime \prime}=x_{1}$. Since $p_{1}=3$, we must have $n_{1}=1$ and so $Q_{1}=w^{\prime} x_{1}$.

By $\kappa^{\prime}(G) \geq 3$ and by (1), there must be a vertex $w_{1}^{\prime} \in N_{G}\left(w_{1}\right)-\left\{x_{1}, y_{1}, z_{1}, z_{1}^{\prime}\right\}$. By $\kappa(G) \geq 2, G-w_{1}$ has a p $\left(w_{1}^{\prime}\right.$, $\left.w_{1}^{\prime \prime}\right)$-path Q_{2} with $V\left(Q_{2}\right) \cap\left\{x_{1}, y_{1}, w_{2}, w^{\prime}\right\}=\left\{w_{1}^{\prime \prime}\right\}$. Since G is reduced, G contains no 3 -cycles and so either $w_{1}^{\prime \prime}=y_{1}$, whence G_{1} has a path $x_{1} w^{\prime} w_{2} w_{1} Q_{2}\left[w_{1}^{\prime}, y_{1}\right]$; or $w_{1}^{\prime \prime}=w^{\prime}$, whence G_{1} has a path $x_{1} w_{1} Q_{2}\left[w_{1}^{\prime}, w^{\prime}\right] w_{2} y_{1}$. In either case, a contradiction to the assumption $p_{1}=3$ is obtained. This proves Claim 1 Case A.

Claim 1 Case B. $p_{1}=4$.
Denote $P_{1}=x_{1} w_{1} w_{2} w_{3} y_{1}$. Since $\kappa^{\prime}(G) \geq 3$ and by (1), there must be a vertex $w_{2}^{\prime} \in N_{G}\left(w_{2}\right)-\left\{w_{1}, x_{1}, y_{1}, z_{1}\right\}$. By $\kappa(G) \geq 2, G-w_{2}$ has a $\left(w_{2}^{\prime}, w_{2}^{\prime \prime}\right)$-path Q_{3} with $V\left(Q_{3}\right) \cap\left\{w_{1}, x_{1}, y_{1}, z_{1}\right\}=\left\{w_{2}^{\prime \prime}\right\}$. Since G is reduced, G contains no 3cycles, and so if $w_{2}^{\prime \prime} \in\left\{w_{1}, w_{2}\right\},\left|E\left(Q_{3}\right)\right| \geq 2$, implying that G_{1} has an (x_{1}, y_{1})-path of length at least 6 , contrary to $p_{1}=4$. Therefore, by symmetry and by $p_{1}=4$, we may assume that $w_{2}^{\prime \prime}=x_{1}$ and $Q_{3}=w_{2}^{\prime} x_{1}$. Again by $\kappa^{\prime}(G) \geq 3$ and since G is reduced, there must be a vertex $w \in N_{G}\left(w_{2}^{\prime}\right)-\left\{w_{1}, w_{2}, x_{1}, w_{2}\right\}$. By $\kappa(G) \geq 2, G-w_{2}^{\prime}$ has a ($\left.w, w^{\prime}\right)$-path Q_{4} with $V\left(Q_{4}\right) \cap\left\{w_{1}, w_{2}, x_{1}, y_{1}, z_{1}\right\}=\left\{w^{\prime}\right\}$. Since $p_{1}=4$, a similar argument to the above leads to $w_{2}^{\prime} y_{1} \in E(G)$.

Again by $\kappa^{\prime}(G) \geq 3$ and by (1), there must be a vertex $w_{1}^{\prime} \in N_{G}\left(w_{1}\right)-\left\{w_{1}, w_{2}, w_{2}^{\prime}, x_{1}, w_{3}\right\}$. If $w_{1}^{\prime}=y_{1}$, then $G\left[\left\{w_{1}, w_{2}, w_{2}^{\prime}, x_{1}, y_{1}, w_{3}\right\}\right] \cong K_{3,3}^{-}$, contrary to (1), (see Theorem 2.2). Thus $w_{1}^{\prime} \neq y_{1}$ as well. By $\kappa(G) \geq 2, G-w_{1}$ has a $\left(w_{1}^{\prime}, w_{1}^{\prime \prime}\right)$-path Q_{5} with $V\left(Q_{5}\right) \cap\left\{w_{2}, w_{2}^{\prime}, x_{1}, y_{1}, w_{3}\right\}=\left\{w_{1}^{\prime \prime}\right\}$. Since G is reduced, if $w_{1}^{\prime \prime} \in\left\{w_{2}, x_{1}\right\},\left|E\left(Q_{5}\right)\right| \geq 2$. By Theorem 2.2 and by (1), G cannot have R as a subgraph, and so if $w_{1}^{\prime \prime}=y_{1}$, then $\left|E\left(Q_{5}\right)\right| \geq 2$ also. Define

$$
Q_{5}^{\prime}= \begin{cases}x_{1} w_{1} Q_{5}\left[w_{1}^{\prime}, w_{2}\right] w_{3} y_{1} & \text { if } w_{1}^{\prime \prime}=w_{2} \\ x_{1} w_{1} Q_{5}\left[w_{1}^{\prime}, w_{2}^{\prime}\right] w_{2} w_{3} y_{1} & \text { if } w_{1}^{\prime \prime}=w_{2}^{\prime} \\ \overleftarrow{Q_{5}}\left[x_{1}, w_{1}^{\prime}\right] w_{1} w_{2} w_{3} y_{1} & \text { if } w_{1}^{\prime \prime}=x_{1} \\ x_{1} w_{2}^{\prime} w_{2} w_{1} Q_{5}\left[w_{1}^{\prime}, y_{1}\right] & \text { if } w_{1}^{\prime \prime}=y_{1} \\ x_{1} w_{2}^{\prime} w_{2} w_{1} Q_{5}\left[w_{1}^{\prime}, w_{3}\right] y_{1} & \text { if } w_{1}^{\prime \prime}=w_{3}\end{cases}
$$

In any case, $\left|E\left(Q_{5}^{\prime}\right)\right| \geq 5$, contrary to the assumption of $p_{1}=4$. This proves Claim 1 .
By Claim 1, $\min \left\{p_{1}, p_{2}\right\} \geq 5$, and so G has a cycle of length at least 12 , contrary to the assumption $c(G) \leq 11$. This proves (i).
(ii). We argue by contradiction and assume that $\kappa^{\prime}(G / \pi(C)) \leq 2$. By (i), we must have $\kappa^{\prime}(G / \pi(C))=2$. Then $G-E(C)$ has a cut edge $e=z_{1} z_{2}$ and $G-(E(C) \cup\{e\})$ has two components G_{1} and G_{2} such that $x_{i}, y_{i}, z_{i} \in G_{i},(1 \leq i \leq 2)$.

Fig. 4. Graphs in Case 1 and Case 2 of the proof for Lemma 3.1, respectively.
Case 1. $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\}=3$.
We may assume that $\left|V\left(G_{2}\right)\right| \geq\left|V\left(G_{1}\right)\right|=3$. Since $\kappa^{\prime}(G) \geq 3, x_{1} z_{1}, y_{1} z_{1} \in E(G)$. Thus $C_{1}=x_{1} x_{2} y_{1} z_{1} x_{1}, C_{2}=x_{1} y_{2} y_{1} z_{1} x_{1}$ are two 4-cycles (see Fig. 4(a)). Let $\pi\left(C_{1}\right)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{x_{2}, z_{1}\right\}\right\rangle$ and $\pi\left(C_{2}\right)=\left\langle\left\{x_{1}, y_{1}\right\},\left\{y_{2}, z_{1}\right\}\right\rangle$. By Lemma 3.1(i), both $\kappa^{\prime}\left(G / \pi\left(C_{1}\right)\right)=2$ and $\kappa^{\prime}\left(G / \pi\left(C_{2}\right)\right)=2$. Therefore, $\left(G / \pi\left(C_{1}\right)\right)-e_{\pi\left(C_{1}\right)}$ has a cut edge $v_{2} u_{2}$ separating the two ends of $e_{\pi\left(C_{1}\right)}$. If $v_{2} u_{2}=z_{1} z_{2}$, then x_{2} would be a cut-vertex of G, contrary to (1). Hence $v_{2} u_{2} \neq z_{1} z_{2}$. Similarly, $\left(G / \pi\left(C_{2}\right)\right)-e_{\pi\left(C_{2}\right)}$ has a cut edge $v_{1} u_{1} \neq z_{1} z_{2}$ separating the two ends of $e_{\pi\left(C_{2}\right)}$, as depicted in Fig. 4(a), where the subgraphs H_{1} and H_{2} are possibly trivial. Hence

$$
D=\left\{z_{1} z_{2}, u_{1} v_{1}, u_{2} v_{2}\right\} \text { is an edge cut of } G .
$$

Let L be the component of $G-D$ with $u_{1}, u_{2}, z_{2} \in V(L)$, and let $P\left[u_{1}, u_{2}\right]$ be a longest (u_{1}, u_{2})-path in L with length p. Choose an $\left(x_{2}, v_{1}\right)$-path P^{\prime} in H_{1} and a $\left(v_{2}, y_{2}\right)$-path $P^{\prime \prime}$ in H_{2}.

Claim 2. $p \geq 5$.
If $p=1$, then $u_{1} u_{2} \in E(G)$. By $\kappa^{\prime}(G) \geq 3$ and by (1), there exist $u_{i}^{\prime} \in N_{G}\left(u_{i}\right)-\left\{u_{3-i}, v_{3-i}, v_{i}\right\}$, for $1 \leq i \leq 2$. As $p=1$, every $\left(u_{1}^{\prime}, u_{2}^{\prime}\right)$-path of G must use either $u_{1} u_{1}^{\prime}$ or $u_{2} u_{2}^{\prime}$ (but not both), and so either u_{1} or u_{2} would be a cut vertex of G, contrary to (1). Hence $p \geq 2$.

Suppose that $p=2$ and $P=u_{1} u_{1}^{\prime} u_{2}$. Since $\kappa^{\prime}(G) \geq 3$, there must be a $z \in N_{G}\left(u_{1}^{\prime}\right)-V(P)$. By $\kappa(G) \geq 2$, G has a cycle C_{z} containing both $u_{1} u_{1}^{\prime}, u_{1}^{\prime} z$, and so G has a $\left(u_{1}, z\right)$-path $Q_{1}=C_{z}-u_{1}^{\prime}$. If $u_{2} \notin V\left(Q_{1}\right)$, then $Q_{1}\left[u_{1}, z\right] u_{1}^{\prime} u_{2}$ has length at least 3, contrary to $p=2$. Therefore, we assume $u_{2} \in V\left(Q_{1}\right)$, and so $u_{1} u_{1}^{\prime} \overleftarrow{Q_{1}}\left[z, u_{2}\right]$ is a $\left(u_{1}, u_{2}\right)$-path in L of length at least 3 , contrary to $p=2$.

Assume that $p=3$ and $P=u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{2}$. If we have both $w_{1} \in\left(N_{L}\left(u_{1}\right)-V(P)\right) \cap N_{L}\left(u_{2}^{\prime}\right)$ and $w_{2} \in\left(N_{L}\left(u_{2}\right)-V(P)\right) \cap N_{L}\left(u_{1}^{\prime}\right)$, then $u_{1} w_{1} u_{2}^{\prime} u_{1}^{\prime} w_{2} u_{2}$ is a path of length 5 . Hence we assume that $\left(N_{L}\left(u_{2}\right)-V(P)\right) \cap N_{L}\left(u_{1}^{\prime}\right)=\emptyset$.

By $\kappa^{\prime}(G) \geq 3, N_{L}\left(u_{1}^{\prime}\right)-V(P)$ contains a vertex w_{1} and $N_{L}\left(u_{2}\right)-V(P)$ contains a vertex w_{2} such that $w_{1} \neq w_{2}$. Since $\kappa(G) \geq 2, G$ has a cycle C containing w_{1} and w_{2}. Since $\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}$ is an edge cut, $\left|E(C) \cap\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}\right| \in\{0,2\}$, and so either $C\left[w_{1}, w_{2}\right]$ or $C\left[w_{2}, w_{1}\right]$ is a path in L. Assume that $C\left[w_{1}, w_{2}\right]$ is a path in L. Then $L-u_{1}^{\prime}$ has a shortest path $Q_{2}\left[w_{1}, w^{\prime}\right]$ for some $w^{\prime} \in V(P)$. If $w_{2} \in V\left(Q_{2}\right)$, then as $w_{1} \neq w_{2}, u_{1} u_{1}^{\prime} Q_{2}\left[w_{1}, w_{2}\right] u_{2}$ has length at least 4 . Hence we assume that $w_{2} \notin \mathrm{Q}_{2}$. Let

$$
Q_{2}^{\prime}= \begin{cases}\overleftarrow{2_{2}}\left[u_{1}, w_{1}\right] u_{1}^{\prime} u_{2}^{\prime} u_{2} & \text { if } w^{\prime}=u_{1} \\ u_{1} u_{1}^{\prime} Q_{2}\left[w_{1}, u_{2}^{\prime}\right] u_{2} & \text { if } w^{\prime}=u_{2}^{\prime} \\ u_{1} u_{1}^{\prime} Q_{2}\left[w_{1}, u_{2}\right] & \text { if } w^{\prime}=u_{2},\left(\text { as }\left(N_{L}\left(u_{2}\right)-V(P)\right) \cap N_{L}\left(u_{1}^{\prime}\right) \neq \emptyset,\left|E\left(Q_{2}\left[w_{1}, u_{2}\right]\right)\right| \geq 2\right) .\end{cases}
$$

Note that $\left|E\left(Q_{2}^{\prime}\right)\right| \geq 4$, and so a contradiction to $p=3$ occurs.
Assume that $p=4$ and $P=u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} u_{2}$. For $1 \leq i \leq 3$, since $\kappa^{\prime}(G) \geq 3$, there exists a $w_{i} \in N_{L}\left(u_{i}^{\prime}\right)-V(P)$, (possibly $w_{1}=w_{3}$). Suppose first that $N_{L}\left(u_{1}^{\prime}\right) \cap N_{L}\left(u_{3}^{\prime}\right)-V(P) \neq \emptyset$, which contains a vertex w. By $\kappa^{\prime}(G) \geq 3$, there exists a $w^{\prime} \in N_{L}(w)-\left\{u_{1}^{\prime}, u_{3}^{\prime}\right\}$. By (1), G is reduced, and so $w^{\prime} \notin V(P)$. As $\kappa(G) \geq 2, G-w$ has a ($w^{\prime}, w^{\prime \prime}$)-path Q_{3} with $V\left(Q_{3}\right) \cap V(P)=\left\{w^{\prime \prime}\right\}$. If $z_{2} \notin V\left(Q_{3}\right)$, then Q_{3} is a path in L. Let

$$
Q_{3}^{\prime}= \begin{cases}\overleftarrow{Q_{3}}\left[u_{1}, w^{\prime}\right] w u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{1} \\ u_{1} \overleftarrow{Q_{3}}\left[u_{1}^{\prime}, w^{\prime}\right] w u_{3}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{1}^{\prime} \\ u_{1} u_{1}^{\prime} w Q_{3}\left[w^{\prime}, u_{2}^{\prime}\right] u_{3}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{2}^{\prime} \\ u_{1} u_{1}^{\prime} w Q_{3}\left[w^{\prime}, u_{3}^{\prime}\right] u_{2} & \text { if } w^{\prime \prime}=u_{3}^{\prime} \\ u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} w Q_{3}\left[w^{\prime}, u_{2}\right] & \text { if } w^{\prime \prime}=u_{2}\end{cases}
$$

In any case, Q_{3}^{\prime} has length at least 5 , contrary to $p=4$. Hence $z_{2} \in V\left(Q_{3}\right)$. Then $x_{1} x_{2} y_{1} \overleftarrow{P^{\prime \prime}}\left[y_{2}, v_{2}\right] u_{2} u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} w Q_{3}\left[w^{\prime}, z_{2}\right] z_{1} x_{1}$ is a cycle of length at least 12 , contrary to the assumption that $c(G) \leq 11$.

Thus we must have $N_{L}\left(u_{1}^{\prime}\right) \cap N_{L}\left(u_{3}^{\prime}\right)-V(P)=\emptyset$. Since $\kappa(G) \geq 2, G$ has a cycle C with $w_{1}, w_{3} \in V(C)$. Since $\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}$ is an edge cut, either $C\left[w_{1}, w_{3}\right]$ or $C\left[w_{3}, w_{1}\right]$ is a path in L. Let T be a $\left(w_{1}, w_{3}\right)$-path in L. If $V(T) \cap V(P)=\emptyset$, then since $w_{1} \neq w_{3}$, the path $u_{1} u_{1}^{\prime} T\left[w_{1}, w_{3}\right] u_{3}^{\prime} u_{2}$ is of length at least 5 , contrary to $p=4$. Hence $V(T) \cap V(P) \neq \emptyset$, and so C contains a $\left(w_{1}, w_{1}^{\prime}\right)$-path T_{1} and a $\left(w_{3}, w_{3}^{\prime}\right)$-path T_{3} such that for $i \in\{1,3\}, V\left(T_{i}\right) \cap V(P)=\left\{w_{i}^{\prime}\right\}$. If $w_{1}^{\prime} \in\left\{u_{1}, u_{2}^{\prime}\right\}$, then either $\overleftarrow{T_{1}}\left[u_{1}, w_{1}\right] u_{1}^{\prime \prime} u_{2}^{\prime} u_{3}^{\prime} u_{2}$ or $u_{1} u_{1}^{\prime} T_{1}\left[w_{1}, u_{2}^{\prime}\right] u_{3}^{\prime} u_{2}$ is a (u_{1}, u_{2}) -path of length at least 5 in L. Hence we have $w_{1}^{\prime} \in\left\{u_{3}^{\prime}, u_{2}\right\}$. Similarly, $w_{3}^{\prime} \in\left\{u_{1}^{\prime}, u_{1}\right\}$. If $\left(w_{1}^{\prime}, w_{3}^{\prime}\right)=\left(u_{2}, u_{1}\right)$, then $\overleftarrow{T_{2}}\left[u_{1}, w_{3}^{\prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} T_{1}\left[w_{1}, u_{2}\right]$ has length at least 6 . Thus we only need to discuss the following cases.

Claim 2 Case A. $\left(w_{1}^{\prime}, w_{3}^{\prime}\right)=\left(u_{3}^{\prime}, u_{1}^{\prime}\right)$.
As $\left\{w_{1}, u_{2}^{\prime}, w_{3}\right\} \subseteq N_{L}\left(u_{1}^{\prime}\right) \cap N_{L}\left(u_{3}^{\prime}\right)$ and as G is reduced, we may assume that $u_{2}^{\prime} \neq z_{2}$.
By $\kappa(G) \geq 2, G-u_{2}^{\prime}$ has a (w_{2}, w_{2}^{\prime})-path T_{2} for some $w_{2}^{\prime} \in V(P)$ such that $V\left(T_{2}\right) \cap V(P)=\left\{w_{2}^{\prime}\right\}$. If $z_{2} \in V\left(T_{2}\right)$, then $x_{1} x_{2} y_{1} \overleftarrow{P^{\prime \prime}}\left[y_{2}, v_{2}\right] u_{2} u_{3}^{\prime} T_{3}\left[w_{3}, u_{1}^{\prime}\right] u_{2}^{\prime} T_{2}\left[w_{2}, z_{2}\right] z_{1} x_{1}$ is a cycle of length $10+\left|E\left(\overleftarrow{P^{\prime \prime}}\left[y_{2}, v_{2}\right]\right)\right|+\left|E\left(T_{3}\left[w_{3}, u_{1}^{\prime}\right]\right)\right|+\left|E\left(T_{2}\left[w_{2}, z_{2}\right]\right)\right|$. Since $w_{3} \neq u_{1}^{\prime}$ and since $c(G) \leq 11$, we must have $u_{2}^{\prime} z_{2} \in E(G)$. By symmetric arguments, we also have $w_{1} z_{2} \in E(G)$. It follows that $u_{1} u_{1}^{\prime} w_{1} z_{2} u_{2}^{\prime} u_{3}^{\prime} u_{2}$ is of length 6 , contrary to $p=4$. Thus $z_{2} \notin V\left(T_{2}\right)$ and T_{2} is a path of L. If $w_{2}^{\prime} \in\left\{u_{1}, u_{1}^{\prime}\right\}$, then $\overleftarrow{T_{2}}\left[u_{1}, w_{2}\right] u_{2}^{\prime} u_{1}^{\prime} w_{1} u_{3}^{\prime} u_{2}$ (if $w_{2}^{\prime}=u_{1}$) or $u_{1} \overleftarrow{T_{2}}\left[u_{1}^{\prime}, w_{2}\right] u_{1}^{\prime} w_{3} u_{3}^{\prime} u_{2}$ (if $w_{2}^{\prime}=u_{1}^{\prime}$) are (u_{1}, u_{2})-paths of length at least 5 in L. Hence $w_{2}^{\prime} \notin\left\{u_{1}, u_{1}^{\prime}\right\}$. By symmetry, $w_{2}^{\prime} \notin\left\{u_{2}, u_{3}^{\prime}\right\}$, and so $w_{2}^{\prime} \notin V(P)$, contrary to the assumption that $w_{2}^{\prime} \in V(P)$. Hence Case A does not occur.

