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a b s t r a c t

A graph G is supereulerian if it has a spanning eulerian subgraph. We prove that every
3-edge-connected graph with the circumference at most 11 has a spanning eulerian
subgraph if and only if it is not contractible to the Petersen graph. As applications, we
determine collections F1, F2 and F3 of graphs to prove each of the following
(i) Every 3-connected {K1,3, Z9}-free graph is hamiltonian if and only if its closure is not a
line graph L(G) for some G ∈ F1.
(ii) Every 3-connected {K1,3, P12}-free graph is hamiltonian if and only if its closure is not a
line graph L(G) for some G ∈ F2.
(iii) Every 3-connected {K1,3, P13}-free graph is hamiltonian if and only if its closure is not
a line graph L(G) for some G ∈ F3.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite loopless graphs and follow [3] for undefined terminology and notations. In particular, κ(G) and κ ′(G)
denote connectivity and edge connectivity of G, respectively. We define κ ′(K1) = ∞. For a graph G which contains at least
one cycle, the circumference ofG, denoted by c(G), is the length of a longest cycle contained inG; and the girth ofG, denoted
by g(G), is the length of a shortest cycle contained in G. For an integer i ≥ 0 and v ∈ V (G), define

Di(G) = {v ∈ V (G) : dG(v) = i}, and EG(v) = {e ∈ E(G) : e is incident with v in G}.

For a vertex v ∈ V (G), define NG(v) = {u ∈ V (G) : vu ∈ E(G)}, and for X ⊆ V (G), NG(X) = ∪x∈X NG(x). If H is a subgraph of
G, the set of vertices of attachment of H in G is

AG(H) = {v ∈ V (H) : NG(v)− V (H) ≠ ∅}.

The subscript G in the notations above might be omitted if G is understood from the context.
For a graph G, let O(G) denote the set of all odd degree vertices in G. A graph G is eulerian if G is connectedwith O(G) = ∅,

and G is supereulerian if G has a spanning eulerian subgraph. In 1977, Boesch et al. [2] raised a problem to determine when
a graph is supereulerian. They commented in [2] that such a problem would be a difficult one. In 1979, Pulleyblank [25]
confirmed this remark by showing that the problem to determine if a graph is supereulerian, even within planar graphs,
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is NP-complete. For more literature on supereulerian graphs, see Catlin’s excellent survey [6] and its supplements [11]
and [18]. Catlin [7] and Jaeger [16] independently showed that every 4-edge-connected graph is supereulerian. Therefore,
the problem is to determine which 3-edge-connected or 2-edge-connected graph is supereulerian. Characterizations of 2 or
3-edge-connected supereulerian graphs for certain classes of graphs have been widely investigated. See [4,17,20–23], and
[30], among others. A main result of this paper is the following.

Theorem 1.1. Let G be a graph with κ ′(G) ≥ 3. If the circumference of G is at most 11, then G is supereulerian if and only if G
is not contractible to the Petersen graph P(10).

Since P(10) has circumference 9, Theorem 1.1 immediately implies Theorem 4 of [19] that if a 3-edge-connected graph
has circumference at most 8, then G is supereulerian. Theorem 1.1 also has a number of applications in 3-connected
hamiltonian claw-free graphs. For an integer k > 0, Pk denotes a path of k vertices and Zk denotes the graph obtained
from the disjoint union of a Pk+1 and a 3-cycle K3 by identifying one end vertex of Pk+1 with a vertex of K3. For graphs
H1,H2, . . . ,Hs, a graph G is {H1,H2, . . . ,Hs}-free if it contains no induced subgraph isomorphic to a copy of Hi for any i. A
graph G is called claw-free if it is K1,3-free.

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where two vertices in L(G) are adjacent if and
only if the corresponding edges in G have a common vertex. Beineke [1] and Robertson [14] showed that line graphs are
K1,3-free graphs.

Two fascinating conjectures on hamiltonian line graphs and hamiltonian claw-free graphs have attracted the attention
of many researchers.