Claim 2 Case B. $\left(w_{1}^{\prime}, w_{3}^{\prime}\right) \in\left\{\left(u_{3}^{\prime}, u_{1}\right),\left(u_{2}, u_{1}^{\prime}\right)\right\}$.
By symmetry, we assume that $\left(w_{1}^{\prime}, w_{3}^{\prime}\right)=\left(u_{3}^{\prime}, u_{1}\right)$. By $\kappa(G) \geq 2, G-u_{2}^{\prime}$ has a (w_{2}, w_{2}^{\prime})-path T_{2} for some $w_{2}^{\prime} \in V(P)$ such that $V\left(T_{2}\right) \cap V(P)=\left\{w_{2}^{\prime}\right\}$. As shown in the proof of Case $A, w_{2}^{\prime} \notin\left\{u_{1}, u_{1}^{\prime}\right\}$. If $w_{2}^{\prime}=u_{3}^{\prime}$, then $u_{1} u_{1}^{\prime} u_{2}^{\prime} T_{2}\left[w_{2}, u_{3}^{\prime}\right] u_{2}$ has length at least 5. If $w_{2}^{\prime}=u_{2}$, then $\overleftarrow{T_{2}}\left[u_{1}, w_{3}\right] \overleftarrow{T_{1}}\left[u_{3}^{\prime}, w_{1}\right] u_{1}^{\prime} u_{2}^{\prime} T_{2}\left[w_{2}, u_{2}\right]$ has length at least 5 . Therefore, in any case, a contradiction to $p=4$ is obtained. This shows that Case B does not occur either, which completes the proof of Claim 2.

We continue our proof for Case 1 . By Claim 2, $p \geq 5$. If $p \geq 6$, then G has a cycle $z_{1} x_{1} P^{\prime}\left[x_{2}, v_{1}\right] P\left[u_{1}, u_{2}\right] P^{\prime \prime}\left[v_{2}, y_{2}\right] y_{1} z_{1}$ with length at least 12 , contrary to the assumption that $c(G) \leq 11$. Hence $p=5$. Let $P=u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} u_{4}^{\prime} u_{2}$. By $\kappa^{\prime}(G) \geq 3$, for $1 \leq i \leq 4$, there exists $u_{i}^{\prime \prime} \in N_{G}\left(u_{i}^{\prime}\right)-N_{P}\left(u_{i}^{\prime}\right)$, (possibly $u_{1}^{\prime \prime}=u_{3}^{\prime \prime}, u_{2}^{\prime \prime}=u_{4}^{\prime \prime}$, or $u_{1}^{\prime \prime}=u_{4}^{\prime \prime}$).
Case 1.1 $\left[\left(N_{G}\left(u_{1}^{\prime}\right) \cap N_{G}\left(u_{3}^{\prime}\right)\right) \cup\left(N_{G}\left(u_{2}^{\prime}\right) \cap N_{G}\left(u_{4}^{\prime}\right)\right)\right]-V(P) \neq \emptyset$.
By symmetry, we assume that there exists a $w \in N_{G}\left(u_{1}^{\prime}\right) \cap\left(N_{G}\left(u_{3}^{\prime}\right)-V(P)\right)$. By $\kappa^{\prime}(G) \geq 3$, there exists a $w^{\prime} \in N_{G}(w)-$ $\left\{u_{1}^{\prime}, u_{3}^{\prime}\right\}$. (We can view $u_{1}^{\prime \prime}=u_{3}^{\prime \prime}=w$.) By (1), G is reduced, and so $w^{\prime} \notin V(P)-\left\{u_{2}\right\}$. By $\kappa(G) \geq 2, G-w$ has a (w^{\prime}, $w^{\prime \prime}$)path Q_{4} such that $V\left(Q_{7}\right) \cap V(P)=\left\{w^{\prime \prime}\right\}$. If $z_{2} \in V\left(Q_{4}\right)$, then $y_{1} y_{2} x_{1} P^{\prime}\left[x_{2}, v_{1}\right] u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} w Q_{4}\left[w, z_{2}\right] z_{1} y_{1}$ is a cycle of length $10+\left|E\left(P^{\prime}\left[x_{2}, v_{1}\right]\right)\right|+\left|E\left(Q_{4}\left[w, z_{2}\right]\right)\right|$. By $c \leq 11$, we must have $w^{\prime}=z_{2}$ and so $w z_{2} \in E(G)$. By symmetry, $u_{2}^{\prime} z_{2} \in E(G)$. This implies that $u_{1} u_{1}^{\prime} u_{2}^{\prime} z_{2} w u_{3}^{\prime} u_{4}^{\prime} u_{2}$ is a path of length 7 , contrary to $p=5$. Hence $z_{2} \notin V\left(Q_{4}\right)$ (and so Q_{4} is a path in L). If $w^{\prime} \notin\left\{w^{\prime \prime}, u_{2}\right\}$ and $w^{\prime \prime} \neq u_{2}$, then define

$$
Q_{4}^{\prime}= \begin{cases}\overleftarrow{Q_{4}}\left[u_{1}, w^{\prime}\right] w u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} u_{4}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{1} \\ u_{1} \overleftarrow{Q_{4}}\left[u_{1}^{\prime}, w^{\prime}\right] w u_{3}^{\prime} u_{4}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{1}^{\prime} \\ u_{1} u_{1}^{\prime} w Q_{4}\left[w^{\prime}, u_{2}^{\prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{2}^{\prime} \\ u_{1} u_{1}^{\prime} w Q_{4}\left[w^{\prime}, u_{3}^{\prime}\right] u_{4}^{\prime} u_{2} & \text { if } w^{\prime \prime}=u_{3}^{\prime} \\ u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} w Q_{4}\left[w^{\prime}, u_{4}^{\prime}\right] u_{2} & \text { if } w^{\prime \prime}=u_{4}^{\prime} \\ u_{1} u_{1}^{\prime} u_{2}^{\prime} u_{3}^{\prime} w Q_{4}\left[w^{\prime}, u_{2}\right] & \text { if } w^{\prime \prime}=u_{2} \text { and } w^{\prime} \neq w^{\prime \prime}\end{cases}
$$

In each of these cases, $\mathrm{a}\left(u_{1}, u_{2}\right)$-path of length at least 6 in L is found, contrary to $p=5$. Therefore, we may assume that $w^{\prime}=w^{\prime \prime}=u_{2}$, and so $w u_{2} \in E(G)$. By symmetry, $u_{2}^{\prime} u_{2} \in E(G)$. But then $G\left[\left(V(P)-\left\{u_{1}\right\}\right) \cup\{w\}\right]$ contains a $K_{3,3}^{-}$, and so G is not reduced, contrary to (1).
Case $1.2\left(N_{G}\left(u_{1}^{\prime}\right) \cap N_{G}\left(u_{3}^{\prime}\right)\right) \cup\left(N_{G}\left(u_{2}^{\prime}\right) \cap N_{G}\left(u_{4}^{\prime}\right)\right) \subseteq V(P)$.
Suppose first that $\left[\left(N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}^{\prime}\right)\right) \cup\left(N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{3}^{\prime}\right)\right)\right]-V(P) \neq \emptyset$. By symmetry, we assume that there exists a vertex $w_{1} \in N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}^{\prime}\right)-V(P)$. We first show that

$$
\begin{equation*}
u_{1}^{\prime} u_{4}^{\prime} \notin E(G) . \tag{3}
\end{equation*}
$$

By contradiction, we assume that $u_{1}^{\prime} u_{4}^{\prime} \in E(G)$. Since G is reduced and has no $K_{3,3}^{-}, u_{3}^{\prime \prime} \notin V(P)$. Ву $\kappa(G) \geq 2, G-\left\{u_{3}^{\prime}\right\}$ has a $\left(u_{3}^{\prime \prime}, u_{3}^{\prime \prime \prime}\right)$-path T_{3} such that $V\left(T_{3}\right) \cap V(P)=\left\{u_{3}^{\prime \prime \prime}\right\}$. Define

$$
T_{3}^{\prime}= \begin{cases}\overleftarrow{T_{3}}\left[u_{1}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} u_{4}^{\prime} u_{2} & \text { if } u_{3}^{\prime \prime \prime}=u_{1} \\ u_{1} w_{1} u_{2}^{\prime} \overleftarrow{T_{3}}\left[u_{1}^{\prime}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2} & \text { if } u_{3}^{\prime \prime \prime}=u_{1}^{\prime} \\ u_{1} u_{1}^{\prime} u_{2}^{\prime} \overleftarrow{T_{3}}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2} & \text { if } u_{3}^{\prime \prime \prime}=u_{2}^{\prime} \\ P\left[u_{1}, u_{3}^{\prime}\right] T_{3}\left[u_{3}^{\prime \prime}, u_{4}^{\prime}\right] u_{2} & \text { if } u_{3}^{\prime \prime \prime}=u_{4}^{\prime} \\ u_{1} w_{1} u_{2}^{\prime} u_{1}^{\prime} u_{4}^{\prime} u_{3}^{\prime} T_{3}\left[u_{3}^{\prime \prime}, u_{2}\right] & \text { if } u_{3}^{\prime \prime \prime}=u_{2}\end{cases}
$$

Thus in any case, a (u_{1}, u_{2})-path of length longer than 5 is found. This justifies (3).

Ву $\kappa(G) \geq 2, G-\left\{u_{1}^{\prime}\right\}$ has a $\left(u_{1}^{\prime \prime}, u_{1}^{\prime \prime \prime}\right)$-path T_{1} such that $V\left(T_{1}\right) \cap V(P)=\left\{u_{1}^{\prime \prime \prime}\right\}$. Since G is reduced, and by $(3), u_{1}^{\prime \prime} \notin V(P)-\left\{u_{2}\right\}$. Thus if $u_{1}^{\prime \prime \prime} \in V(P)-\left\{u_{2}\right\}$, then $u_{1}^{\prime \prime} \neq u_{1}^{\prime \prime \prime}$. It follows by $p=5$ that we must have $u_{1}^{\prime \prime}=u_{1}^{\prime \prime \prime}=u_{2}$. Thus $u_{1}^{\prime} u_{2} \in E(G)$. By symmetry, we also have $u_{4}^{\prime} u_{1} \in E(G)$.

Let W be the subgraph of G with $V(W)=V(P) \cup\left\{w_{1}\right\}$ and $E(W)=E(P) \cup\left\{w_{1} u_{1}, w_{1} u_{2}^{\prime}, u_{1} u_{4}^{\prime}, u_{1}^{\prime} u_{2}\right\}$. Hence $F(W)=3$. As $|V(W)|=7$, by Theorem 2.7(iii), G is not reduced, contrary to (1). Thus we may assume that

$$
\begin{equation*}
\left(N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}^{\prime}\right)\right) \cup\left(N_{G}\left(u_{2}\right) \cap N_{G}\left(u_{3}^{\prime}\right)\right) \subseteq V(P) . \tag{4}
\end{equation*}
$$

Subcase 1.2A $u_{2}^{\prime} \in N_{G}\left(u_{2}\right)$ and $u_{3}^{\prime} \in N_{G}\left(u_{1}\right)$.
Since G is reduced, $u_{1}^{\prime \prime}, u_{4}^{\prime \prime} \notin V(P)$. Since $\kappa(G) \geq 2$, both $u_{1}^{\prime \prime}, u_{4}^{\prime \prime}$ are contained in a cycle C_{14}. Since $\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}$ is an edge cut of G, either $C_{14}\left[u_{1}^{\prime \prime}, u_{4}^{\prime \prime}\right]$ or $C_{14}\left[u_{4}^{\prime \prime}, u_{1}^{\prime \prime}\right]$ is a path in L, and so L contains a $\left(u_{4}^{\prime \prime}, u_{1}^{\prime \prime}\right)$-path Q_{5}. If $z_{2} \notin V\left(Q_{5}\right)$, then $u_{1} u_{3}^{\prime} u_{4}^{\prime} Q_{5}\left[u_{4}^{\prime \prime}, u_{1}^{\prime \prime}\right] u_{1}^{\prime} u_{2}^{\prime} u_{2}$ has length at least 6 , contrary to $p=5$. Hence $z_{2} \in V\left(Q_{5}\right)$, and so $y_{1} y_{2} x_{1} P^{\prime}\left[x_{2}, v_{1}\right] P\left[u_{1}, u_{4}^{\prime}\right]$ $Q_{5}\left[u_{4}^{\prime \prime}, z_{2}\right] z_{1} y_{1}$ is a cycle of length $11+\left|E\left(P^{\prime}\left[x_{2}, v_{1}\right]\right)\right|+\left|E\left(Q_{5}\left[u_{4}^{\prime \prime}, z_{2}\right]\right)\right|$. By $c(G) \leq 11$, we must have $u_{4}^{\prime \prime}=z_{2}$. By symmetry, we also have $u_{1}^{\prime \prime}=z_{2}$. It follows that $u_{1} u_{3}^{\prime} u_{4}^{\prime} z_{2} u_{1}^{\prime} u_{2}^{\prime} u_{2}$ has length 6 , contrary to $p=5$. This proves Case 1.2A.
Subcase 1.2B $u_{2}^{\prime} \in N_{G}\left(u_{2}\right)$ and $u_{3}^{\prime} \notin N_{G}\left(u_{1}\right)$ (or $u_{2}^{\prime} \notin N_{G}\left(u_{2}\right)$ and $u_{3}^{\prime} \in N_{G}\left(u_{1}\right)$). By symmetry, we assume that $u_{2}^{\prime} \in N_{G}\left(u_{2}\right)$ and $u_{3}^{\prime} \notin N_{G}\left(u_{1}\right)$. Since G is reduced, $u_{3}^{\prime \prime} \notin V(P)$.

Suppose first that $u_{1}^{\prime \prime} \in V(P)$. Since G is reduced, we must have $u_{1}^{\prime \prime}=u_{4}^{\prime}$. As $\kappa(G) \geq 2, G-u_{3}^{\prime}$ has a $\left(u_{3}^{\prime \prime}, u_{3}^{\prime \prime \prime}\right)$-path Q_{6} with $V\left(Q_{6}\right) \cap V(P)=\left\{u_{3}^{\prime \prime \prime}\right\}$. Since $p=5$ and by $(4), u_{3}^{\prime \prime \prime} \notin V(P)-\left\{u_{1}, u_{1}^{\prime}\right\}$. If $u_{3}^{\prime \prime \prime}=u_{1}^{\prime}$, then by the assumption of Case 1.2 , $N_{G}\left(u_{1}^{\prime}\right) \cap N_{G}\left(u_{3}^{\prime}\right)-V(P)=\emptyset$, and so $\left|E\left(Q_{6}\right)\right| \geq 2$. This implies that $u_{1}{\overleftarrow{Q_{6}}}\left[u_{1}^{\prime}, u_{3}^{\prime \prime \prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2}$ has length at least 6 , contrary to $p=5$. Thus $u_{3}^{\prime \prime \prime}=u_{1}$ and $\left|E\left(Q_{6}\right)\right| \geq 2$, and so $\overleftarrow{Q_{6}}\left[u_{1}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} u_{4}^{\prime} u_{1}$ has length at least 6 , contrary to $p=5$.

Therefore, $u_{1}^{\prime \prime} \notin V(P)$. By $\kappa(G) \geq 2$, G has a cycle C_{13} with $u_{1}^{\prime \prime}, u_{3}^{\prime \prime} \in V\left(C_{13}\right)$. Since $\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}$ is an edge-cut of G, we may assume that $C_{13}\left[u_{1}^{\prime \prime}, u_{3}^{\prime \prime}\right]$ is a path in L.

If $V\left(C_{13}\left[u_{1}^{\prime \prime}, u_{3}^{\prime \prime}\right]\right) \cap V(P)=\emptyset$, then by the assumption of Case $1.2, u_{1}^{\prime \prime} \neq u_{3}^{\prime \prime}$ and so $u_{1} u_{1}^{\prime} C_{13}\left[u_{1}^{\prime \prime}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2}$ has length at least 6 , contrary to $p=5$. Thus $V\left(C_{13}\left[u_{1}^{\prime \prime}, u_{3}^{\prime \prime}\right]\right) \cap V(P) \neq \emptyset$. Hence $C_{13}\left[u_{1}^{\prime \prime}, u_{3}^{\prime \prime}\right]$ contains a $\left(u_{1}^{\prime}, x^{\prime}\right)$-path Q_{6}^{\prime} with $V\left(Q_{6}^{\prime}\right) \cap V(P)=\left\{x^{\prime}\right\}$ and a $\left(u_{3}^{\prime \prime}, x^{\prime \prime}\right)$-path $Q_{6}^{\prime \prime}$ with $V\left(Q_{6}^{\prime \prime}\right) \cap V(P)=\left\{x^{\prime \prime}\right\}$. By $p=5$ and since G is reduced, $x^{\prime} \notin V(P)-\left\{u_{2}, u_{4}^{\prime}\right\}$ and $x^{\prime \prime} \notin V(P)-\left\{u_{1}\right\}$. If $x^{\prime}=u_{4}^{\prime}$, then $u_{1} u_{1}^{\prime} Q_{6}^{\prime}\left[u_{1}^{\prime \prime}, u_{4}^{\prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{2}$ has length at least 6 . Hence we must have $x^{\prime}=u_{2}$ and $x^{\prime \prime}=u_{1}$. Since $u_{3}^{\prime} \notin N_{G}\left(u_{1}\right)$, $\left|E\left(Q_{6}^{\prime \prime}\right)\right| \geq 2$, and so $\overleftarrow{Q_{6}^{\prime \prime}}\left[u_{1}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} Q_{6}^{\prime}\left[u_{2}^{\prime \prime}, u_{2}\right]$ is of length at least 6 , contrary to $p=5$. This proves Case 1.2B.
Subcase 1.2C $u_{2}^{\prime} \notin N_{G}\left(u_{2}\right)$ and $u_{3}^{\prime} \notin N_{G}\left(u_{1}\right)$.
Then $u_{2}^{\prime \prime}, u_{3}^{\prime \prime} \notin V(P)$. Since $\kappa(G) \geq 2$, G contains a cycle C_{23} with $u_{2}^{\prime \prime}, u_{3}^{\prime \prime} \in V\left(C_{23}\right)$. Since $\left\{u_{1} v_{1}, u_{2} v_{2}, z_{1} z_{2}\right\}$ is an edge-cut of G, we may assume that $C_{23}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right]$ is a path in L. If $V\left(C_{23}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right]\right) \cap V(P)=\emptyset$, then as G is reduced, $u_{2}^{\prime \prime} \neq u_{3}^{\prime \prime}$, and so $u_{1} u_{1}^{\prime} u_{2}^{\prime} C_{23}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{4}^{\prime} u_{2}$ is of length at least 6 , contrary to $p=5$.

Hence $V\left(C_{23}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right]\right) \cap V(P) \neq \emptyset$, and so $C_{23}\left[u_{2}^{\prime \prime}, u_{3}^{\prime \prime}\right]$ contains a $\left(u_{2}^{\prime \prime}, x^{\prime}\right)$-path T_{9}^{\prime} with $V\left(T_{9}^{\prime}\right) \cap V(P)=\left\{x^{\prime}\right\}$ and a $\left(u_{3}^{\prime \prime}, x^{\prime \prime}\right)$ path $T_{9}^{\prime \prime}$ with $V\left(T_{9}^{\prime \prime}\right) \cap V(P)=\left\{x^{\prime \prime}\right\}$. By $p=5$, (4), and by the assumption of Subcase 1.2 C , we must have $x^{\prime}=u_{2}$ and $x^{\prime \prime}=u_{1}$ with $\left|E\left(T_{9}^{\prime}\right)\right|=\left|E\left(T_{9}^{\prime \prime}\right)\right|=2$.

If $u_{1}^{\prime \prime}=u_{2}$, then by Theorem 2.7(i), $F\left(G\left[V(P) \cup V\left(T_{9}^{\prime}\right) \cup V\left(T_{9}^{\prime \prime}\right)\right]\right) \leq 3$, and so by Theorem 2.7(iii), G is not reduced, contrary to (1). Hence $u_{1}^{\prime \prime} \neq u_{2}$. By (3) and (1), $u_{1}^{\prime \prime} \notin V(P)$. Since $\kappa(G) \geq 2, G-u_{1}^{\prime}$ has a $\left(u_{1}^{\prime \prime}, u_{1}^{\prime \prime \prime}\right)$-path $V\left(Q_{7}\right) \cap\left(V(P) \cup V\left(T_{9}^{\prime}\right) \cup V\left(T_{9}^{\prime \prime}\right)\right)=$ $\left\{u_{1}^{\prime \prime \prime}\right\}$. By $p=5$ and by the assumption of Case $1.2, u_{1}^{\prime \prime \prime} \notin V(P)-\left\{u_{2}, u_{4}^{\prime}\right\}$. If $u_{1}^{\prime \prime \prime}=u_{4}^{\prime}$, then $\overleftarrow{T_{9}^{\prime \prime}}\left[u_{1}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} Q_{7}\left[u_{1}^{\prime \prime}\right.$, $\left.u_{4}^{\prime}\right] u_{2}$ has length at least 7 . Similarly, if $u_{1}^{\prime \prime \prime} \in V\left(T_{9}^{\prime}\right) \cup V\left(T_{9}^{\prime \prime}\right)-V(P)$ or $u_{1}^{\prime \prime \prime}=u_{4}^{\prime}$, then a $\left(u_{1}, u_{2}\right)$-path of length at least 7 in L can be found. Hence $u_{1}^{\prime \prime \prime}=u_{2}$. But then, $\overleftarrow{T_{9}^{\prime \prime}}\left[u_{1}, u_{3}^{\prime \prime}\right] u_{3}^{\prime} u_{2}^{\prime} u_{1}^{\prime} Q_{7}\left[u_{1}^{\prime \prime}, u_{2}\right]$ has length at least 6 , contrary to $p=5$. This proves Subcase 1.2C, and completes the proof of Case 1.

Case $2.4 \leq \min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \leq 6$.
We again assume that $\left|V\left(G_{2}\right)\right| \geq\left|V\left(G_{1}\right)\right|$, and so $4 \leq\left|V\left(G_{1}\right)\right| \leq 6$. If $\left|V\left(G_{1}\right)\right|=4$, then $V\left(G_{1}\right)-\left\{x_{1}, y_{1}, z_{1}\right\}=\{w\}$. As $\kappa^{\prime}(G) \geq 3, N(w)=\left\{x_{1}, y_{1}, z_{1}\right\}$ and $N\left(z_{1}\right) \cap\left\{x_{1}, y_{1}\right\} \neq \emptyset$. It follows that G has a 3-cycle, contrary to (1).

Assume that $\left|V\left(G_{1}\right)\right|=5$ and denote $V\left(G_{1}\right)-\left\{x_{1}, y_{1}, z_{1}\right\}=\left\{w, w^{\prime}\right\}$. If $w w^{\prime} \in E(G)$, then as $\kappa^{\prime}(G) \geq 3$ and as $N(w) \cup N\left(w^{\prime}\right) \subseteq\left\{x_{1}, y_{1}, z_{1}\right\}, N(w) \cap N\left(w^{\prime}\right) \neq \emptyset$, forcing G to have a 3-cycle, contrary to (1). Hence $N(w)=N\left(w^{\prime}\right)=$ $\left\{x_{1}, y_{1}, z_{1}\right\}$, and so $G\left[\left\{w, w^{\prime}, x_{2} ; x_{1}, y_{1}, z_{1}\right\}\right] \cong K_{3,3}^{-}$, contrary to (1). (See Fig. 4(b)).

Hence $\left|V\left(G_{1}\right)\right|=6$. Let $V\left(G_{1}\right)-\left\{x_{1}, y_{1}, z_{1}\right\}=\left\{w_{1}, w_{2}, w_{3}\right\}$, and let $G^{1}=G\left[\left\{w_{1}, w_{2}, w_{3}, x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}\right]$. By Theorem 2.7(i), $F\left(G^{1}\right)=2\left|V\left(G^{1}\right)\right|-\left|E\left(G^{1}\right)\right|-2$. If $d_{G}\left(z_{1}\right) \geq 4$, then $F\left(G^{1}\right) \leq 2$, and if $d_{G}\left(z_{1}\right)=3$, then $F\left(G^{1}\right) \leq 3$. It follows from Theorem 2.7 that G^{1} is not reduced, contrary to (1).
Case 3. $\min \left\{\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|\right\} \geq 7$.
Let $W_{i}=\left\{x_{i}, y_{i}\right\}$. For each $\bar{i} \in\{1,2\}$, let P_{i} be a longest $\left(z_{i}, W_{i}\right)$-path in G_{i}, where that both $x_{i}, y_{i} \in V\left(P_{i}\right)$ are possible. Without loss of generality, assume that $\left|E\left(P_{2}\right)\right| \geq\left|E\left(P_{1}\right)\right|$. If $\left|E\left(P_{1}\right)\right| \geq 5$, then by combining P_{1} and P_{2} with one suitable edge in $x_{1} x_{2} y_{1} y_{2} x_{1}$ and the edge $z_{1} z_{2}, G$ would have a cycle of length at least 12 , contrary to the assumption that $c(G) \leq 11$. Hence we must have

$$
\begin{equation*}
\left|E\left(P_{1}\right)\right| \leq 4 \tag{5}
\end{equation*}
$$

Claim 3. $\kappa\left(G_{1}\right) \geq 2$.

Table 1
Contradictions to (5) in the proof of Claim 4B.

w_{1}	w_{2}	$\mathrm{a}\left(z_{1}, W_{1}\right)$-path longer than 4	Symmetric cases and explanations
x_{1}	x_{1}	$Q_{1}\left[z_{1}, w_{1}\right] \overleftarrow{Q_{2}}\left[w_{2}, y_{1}^{\prime \prime}\right] y_{1}^{\prime}$	The cases when $w_{1}, w_{2} \in\left\{x_{1}, y_{1}\right\}$ can be excluded similarly.
x_{1}	x_{1}^{\prime}	$Q_{1}\left[z_{1}, w_{1}\right] y_{1}^{\prime} \overleftarrow{区_{2}}\left[y_{1}^{\prime \prime}, w_{2}\right] y_{1}$	The case when $w_{1}=y_{1}$ can be excluded similarly.
x_{1}^{\prime}	x_{1}	$Q_{1}\left[z_{1}, w_{1}\right] y_{1} y_{1}^{\prime} Q_{2}\left[y_{1}^{\prime \prime}, w_{2}\right]$	The case when $w_{2}=y_{1}$ can be excluded similarly.
x_{1}^{\prime}	x_{1}^{\prime}	$Q_{1}\left[z_{1}, w_{1}\right] \overleftarrow{Q_{2}}\left[w_{2}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$	

Let $T\left(G_{1}\right)$ be the block-cut-vertex tree of G_{1}. By contradiction, we assume that $T\left(G_{1}\right)$ is a nontrivial tree. $\operatorname{By}(1), \kappa(G) \geq 2$. Thus every block of G_{1} corresponding to a vertex in $D_{1}\left(T\left(G_{1}\right)\right)$ (referred as an end block of G_{1}) must contain x_{1}, y_{1} or z_{1}. We may assume that x_{1} and z_{1} are in two different end blocks $B_{x_{1}}, B_{z_{1}}$, respectively. Let $B_{1}, b_{1}, B_{2}, b_{2}, \ldots, b_{k-1}, B_{k}$ be the unique $\left(B_{1}, B_{k}\right)$-path of $T\left(G_{1}\right)$ with $B_{1}=B_{x_{1}}$ and $B_{k}=B_{z_{1}}$. Since $\kappa^{\prime}(G) \geq 3$ and since $B_{z_{1}}$ is an end block, $N_{G}\left(z_{1}\right) \cap V\left(B_{k}\right)$ contains a vertex z^{\prime} which is not a cut vertex of G_{1}, and so $B_{k} \neq K_{2}$. If $\left|V\left(B_{k}\right)\right| \leq 8$, then by Lemma 2.8, B_{k} contains a nontrivial collapsible subgraph, contrary to (1). Hence $\left|V\left(B_{k}\right)\right| \geq 9$.

Let P denote a longest $\left(z_{1}, b_{k-1}\right)$-path in B_{k}. If $|E(P)| \geq 4$, then P can be extended to a $\left(z_{1}, x_{1}\right)$-path of length at least 5 , contrary to (5). Hence $|E(P)| \leq 3$. Since B_{k} is reduced and 2-connected, $|E(P)| \geq 2$. If $|E(P)|=2$, then since P is longest and since $\kappa\left(B_{k}\right) \geq 2, B_{k}$ is spanned by a $K_{2, t}$ for some $t \geq 7$. By $\kappa^{\prime}(G) \geq 3$, every vertex in $V\left(B_{k}\right)-\left\{z_{1}, b_{k-1}\right\}$ has degree 3 in B_{k}, and so B_{k} must have a 3 -cycle, contrary to (1). Thus we assume that $P=z_{1} v_{1} v_{2} b_{k-1}$ is a path of length 3 . By $\kappa^{\prime}(G) \geq 3$ and (1), there exists a $v_{i}^{\prime} \in N_{G}\left(v_{i}\right)-V(P)$, for each $i \in\{1,2\}$, and $v_{1}^{\prime} \neq v_{2}^{\prime}$. By $\kappa\left(B_{k}\right) \geq 2$ and by (1), B_{k} has a cycle C of length at least 4 containing both $v_{1} v_{1}^{\prime}$ and $v_{2} v_{2}^{\prime}$. It follows that $P \cup C$ contains a $\left(z_{1}, b_{k-1}\right)$-path of length at least 4 , whence G_{1} has a (z_{1}, x_{1})-path of length at least 5 , contrary to (5). This proves Claim 3.

Claim 4. $N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)=\emptyset$.
We shall prove Claim 4 by justifying several subclaims. We first show that $\left|N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)\right| \leq 1$. In Claims 4A and 4B, we assume that $N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)$ has distinct vertices $x_{1}^{\prime}, y_{1}^{\prime}$ to find contradictions.

Claim 4A. $z_{1} \notin N_{G}\left(x_{1}\right) \cap N_{G}\left(y_{1}\right)$.
By contradiction, we assume that $x_{1}^{\prime}=z_{1}$. By (1), $y_{1}^{\prime} z_{1} \notin E(G)$, and so there exists a $y_{1}^{\prime \prime} \in N_{G_{1}}\left(y_{1}^{\prime}\right)-\left\{x_{1}, y_{1}, z_{1}\right\}$. By Claim 3, G_{1} has a cycle C^{1} containing $x_{1} z_{1}$ and $y_{1}^{\prime} y_{1}^{\prime \prime}$, with an orientation so that the edge $x_{1} z_{1}$ is oriented from x_{1} to z_{1}.

If $y_{1}^{\prime} \in V\left(C^{1}\left[z_{1}, y_{1}^{\prime \prime}\right]\right)$, then since G contains no $K_{3,3}^{-},\left|E\left(C^{1}\left[z_{1}, y_{1}^{\prime}\right]\right)\right| \geq 3$; and since G has no 3 -cycles, $\left|E\left(C^{1}\left[y_{1}^{\prime \prime}, x_{1}\right]\right)\right| \geq 2$. It follows that $\left|E\left(C^{1}\left[z_{1}, x_{1}\right]\right)\right| \geq 6$, contrary to (5). Hence $y_{1}^{\prime} \in V\left(C^{1}\left[y_{1}^{\prime \prime}, x_{1}\right]\right)$, and so by (5), $\left|E\left(C^{1}\left[z_{1}, y_{1}^{\prime \prime}\right]\right)\right| \leq 2$. As G contains no $K_{3,3}^{-}$, we must have $\left|E\left(C^{1}\left[z_{1}, y_{1}^{\prime \prime}\right]\right)\right|=2$. Assume that $C^{1}\left[z_{1}, y_{1}^{\prime \prime}\right]=z_{1} z_{1}^{\prime} y_{1}^{\prime \prime}$.

Since $\kappa^{\prime}(G) \geq 3, N_{G}\left(z_{1}^{\prime}\right)-\left\{y_{1}^{\prime \prime}, z_{1}\right\}$ contains a vertex w_{1}. Since G has no $K_{3}, w_{1} \notin\left\{x_{1}, y_{1}, y_{1}^{\prime}\right\}$. By Claim $3, G_{1}$ contains a $\left(w_{1}, w_{1}^{\prime}\right)$-path Q_{1} such that $V\left(Q_{1}\right) \cap\left\{x_{1}, y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, z_{1}\right\}=\left\{w_{1}^{\prime}\right\}$. By (5), we must have $w_{1}^{\prime}=y_{1}^{\prime}$ and $Q_{1}=w_{1} y_{1}^{\prime}$. Arguing similarly with z_{1}^{\prime} replaced by $y_{1}^{\prime \prime}$, we conclude that there must be a vertex $w_{2} \notin\left\{w_{1}, x_{1}, y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}, z_{1}\right\}$ such that $w_{2} y_{1}^{\prime \prime}, w_{2} z_{1} \in E(G)$. Thus $z_{1} w_{2} y_{1}^{\prime \prime} z_{1}^{\prime} y_{1}^{\prime} x_{1}$ has length 5 , contrary to (5). This proves Claim 4A.

Claim 4B. $\left|N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)\right| \leq 1$.
If $x_{1}^{\prime}, y_{1}^{\prime} \in N_{G_{1}}\left(z_{1}\right)$, then $G\left[\left\{x_{1}, y_{1}, z_{1}, x_{2}, x_{1}^{\prime}, y_{1}^{\prime}\right\}\right] \cong K_{3,3}^{-}$, contrary to (1). Hence we assume that $y_{1}^{\prime} \notin N_{G_{1}}\left(z_{1}\right)$. By $\kappa^{\prime}(G) \geq 3, N_{G_{1}}\left(y_{1}^{\prime}\right)-\left\{x_{1}, y_{1}\right\}$ contains a vertex $y_{1}^{\prime \prime}$. Since $y_{1}^{\prime} \notin N_{G_{1}}\left(z_{1}\right), y_{1}^{\prime \prime} \neq z_{1}$. Since G is reduced, $y_{1}^{\prime \prime} \notin\left\{x_{1}, x_{1}^{\prime}, y_{1}\right\}$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}$ has a cycle C^{2} containing both $y_{1}^{\prime} y_{1}^{\prime \prime}$ and z_{1}. Without loss of generality, we may assume that $y_{1}^{\prime} \notin V\left(C^{2}\left[z_{1}, y_{1}^{\prime \prime}\right]\right)$. If $x_{1}^{\prime}, x_{1}, y_{1} \notin V\left(C^{2}\left[z_{1}, y_{1}^{\prime \prime}\right]\right)$, then $C^{2}\left[z_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1} x_{1}^{\prime} x_{1}$ is a violation to (5). Therefore, there must be $w_{1}, w_{2} \in\left\{x_{1}^{\prime}, x_{1}, y_{1}\right\}$ as well as a $\left(z_{1}, w_{1}\right)$-path Q_{1} and a $\left(w_{2}, y_{1}^{\prime \prime}\right)$-path Q_{2} in $C^{2}\left[z_{1}, y_{1}^{\prime \prime}\right]$, such that for $i=1,2, V\left(Q_{i}\right) \cap\left\{x_{1}^{\prime}, x_{1}, y_{1}\right\}=\left\{w_{i}\right\}$. Since G does not have a K_{3} or a $K_{3,3}^{-},\left|E\left(Q_{2}\right)\right| \geq 2$. The table below indicates a contradiction to (5) can always be found, which completes the proof of Claim 4B (see Table 1).

Claim 4C. $N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)=\emptyset$.
By contradiction and by Claims 4A and 4B, we assume that $N_{G_{1}}\left(x_{1}\right) \cap N_{G_{1}}\left(y_{1}\right)=\left\{x_{1}^{\prime}\right\}$ with $x_{1}^{\prime} \neq z_{1}$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}-x_{1}^{\prime}$ has a ($z_{1},\left\{x_{1}, y_{1}\right\}$)-path T_{1}. By symmetry, we assume that $V\left(T_{1}\right) \cap\left\{x_{1}, y_{1}\right\}=\left\{y_{1}\right\}$. As the path $T_{1}\left[z_{1}, y_{1}\right] x_{1}^{\prime} x_{1}$ has length $\left|E\left(T_{1}\right)\right|+2$, by $(5),\left|E\left(T_{1}\right)\right| \leq 2$. By $\kappa^{\prime}(G) \geq 3, N_{G_{1}}\left(x_{1}^{\prime}\right)-\left\{x_{1}, y_{1}\right\}$ contains a $x_{1}^{\prime \prime}$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}-x_{1}^{\prime}$ has a $\left(x_{1}^{\prime \prime}, x_{1}^{\prime \prime \prime}\right)-$ path T_{2} with $V\left(T_{2}\right) \cap V\left(T_{1}\right) \cup\left\{x_{1}\right\}=\left\{x_{1}^{\prime \prime \prime}\right\}$.

Assume first that $x_{1}^{\prime \prime \prime}=z_{1}$. Since G has no $K_{3}, T_{1}=z_{1} z_{1}^{\prime} y_{1}$. By $\kappa^{\prime}(G) \geq 3, N_{G_{1}}\left(z_{1}^{\prime}\right)-\left\{z_{1}, y_{1}\right\}$ contains a $z_{1}^{\prime \prime}$. By $\kappa\left(G_{1}\right) \geq 2$, $G_{1}-z_{1}^{\prime}$ has a $\left(z_{1}^{\prime \prime}, z_{1}^{\prime \prime \prime}\right)$-path T_{3} with $V\left(T_{3}\right) \cap\left\{x_{1}, x_{1}^{\prime}, y_{1}, z_{1}\right\}=\left\{z_{1}^{\prime \prime \prime}\right\}$. By (5), $z_{1}^{\prime \prime \prime}=x_{1}^{\prime}$ and $T_{3}=z_{1}^{\prime \prime} x_{1}^{\prime}$. If $\left|E\left(T_{1}\right)\right| \geq 1$, then $\overleftarrow{T_{1}}\left[z_{1}, x_{1}^{\prime \prime}\right] x_{1}^{\prime} z_{1}^{\prime \prime} z_{1}^{\prime} y_{1}$ has length at least 5. Thus we must have $z_{1} x_{1}^{\prime} \in E(G)$. Now by Theorem 2.7(i), $F\left(G\left[\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}\right\}\right.\right.$ $\left.\left.\cup V\left(T_{2}\right)\right]\right)=3$, and so by Theorem 2.7(iii), G is not reduced, contrary to (1).