Conjecture 1.2 (Thomassen, [28]). Every 4-connected line graph is hamiltonian.

Conjecture 1.3 (Matthews and Sumner, [24]). Every 4-connected K1,3-free graph is hamiltonian.

Ryjác̆ek [26] introduced the line graph closure cl(G) of a claw-free graph G and used it to show that Conjectures 1.2 and
1.3 are equivalent. Motivated by Conjectures 1.2 and 1.3, many researchers have investigated forbidden induced subgraph
conditions for hamiltonicity. In 1999, Brousek, Ryjác̆ek and Favaron proved the following theorem.

Theorem 1.4 (Brousek, Ryjác̆ek and Favaron, [5]). Every 3-connected {K1,3, Z4}-free graph is hamiltonian.

Theorem 1.4 is extended to Theorem 1.5, and further to Theorem 1.6.

Theorem 1.5 (Lai, Xiong, Yan, Yan, [19]). Every 3-connected {K1,3, Z8}-free graph is hamiltonian.

Theorem 1.6 (Fujisawa [13]). Let Q ∗ be the graph obtained from the Petersen graph by adding one pendant edge to each vertex.
Let G be a 3-connected {K1,3, Z9}-free graph. Then G is hamiltonian unless G is the line graph of Q ∗.

In 2004, Łuczak and Pfender proved another type of forbidden subgraph condition for 3-connected hamiltonian claw-free
graphs.

Theorem 1.7 (Łuczak and Pfender, [29]). Every 3-connected {K1,3, P11}-free graph is hamiltonian.

As there exist 3-connected nonhamiltonian {K1,3, Z9}-free graphs and 3-connected nonhamiltonian {K1,3, P12}-free
graphs, some natural problems arise: can we characterize 3-connected nonhamiltonian {K1,3, Z9}-free graphs and 3-
connected nonhamiltonian {K1,3, P12}-free graphs? In a later section of this paper, we shall apply Theorem 1.1 to determine
collections of graph F1, F2 and F3 to prove the following. Note that Theorem 1.8(i) provides an independent proof of
Theorem 1.6.

Theorem 1.8. Each of the following holds.

(i) Every 3-connected {K1,3, Z9}-free graph is hamiltonian if and only if its closure is not a line graph L(G) for some G ∈ F1.

(i) Every 3-connected {K1,3, P12}-free graph is hamiltonian if and only if its closure is not a line graph L(G) for some G ∈ F2.

(i) Every 3-connected {K1,3, P13}-free graph is hamiltonian if and only if its closure is not a line graph L(G) for some G ∈ F3.

Part of our approach is amodification of that in [19]. However, we have noticed that the proof of a key theorem in [19] has
a gap: when analyzing Case 1.2 in the proof of Theorem 4 in [19], an important subcasewhen G1 or G2 has only three vertices
is missing. This subcase turns out to be the most complicated one. In this paper, we will fix this gap by proving Lemma 3.1
and Theorem 1.1. In Section 2, we display the basics of Catlin’s reductionmethod, and utilize this reductionmethod to prove
Theorem 1.1 in the next section. The applications of Theorem 1.1 to Hamiltonian claw-free graphs will be given in the last
section.
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Fig. 1. The graphs R and R1 .

2. Preliminaries

Let G be a graph and X ⊆ E(G) be an edge subset. The contraction G/X is the graph obtained from G by identifying the
two ends of each edge in X and then deleting the resulting loops. We define G/∅ = G. If K is a subgraph of G, then we write
G/K forG/E(K). IfK is a connected subgraph ofG, and if vK is the vertex inG/K ontowhichK is contracted, then the subgraph
G[V (K)] is the preimage of vK in G, and is denoted by PIG(vK ). The subscript G is often omitted when G is understood from
the context. A vertex v in a contraction of G is nontrivial if PI(v) has at least one edge. If L′ is a path (or a cycle, respectively)
of G/X , then by the definition of contraction, and by the connectedness of each component of G[X], G has a path L (or a cycle,
respectively) such that L/(E(L)∩ X) = L′. We then say that L′ is lifted to L in G. Note that the same L′ in G/X may have more
than one lifts in G.