Hence we must have $x_{1}^{\prime \prime \prime} \neq z_{1}$. If $x_{1}^{\prime \prime \prime}=x_{1}$, then since G has no $K_{3},\left|E\left(T_{2}\right)\right| \geq 3$, and so $T_{1}\left[z_{1}, y_{1}\right] x_{1}^{\prime} T_{2}\left[x_{1}^{\prime}, x_{1}\right]$ has length at least 5. Thus $x_{1}^{\prime \prime \prime} \neq x_{1}$. Similarly, $x_{1}^{\prime \prime \prime} \neq y_{1}$. Hence we must have $T_{1}=z_{1} z_{1}^{\prime} y_{1}$ and $x_{1}^{\prime \prime \prime}=z_{1}^{\prime}$. By (5), $\left|E\left(T_{2}\right)\right| \leq 2$. As G has no K_{3},
$T_{2}=x_{1}^{\prime \prime} z_{1}^{\prime}$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}-z_{1}^{\prime}$ has a $\left(z_{1}, z_{1}^{4}\right)$-path T_{4} with $V\left(T_{4}\right) \cap\left\{x_{1}, y_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}, z_{1}\right\}=\left\{z_{1}^{4}\right\}$. By $(5), z^{4} \neq z_{1}^{\prime}$. If $z_{1}^{4}=x_{1}$, then $T_{4}\left[z_{1}, x_{1}\right] x_{1}^{\prime} x_{1}^{\prime \prime} z_{1}^{\prime} y_{1}$ has length at least 5 . Hence $z_{1}^{4} \neq x_{1}$. Similarly $z_{1}^{4} \neq y_{1}$, and so $z_{1}^{4}=x_{1}^{\prime \prime}$. As G has no $K_{3},\left|E\left(T_{4}\right)\right| \geq 2$, and so $T_{4}\left[z_{1}, x_{1}^{\prime \prime}\right] z_{1}^{\prime} y_{1} x_{1}^{\prime} x_{1}$ has length at least 6 , contrary to (5). This contradiction justifies Claim 4C and proves Claim 4.

By Claim 4, there exist $x_{1}^{\prime} \in N_{G}\left(x_{1}\right)-N_{G_{1}}\left(y_{1}\right)$, and $y_{1}^{\prime} \in N_{G_{1}}\left(y_{1}\right)-N_{G_{1}}\left(x_{1}\right)$. Thus $x_{1}^{\prime} \neq y_{1}^{\prime}$ and $x_{1}^{\prime} y_{1}, x_{1} y_{1}^{\prime} \notin E(G)$.
Claim 5. Each of the following holds.
(i) $N_{G_{1}}\left(x_{1}^{\prime}\right) \cap N_{G_{1}}\left(y_{1}^{\prime}\right)-\left\{z_{1}\right\}=\emptyset$.
(ii) $N_{G_{1}}\left(x_{1}^{\prime}\right) \cup N_{G_{1}}\left(y_{1}^{\prime}\right)-\left\{z_{1}\right\}$ is an independent set.
(iii) For any $x \in N_{G_{1}}\left(x_{1}\right)-\left\{z_{1}\right\}$ and for any $y \in N_{G_{1}}\left(y_{1}\right)-\left\{z_{1}\right\}, x y \notin E(G)$.

To prove Claim 5 (i) and (ii), we assume that there exist $x_{1}^{\prime \prime} \in N_{G_{1}}\left(x_{1}^{\prime}\right)$ and $y_{1}^{\prime \prime} \in N_{G_{1}}\left(y_{1}^{\prime}\right)$. In the proof of (i), we assume that $x_{1}^{\prime \prime}=y_{1}^{\prime \prime}$ with the notational convention that $x_{1}^{\prime \prime} y_{1}^{\prime \prime}$ denoting a single vertex $x_{1}^{\prime \prime}$, and in the proof of (ii), we assume $x_{1}^{\prime \prime} y_{1}^{\prime \prime} \in E(G)$. We put some useful observations in Claim 5A.

Claim 5A. Each of the following holds.
(i) G_{1} has no $\left(z_{1},\left\{x_{1}, y_{1}\right\}\right)$-path disjoint from $\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}, y_{1}^{\prime}, y_{1}^{\prime \prime}\right\}$.
(ii) G_{1} has no $\left(z_{1},\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\}\right)$-path of length at least 2 disjoint from $\left\{x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right\}$.
(iii) G_{1} has no $\left(z_{1},\left\{x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right\}\right)$-path of length at least 3.

If G_{1} has a path $Q\left[z_{1}, x_{1}\right]$ disjoint from $\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}, y_{1}^{\prime}, y_{1}^{\prime \prime}\right\}$, then $\mathrm{Q}\left[z_{1}, x_{1}\right] x_{1}^{\prime} x_{1}^{\prime \prime} y_{1}^{\prime \prime} y_{1}^{\prime} y_{1}$ violates (5). This proves Claim $5 \mathrm{~A}(\mathrm{i})$. The proofs of Claim 5A(ii) and (iii) are similar and will be omitted. This justifies Claim 5A.

By Claim $3, G_{1}$ has a cycle $C^{\prime \prime}$ containing z_{1} and $x_{1}^{\prime} x_{1}^{\prime \prime}$, and so by Claim 5A(ii), we must have $z_{1} x_{1}^{\prime} \in E\left(C^{\prime \prime}\right) \subseteq E(G)$. By (1), G has no 3 -cycles, $C^{\prime \prime}$ must contain a path $z_{1} z_{1}^{\prime} x_{1}^{\prime \prime}$, for some $z_{1}^{\prime} \notin\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}, y_{1}^{\prime}, y_{1}\right\}$. By symmetry, $z_{1} y_{1}^{\prime} \in E(G)$. By $\kappa^{\prime}(G) \geq 3$, $N_{G}\left(z_{1}^{\prime}\right)-\left\{z_{1}, x_{1}^{\prime \prime}\right\}$ has a vertex $z_{1}^{\prime \prime}$. By Claim 3, G_{1} has a cycle C^{3} containing $z_{1}^{\prime} z_{1}^{\prime \prime}$ and $x_{1} x_{1}^{\prime}$. Hence C^{3} contains either a path $Q_{1}^{3}\left[z_{1}^{\prime}, x_{1}\right]$ such that $x_{1}^{\prime}, x_{1}^{\prime \prime}, y_{1}^{\prime}, y_{1} \notin V\left(Q_{1}^{3}\right)$, contrary to Claim $5 \mathrm{~A}(\mathrm{i})$; or a path $Q_{2}^{3}\left[x_{1}^{\prime \prime}, x_{1}\right]$ such that $x_{1}^{\prime}, y_{1}^{\prime}, y_{1} \notin V\left(Q_{2}^{3}\right)$, whence $z_{1} x_{1}^{\prime} \overleftarrow{Q_{2}^{3}}\left[x_{1}, x_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ violates (5); or a path $Q_{3}^{3}\left[x_{1}, y\right]$ with $y \in\left\{y_{1}, y_{1}^{\prime}\right\}$ such that $\left[\left\{x_{1}^{\prime}, x_{1}^{\prime \prime}\right\} \cup\left(\left\{y_{1}, y_{1}^{\prime}\right\}-\{y\}\right)\right] \cap V\left(Q_{3}^{3}\right)=\emptyset$, whence $z_{1} z_{1}^{\prime} x_{1}^{\prime \prime} x_{1}^{\prime} Q_{3}^{3}\left[x_{1}, y\right] y_{1}$ violates (5). This proves Claim 5(i) and (ii).

To prove Claim 5(iii), we assume that Claim 5(iii) does not hold by assuming that $x_{1}^{\prime} \in N_{G_{1}}\left(x_{1}\right)-\left\{z_{1}\right\}$ and $y_{1}^{\prime} \in N_{G_{1}}\left(y_{1}\right)-$ $\left\{z_{1}\right\}$ with $x_{1}^{\prime} y_{1}^{\prime} \in E(G)$. By $\kappa^{\prime}(G) \geq 3$ and by Claim 5(ii), there exist $x_{1}^{\prime \prime} \in N_{G_{1}}\left(x_{1}^{\prime}\right)-\left\{x_{1}, y_{1}^{\prime}\right\}$ and $y_{1}^{\prime \prime} \in N_{G_{1}}\left(y_{1}^{\prime}\right)-\left\{y_{1}, x_{1}^{\prime}\right\}$. Since G has no $K_{3}, x_{1}^{\prime \prime} \neq y_{1}^{\prime \prime}$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}$ has a cycle C^{1} containing both $x_{1}^{\prime} x_{1}^{\prime \prime}$ and $y_{1}^{\prime} y_{1}^{\prime \prime}$.

Claim 5 Case A. $\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \cap V\left(C^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right]\right)=\emptyset$, or $\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \cap V\left(C^{1}\left[y_{1}^{\prime \prime}, x_{1}^{\prime \prime}\right]\right)=\emptyset$.
By symmetry, we may assume that $\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \cap V\left(C^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right]\right)=\emptyset$, Then $Q^{1}=C^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right]$ is an $\left(x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right)$-path, with $x_{1}^{\prime}, y_{1}^{\prime} \notin V\left(Q^{1}\right)$. By $\kappa\left(G_{1}\right) \geq 2, G_{1}$ has paths $Q_{i}^{2}\left[z_{1}, w_{i}\right]$ with $V\left(Q_{i}^{2}\right) \cap\left(V\left(Q^{1}\right) \cup\left\{x_{1}, y_{1}, x_{1}^{\prime}, y_{1}^{\prime}\right\}\right)=\left\{w_{i}\right\}$, for $i=1,2$.

Suppose first that $\left\{x_{1}, y_{1}\right\} \cap V\left(Q^{1}\right)=\left\{w^{\prime}\right\}$, for some $w^{\prime} \in\left\{x_{1}, y_{1}\right\}$. By symmetry, we may assume that $w^{\prime}=y_{1}$. Thus $Q_{1}^{2}\left[z_{1}, w_{1}\right] Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} x_{1}\left(\right.$ if $\left.w_{1} \in V\left(Q^{1}\right)\left[x_{1}^{\prime \prime}, w^{\prime}\right]\right)$, or $Q_{1}^{2}\left[z_{1}, w_{1}\right] Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} Q^{1}\left[x_{1}^{\prime \prime}, w^{\prime}\right]$ (if $\left.w_{1} \in V\left(Q^{1}\right)\left[w^{\prime}, y_{1}^{\prime \prime}\right]-\left\{w^{\prime}\right\}\right)$ or $Q_{1}^{2}\left[z_{1}, w^{\prime}\right] Q^{1}\left[w^{\prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} x_{1}$ (if $w_{1}=w^{\prime}$) violates (5).

Next we assume $\left\{x_{1}, y_{1}\right\} \subset V\left(Q^{1}\right)$. If $y_{1} \notin V\left(Q^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]\right)$ (which is equivalent to $x_{1} \notin V\left(Q^{1}\left[y_{1}, y_{1}^{\prime \prime}\right]\right)$), then $Q_{1}^{2}\left[z_{1}, w_{1}\right] \overleftarrow{Q^{1}}$ $\left[w_{1}, x_{1}^{\prime \prime}\right] x_{1}^{\prime} y_{1}^{\prime} Q^{1}\left[y_{1}^{\prime \prime}, y_{1}\right]$ (if $w_{1} \in V\left(Q^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]\right)$), or $Q_{1}^{2}\left[z_{1}, w_{1}\right] Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} Q^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]$ (if $w_{1} \in V\left(Q^{1}\left[x_{1}, y_{1}^{\prime \prime}\right]\right)$) violates (5). If $y_{1} \in V\left(Q^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]\right)$ (which is equivalent to $x_{1} \in V\left(Q^{1}\left[y_{1}, y_{1}^{\prime \prime}\right]\right)$), then $Q_{1}^{2}\left[z_{1}, w_{1}\right] \overleftarrow{Q^{1}}\left[w_{1}, x_{1}^{\prime \prime}\right] x_{1}^{\prime} y_{1}^{\prime} \overleftarrow{Q^{1}}\left[y_{1}^{\prime \prime}, x_{1}\right]$ (if $w_{1} \in$ $\left.V\left(Q^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]\right)-\left\{x_{1}\right\}\right)$, or $Q_{1}^{2}\left[z_{1}, w_{1}\right] Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} Q^{1}\left[x_{1}^{\prime \prime}, y_{1}\right]\left(\right.$ if $w_{1} \in V\left(Q^{1}\left[x_{1}, y_{1}^{\prime \prime}\right]\right)$), violates (5).

Thus we may assume that $\left\{x_{1}, y_{1}\right\} \cap V\left(Q^{1}\right)=\emptyset$. If some $w_{i} \in\left\{x_{1}, y_{1}, x_{1}^{\prime}, y_{1}^{\prime}\right\}$, then, without loss of generality, we assume $w_{1} \in\left\{x_{1}, x_{1}^{\prime}\right\}$. Thus $\mathrm{Q}_{1}^{2}\left[z_{1}, x_{1}\right] x_{1}^{\prime} Q^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ (if $w_{1}=x_{1}$) or $\mathrm{Q}_{1}^{2}\left[z_{1}, x_{1}^{\prime}\right] Q^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ (if $w_{1}=x_{1}^{\prime}$) is a violation to (5). Hence we must have $w_{1}, w_{2} \in V\left(Q^{1}\right)$. Without loss of generality, we assume that $\left|E\left(Q_{1}^{2}\right)\right| \geq\left|E\left(Q_{2}^{2}\right)\right|$ and $w_{2} \in V\left(Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right]\right)$. Since G has not K_{3}, when both $\left|E\left(Q_{1}^{2}\right)\right|=\left|E\left(Q_{2}^{2}\right)\right|=1, w_{1}$ and w_{2} are not adjacent. It follows that $Q_{1}^{2}\left[z_{1}, w_{1}\right] Q^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} x_{1}^{\prime} x_{1}$ is a violation to (5). This settles Case A.

Claim 5 Case B. $\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \cap V\left(C^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right]\right) \neq \emptyset$ and $\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \cap V\left(C^{1}\left[y_{1}^{\prime \prime}, x_{1}^{\prime \prime}\right]\right) \neq \emptyset$.
By symmetry, assume that $x_{1}^{\prime} \in V\left(C^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right]\right)$. Then $y_{1}^{\prime} \in V\left(C^{1}\left[y_{1}^{\prime \prime}, x_{1}^{\prime \prime}\right]\right)$. As G has not $K_{3},\left|E\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)\right| \geq 2$ and $\left|E\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)\right| \geq 2$. By symmetry, we assume that $z_{1} \notin V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)$. By $\kappa\left(G_{1}\right) \geq 2$, for $i=1,2, G_{1}$ has paths $Q_{i}^{3}\left[z_{1}, w_{i}\right]$ with $V\left(Q_{i}^{3}\right) \cap\left(V\left(C^{1}\right) \cup\left\{x_{1}, y_{1}, x_{1}^{\prime}, y_{1}^{\prime}\right\}\right)=\left\{w_{i}\right\}$ such that $w_{1} \neq w_{2}$. Hence we may assume that $w_{1} \neq x_{1}^{\prime}$ (if $w_{1}=x_{1}^{\prime}$, then we relabel w_{2} as w_{1}).

Suppose first that $\left\{x_{1}, y_{1}\right\} \cap V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)=\left\{w^{\prime}\right\}$, for some $w^{\prime} \in\left\{x_{1}, y_{1}\right\}$. Note that if $w^{\prime}=x_{1}$, then $x_{1}^{\prime} \in V\left(C^{1}\left[x_{1}^{\prime \prime}, x_{1}\right]\right)$, and if $w^{\prime}=y_{1}$, then $y_{1}^{\prime} \in V\left(C^{1}\left[y_{1}^{\prime \prime}, y_{1}\right]\right)$. Table 2 shows that a contradiction to (5) can always be found.

Next we assume $\left\{x_{1}, y_{1}\right\} \subset V\left(C^{1}\right)$.

Table 2
Claim 5 Case B, when $\left\{x_{1}, y_{1}\right\} \cap V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)=\left\{w^{\prime}\right\}$.

w^{\prime}	w_{1} is in	a $\left(z_{1}, W_{1}\right)$-path longer than 4	Symmetric cases and explanations
x_{1}	$\left\{y_{1}^{\prime}, y_{1}\right\}$	$Q_{1}^{3}\left[z_{1}, w_{1}\right] y_{1}^{\prime} \overleftarrow{C^{1}}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right] x_{1}^{\prime} x_{1}$	when $w^{\prime}=y_{1}$ and $w_{1} \in\left\{x_{1}^{\prime}, x_{1}\right\}$
x_{1}	$V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)-\left\{y_{1}^{\prime}\right\}$	$Q_{1}^{3}\left[z_{1}, w_{1}\right] C^{1}\left[w_{1}, x_{1}^{\prime}\right] y_{1}^{\prime} C_{1}\left[y_{1}^{\prime \prime}, x_{1}\right]$	when $w^{\prime}=y_{1}$ and $w_{1} \in V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)-\left\{x_{1}^{\prime}\right\}$
			Thus we assume that $z_{1} \notin V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)$.
x_{1}	x_{1}	$Q_{1}^{3}\left[z_{1}, x_{1}\right] x_{1}^{\prime} \overleftarrow{C_{1}}\left[x_{1}^{\prime \prime}, y_{1}^{\prime}\right] y_{1}$	when $w^{\prime}=w_{1}=y_{1}$
x_{1}	$V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)-\left\{x_{1}^{\prime}\right\}$	$Q_{1}^{3}\left[z_{1}, w_{1}\right] C^{1}\left[w_{1}, x_{1}^{\prime}\right] x_{1}$	when $w^{\prime}=y_{1}$ and $w_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)-\left\{y_{1}^{\prime}\right\}$
y_{1}	y_{1}^{\prime}	$Q_{1}^{3}\left[z_{1}, y_{1}^{\prime}\right] y_{1} C^{1}\left[y_{1}, x_{1}^{\prime}\right] x_{1}$	

Subcase B1. $x_{1}, y_{1} \notin V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)$. (The case when $x_{1}, y_{1} \notin V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)$ is similar.)
Since G has not K_{3}, the distance between x_{1} and y_{1} in $C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]$ is at least 2 . Note that $w_{1}, w_{2}, x_{1}, y_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)$. If for some $i \in\{1,2\},\left|V\left(C^{1}\left[y_{1}^{\prime}, w_{i}\right]\right) \cap\left\{x_{1}, y_{1}\right\}\right| \leq 1$, (say, $\left.y_{1} \notin V\left(C^{1}\left[y_{1}^{\prime}, w_{i}\right]\right)\right)$, then $Q_{i}^{3}\left[z_{1}, w_{i}\right] \overleftarrow{C^{1}}\left[w_{i}, x_{1}^{\prime}\right] C^{1}\left[x_{1}^{\prime \prime}, y_{1}\right]$ has length at least 5. Hence we may assume that $x_{1}, y_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, w_{1}\right]\right)$. Then $Q_{1}^{3}\left[z_{1}, w_{1}\right] C^{1}\left[w_{1}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ has length at least 5 . This proves Subcase B1.
Subcase B2. $\left\{x_{1}, y_{1}\right\} \cap V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right) \neq \emptyset$ and $\left\{x_{1}, y_{1}\right\} \cap V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right) \neq \emptyset$.
We may assume that $x_{1} \in V\left(C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right]\right)$ and $y_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)$.
If $w_{1}, w_{2} \cap\left\{x_{1}, y_{1}\right\} \neq \emptyset$, then by symmetry, we may assume that $w_{1}=x_{1}$, and so $Q_{1}^{3}\left[z_{1}\right],\left[x_{1}\right] C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ has length at least 5. Therefore, we may assume that $w_{1}, w_{2} \cap\left\{x_{1}, y_{1}\right\}=\emptyset$. If $\left\{w_{1}, w_{2}\right\} \neq\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\} \neq \emptyset$, say $w_{1}=x_{1}^{\prime}$, then $Q_{1}^{3}\left[z_{1}, x_{1}^{\prime}\right] \overleftarrow{C^{1}}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ has length at least 5 . Therefore by symmetry, we assume that $w_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)-\left\{y_{1}, y_{1}^{\prime}\right\}$. Thus $Q_{1}^{3}\left[z_{1}, w_{1}\right] C^{1}\left[w_{1}, x_{1}^{\prime \prime}\right] c^{1}\left[x_{1}^{\prime}, y_{1}^{\prime}\right] y_{1}$ has length at least 5, contrary to (5). This proves Subcase B2.