In [7], Catlin discovered collapsible graphs. A graph G is collapsible if for any R ⊆ V (G) with |R| ≡ 0 (mod 2), G has
a spanning connected subgraph TR with O(TR) = R. Catlin showed in [7] that every vertex of G lies in a unique maximal
collapsible subgraph of G. The reduction of G, denoted by G′, is obtained from G by contracting all maximal collapsible
subgraphs of G. A graph is reduced if it is the reduction of some graph.

Theorem 2.1 (Catlin, [7]). Let G be a connected graph, let G′ be the reduction graph of G, H be a collapsible subgraph of G and
vH be the vertex in G/H onto which H is contracted. Each of the following holds:
(i) (Theorem 8 of [7]) G is collapsible if and only if G/H is collapsible. In particular, G is collapsible if and only if the reduction G′
is K1.
(ii) (Theorem 5 of [7]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [7]) g(G′) ≥ 4 and δ(G′) ≤ 3.
(iv) (Theorem 8 of [7]) If L′ is an open (or closed, respectively) trail of G/H such that vH ∈ V (L′), then G has an open (or closed,
respectively) trail L with E(L′) ⊆ E(L) and V (H) ⊆ V (L).

Theorem 2.2. Let G be a connected graph and let G′ be the reduction graph of G. Let K−3,3 denote the graph obtained from K3,3
by removing an edge, let R denote the graph (see Fig. 1) with V (R) = {x0, x1, x2, y0, y1, y2, v} and E(R) = {x0y0, x1y1, x2y2,
x0x1, x1x2, y0y1, y1y2, x0v, vy2}, and let R1 = R/{vy2} (see Fig. 1). Then each of the following holds:
(i) (Catlin, Theorem 11 of [8]) The graphs K3, K−3,3, and R are collapsible.

(ii) (Catlin, Theorem 7 of [7]) The reduction G′ does not have a nontrivial collapsible subgraph.
(iii) R1 is collapsible.

Proof. (iii) Since R is collapsible, any contraction of R is also collapsible. �.

Theorem 2.3 (Chen, [10]). If G is a 3-edge-connected simple graph with at most 13 vertices, then either G is supereulerian or G
is contractible to the Petersen graph P(10).

Definition 2.4. Let C = x1x2y1y2x1 be a 4-cycle in G with a partition π(C) = ⟨{x1, y1}, {x2, y2}⟩. Following [8], we define
G/π(C) to be the graph obtained from G− E(C) by identifying x1 and y1 to form a vertex v1, by identifying x2 and y2 to form
a vertex v2, and by adding an edge eπ(C) = v1v2.

Theorem 2.5 (Catlin, [8]). Let G be a graph containing a 4-cycle C and let G/π(C) be defined as above. Each of the following
holds.
(a) If G/π(C) is collapsible, then G is collapsible.
(b) If G/π(C) has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.

Definition 2.6. Let s1, s2, s3,m, l, t be integers with t ≥ 2 and m, l ≥ 1, M ∼= K1,3 with D3(M) = {a} and D1(M) =
{a1, a2, a3}. Define K1,3(s1, s2, s3) to be the graph obtained from M by adding si vertices with neighbors {ai, ai+1}, where
i ≡ 1, 2, 3 (mod 3). Let K2,t(u, u′) be a K2,t with u, u′ being the nonadjacent vertices of degree t . Let K ′2,t(u, u

′, u′′) be the
graph obtained from a K2,t(u, u′) by adding a new vertex u′′ that joins to u′ only. Let K ′′2,t(u, u

′, u′′) be the graph obtained
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Fig. 2. Some graphs in F with small parameters.