Finally we may assume that $\left\{x_{1}, y_{1}\right\} \cap V\left(C^{1}\right)=\emptyset$. If some $w_{i} \in\left\{x_{1}, y_{1}, x_{1}^{\prime}, y_{1}^{\prime}\right\}$, then, without loss of generality, we assume $w_{1} \in\left\{x_{1}, x_{1}^{\prime}\right\}$. Thus $Q_{1}^{3}\left[z_{1}, x_{1}\right] C^{1}\left[x_{1}^{\prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ (if $w_{1}=x_{1}$) or $Q_{1}^{3}\left[z_{1}, x_{1}^{\prime}\right] Q^{1}\left[x_{1}^{\prime \prime}, y_{1}^{\prime \prime}\right] y_{1}^{\prime} y_{1}$ (if $w_{1}=x_{1}^{\prime}$) is a violation to (5). Hence we must have $w_{1}, w_{2} \in V\left(C^{1}\right)-\left\{x_{1}^{\prime}, y_{1}^{\prime}\right\}$. By symmetry, we may assume that $w_{1} \in V\left(C^{1}\left[y_{1}^{\prime}, x_{1}^{\prime \prime}\right]\right)-\left\{y_{1}^{\prime}\right\}$. Hence $Q^{3}-1\left[z_{1}, w_{1}\right] C^{1}\left[w_{1}, x_{1}^{\prime}\right] y_{1}^{\prime} y_{1}$ has length at least 5, contrary to (5). This justifies Claim 5(iv), and completes the proof of Claim 5.

We are now back to the proof of Case 3. By Claim $3, G_{1}-z_{1}$ has an $\left(x_{1}, y_{1}\right)$-path $T=u_{0} u_{1} u_{2} \ldots u_{s}$ with $u_{0}=x_{1}$ and $u_{s}=y_{1}$. By Claims 4 and 5(i)-(iii), respectively, we have

$$
u_{0} u_{s-1}, u_{1} u_{s} \notin E(G), \quad u_{2} \neq u_{s-2}, \quad \text { and } \quad u_{2} u_{s-2}, u_{1} u_{s-1} \notin E(G)
$$

Hence $s \geq 6$. By Claim 3, G_{1} has internally disjoint paths $Q_{i}\left[z_{1}, w_{t}\right]$, $(1 \leq t \leq 2)$, for some distinct $w_{1}, w_{2} \in V(T)$ such that $V\left(Q_{t}\right) \cap V(T)=\left\{w_{t}\right\}$. Let $w_{1}=u_{i}$ and $w_{2}=u_{j}$. By symmetry, we may assume that $i<j$ and $j \geq\left\lceil\frac{s}{2}\right\rceil+1 \geq 4$. It follows that $T\left[u_{0}, u_{j}\right] z_{1}$ has length at least 5 , contrary to (5). This completes the proof of Lemma 3.1.

Proof of Theorem 1.1. By contradiction, assume that
G is a counterexample with $|V(G)|$ minimized.
In particular,
G is non-supereulerian and G is not contractible to $P(10)$.
Suppose that G has a nontrivial collapsible H. Since $\kappa^{\prime}(G / H) \geq \kappa^{\prime}(G)$ and the circumference of G / H is not bigger than that of G, it follows by (6) that G / H is either supereulerian, whence by Theorem 2.1(iv), G is supereulerian; or G / H is contractible to $P(10)$, implying that G is contractible to $P(10)$. Thus G is not a counterexample to Theorem 1.1. If G has a cut vertex, then by (6), either each block of G is supereulerian, whence G is supereulerian; or one block of G is contractible to $P(10)$, whence G is contractible to $P(10)$. Therefore, we may assume that

$$
\begin{equation*}
G \text { is reduced with } \kappa(G) \geq 2 \text { and } G \neq K_{1} \text {. } \tag{8}
\end{equation*}
$$

Claim 6. $g(G) \geq 5$.
Suppose that G has a 4-cycle $C^{\prime}=x_{1} x_{2} y_{1} y_{2} x_{1}$, and we shall use the same notation as in Definition 2.4. By Lemma 3.1, $\kappa^{\prime}\left(G / \pi\left(C^{\prime}\right)\right) \geq 3$. As any cycle of $G / \pi\left(C^{\prime}\right)$ can be (possibly trivially) extended to a cycle of G, and so $c\left(G / \pi\left(C^{\prime}\right)\right) \leq c(G) \leq 11$. By (6), either $G / \pi\left(C^{\prime}\right)$ is supereulerian, whence by Theorem $2.5(\mathrm{~b}), G$ is also supereulerian, contrary to (6); or $G / \pi\left(C^{\prime}\right)$ is contractible to the $P(10)$. When $G / \pi\left(C^{\prime}\right)$ is contractible to the $P(10)$, if the edge $e_{\pi\left(C^{\prime}\right)}$ is being contracted, then by the definition of contraction, G is also contractible to $P(10)$, contrary to (6). Hence $e_{\pi\left(C^{\prime}\right)}$ must be an edge in $P(10)$, as depicted in Fig. 5.

We adopt the notation in Fig. 5 , where for $1 \leq i \leq 2, H_{i}$ is the preimage of the vertex in $P(10)$ such that $x_{i}, y_{i} \in V\left(H_{i}\right)$. Since H_{i} is connected, H_{i} has an $\left(x_{i}, y_{i}\right)$-path P_{i}. If a $\left|E\left(P_{i}\right)\right|=1$, then G has a K_{3}; if $\left|E\left(P_{1}\right)\right|=\left|E\left(P_{2}\right)\right|=2$, then $G\left[V\left(P_{1}\right) \cup V\left(P_{2}\right)\right] \cong$ $K_{3,3}^{-}$. Hence by (1), we may assume that $\left|E\left(P_{1}\right)\right| \geq 3$ and $\left|E\left(P_{2}\right)\right| \geq 2$. Let e_{i} be an edge in $G-\left(E\left(C^{\prime}\right) \cup E\left(H_{1}\right) \cup E\left(H_{2}\right)\right)$ incident

Fig. 5. The graph G when $e_{\pi\left(C^{\prime}\right)}$ is an edge of $P(10)$.

Fig. 6. Graphs in the proof of Claim 8.
with a vertex in H_{i}. It follows that $G\left[E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup E\left(C^{\prime}\right) \cup\left\{e_{1}, e_{2}\right\}\right]$ contains a path Q from e_{1} to e_{2} with $|E(Q)| \geq 7$. As $P(10)-e_{\pi\left(C^{\prime}\right)}$ has a path Q^{\prime} from e_{1} to e_{2} of length 8 , it follows that $Q \cup Q^{\prime}$ is a cycle of G of length at least 13 , contrary to the assumption $c(G) \leq 11$. This completes the proof of Claim 6.

By Theorems 2.3 and 2.9 and Claim 6, we may assume that

$$
\begin{equation*}
|V(G)| \geq 14, g(G) \geq 5 \quad \text { and } \quad c(G) \geq 9 . \tag{9}
\end{equation*}
$$

Let $p=c(G)$ and $C=u_{1} u_{2} \cdots u_{p} u_{1}$ be a longest cycle in G. In the discussions below, the subscripts for u_{i} will be taken mod p. By $\kappa(G) \geq 2$ and as G is non-supereulerian, we may assume that $G-V(C)$ has a path $P^{1}=v_{1} v_{2} \cdots v_{s}$ with $s>1$ such that for some $1 \leq j_{1}<j_{2} \leq p, v_{1} u_{j_{1}}, v_{s} u_{j_{2}} \in E(G)$. Choose a longest such path P^{1}, and assume without loss of generality that $j_{1}=1$.

If $s \geq 5$, then as $c(G) \leq 11$, both $\left|E\left(C\left[u_{1}, u_{j_{2}}\right]\right)\right| \leq 5$ and $\left|E\left(C\left[u_{j_{2}}, u_{1}\right]\right)\right| \leq 5$. It follows that $C^{\prime}=P^{1}\left[v_{1}, v_{s}\right] C\left[u_{j_{2}}, u_{1}\right] v_{1}$ is a cycle on G, and $|E(C)|<\left|E\left(C^{\prime}\right)\right|$, contrary to the fact that C is a longest cycle in G. Hence we must have $1 \leq s \leq 4$.

Suppose that $s \in\{3,4\}$. If for each $v_{k}, 1 \leq k \leq 4, N_{G}\left(v_{k}\right) \subseteq V\left(P^{1}\right) \cup\left\{u_{1}, u_{j_{2}}\right\}$, then by $\kappa^{\prime}(G) \geq 3$ and by Lemma $2.8, G$ is not reduced, contrary to (1). Thus there must be a path P^{2} in G with $V\left(P^{2}\right) \cap\left(V(C) \cup V\left(P^{1}\right)\right)=\left\{v_{t}, u_{t^{\prime}}\right\}$, where $1 \leq t \leq 4$ and $1<t^{\prime}<j_{2}$ or $j_{2}<t^{\prime} \leq p$. By symmetry, we assume that $1<t^{\prime}<j_{2}$. Since C is longest, $t^{\prime} \geq t+\left|E\left(P^{2}\right)\right|$ and $j_{2}-t^{\prime} \geq\left|E\left(P^{2}\right)\right|+(s-t+1)$. It follows by $\left|E\left(P^{2}\right)\right| \geq 1$ that $\left|E\left(C\left[u_{1}, u_{j}\right]\right)\right|=j_{2}+1 \geq s+2+2\left|E\left(P^{2}\right)\right| \geq s+4$, and so $\left|E\left(C\left[u_{j_{2}}, u_{1}\right]\right)\right|=p-\left|E\left(C\left[u_{1}, u_{j_{2}}\right]\right)\right| \leq 11-(s+4)=7-s \in\{3,4\}$. Since C is longest, and since replacing $C\left[u_{j_{2}}\right.$, $\left.u_{1}\right]$ by $u_{1} P^{1} u_{j_{2}}$ in C results in another cycle C^{\prime}, we must have $s=3,\left|E\left(C\left[u_{j_{2}}, u_{1}\right]\right)\right|=4,\left|E\left(P^{2}\right)\right|=1, t^{\prime} \in\{p-7, p-6\}$ and $10 \leq p \leq 11$.

Since $s=3$, by symmetry, we assume that $t \neq 3$. By $\kappa^{\prime}(G) \geq 3$ and since G is reduced, $N_{G}\left(v_{3}\right)-\left\{v_{2}, u_{j}\right\}$ contains a vertex $w \notin V\left(P^{1}\right)$. Since C is longest, $w \notin V\left(C\left[u_{j_{2}}, u_{1}\right]\right)-\left\{u_{1}\right\}$. By Claim $6, w \neq u_{1}$, and so $w=u_{t^{\prime \prime}}$ with $2 \leq t^{\prime \prime} \leq j_{2}-1$. Since G contains no $K_{3}, t^{\prime} \neq t^{\prime \prime}$. If $2 \leq t^{\prime \prime} \leq t^{\prime}$, then $u_{1} P^{1}\left[v_{1}, v_{3}\right] C\left[u_{t^{\prime \prime}}, u_{1}\right]$ is a cycle of G, and so $t^{\prime \prime} \in\{p-5, p-6\}$. As $t^{\prime} \neq t^{\prime \prime}$, we must have $t^{\prime}=p-7<t^{\prime \prime}$, contrary to the fact $t^{\prime}>t^{\prime \prime}$. If $t^{\prime}<t^{\prime \prime} \leq j_{2}-1$, a contradiction will be obtained with a similar argument. Thus we must have $s \leq 2$ and $N_{G}\left(v_{s}\right) \subset V\left(P^{1}\right) \cup V(C)$. By $\kappa^{\prime}(G) \geq 3$, by (1) and by Claim 6 , there exists $u_{i}, u_{j} \in N_{G}\left(v_{s}\right) \cap V(C)$ with $1<i<j<p$.

Claim 7. $c(G) \geq 10$.
By contradiction, we assume that $c(G)=9$. If $s=2$, then as $c(G)=9$, both $C\left[u_{1}, u_{i}\right]$ and $C\left[u_{j}, u_{1}\right]$ has length at least 3. By $g(G) \geq 5$, we must have $u_{i}=u_{4}$ and $u_{j}=u_{7}$. By $\kappa^{\prime}(G) \geq 3$, by $g(G) \geq 5$ and with a similar argument, $N_{G}\left(v_{1}\right)-\left(V(C) \cup\left\{v_{2}\right\}\right)$ has a vertex w^{\prime} with $u_{4}, u_{7} \in N_{G}\left(w^{\prime}\right)$, forcing the existence of a 4-cycle, contrary to $g(G) \geq 5$.

Hence $s=1$, and so for any $w \in V(G)-V(C), N(w) \subseteq V(C)$. By $g(G) \geq 5$, for each w, there exists an i, such that $N(w)=\left\{u_{i}, u_{i+3}, u_{i+6}\right\}$, where the subscripts are taken mod 9 . By (9), there must be at least $14-9=5$ vertices in $V(G)-V(C)$. Therefore, there must exist $w_{1}, w_{2} \in V(G)-V(C)$ and an i such that $u_{i} \in N\left(w_{1}\right) \cap N\left(w_{2}\right)$. Hence $N\left(w_{1}\right)=N\left(w_{2}\right)$, contrary to $g(G) \geq 5$. This proves Claim 7 .

Claim 8. $c(G)=11$.
Assume that $c(G)=10$. Suppose $s=2$. By $g(G) \geq 5$, by symmetry and since C is a longest cycle, we may assume that $u_{4}, u_{j} \in N\left(v_{2}\right)$ with $j \in\{7,8\}$. (See Fig. 6(a).) As $\kappa^{\prime}(G) \geq 3$, there exists a vertex $w \in N\left(v_{1}\right)-\left\{u_{1}, v_{2}\right\}$. If $j=8$ and $w=u_{6}$,

Fig. 7. Possible cases when $c(G)=11$ in the proof of Theorem 1.1.
then $C\left[u_{1}, u_{6}\right] v_{1} v_{2} C\left[u_{8}, u_{1}\right]$ is a cycle longer than C. Hence when $j=8, w \neq u_{6}$. It follows by (1) and by $g(G) \geq 5$ that $w \notin V(C)$ no matter whether u_{7} or $u_{8} \in N_{G}\left(v_{2}\right)$. By (1) and since C is longest, if $u_{i} \in N_{G}\left(v_{2}\right)$, then $w \notin\left\{u_{i}, u_{i \pm 1}, u_{i \pm 2}\right\}$, where the subscripts are taken mod 10 . Therefore by $s=2, \emptyset \neq N(w)-\left\{v_{1}\right\} \subseteq V(C)$. Suppose that some $u_{k} \in N_{G}(w)$. As $u_{4} v_{2} v_{1} w u_{k}$ is a path of length 4 , the distance between u_{k} and u_{4} on C is at least 4 , forcing $8 \leq k \leq 10$. As $u_{1} v_{1} w u_{k}$ has length 3 , the distance between u_{1} and u_{k} on C is at least 3 , and so $k \notin\{9,10\}$. It follows that $k=8$. Since $j \in\{7,8\}$, either $j=8$, whence G has a 4-cycle $w u_{8} v_{2} v_{1} w$, contrary to Claim 6 ; or $j=7$, whence $C\left[u_{1}, u_{7}\right] v_{2} v_{1} w C\left[u_{8}, u_{1}\right]$ is a cycle of 13 in G, contrary to $c(G) \leq 11$. These contradictions indicate that $s<2$.

Hence $s=1$, and so for any $v \in V(G)-V(C), N(v) \subseteq V(C)$. By $g(G) \geq 5$, by symmetry and since C is longest, for each $v \in V(G)-V(C)$, if $u_{i} \in N(v)$, then either $u_{i+3} \in N(v)$ and $\left|N(v) \cap\left\{u_{i+6}, u_{i+7}\right\}\right|=1$, or $u_{i-3} \in N(v)$ and $\left|N(v) \cap\left\{u_{i+3}, u_{i+4}\right\}\right|=1$, where the subscripts are taken mod 10 (see Fig. $6(\mathrm{~b})$). Assume that $N(v) \cap N\left(v^{\prime}\right) \neq \emptyset$ and (without loss of generality) $u_{1} \in N(v) \cap N\left(v^{\prime}\right)$. Then by $g(G) \geq 5$ and by symmetry, we must have $u_{4} v, u_{5} v^{\prime} \in E(G)$, and consequently, $u_{7} v, u_{8} v^{\prime} \in E(G)$. It follows that G has a cycle $C\left[u_{1}, u_{4}\right] v \overleftarrow{C}\left[u_{7}, u_{5}\right] v^{\prime} C\left[u_{8}, u_{1}\right]$ of length 12 , contrary to $c(G)=10$.

Hence we may assume that $N(v) \cap N\left(v^{\prime}\right)=\emptyset$. By $(9),|V(G)-V(C)| \geq 4$, and so we may assume that $v, v^{\prime} \in V(G)-V(C)$ such that $N(v)=\left\{u_{i_{1}}, u_{i_{2}}, u_{i_{3}}\right\}$ and $N\left(v^{\prime}\right)=\left\{u_{i_{1}+1}, u_{i_{2}+1}, u_{i_{3}+1}\right\}$ or $N\left(v^{\prime}\right)=\left\{u_{i_{1}+1}, u_{i_{2}+1}, u_{i_{3}+2}\right\}$. (See Fig. 6(b).) Without loss of generality, we assume that $i_{1}=1 i_{2}=4$, and $i_{3} \in\{7,8\}$.

If $i_{3}=8$, then by $g(G) \geq 5$, we have $u_{9} v^{\prime} \in E(G)$, and so G has a cycle $v^{\prime} C\left[u_{9}, u_{4}\right] v \overleftarrow{C}\left[u_{i_{3}}, u_{5}\right] v^{\prime}$ of length at least 11 , contrary to $c(G)=10$. Hence $i_{3}=7$, and $\left|\left\{u_{8}, u_{9}\right\} \cap N\left(v^{\prime}\right)\right|=1$. If $v^{\prime} u_{8} \in E(G)$, then G has a cycle $v \overleftarrow{C}\left[u_{4}, u_{8}\right] v^{\prime} C\left[u_{5}, u_{7}\right] v$ of length 12 , contrary to $c(G)=10$. Thus $u_{9} v^{\prime} \in E(G)$, and so G has a cycle $v^{\prime} C\left[u_{9}, u_{4}\right] v \overleftarrow{C}\left[u_{7}, u_{5}\right] v^{\prime}$ of length 11, contrary to $c(G)=10$. This proves Claim 8 .