Fig. 3. These graphs are for Lemma 2.8.

from a K2,t(u, u′) by adding a new vertex u′′ that joins to a vertex of degree 2 of K2,t . Hence u′′ has degree 1 and both u and u′
have degree t in K ′′2,t(u, u

′′). We shall use K ′2,t and K ′′2,t for a K
′

2,t(u, u
′, u′′) and a K ′′2,t(u, u

′, u′′), respectively. Let S(m, l) be the
graph obtained from a K2,m(u, u′) and a K ′2,l(w, w′, w′′) by identifying uwith w, and w′′ with u′; let J(m, l) denote the graph
obtained from a K2,m+1 and a K ′2,l(w, w′, w′′) by identifying w, w′′ with the two ends of an edge in K2,m+1, respectively; let
J ′(m, l) denote the graph obtained from a K2,m+2 and a K ′2,l(w, w′, w′′) by identifying w, w′′ with two vertices of degree 2 in
K2,m+2, respectively. See Fig. 2 for examples of these graphs. Let

F = {K1, K2, K2,t , K ′2,t , K ′′2,t , K1,3(s, s′, s′′), S(m, l), J(m, l), J ′(m, l), P(10)},

where t, s, s′, s′′,m, l ≥ 0 are integers.

For a graph G, let F(G) be the minimum number of additional edges that must be added to G so that the resulting graph
has two edge-disjoint spanning trees.

Theorem 2.7 (Catlin, [7]). (i) If G is reduced, then F(G) = 2|V (G)| − |E(G)| − 2.

(ii) (Catlin et al., Theorem 1.3 of [9]) If G is 2-edge-connected, and if F(G) ≤ 2, then the reduction of G is either K1 or a K2,t for
some integer t ≥ 2.
(iii) (Chen and Lai, Theorem 2.4 of [12]) If G is connected reduced graph with |V (G)| ≤ 11 and F(G) ≤ 3, then G ∈ F , where
F is defined as above.

Lemma 2.8 (Lemma 2.1 of [22]). Let G be a connected simple graph with n ≤ 8 vertices and with D1(G) = ∅, |D2(G)| ≤ 2. Then
either G is one of three graphs depicted in Fig. 3, or the reduction of G is K1 or K2.

Theorem 2.9 (Theorem 4 of [19]). Let G be a graph. If κ ′(G) ≥ 3 and c(G) ≤ 8, then G is supereulerian.

It should be noted that the proof of Theorem 4 in [19] misses a case. This gap will be filled by the validity of Lemma 3.1.
Therefore, Theorem 2.9 remains a valid statement.

3. Proof of Theorem 1.1

Let P = v0v1v2 · · · vn denote a path in a graph G. For any 0 ≤ i < j ≤ n, we use the following notations of subpaths in
our proof:

P[vi, vj] = vivi+1vi+2 · · · vj, P(vi, vj] = vi+1vi+2 · · · vj,

P[vi, vj) = vivi+1vi+2 · · · vj−1 and P(vi, vj) = vi+1vi+2 · · · vj−1.

Thus P is also denoted by P[v0, vn], usually referred as a (v0, vn)-path. For discussion convenience, cycles are often given
with an orientation. For a cycle C = u1u2 · · · ulu1, we use the following notations in our proof:

C[ui, uj] = uiui+1ui+2 · · · uj, C(ui, uj] = C[ui, uj] − {ui},

C[ui, uj) = C[ui, uj] − {uj} and C(ui, uj) = C[ui, uj] − {ui, uj}.
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We also view P = v0v1v2 · · · vn as a path with an orientation. The path with the same vertices but in the reverse order is
denoted by←−P . If X, Y ⊆ V (G), then for any x ∈ X and y ∈ Y , an (x, y)-path is called an (X, Y )-path; when X = {x}, then an
(x, y)-path is also called an (x, Y )-path.