By Claims 7 and 8 , we must have $c(G)=11$. Suppose first that $s=2$. (See Fig. 7(a).) By $g(G) \geq 5$, and by symmetry, we may assume that $\left|\left\{u_{4}, u_{5}\right\} \cap N\left(v_{2}\right)\right|=1$ and $\left|\left\{u_{7}, u_{8}, u_{9}\right\} \cap N\left(v_{2}\right)\right|=1$. As $\kappa^{\prime}(G) \geq 3, N\left(v_{1}\right)-\left\{u_{1}, v_{2}\right\}$ has a vertex w. By $g(G) \geq 5$, we have $w \notin\left\{u_{1}, u_{2}, u_{3}, u_{10}, u_{11}\right\}$. As C is longest, if $u_{i} \in N_{G}\left(v_{2}\right)$ and $w \in V(C)$, then the distance between u_{i} and w on C must be at least 3. If follows that $w \notin V(C)$.

By $g(G) \geq 5, N_{G}(w) \cap\left\{u_{1}, u_{2}, u_{11}\right\}=\emptyset$. Since C is longest, if $u_{i} \in N_{G}\left(v_{2}\right)$, then $N_{G}(w) \cap\left\{u_{i}, u_{i \pm 1}, u_{i \pm 2}, u_{i \pm 3}\right\}=\emptyset$. It follows by $\left|\left\{u_{4}, u_{5}\right\} \cap N\left(v_{2}\right)\right|=1$ and $\left|\left\{u_{7}, u_{8}, u_{9}\right\} \cap N\left(v_{2}\right)\right|=1$ that $N_{G}(w) \cap V(C)=\emptyset$, forcing $s \geq 3$, contrary to $s=2$. Thus we must have $s=1$, and so for any $v \in V(G)-V(C), N(v) \subseteq V(C)$. By $g(G) \geq 5$, for each $v \in V(G)-V(C)$, if $u_{i}, u_{j} \in N(v)$, then the distance of u_{i} and u_{j} on C must be at least 3 . These lead to the following observations.

Observation 3.2. If $u_{i} \in N_{G}(v)$, $(1 \leq i \leq 11)$, then either $u_{i+3} \in N(v)$ and $\left|N(v) \cap\left\{u_{i+6}, u_{i+7}, u_{i+8}\right\}\right|=1$, or $u_{i+4} \in N(v)$ and $\left|N(v) \cap\left\{u_{i+7}, u_{i+8}\right\}\right|=1$, or $\left\{u_{i+5}, u_{i+8}\right\} \subset N(v)$, where the subscripts are taken mod 11 .
By (9), $V(G)-V(C)$ has at least 3 distinct vertices $v, v^{\prime}, v^{\prime \prime}$. Since every vertex in $V(G)-V(C)$ has at least 3 neighbors on $V(C)$, and since $|V(C)|=11$, either for two vertices v and v^{\prime} (say) $N(v) \cap N\left(v^{\prime}\right) \neq \emptyset$, or there exists at least one i such that $u_{i} \in N(v), u_{i+1} \in N\left(v^{\prime}\right)$ and $u_{i+2} \in N\left(v^{\prime \prime}\right)$.

Claim 9. If $u_{1} \in N(v) \cap N\left(v^{\prime}\right)$, then $u_{4}, u_{7} \in N(v)$ and $u_{6}, u_{9} \in N\left(v^{\prime}\right)$.
By Observation 3.2, we may assume that $u_{i_{1}}, u_{i_{3}} \in N(v)$ and $u_{i_{2}}, u_{i_{4}} \in N\left(v^{\prime}\right)$ with $4 \leq i_{1}<i_{2} \leq 6<7 \leq i_{3}<i_{4} \leq 9$. If $i_{2}-i_{1}=1$ or $i_{4}-i_{3}=1$, then $C\left[u_{1}, u_{i_{1}}\right] v \overleftarrow{C}\left[u_{i_{3}}, u_{i_{2}}\right] v^{\prime} C\left[u_{i_{4}}, u_{1}\right]$ has length at least 12 , contrary to $c(G)=11$. Hence we must have that $u_{4}, u_{7} \in N(v)$ and $u_{6}, u_{9} \in N\left(v^{\prime}\right)$ (see Fig. 7(b)). This proves Claim 9.

Claim 10. For any distinct $x, y \in\left\{v, v^{\prime}, v^{\prime \prime}\right\}, N(x) \cap N(y)=\emptyset$.
Suppose not, and without loss of generality, we assume that $u_{1} \in N(v) \cap N\left(v^{\prime}\right)$. By Claim $9, u_{4}, u_{7} \in N(v)$ and $u_{6}, u_{9} \in$ $N\left(v^{\prime}\right)$. If $v^{\prime \prime} \in N\left(u_{1}\right)$, then by $g(G) \geq 5$, we must have $u_{5}, u_{8} \in N\left(v^{\prime \prime}\right)$, and so $C\left[u_{1}, u_{4}\right] v \overleftarrow{C}\left[u_{7}, u_{5}\right] v^{\prime \prime} C\left[u_{8}, u_{1}\right]$ has length 13 , contrary to $c(G)=11$. If $v^{\prime \prime} \in N_{G}\left(u_{4}\right)$, then by Claim 9 with u_{4} replacing u_{1} and $v, v^{\prime \prime}$ replacing v, v^{\prime}, we have $u_{7}, u_{10} \in N_{G}\left(v^{\prime \prime}\right)$ (see Fig. $7(\mathrm{~b})$), whence G has 4 -cycle $u_{4} v^{\prime \prime} u_{7} v u_{4}$, contrary to $g(G) \geq 5$. If $v^{\prime \prime} \in N_{G}\left(u_{6}\right)$, then by Claim 9 with u_{6} replacing u_{1} and $v^{\prime \prime}, v^{\prime}$ replacing v, v^{\prime}, we have $u_{3}, u_{11} \in N_{G}\left(v^{\prime \prime}\right)$, and so $C\left[u_{6}, u_{11}\right] v^{\prime \prime} \overleftarrow{C}\left[u_{3}, u_{1}\right] v C\left[u_{4}, u_{6}\right]$ is a cycle of length 13 , contrary to $c(G)=11$. Thus $N_{G}\left(v^{\prime \prime}\right) \cap\left\{u_{1}, u_{4}, u_{6}\right\}=\emptyset$. By symmetry, $N_{G}\left(v^{\prime \prime}\right) \cap\left\{u_{7}, u_{9}\right\}=\emptyset$, and so $N_{G}\left(v^{\prime \prime}\right) \subseteq\left\{u_{2}, u_{3}, u_{5}\right.$, $\left.u_{8}, u_{10}, u_{11}\right\}$. If $u_{2}, u_{5} \in N_{G}\left(v^{\prime \prime}\right)$, then $C\left[u_{6}, u_{1}\right] v \overleftarrow{C}\left[u_{4}, u_{2}\right] v^{\prime \prime} u_{5} u_{6}$ is a cycle of length 13 , contrary to $c(G)=11$. This, together with $g(G) \geq 5$, implies $\left|N_{G}\left(v^{\prime \prime}\right) \cap\left\{u_{2}, u_{3}, u_{5}\right\}\right| \leq 1$. By Symmetry, $\left|N_{G}\left(v^{\prime \prime}\right) \cap\left\{u_{8}, u_{10}, u_{11}\right\}\right| \leq 1$. It follows that $3 \leq\left|N_{G}\left(v^{\prime \prime}\right)\right|=\left|N_{G}\left(v^{\prime \prime}\right) \cap\left\{u_{2}, u_{3}, u_{5}, u_{8}, u_{10}, u_{11}\right\}\right| \leq 2$. This contradiction justifies Claim 10 .

By Claim 10 and by $c(G)=11$, we may assume that $u_{1} v, u_{2} v^{\prime} \in E(G)$. Suppose that $u_{1}, u_{i}, u_{j} \in N_{G}(v)(1<i<j<11)$ and $u_{2}, u_{i^{\prime}}, u_{j^{\prime}} \in N_{G}\left(v^{\prime}\right)\left(1<i^{\prime}<j^{\prime}<11\right)$. If $i \geq 7$, then by $g(G) \geq 5, j \geq 10$, and so $\overleftarrow{C}\left[u_{j}, u_{1}\right] v u_{j}$ is a cycle of length at most 4 . By symmetry and by $g(G) \geq 5$, we may assume that

$$
\begin{equation*}
4 \leq i \leq 6<j<10, \quad \text { and } \quad 5 \leq i^{\prime} \leq 7<j^{\prime}<11 \tag{10}
\end{equation*}
$$

Claim 11. None of the following holds.
(i) Both $j=i^{\prime}+1$ and $i=4$.
(ii) Either $i<i^{\prime} \leq i+2$, or $j<j^{\prime} \leq j+2$, or $j<i^{\prime} \leq j+2$.

If we have both $j=i^{\prime}+1$ and $i=4$, then $v C\left[u_{j}, u_{2}\right] v^{\prime} \overleftarrow{C}\left[u_{i^{\prime}}, u_{4}\right] v$ has length 12 . This justifies Claim 11(i). We again argue by contradiction to prove Claim 11(ii). If $i<i^{\prime} \leq i+2$, then $C\left[u_{2}, u_{i}\right] v \overleftarrow{C}\left[u_{1}, u_{i^{\prime}}\right] v^{\prime} u_{2}$ has length at least 12 . If $j<j^{\prime} \leq j+2$, then $C\left[u_{2}, u_{j}\right] v \overleftarrow{C}\left[u_{1}, u_{j^{\prime}}\right] v^{\prime} u_{2}$ has length at least 12 . If $j<i^{\prime} \leq i+2$, then $C\left[u_{2}, u_{j}\right] v \overleftarrow{C}\left[u_{1}, u_{i^{\prime}}\right] v^{\prime} u_{2}$ has length at least 12 . As any of these lead to a contradiction, Claim 11 must hold.

By (10), $4 \leq i \leq 6$. If $i \geq 5$, then by Claim 11(ii), $i^{\prime} \geq i+3 \geq 8$, contrary to (10). Hence $i=4$. By Claim 11(ii), $i^{\prime}=7$, and so $j \geq 8$. By Claim 11(i), we must have $j \geq 9$. By $c(G)=11$, we must have $j^{\prime}=11$, and so G has a 4 -cycle $v^{\prime} u_{11} u_{1} u_{2} v^{\prime}$, contrary to $g(G) \geq 5$. This completes the proof of Theorem 1.1.

4. Applications to 3-connected hamiltonian claw-free graphs

A subgraph H of G is dominating if $E(G-V(H))=\emptyset$. Harary and Nash-Williams proved a useful relationship between dominating eulerian subgraphs and hamiltonian line graphs.

Theorem 4.1 (Harary and Nash-Williams, [15]). Let G be a connected graph with at least 3 edges. The line graph $L(G)$ is hamiltonian if and only if G has a dominating eulerian subgraph.

Let G be a graph such that $\kappa(L(G)) \geq 3$ and such that $L(G)$ is not complete. A vertex cut X in $L(G)$ is an edge in G such that both sides of $G-X$ have at least one edge. An edge-cut X with at least two nontrivial components in $G-X$ is an essential edge cut of G. A graph G is essentially k-edge-connected if G does not have an essential edge cut of size less than k. For each $v \in D_{2}(G)$, let $E_{G}(v)=\left\{e_{1}^{v}, e_{2}^{v}\right\}$ and $X_{2}(G)=\left\{e_{2}^{v}: v \in D_{2}(G)\right\}$. Since $\kappa(L(G)) \geq 3, D_{2}(G)$ is an independent set of G and for any $v \in D_{2}(G),\left|X_{2}(G) \cap E_{G}(v)\right|=1$. Define

$$
\begin{align*}
& G_{0}=G /\left(\left(\cup_{v \in D_{1}(G)} E_{G}(v)\right) \cup X_{2}(G)\right)=\left(G-D_{1}(G)\right) / X_{2}(G) \tag{11}\\
& N E(G)=\cup_{v \in D_{2}(G)} E_{G}(v)-X_{2}(G) .
\end{align*}
$$

The graph G_{0} is called the core of G, and edges in $N E(G)$ are called the nontrivial edges in G_{0}. Let $V(N E(G))$ denote the set of vertices in G incident with an edge in $N E(G)$. By the definition of G_{0}, vertices in G adjacent to a vertex in $D_{1}(G)$ can be viewed as vertices in G_{0}, which are the contraction images of edges in $\cup_{v \in D_{1}(G)} E_{G}(v)$. Let G_{0}^{\prime} be the reduction of G_{0}. Then G_{0}^{\prime} is a contraction of G_{0} as well as G, and so we can view $E\left(G_{0}^{\prime}\right) \subseteq E\left(G_{0}\right) \subseteq E(G)$. Define

$$
\begin{align*}
& \Lambda\left(G_{0}\right)=\left\{v \in V\left(G_{0}\right): P I_{G}(v) \neq K_{1} \text { or } P I_{G_{0}}(v) \cap V(N E(G)) \neq \emptyset\right\} \tag{12}\\
& \Lambda^{\prime}\left(G_{0}\right)=\left\{v \in V\left(G_{0}^{\prime}\right): P I_{G}(v) \neq K_{1} \text { or } P I_{G}(v) \cap V(N E(G)) \neq \emptyset\right\}
\end{align*}
$$

Applying Theorem 4.1, Shao proved the following.
Theorem 4.2 (Shao, Section 1.4 of [27]). Let G be a connected graph with $|E(G)| \geq 3$ and let G_{0} be the core of graph G, then each of the following holds:
(i) G_{0} is nontrivial and $\delta\left(G_{0}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) G_{0} is well defined.
(iii) $L(G)$ is hamiltonian if and only if G_{0} has a dominating eulerian subgraph H such that $\Lambda\left(G_{0}\right) \subseteq V(H)$.

Proof. The justifications of (i) and (ii), and of the sufficiency of (iii) can be found in Section 1.4 of [27]. We shall only show the necessity of (iii). Suppose that $L(G)$ is hamiltonian, then by Theorem 4.1, G must have a dominating eulerian subgraph H. By the definition of dominating eulerian subgraphs, H must contain all nontrivial vertices of G_{0}. Since every nontrivial edge of G_{0} is the contraction image of a path of length 2 in G, both ends of any nontrivial edge must also be in H.

Applying Theorems 1.1 and 4.2, one can derive the following on hamiltonian line graphs.
Theorem 4.3. Let G be a graph such that $\kappa(L(G)) \geq 3$. Let G_{0} be the core of G. Then one of the following must hold.
(i) $L(G)$ is hamiltonian.
(ii) G_{0} is contracted to the Petersen graph $P(10)$.
(iii) $c\left(G_{0}\right) \geq 12$ and G_{0} does not have a dominating eulerian subgraph.

Fig. 8. Graphs in Definition 4.6.
Proof. Suppose that $L(G)$ is not hamiltonian. By Theorem 4.2, G_{0} does not have any dominating eulerian subgraphs, and $\kappa^{\prime}\left(G_{0}\right) \geq 3$. By Theorem 1.1, and since G_{0} cannot be supereulerian, either G_{0} is contracted to the Petersen graph $P(10)$, whence (ii) must hold; or $c\left(G_{0}\right) \geq 12$, whence Theorem 4.3 (iii) must hold.

Let G be a claw-free graph. Then for any $v \in V(G), G\left[N_{G}(v)\right]$ is either connected (in this case, v is called a locally connected vertex of G) or is a disjoint union of two cliques. If $G\left[N_{G}(v)\right]$ is connected and not a clique, then the local completion of G at x is a graph obtained from G by adding edges to join nonadjacent vertices in $N_{G}(v)$. The closure of G, denoted by $\operatorname{cl}(G)$, is the graph obtained from G by repeated applications of local completions, until every locally connected vertex has its neighborhood being a clique. This construction was introduced by Ryjáček [26], and he proved the following useful result.

Theorem 4.4 (Ryjáček, [26]). Let G be a claw-free graph. Then
(i) $\mathrm{cl}(G)$ is uniquely determined.
(ii) $\mathrm{cl}(G)$ is the line graph of some triangle-free simple graph.
(iii) G is hamiltonian if and only if $\mathrm{cl}(G)$ is hamiltonian.

Theorem 4.5 (Brousek, Ryjáček and Favaron, [5]). Let G be a claw-free graph. Then
(i) If G is Z_{k}-free, then $\mathrm{cl}(G)$ is also Z_{k}-free for any integer $k \geq 1$.
(ii) If G is P_{i}-free, then $\mathrm{cl}(G)$ is also P_{i}-free for any integer $i \geq 3$.

Definition 4.6. Let $P(10)^{\prime}$ be the graph obtained from the Petersen graph $P(10)$ by attaching exactly one pendant edge to every vertex of $P(10)$; let $P(10)^{\prime \prime}$ be the graph by replacing one edge $e=v_{i} v_{j} \in E\left(P(10)\right.$) by a (v_{i}, v_{j})-path of length 2 , by attaching exactly one pendant edge to every vertex of $P(10)-\left\{v_{i}, v_{j}\right\}$ and by attaching at most one pendant edge to each of v_{i} and v_{j}. Let $P(10)^{(3)}$ denote any member in the family of graphs each of which is obtained from $P(10)$ by attaching at least one pendant edge to every vertex of $P(10)$ such that one vertex of $P(10)$ is attached with at least 2 pendent edges; and $P(10)^{(4)}$ denote any member in the family of graphs each of which is obtained from $P(10)$ by attaching to a vertex (say, v_{1}) of $P(10)$ by a non-tree simple graph $H_{v_{1}}$ spanned by a $K_{1, t}$ for some $t \geq 2$, and by attaching exactly one pendant edge to every vertex of $P(10)-v_{1}$. Let $P(10){ }^{(5)}$ denote any member in the family of graphs each of which is obtained from $P(10)$ by replacing each of the two vertices of an edge $e=v_{i} v_{j} \in E(P(10))$ by non-tree simple graphs $H_{v_{i}}$ and $H_{v_{j}}$, spanned by a $K_{1, t_{1}}$, and a $K_{1, t_{2}}$, respectively, for some $t_{1}, t_{2} \geq 2$, and by attaching exactly one pendant edge to every vertex of $P(10)-\left\{v_{i}, v_{j}\right\}$ (see Fig. 8).

The next lemma summarizes some observations which follow from Definition 4.6 and Theorem 4.1.
Lemma 4.7. Each of the following holds.
(i) If $G=P(10)^{\prime}$, then $L(G)$ is $\left\{Z_{9}, P_{12}\right\}$-free.
(ii) If $G=P(10)^{(3)}$, then $L(G)$ is $\left\{Z_{10}, P_{12}\right\}$-free.
(iii) If $G \in\left\{P(10)^{\prime \prime}, P(10)^{(4)}, P(10)^{(5)}\right\}$, then $L(G)$ is $\left\{Z_{10}, P_{13}\right\}$-free.
(vi) If $G \in\left\{P(10)^{\prime}, P(10)^{\prime \prime}, P(10)^{(3)}, P(10)^{(4)}, P(10)^{(5)}\right\}$, then $L(G)$ is not hamiltonian.

We are now ready to prove Theorem 1.8, restated as the following corollaries of Theorem 1.1.

Corollary 4.8. Let Γ be a 3-connected $\left\{K_{1,3}, P_{k}\right\}$-free graph.
(i) Suppose that $k=12$. Then Γ is hamiltonian if and only if $\operatorname{cl}(\Gamma) \notin\left\{L\left(P(10)^{\prime}\right), L\left(P(10)^{(3)}\right)\right\}$.
(ii) Suppose that $k=12$. Then Γ is hamiltonian if and only if $c l(\Gamma) \notin\left\{L\left(P(10)^{\prime}\right), L\left(P(10)^{\prime \prime}\right), L\left(P(10)^{(3)}\right), L\left(P(10)^{(4)}\right)\right.$, $\left.L\left(P(10)^{(5)}\right)\right\}$.