Lemma 3.1. Let G be a graph with c(G) ≤ 11 such that

κ(G) ≥ 2, κ ′(G) ≥ 3, and G is reduced. (1)

Let C = x1x2y1y2x1 be a 4-cycle in G with a partition π(C) = ⟨{x1, y1}, {x2, y2}⟩. Each of the following holds.
(i) κ ′(G/π(C)) ≥ 2.
(ii) If

the choice of C maximizes κ ′(G/π(C)), (2)

then κ ′(G/π(C)) ≥ 3.

Proof. (i) Assume that by contradiction, eπ(C) is a cut edge of G/π(C). Thus G − E(C) has two components G1 and G2. We
may assume that xi, yi ∈ V (Gi), (i ∈ {1, 2}). For each i ∈ {1, 2}, let Pi[xi, yi] be a longest (xi, yi)-path in Gi with length pi ≥ 2.
By (1), G is simple, and so as κ ′(G) ≥ 3, we have |V (Gi)| ≥ 4, (1 ≤ i ≤ 2).

Claim 1. For each i ∈ {1, 2}, pi ≥ 5.
By symmetry, it suffices to show that p1 ≥ 5. If p1 = 2, then every w ∈ V (G1)− {x1, y1}must be adjacent to both x1 and y1,

and so by κ ′(G) ≥ 3, G1 must have a cycle of length at most 3, contrary to (1).

Claim 1 Case A. p1 = 3.
Denote P1 = x1w1w2y1. Since κ ′(G) ≥ 3, and by (1), there must be a vertex w′ ∈ NG1(w2) − {x1, y1, w1}. By κ(G) ≥ 2,

G − w2 has a (w′, w′′)-path Q1 with such that V (Q1) ∩ {x1, y1, w1} = {w
′′
}. If w′′ ∈ {y1, w1}, then by (1), G contains no

3-cycles and so |E(Q1)| ≥ 2. Let

Q ′1 =

x1w1w2Q1[w

′, y1] if w′′ = y1
x1
←−Q1 [w1, w

′
]w2y1 if w′′ = w1.

Then as |E(Q1)| ≥ 2, |E(Q ′1)| ≥ 5, contrary to the assumption that p1 = 3. Hence we must have w′′ = x1. Since p1 = 3, we
must have n1 = 1 and so Q1 = w′x1.

By κ ′(G) ≥ 3 and by (1), theremust be a vertexw′1 ∈ NG(w1)−{x1, y1, z1, z ′1}. By κ(G) ≥ 2, G−w1 has a p(w′1, w
′′

1)-path
Q2 with V (Q2) ∩ {x1, y1, w2, w

′
} = {w′′1}. Since G is reduced, G contains no 3-cycles and so either w′′1 = y1, whence G1 has

a path x1w′w2w1Q2[w
′

1, y1]; or w′′1 = w′, whence G1 has a path x1w1Q2[w
′

1, w
′
]w2y1. In either case, a contradiction to the

assumption p1 = 3 is obtained. This proves Claim 1 Case A.

Claim 1 Case B. p1 = 4.
Denote P1 = x1w1w2w3y1. Since κ ′(G) ≥ 3 and by (1), there must be a vertex w′2 ∈ NG(w2) − {w1, x1, y1, z1}. By

κ(G) ≥ 2, G − w2 has a (w′2, w
′′

2)-path Q3 with V (Q3) ∩ {w1, x1, y1, z1} = {w′′2}. Since G is reduced, G contains no 3-
cycles, and so if w′′2 ∈ {w1, w2}, |E(Q3)| ≥ 2, implying that G1 has an (x1, y1)-path of length at least 6, contrary to p1 = 4.
Therefore, by symmetry and by p1 = 4, we may assume that w′′2 = x1 and Q3 = w′2x1. Again by κ ′(G) ≥ 3 and since
G is reduced, there must be a vertex w ∈ NG(w

′

2) − {w1, w2, x1, w2}. By κ(G) ≥ 2, G − w′2 has a (w, w′)-path Q4 with
V (Q4) ∩ {w1, w2, x1, y1, z1} = {w′}. Since p1 = 4, a similar argument to the above leads to w′2y1 ∈ E(G).

Again by κ ′(G) ≥ 3 and by (1), there must be a vertex w′1 ∈ NG(w1) − {w1, w2, w
′

2, x1, w3}. If w′1 = y1, then
G[{w1, w2, w

′

2, x1, y1, w3}] ∼= K−3,3, contrary to (1), (see Theorem 2.2). Thus w′1 ≠ y1 as well. By κ(G) ≥ 2, G − w1 has a
(w′1, w

′′

1)-pathQ5 withV (Q5)∩{w2, w
′

2, x1, y1, w3} = {w
′′

1}. SinceG is reduced, ifw′′1 ∈ {w2, x1}, |E(Q5)| ≥ 2. By Theorem2.2
and by (1), G cannot have R as a subgraph, and so if w′′1 = y1, then |E(Q5)| ≥ 2 also. Define

Q ′5 =



x1w1Q5[w
′

1, w2]w3y1 if w′′1 = w2

x1w1Q5[w
′

1, w
′

2]w2w3y1 if w′′1 = w′2
←−Q5 [x1, w′1]w1w2w3y1 if w′′1 = x1

x1w′2w2w1Q5[w
′

1, y1] if w′′1 = y1

x1w′2w2w1Q5[w
′

1, w3]y1 if w′′1 = w3.

In any case, |E(Q ′5)| ≥ 5, contrary to the assumption of p1 = 4. This proves Claim 1.
By Claim 1, min{p1, p2} ≥ 5, and so G has a cycle of length at least 12, contrary to the assumption c(G) ≤ 11. This

proves (i).
(ii). We argue by contradiction and assume that κ ′(G/π(C)) ≤ 2. By (i), we must have κ ′(G/π(C)) = 2. Then G− E(C) has
a cut edge e = z1z2 and G− (E(C) ∪ {e}) has two components G1 and G2 such that xi, yi, zi ∈ Gi, (1 ≤ i ≤ 2).
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a b

Fig. 4. Graphs in Case 1 and Case 2 of the proof for Lemma 3.1, respectively.

Case 1.min{|V (G1)|, |V (G2)|} = 3.
We may assume that |V (G2)| ≥ |V (G1)| = 3. Since κ ′(G) ≥ 3, x1z1, y1z1 ∈ E(G). Thus C1 = x1x2y1z1x1, C2 = x1y2y1z1x1

are two 4-cycles (see Fig. 4(a)). Let π(C1) = ⟨{x1, y1}, {x2, z1}⟩ and π(C2) = ⟨{x1, y1}, {y2, z1}⟩. By Lemma 3.1(i), both
κ ′(G/π(C1)) = 2 and κ ′(G/π(C2)) = 2. Therefore, (G/π(C1))− eπ(C1) has a cut edge v2u2 separating the two ends of eπ(C1).
If v2u2 = z1z2, then x2 would be a cut-vertex of G, contrary to (1). Hence v2u2 ≠ z1z2. Similarly, (G/π(C2)) − eπ(C2) has a
cut edge v1u1 ≠ z1z2 separating the two ends of eπ(C2), as depicted in Fig. 4(a), where the subgraphs H1 and H2 are possibly
trivial. Hence

D = {z1z2, u1v1, u2v2} is an edge cut of G.

Let L be the component of G−Dwith u1, u2, z2 ∈ V (L), and let P[u1, u2] be a longest (u1, u2)-path in Lwith length p. Choose
an (x2, v1)-path P ′ in H1 and a (v2, y2)-path P ′′ in H2.

Claim 2. p ≥ 5.
If p = 1, then u1u2 ∈ E(G). By κ ′(G) ≥ 3 and by (1), there exist u′i ∈ NG(ui) − {u3−i, v3−i, vi}, for 1 ≤ i ≤ 2. As p = 1,

every (u′1, u
′

2)-path of G must use either u1u′1 or u2u′2 (but not both), and so either u1 or u2 would be a cut vertex of G, contrary
to (1). Hence p ≥ 2.