Corollary 4.9. Let Γ be a 3 -connected $\left\{K_{1,3}, Z_{9}\right\}$-free graph. Then Γ is hamiltonian if and only if $\operatorname{cl}(\Gamma) \neq L\left(P(10)^{\prime}\right)$.
Let $k>0$ be an integer. Let $P_{k+1}=v_{0} v_{1} v_{2} \ldots v_{k}$ denote a path on $k+1$ vertices, and let Y_{k} be the graph with

$$
V\left(Y_{k}\right)=V\left(P_{k+1}\right) \cup\left\{v_{k+1}\right\} \quad \text { and } \quad E\left(Y_{k}\right)=E\left(P_{k+1}\right) \cup\left\{v_{k-1} v_{k+1}\right\} .
$$

By definition, $Y_{2} \cong K_{1,3}$. If $k=2$, then any vertex in $D_{1}\left(Y_{2}\right)$ is a root of Y_{2}. If $k \geq 3$, then the unique vertex in $D_{1}\left(Y_{k}\right)$ which is not adjacent to the vertex in $D_{3}\left(Y_{k}\right)$ is the root of Y_{k}. Thus for a connected simple graph G and an integer $k>0, L(G)$ is Z_{k}-free if and only if G does not have Y_{k+2} as a subgraph.

Before we prove Corollaries 4.8 and 4.9, we investigate some properties of graphs whose cores are contractible to $P(10)$. The observations below follow from the definition of the Petersen graph $P(10)$.

Lemma 4.10. Each of the following holds.
(i) Let $u, v \in V(P(10))$ be distinct vertices. If $u v \notin E(P(10))$, then $P(10)$ contains a Hamilton (u, $v)$-path; if $u v \in E(P(10)$), then for any $w \in N(u)-v, P(10)-w$ has a Hamilton (u, v)-path.
(ii) For any $v \in V(P(10))$ and $e \in E(P(10)), P(10)$ contains a Hamilton $\left(v, v^{\prime}\right)$-path Q with $e \in E(Q)$ such that e is not incident with v^{\prime}.
(iii) For any pair of edges $e, e^{\prime} \in E(P(10))$, there exists a vertex w such that $P(10)$ has a Hamilton path Q with $e, e^{\prime} \in E(Q)$ such that no end of Q is incident with e or e^{\prime}, and such that one end of Q is adjacent to w.
(iv) For any $v \in V(P(10))$ and for any $e \in E(P(10)), P(10)$ has a Y_{8} rooted at v with $e \in E\left(Y_{8}\right)$ but e is not incident with any vertex in $D_{1}\left(Y_{8}\right)-\{v\}$.
(v) For any pair of distinct vertices $u, v \in V(P(10)), P(10)$ has a Hamilton path Q from u with v being the next to the last vertex in Q.

Proof. All can be verified routinely using the definition of $P(10)$. We only sketch the justification for (iii).
(iii). For given $e, e^{\prime} \in E(P(10))$, by the definition of $P(10)$, there exists a cycle C of length 9 containing e and e^{\prime}. Let $w \in V(P(10))-V(C)$. As w has degree 3, there must be a vertex $v \in N_{P(10)}(w)$ such that $\left\{e, e^{\prime}\right\} \cap E_{C}(v)=\emptyset$ and $E_{C}(v)$ has an edge $e^{\prime \prime}$ not adjacent to either e or e^{\prime}. Thus $P(10)\left[E\left(C-e^{\prime \prime}\right) \cup\{w v\}\right]$ is the desirable path.

Definition 4.11. Let G be a connected, essentially 3-edge-connected simple graph whose core G_{0} is contracted to the Petersen graph $P(10)$. Let $V(P(10))=\left\{v_{1}, v_{2}, \ldots, v_{10}\right\}$. For each i, let $L_{i}=P I_{G_{0}}\left(v_{i}\right)$, and $n_{i}=\left|V\left(L_{i}\right)\right|$. A star on $n \geq 2$ vertices is a graph isomorphic to $K_{1, n-1}$. For each i, let $E_{P(10)}\left(v_{i}\right)=\left\{e_{1}^{i}, e_{2}^{i}, e_{3}^{i}\right\}$, and let $A_{G}\left(L_{i}\right)=\left\{w_{1}^{i}, w_{2}^{i}\right.$, $\left.w_{3}^{i}\right\}$ such that w_{j}^{i} is incident with e_{j}^{i}. Since edges in $E_{P(10)}\left(v_{i}\right)$ may be adjacent in G, the w_{j}^{i} 's may not be distinct.
(i) If L_{i} is not spanned by a star, then define L_{i}^{\prime} to be the reduction of $L_{i}-D_{1}\left(L_{1}\right)$. If v_{i} is spanned by a star, then define $L_{i}^{\prime}=K_{1}$.
(ii) If $L_{i}^{\prime} \neq K_{1}$, then v_{i} is of Type 1 A ; if $L_{i}^{\prime}=K_{1}$ and L_{i} is not spanned by a star, then v_{i} is of Type 1 B .
(iii) Assume that $L_{i}^{\prime}=K_{1}$ and L_{i} is spanned by a star. If $L_{i} \neq K_{1, n_{i}-1}$ and every cycle of L_{i} is a 3-cycle, then v_{i} is of Type 2 A ; if L_{i} is a star with $n_{i} \geq 2$, then v_{i} is of Type 2 B ; if $V\left(L_{i}\right)=\left\{v_{i}\right\}$, and $v_{i} \in V(N E(G))$, then v_{i} is of Type 3A; and if $V\left(L_{i}\right)=\left\{v_{i}\right\}$, and $v_{i} \notin V(N E(G))$, then v_{i} is of Type 3B.

Remark 4.12. From Definition 4.11, we have the following remarks.
(i) By the definition of collapsible graphs, if a nontrivial collapsible graph is not spanned by a star, then it must have a cycle of length at least 4 . Thus if v_{i} is of Type 1 B , then $c\left(L_{i}\right) \geq 4$.
(ii) A vertex can be both of Types $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~B}$ and of Type 3 A .
(iii) Since G is essentially 3-edge-connected, if $L_{i} \in\left\{C_{4}, C_{5}, C_{6}\right\}$, then $V\left(L_{i}\right)-A_{G}\left(L_{i}\right)$ is an independent set.
(iv) If v_{i} is of Type 1 B , then $L_{i}-D_{1}\left(L_{i}\right)$ is a nontrivial collapsible graph. For any $v \in V\left(L_{i}\right)-D_{1}\left(L_{i}\right)$, if any cycle containing v is of length 3 , then $L_{i}-D_{1}\left(L_{i}\right)$ must be a collection of K_{3} 's commonly sharing v. As G is essentially 3-edge-connected, L_{i} must be spanned by a star. Hence L_{i} must have a cycle C of length at least 4 , and so L_{i} has a $P_{k}(k \geq 4)$ from v. Since $L_{i}-D_{1}\left(L_{i}\right)$ is collapsible, either C has a chord or C is adjacent to a vertex of L_{i} not in C. Hence L_{i} has a $Y_{k^{\prime}}\left(k^{\prime} \geq 3\right)$ rooted at v.

Throughout the rest of this section, we always assume that G is a connected, essentially 3-edge-connected simple graph whose core G_{0} is contracted to the Petersen graph $P(10)$. In the arguments, we shall use $P(10)$ to denote both the Petersen graph as well as the contraction image of G_{0}, for notational convenience.

Lemma 4.13. If v_{i} is of Type 1 A , then each of the following holds.
(i) For any $w_{j}^{i} \in A_{G}\left(L_{i}\right), L_{i}$ has a path from w_{j}^{i} with length at least 3 . Furthermore, the length of any longest path in L_{i} from w_{j}^{i} is 3 if and only if L_{i} is a 4-cycle.
(ii) If $L_{i}^{\prime} \notin\left\{C_{4}, C_{5}, C_{6}\right\}$, then for any $w_{j}^{i} \in A_{G}\left(L_{i}\right), L_{i}$ has a Y_{k} rooted at w_{j}^{i} with $k \geq 2$. Furthermore, L_{i} does not have a Y_{k} rooted at w_{j}^{i} with $k \geq 3$ for any j if and only if both $L_{i} \in\left\{K_{2,3}, S(1,2)\right\}$ and

$$
A_{G}\left(L_{i}\right)= \begin{cases}D_{2}\left(K_{2,3}\right) & \text { if } L_{i}^{\prime}=K_{2,3} \\ N_{L_{i}^{\prime}}\left(z_{0}\right) \text { for some } z_{0} \in D_{3}(S(1,2)) & \text { if } L_{i}^{\prime}=S(1,2)\end{cases}
$$

where $S(1,2)$ is defined in Definition 2.6.
Proof. We first claim that $\kappa^{\prime}\left(L_{i}^{\prime}\right) \geq 2$. If e is a cut edge of L_{i}^{\prime}, then as L_{i}^{\prime} is the reduction of $L_{i}-D_{1}\left(L_{i}\right), e$ must be an essential edge cut of L_{i}. Hence e an edge in $\left\{e_{1}^{i}, e_{2}^{i}, e_{3}^{i}\right\}$ will form an essential edge cut of G contrary to the assumption that G is essentially 3 -edge-connected. Thus $\kappa^{\prime}\left(L_{i}^{\prime}\right) \geq 2$, and so L_{i}^{\prime} has a cycle. Let C be a longest cycle of L_{i}^{\prime} and $c=|V(C)|$. Since G is reduced, we have $c \geq 4$.
(i) For any $w_{j}^{i} \in A_{G}\left(L_{i}\right), L_{i}$ has a path $P=P\left[w_{j}^{i}, w\right]$ for some $w \in V(C)$ such that P is internally disjoint from $V(C)$. It follows that $P \cup C$ contains a path from w_{j}^{i} with length at least $|E(C)|-1 \geq 3$. If the length of any longest path from w_{j}^{i} in L_{i} is 3, then the path $P=P\left[w_{j}^{i}, w\right]$ has length 0 , and so L_{i} must be a 4-cycle.
(ii) If L_{i}^{\prime} has a cut vertex z, then L_{i}^{\prime} has two subgraphs $Z^{\prime}, Z^{\prime \prime}$ such that $V\left(Z^{\prime}\right) \cap V\left(Z^{\prime \prime}\right)=\{z\}$. Since $\kappa^{\prime}\left(L_{i}\right) \geq 2$ and since L_{i} is reduced, each of Z^{\prime} and $Z^{\prime \prime}$ has a cycle of length at least 4 . Therefore, no matter whether $w_{j}^{i} \in V\left(Z^{\prime}\right)$ or $w_{j}^{i} \in V\left(Z^{\prime \prime}\right)$, L_{i} will always have a Y_{k} with $k \geq 3$ rooted at w_{j}^{i}. Hence we may assume that $\kappa\left(L_{i}^{\prime}\right) \geq 2$.

Assume first that $c=4$ and $L_{i}^{\prime} \nsupseteq C_{4}$. By $\kappa\left(L_{i}^{\prime}\right) \geq 2, L_{i}^{\prime}$ must have a graph $J=K_{2,3}$ as a subgraph. If $w_{j}^{i} \notin D_{2}\left(K_{2,3}\right)$, then L_{i}^{\prime} has a path from w_{j}^{i} to a vertex in J, internally disjoint from J. Thus L_{i}^{\prime} always has a $Y_{k}(k \geq 3)$ rooted at w_{j}^{i}. Therefore, we may assume that $D_{2}\left(K_{2,3}\right)=\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$. If $L_{i}^{\prime} \neq K_{2,3}$, then by $\kappa\left(L_{i}^{\prime}\right) \geq 2, J$ is contained in a $K_{2,4}$, and so for each w_{j}^{i}, L_{i}^{\prime} has a Y_{3} rooted at w_{j}^{i}. This completes the proof when $c=4$.

Now assume that $c=5$ and $L_{i}^{\prime} \neq C_{5}$. By $c=5$ and by $\kappa\left(L_{i}^{\prime}\right) \geq 2, L_{i}$ must have an $S(1,2)$. If $w_{j}^{i} \notin D_{2}(S(1,2))$, then L_{i}^{\prime} has a path from w_{j}^{i} to a vertex in $S(1,2)$, internally disjoint from $S(1,2)$. Thus L_{i}^{\prime} always has a $Y_{k}(k \geq 3)$ rooted at w_{j}^{i}. Therefore, we may assume that $\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\} \subset D_{2}(S(1,2))$, and so for some $z_{0} \in D_{3}(S(1,2)), N_{S(1,2)}\left(z_{0}\right)=\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\}$. If $L_{i}^{\prime} \neq S(1,2)$, then by $\kappa\left(L_{i}^{\prime}\right) \geq 2$ and $c=5, J$ is contained in either an $S(2,2)$ or an $S(1,3)$. This implies that L_{i}^{\prime} must have a Y_{k} with $k \geq 3$ rooted at some w_{j}^{i}. This completes the proof when $c=5$.

Finally, we assume that $c \geq 6$. Since G is essentially 3-edge-connected, if v, v^{\prime} are two adjacent vertices in C, then either the preimage of one of $\left\{v, v^{\prime}\right\}$ intersects $A_{G}\left(L_{i}\right)$, or one of $\left\{v, v^{\prime}\right\}$ has degree at least 3 in L_{i}^{\prime}.

It follows that if $c \geq 7$, then for any j, L_{i}^{\prime} has a Y_{2} rooted at w_{j}^{i}, and a Y_{k} with $k \geq 3$ for at least one w_{j}^{i}. Hence we may assume that $c=6$. If for some $j, w_{j}^{i} \notin V(C)$, then L_{i}^{\prime} has a path Q from w_{j}^{i} to $V(C)$, internally disjoint from $V(C)$. Thus, L_{i}^{\prime} has a Y_{k} for some $k \geq 3$ rooted at a $w_{j^{\prime}}^{i}$ for some $j^{\prime} \neq j$. Therefore, we may assume that $\left\{w_{1}^{i}, w_{2}^{i}, w_{3}^{i}\right\} \subseteq V(C)$. Since $L_{i}^{\prime} \neq C$, either C has a chord or there is a vertex not in C but adjacent to a vertex in C, and so for some w_{j}^{i}, L_{i}^{\prime} has a Y_{3} rooted at w_{j}^{i}.

Lemma 4.14. Suppose that $v_{i}, v_{j} \in V(P(10))$ are distinct vertices such that v_{i} is of Type 1 A and $L_{i}^{\prime} \notin\left\{C_{4}, C_{5}, C_{6}\right\}$, and v_{j} is not of Type 3B. Each of the following holds.
(i) If $v_{i} v_{j} \notin E(P(10))$, then G has both a P_{14} and a Y_{12}.
(ii) If $v_{i} v_{j} \in E(P(10))$, then G has both a P_{k} with $k \geq 14$ and a maximal $Y_{k^{\prime}}$ with $k^{\prime} \geq 11$. Furthermore, $k^{\prime}=11$ only if both v_{j} is of Type $3 A$ and $L_{i}^{\prime} \in\left\{K_{2,3}, S(1,2)\right\}$ with $A_{G}\left(L_{i}\right)$ satisfying Lemma 4.13 (ii).

Proof. By Definition 4.11(ii) and (iii), and since v_{j} is not of Type 3B, any path of length k ending at v_{j} in $P(10)$ can be lifted and extended to a path of length at least $k+1$ by including an additional edge either in L_{j} (if v_{j} is not of Types 3A and 3B) or incident with the only vertex in L_{j} (if v_{j} is of Type 3A).
(i) Since $v_{i} v_{j} \notin E(P(10))$, by Lemma $4.10(\mathrm{i}), P(10)$ has a Hamilton $\left(v_{i}, v_{j}\right)$-path Q^{\prime}, which can be lifted to a $\left(w_{1}^{i}\right.$, $\left.w_{1}^{j}\right)$-path Q (say) in G of length at least 9 . By Lemma $4.13, L_{i}$ has a path of length 4 from w_{1}^{i}, and L_{i} has a Y_{2} rooted at w_{1}^{i}. It follows that $Q^{\prime \prime}$ can be further extended to a P_{14} in G. For Y_{12}, we first lift Q^{\prime} to a path $Q^{\prime \prime}$ from L_{i} to L_{j} in G with $\left|E\left(Q^{\prime \prime}\right)\right| \geq 10$ by including an additional edge either in L_{j} (if v_{j} is not of Type 3A) or incident with w_{1}^{j} (if v_{j} is of Type 3 A), and then extend it to a Y_{12} in G by including a Y_{3} in L_{i}.
(ii) By the definition of $P(10)$, there is a $\left(v_{i}, v_{j}\right)$-path Q^{\prime} in $P(10)$ with $\left|E\left(Q^{\prime}\right)\right|=8$, which can be lifted to a $\left(w_{1}^{i}\right.$, $\left.w_{1}^{j}\right)$-path Q (say) of length at least 8 in G. By Lemma 4.13(i), L_{i} has a path of length at least 4 from w_{1}^{i}. If v_{j} is not of Type 2B or 3 A , then by Lemma 4.13 and by $\left|E\left(L_{j}\right)\right| \geq 2, Q$ can be extended to a path P_{k} with $k \geq 15$ as well as a $Y_{k^{\prime}}$ with $k^{\prime} \geq 13$ (each contains at least 4 edges in L_{i} and two edges in L_{j}). Now assume that v_{j} is of Type 2B or 3A. By a similar argument, Q can be extended to a path P_{k} with $k \geq 14$ which contains at least 4 edges in L_{i} and one edge in L_{j} (if v_{j} is of Type 2B) or adjacent to w_{1}^{j} (if v_{j} is of

Type 3 A). If v_{j} is of Type 2B, then Q can be extended to a $Y_{k^{\prime}}$ with $k^{\prime} \geq 12$ (each contains at least 4 edges in L_{i} and two edges in L_{j}). If v_{j} is of Type 3 A , then Q can be extended to maximal $Y_{k^{\prime}}$ in G with $k^{\prime} \geq 11$ by including a Y_{2} in L_{i} and one edge in L_{j} (if v_{j} is of Type 2B) or adjacent to w_{1}^{j} (if v_{j} is of Type 3A). By Lemma $4.13(\mathrm{ii}), k^{\prime}=11$ only if v_{j} is of 3 A and $L_{i}^{\prime} \in\left\{K_{2,3}, S(1,2)\right\}$ with $A_{G}\left(L_{i}\right)$ satisfying Lemma 4.13(ii). This proves Lemma 4.14.

Lemma 4.15. If $P(10)$ has two Type 1 A vertices, then G has both a P_{14} and a Y_{12}.
Proof. Assume that for $i \neq j$, v_{i} and v_{j} are of Type 1A. By Lemma 4.14, if one of L_{i}^{\prime} and L_{j}^{\prime} is not in $\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$, then G has a P_{14} and a Y_{12}. Hence we assume that $L_{i}^{\prime}, L_{j}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$. By Lemma 4.10(v), $P(10)$ has a $\left(v_{i}, v_{k}\right)$ Hamilton path Q with $v_{j} v_{k} \in E(Q)$. As $L_{i}^{\prime}, L_{j}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$, the length 8 path $Q\left[v_{i}, v_{j}\right]$ can be lifted to a P_{15} (including 3 edges in L_{i} and three edges in L_{j}) as well as a Y_{12} (including 3 edges in L_{i}, at least one edge in L_{j} and the edge $v_{j} v_{k}$) in G. This proves Lemma 4.15.