Suppose that p = 2 and P = u1u′1u2. Since κ ′(G) ≥ 3, there must be a z ∈ NG(u′1)− V (P). By κ(G) ≥ 2, G has a cycle Cz
containing both u1u′1, u

′

1z, and so G has a (u1, z)-path Q1 = Cz − u′1. If u2 ∉ V (Q1), then Q1[u1, z]u′1u2 has length at least 3,
contrary to p = 2. Therefore, we assume u2 ∈ V (Q1), and so u1u′1

←−Q1 [z, u2] is a (u1, u2)-path in L of length at least 3, contrary
to p = 2.

Assume that p = 3 and P = u1u′1u
′

2u2. If we have bothw1 ∈ (NL(u1)−V (P))∩NL(u′2) andw2 ∈ (NL(u2)−V (P))∩NL(u′1),
then u1w1u′2u

′

1w2u2 is a path of length 5. Hence we assume that (NL(u2)− V (P)) ∩ NL(u′1) = ∅.
By κ ′(G) ≥ 3, NL(u′1) − V (P) contains a vertex w1 and NL(u2) − V (P) contains a vertex w2 such that w1 ≠ w2. Since

κ(G) ≥ 2, G has a cycle C containing w1 and w2. Since {u1v1, u2v2, z1z2} is an edge cut, |E(C) ∩ {u1v1, u2v2, z1z2}| ∈ {0, 2},
and so either C[w1, w2] or C[w2, w1] is a path in L. Assume that C[w1, w2] is a path in L. Then L − u′1 has a shortest path
Q2[w1, w

′
] for some w′ ∈ V (P). If w2 ∈ V (Q2), then as w1 ≠ w2, u1u′1Q2[w1, w2]u2 has length at least 4. Hence we assume

that w2 ∉ Q2. Let

Q ′2 =


←−Q2 [u1, w1]u′1u

′

2u2 if w′ = u1
u1u′1Q2[w1, u′2]u2 if w′ = u′2
u1u′1Q2[w1, u2] if w′ = u2, (as (NL(u2)− V (P)) ∩ NL(u′1) ≠ ∅, |E(Q2[w1, u2])| ≥ 2).

Note that |E(Q ′2)| ≥ 4, and so a contradiction to p = 3 occurs.
Assume that p = 4 and P = u1u′1u

′

2u
′

3u2. For 1 ≤ i ≤ 3, since κ ′(G) ≥ 3, there exists a wi ∈ NL(u′i) − V (P),
(possibly w1 = w3). Suppose first that NL(u′1) ∩ NL(u′3) − V (P) ≠ ∅, which contains a vertex w. By κ ′(G) ≥ 3, there
exists a w′ ∈ NL(w) − {u′1, u

′

3}. By (1), G is reduced, and so w′ ∉ V (P). As κ(G) ≥ 2, G − w has a (w′, w′′)-path Q3 with
V (Q3) ∩ V (P) = {w′′}. If z2 ∉ V (Q3), then Q3 is a path in L. Let

Q ′3 =


←−Q3 [u1, w

′
]wu′1u

′

2u
′

3u2 if w′′ = u1

u1
←−Q3 [u′1, w

′
]wu′3u2 if w′′ = u′1

u1u′1wQ3[w
′, u′2]u

′

3u2 if w′′ = u′2
u1u′1wQ3[w

′, u′3]u2 if w′′ = u′3
u1u′1u

′

2u
′

3wQ3[w
′, u2] if w′′ = u2.