Lemma 4.16. If v_{i} is of Type 1 A and $L_{i}^{\prime} \notin\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$, then either $L(G)$ is hamiltonian, or G has both a P_{14} and a Y_{12}. Proof. By Lemma 4.15, we may assume that for any $j \neq i, v_{j}$ is not of Type 1A. By Lemma 4.14, if for some $j \neq i, v_{j}$ is not of Type 3B, G has both a P_{14} and a Y_{12}. Hence we may assume that for any $j \neq i, v_{j}$ is of Type 3B. Let $X=\left\{e_{1}^{i}, e_{2}^{i}, e_{3}^{i}\right\}$. Then X is an edge cut of G_{0}, and $G_{0}-X$ has $P I_{G_{0}}\left(v_{i}\right)$ as a component. Let G_{1} denote the other component of $G_{0}-X$. Then G_{0} / G_{1} is also a 3-edge-connected graph. By Theorem 4 of [19] (or by Theorem 1.1), either G_{0} / G_{1} has a spanning eulerian subgraph L^{\prime} or G_{0} / G_{1} has a cycle C^{\prime} of length at least 9 .

If G / G_{1} has a spanning eulerian subgraph L^{\prime}, then we may assume that $e_{1}^{i}, e_{2}^{i} \in E\left(L^{\prime}\right)$. Since $G_{1}=P(10)-v_{i}$, by the definition of $P(10), P(10)$ has a cycle $L^{\prime \prime}$ of length 9 , missing only one vertex of Type 3 B . It follows that $G_{0}\left[E\left(L^{\prime}\right) \cup E\left(L^{\prime \prime}\right)\right]$ is an eulerian subgraph missing one vertex of Type 3 B , and so $G_{0}\left[E\left(L^{\prime}\right) \cup E\left(L^{\prime \prime}\right)\right]$ can be lifted to a dominating eulerian subgraph of G. By Theorem 4.1, $L(G)$ is hamiltonian.

Therefore, G_{0} / G_{1} must have a cycle C^{\prime} of length at least 9 . By Lemma 4.10 (iv), $P(10)$ has a Y_{8} rooted at v_{i}, which can be lifted to a Y_{k} (with $k \geq 8$) rooted at w_{1}^{i} (say). Since $E\left(L_{i}\right) \cup X=E\left(G_{0} / G_{1}\right)$ and since $\left|E\left(C^{\prime} \mid\right)\right| \geq 9, G_{0}\left[E\left(L_{i}\right) \cup X\right]$ has a path Q^{\prime} from w_{1}^{i} of length at least 5 (consisting of a path from w_{1}^{i} to C^{\prime} and a path in C^{\prime}). It follows that $Q^{\prime} \cup Y_{8}$ contains both a P_{14} and a Y_{12}. This proves the lemma.

Lemma 4.17. Suppose that G does not have a P_{k} or a Y_{12} as a subgraph, and that $L(G)$ is not hamiltonian. In (i)-(iv) and (iv) below, we assume that $k=14$. Then each of the following holds.
(i) If v_{1} is of Type 1 A , then for any $i \geq 2, v_{i}$ is not of Type 3B.
(ii) For any i, v_{i} is not of Type 1 A .
(iii) For any i, v_{i} is not of Type 3B.
(iv) If v_{i} it of Type 1 B , then for any $j \neq i, v_{j}$ cannot be of Type 1 B or 2 A . Moreover, all Type 2 A vertices are independent in G.
(v) If $k=14$, then for any i, v_{i} is not of Type 1 B ; and if $k=13$, then $P(10)$ does not have a vertex of Type 2 A .
(vi) $P(10)$ does not have two nontrivial edges of G_{0}.

Proof. (i) Since v_{1} is of Type 1A, by Lemma 4.16, $L_{i}^{\prime}=K_{1}$ for $i \geq 2$; by Lemma 4.15, we have $L_{1}^{\prime} \in\left\{K_{1}, C_{4}, C_{5}, C_{6}, S(1,2), K_{2,3}\right\}$ such that if $L_{1}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}\right\}$, then $A_{G}\left(L_{i}\right)$ satisfies Remark 4.12(iii) and if $L_{1}^{\prime} \in\left\{S(1,2), K_{2,3}\right\}$, then $A_{G}\left(L_{i}\right)$ satisfies Lemma 4.13(ii). Let $X=\left\{e_{1}^{1}, e_{2}^{1}, e_{3}^{1}\right\}$ be the three edges in $P(10)$ incident with v_{1} such that for $1 \leq j \leq 3$, w_{j}^{1} is incident with e_{j}^{1}. If for some $j \geq 2, v_{j}$ is of Type 3 B , then by the definition of $P(10), P(10)-v_{j}$ has a spanning cycle C^{\prime}. We may assume that $e_{1}^{1}, e_{2}^{1} \in E\left(C^{\prime}\right)$. Hence by Theorem 2.1(iv), $E\left(C^{\prime}\right)$ induces a (w_{1}^{1}, w_{2}^{1})-trail in G containing at least one end of every edge in $E(G)-E\left(P I_{G}\left(v_{1}\right)\right)$. Since $L_{1}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}, K_{1}, S(1,2), K_{2,3}\right\}$, it is routine to verify that L_{1}^{\prime} has a $\left(w_{1}^{1}, w_{2}^{1}\right)$-path Q^{\prime} such that $E\left(\left(L_{1}^{\prime}\right)-V\left(Q^{\prime}\right)\right)=\emptyset$. It follows that $G_{0}\left[E\left(C^{\prime}\right) \cup E\left(Q^{\prime}\right)\right]$ can be lifted to a dominating eulerian subgraph of G. By Theorem 4.1, $L(G)$ is hamiltonian, contrary to the assumption of the lemma.
(ii) By contradiction, we may assume that v_{1} is of Type 1 A . By Lemma $4.14, L_{1}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$. For any $i \geq 2$, by Lemmas 4.15 and 4.17(i), v_{i} is not of Types 1 A and 3 B , and $L_{i}^{\prime}=K_{1}$. Let $v_{j} \in V(P(10))-\left(N_{P(10)\left(v_{1}\right)}\right) \cup\left\{v_{1}\right\}$. By Lemma 4.10(i), $P(10)$ has a $\left(v_{1}, v_{j}\right)$-Hamilton path Q^{\prime} of length 9 . Since v_{j} is not of Type $3 \mathrm{~B}, Q^{\prime}$ can be lifted to a path $Q^{\prime \prime}$ from w_{1}^{1} of length at least 10. Since $L_{1}^{\prime} \in\left\{C_{4}, C_{5}, C_{6}, K_{2,3}, S(1,2)\right\}$, by Remark 4.12(iii) and Lemma 4.14(ii), it is routine to find that L_{1}^{\prime} has both a P_{4} from w_{1}^{1} and a Y_{3} rooted at w_{1}^{1}. It follows that $Q^{\prime} \cup P_{4}$ and $Q^{\prime} \cup Y_{3}$ can be lifted to a $P_{k}(k \geq 14)$ and a $Y_{k^{\prime}}\left(k^{\prime} \geq 12\right)$ in G, contrary to the assumption of Lemma 4.17.
(iii) Suppose that v_{1} is of Type 3B. Then $v_{1} \in V\left(G_{0}\right)$ and $P(10)-v_{1}$ has a spanning cycle C^{\prime}. By Lemma 4.17(ii) and by Theorem 2.1(iv), C^{\prime} can be lifted to a spanning eulerian subgraph L^{\prime} of $G_{0}-v_{1}$. By Theorem 4.2(iii), $L(G)$ is hamiltonian, contrary to the assumption of Lemma 4.17.
(iv) By contradiction, we first assume that v_{1} is of Type 1 B and v_{2} is of Type 1 B or 2 A . By Remark 4.12(iv), L_{1} contains a $P_{k}(k \geq 4)$ and a $Y_{k^{\prime}}\left(k^{\prime} \geq 3\right)$ rooted at any vertex of L_{1}. By Lemma 4.10(i) or (ii), $P(10)$ has a (v_{1}, v_{2})-path of length at least 8, which can be lifted to a P_{14} as well as a Y_{12} of G by including a path of length at least 3 in L_{1} and a path of length at least 2 (or a Y_{3}) in L_{2}. Hence we cannot have two Type 1B vertices.

Next, we assume that v_{1} and v_{2} are nonadjacent in $P(10)$ and both of Type 2A. By Lemma 4.10(i), $P(10)$ has a $\left(v_{1}, v_{2}\right)$-path Q_{1} of length 9 , which can be lifted to a P_{14} and a Y_{12} in G by including two edges in L_{1} and two edges in L_{2}.

Remark 4.18. By (ii)-(iv) of Lemma 4.17, we make the following remarks.
(i) $P(10)$ has at most one vertex of Type 1B. Moreover, if $P(10)$ has a vertex of Type 1 B , then all other vertices must be of Type 2B or 3 A .
(ii) If v_{1} if of Type 2 A , then any vertex not incident with v_{1} must be of Type 2 B or 3 A . Furthermore, if $v_{1} v_{2} \in E(P(10))$ and both v_{1} and v_{2} are of Type 2 A , any other vertices of $P(10)$ must be of Type 2 B or 3 A .
(v) We only prove the case when $k=14$. The case when $k=13$ is similar and so it will be omitted. Suppose that v_{1} is of Type 1B. By Remark 4.18(i), all other vertices must be of Type 2B or 3A. If $P(10)$ has a nontrivial edge e, then by Lemma 4.10(ii), $P(10)$ has a Hamilton $\left(v_{1}, v_{j}\right)$-path Q with e not incident with v_{j}. It follows that Q can be lifted to a $\left(w_{1}^{1}, w_{1}^{j}\right)$-path Q^{\prime} with $\left|E\left(Q^{\prime}\right)\right| \geq 10$, for some $w_{1}^{1} \in A_{G}\left(L_{1}\right)$ and $w_{1}^{j} \in A_{G}\left(L_{j}\right)$. By Remark 4.12(iv), L_{1} has a $P_{k}(k \geq 4)$ from w_{1}^{1} and a $Y_{k^{\prime}}\left(k^{\prime} \geq 3\right)$ rooted at w_{1}^{1}. Since L_{j} is of Type 2B or $3 \mathrm{~A}, Q^{\prime}$ can be extended to a path of length at least 11 . It follows that by including the P_{4} or Y_{3} in L_{1}, Q^{\prime} can be extended to a P_{k} with $k \geq 14$ and a $Y_{k^{\prime}}$ with $k^{\prime} \geq 12$, contrary to the assumption of the lemma. This proves (v).
(vi) Suppose that $P(10)$ has two nontrivial edges e, e^{\prime} of G_{0}. By Lemma 4.10(iii), for some vertex $v_{k}, P(10)-v_{k}$ has a Hamilton $\left(v_{1}, v_{k}\right)$-path Q with $e, e^{\prime} \in E(Q)$ such that neither e nor e^{\prime} is incident with a vertex in $\left\{v_{1}, v_{k}\right\}$. Since Q contains 2 nontrivial edges, it can be lifted to a (w_{1}^{1}, w_{1}^{k})-path Q^{\prime} of length at least 11. By Lemma 4.17(v) and Remark 4.18(ii), v_{1} and v_{k} are of Types 2A, 2B or 3A. It follows that Q can be lifted to a P_{k} with $k \geq 14$ in G. If $P(10)$ has a vertex (say v_{1}) of Type 2A or 2B, then by Lemma 4.10(ii), $P(10)$ has a Hamilton $\left(v_{1}, v_{j}\right)$-path T containing e and e is not incident with v_{j}. As $e \in E(T)$ and as v_{j} is of Types $2 \mathrm{~A}, 2 \mathrm{~B}$ or $3 \mathrm{~A}, T$ can be extended to a path from w_{1}^{1} (say) of length at least 11 by including an additional edge incident with a vertex in L_{j}. Since v_{1} is of Type 2 A or $2 \mathrm{~B}, L_{1}$ has a Y_{2} rooted at w_{1}^{1}, and so G has a Y_{12}. Therefore, we have found both a P_{14} and a Y_{12} in G, contrary to the assumption of the lemma. This proves (vi).

The next lemma can also be verified by similar arguments, whose proofs are then omitted.
Lemma 4.19. Suppose that $L(G)$ is not hamiltonian. Then each of the following holds.
(i) Suppose $P(10)$ has one v_{i} of Type 2A. Then G has a P_{13} and $a Y_{11}$. If, in addition, $P(10)$ has a nontrivial edge e, then G has both a Y_{12} and $a P_{14}$.
(ii) Suppose $P(10)$ has one v_{i} of Type 2B such that $\left|V\left(L_{i}\right)\right| \geq 3$, then G has a Y_{11} and a P_{12}; if, in addition, $P(10)$ has a nontrivial edge e, then G has both $a Y_{12}$ and a P_{13}.
(iii) Suppose that $P(10)$ has a Type 2A vertex u, and a Type 2 A or 2 B vertex v. If $u v \notin E(P(10))$, then G has a P_{13} and $a Y_{12}$, if $u v \in E(P(10))$, then G has a P_{12} and a Y_{11}. If, in addition, $P(10)$ has a nontrivial edge, then G has a P_{14} if $u v \notin E(P(10))$, and a P_{13} and $a Y_{12}$ if $u v \in E(P(10))$.
(iv) Suppose that every vertex of $P(10)$ is of Type 2B. If $P(10)$ contains a nontrivial edge, then G has a P_{13}. If, in addition, for some $i,\left|V\left(L_{i}\right)\right| \geq 3$, then G has a Y_{12}.

Proof of Corollaries 4.8 and 4.9. The necessity of both Corollaries 4.8 and 4.9 follows from Lemma 4.7(iv). It remains to prove the sufficiency of the two corollaries. By Theorems 4.4 and 4.5 , It suffices to prove the sufficiency of Corollaries 4.8 and 4.9 for line graphs. Let G be a graph such that $L(G)$ is 3-connected and non-hamiltonian, and let G_{0} denote the core of G. If $L(G)$ is P_{k}-free, then G does not have P_{k+1} as a subgraph; If $L(G)$ is Z_{k}-free, then G does not have Y_{k+2} as a subgraph. By Theorem 4.3, either Theorem 4.3(ii) or Theorem 4.3(iii) must hold.
Case 1. Theorem 4.3(ii) holds and G_{0} is contracted to the Petersen graph $P(10)$.
Suppose that $L(G)$ is Z_{9}-free. Then G does not contain a Y_{11}. By Lemmas 4.17 and 4.19 , every vertex of $P(10)$ must be of Type 2B with each $L_{i} \cong K_{2}$. Hence $G_{0}=P(10)$ and $G=P(10)^{\prime}$.

Suppose that $L(G)$ is P_{12}-free. Then G does not contain a P_{13}. By Lemmas 4.17 and 4.19 , every vertex of $P(10)$ must be of Type 2B. Hence $G_{0}=P(10)$ and $G \in\left\{P(10)^{\prime}, P(10)^{(3)}\right\}$.

Suppose that $L(G)$ is P_{13}-free and $G \notin\left\{P(10)^{\prime}, P(10)^{(3)}\right\}$. Then G does not contain a P_{14}. By Lemmas 4.17 and 4.19, $G_{0}=P(10)$ and $G \in\left\{P(10)^{\prime \prime}, P(10)^{(4)}, P(10)^{(5)}\right\}$. This completes the proof for Case 1.
Case 2. Theorem 4.3 (iii) holds and $c\left(G_{0}\right) \geq 12$ and G_{0} does not have a dominating eulerian subgraph. Let C^{\prime} be a longest cycle of G_{0} with $\left|E\left(C^{\prime}\right)\right|=c\left(G_{0}\right) \geq 12$. Since G_{0} is a contraction of G, there must be an edge subset X such that $G_{0}=G / X$. Therefore, there must be a cycle C of G such that $C^{\prime}=G /(E(C) \cap X)$. Let $C=u_{1} \ldots u_{h} u_{1}$ for some $h \geq 12$. Since C is not dominating in G, there must be an edge $e=w_{1} w_{2} \in E(G-C)$. Since G is connected, we may assume that $w_{1} u_{1} \in E(G)$, and so G has a path $P_{h+2}=w_{2} w_{1} u_{1} \ldots u_{h}$. Since $h \geq 12, G$ has a P_{14} and a Y_{11}. This implies that in Corollaries 4.8 and 4.9, this case cannot occur, and so it completes the proof for both corollaries.

Acknowledgments

The research of Baoyingdureng Wu is supported in part by NSFC (No. 11161046) and Xinjiang Talent Youth Project (No. 2013721012).

References

[1] L. Beineke, Derived graphs and digraphs, in: Beiträge zur Graphentheorie, Teubner, Leipzig, 1968.
[2] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory 1 (1977) 79-84.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, 1976.
[4] H.J. Broersma, L. Xiong, A note on minimum degree conditions for supereulerian graphs, Discrete Appl. Math. 120 (2002) 35-43.
[5] J. Brousek, Z. Ryjáček, O. Favaron, Forbidden subgraphs, hamiltonicity and closure in claw-free graph, Discrete Math. 196 (1999) 29-50.
[6] P.A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory 16 (1992) 177-196.
[7] P.A. Catlin, A reduction methods to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[8] P.A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congr. Numer. 56 (1987) 223-246.
[9] P.A. Catlin, Z.Y. Han, H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81-91.
[10] Z.-H. Chen, Reduction of graphs and spanning eulerian subgraphs (Ph.D. dissertation), Wayne State University, 1991.
[11] Z.-H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics (a survey), in: Combinatorics and Graph Theory 95, vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, 1995, pp. 53-69.
[12] Z.-H. Chen, H.-J. Lai, Supereulerian graphs and the Petersen graph, II, ARS Combin. 48 (1998) 271-282.
[13] J. Fujisawa, Forbidden subgraphs for Hamiltonicity of 3-connected claw-free graphs, J. Graph Theory 73 (2013) 146-160.
[14] F. Harary, Graph Theory, Edison-Wesley Publishing Company, Reading, 1969.
[15] F. Harary, C.St.J.A. Nash-Williams, On eulerian and Hamiltonian graphs and line graphs, Can. Math. Bull. 8 (1965) 701-710.
[16] F. Jaeger, A note on subeulerian graphs, J. Graph Theory 3 (1979) 91-93.
[17] H.-J. Lai, Y.T. Liang, Supereulerian graphs in the graph family C C_{2} (6, k), Discrete Appl. Math. 159 (2011) 467-477.
[18] H.-J. Lai, Y. Shao, H. Yan, An update on supereulerian graphs, WSEAS Trans. Math. 12 (2013) 926-940.
[19] H.-J. Lai, L. Xiong, H. Yan, J. Yan, Every 3-connected claw-free Z_{8}-free graph is Hamiltonian, J. Graph Theory 64 (2010) 1-11.
[20] H.-J. Lai, H. Yan, Supereulerian graphs and matchings, Appl. Math Lett. 24 (2011) 1867-1869.
[21] P. Li, H.-J. Lai, Y. Shao, M. Zhan, Spanning cycles in regular matroids without small cocircuits, European J. of Combin. 33 (8) (2012) $1765-1776$.
[22] D. Li, H.-J. Lai, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422-428.
[23] X. Li, D. Li, H.-J. Lai, The supereulerian graphs in the graph family C (l, k), Discrete Math. 309 (2009) 2937-2942.
[24] M.M. Matthews, D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139-146.
[25] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309-310.
[26] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224.
[27] Y. Shao, Claw-free graphs and line graphs (Ph.D. Dissertation), West Virginia University, 2005.
[28] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324.
[29] T. Łuczak, F. Pfender, Claw-free 3-connected P_{11}-free graphs are hamiltonian, J. Graph Theory 47 (2004) 111-121.
[30] M.Q. Zhan, Hamiltonicity of 6-connected line graphs, Discrete Appl. Math. 158 (2010) 1971-1975.

[^0]: , ${ }^{\text {Wh}}$ Supported by NSF of China (No. 11361060).

 * Corresponding author at: College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China.

 E-mail addresses: mathmxl115@xju.edu.cn (X. Ma), hongjianlai@gmail.com (H.-J. Lai), xingheng-1985@163.com (W. Xiong), baoyin@xju.edu.cn (B. Wu), xjaxh@163.com (X. An).