In any case, Q ′3 has length at least 5, contrary to p = 4. Hence z2 ∈ V (Q3). Then x1x2y1
←−
P ′′ [y2, v2] u2u′3u

′

2u
′

1wQ3[w
′, z2] z1x1

is a cycle of length at least 12, contrary to the assumption that c(G) ≤ 11.
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Thus we must have NL(u′1) ∩ NL(u′3) − V (P) = ∅. Since κ(G) ≥ 2, G has a cycle C with w1, w3 ∈ V (C). Since
{u1v1, u2v2, z1z2} is an edge cut, either C[w1, w3] or C[w3, w1] is a path in L. Let T be a (w1, w3)-path in L. If V (T )∩V (P) = ∅,
then since w1 ≠ w3, the path u1u′1T [w1, w3]u′3u2 is of length at least 5, contrary to p = 4. Hence V (T ) ∩ V (P) ≠ ∅, and so
C contains a (w1, w

′

1)-path T1 and a (w3, w
′

3)-path T3 such that for i ∈ {1, 3}, V (Ti) ∩ V (P) = {w′i}. If w′1 ∈ {u1, u′2}, then
either←−T1 [u1, w1] u′′1u

′

2u
′

3u2 or u1u′1T1[w1, u′2]u
′

3u2 is a (u1, u2)-path of length at least 5 in L. Hence we have w′1 ∈ {u
′

3, u2}.
Similarly, w′3 ∈ {u

′

1, u1}. If (w′1, w
′

3) = (u2, u1), then
←−T2 [u1, w

′

3] u
′

3u
′

2u
′

1T1[w1, u2] has length at least 6. Thus we only need
to discuss the following cases.

Claim 2 Case A. (w′1, w
′

3) = (u′3, u
′

1).
As {w1, u′2, w3} ⊆ NL(u′1) ∩ NL(u′3) and as G is reduced, we may assume that u′2 ≠ z2.
By κ(G) ≥ 2, G − u′2 has a (w2, w

′

2)-path T2 for some w′2 ∈ V (P) such that V (T2) ∩ V (P) = {w′2}. If z2 ∈ V (T2), then
x1x2y1

←−
P ′′ [y2, v2]u2u′3T3[w3, u′1]u

′

2T2[w2, z2] z1x1 is a cycle of length 10+ |E(
←−
P ′′ [y2, v2])| + |E(T3[w3, u′1])| +|E(T2[w2, z2])|.

Since w3 ≠ u′1 and since c(G) ≤ 11, we must have u′2z2 ∈ E(G). By symmetric arguments, we also have w1z2 ∈ E(G). It
follows that u1u′1w1z2u′2u

′

3u2 is of length 6, contrary to p = 4. Thus z2 ∉ V (T2) and T2 is a path of L. If w′2 ∈ {u1, u′1}, then
←−T2 [u1, w2] u′2u

′

1w1u′3u2 (ifw′2 = u1) or u1
←−T2 [u′1, w2] u′1w3u′3u2 (ifw′2 = u′1) are (u1, u2)-paths of length at least 5 in L. Hence

w′2 ∉ {u1, u′1}. By symmetry, w′2 ∉ {u2, u′3}, and so w′2 ∉ V (P), contrary to the assumption that w′2 ∈ V (P). Hence Case A
does not occur.

Claim 2 Case B. (w′1, w
′

3) ∈ {(u
′

3, u1), (u2, u′1)}.
By symmetry, we assume that (w′1, w

′

3) = (u′3, u1). By κ(G) ≥ 2, G−u′2 has a (w2, w
′

2)-path T2 for some w′2 ∈ V (P) such
that V (T2) ∩ V (P) = {w′2}. As shown in the proof of Case A, w′2 ∉ {u1, u′1}. If w

′

2 = u′3, then u1u′1u
′

2T2[w2, u′3]u2 has length
at least 5. If w′2 = u2, then

←−T2 [u1, w3]
←−T1 [u′3, w1]u′1u

′

2T2[w2, u2] has length at least 5. Therefore, in any case, a contradiction
to p = 4 is obtained. This shows that Case B does not occur either, which completes the proof of Claim 2.

We continue our proof for Case 1. By Claim 2, p ≥ 5. If p ≥ 6, then G has a cycle z1x1P ′[x2, v1]P[u1, u2] P ′′[v2, y2]y1z1
with length at least 12, contrary to the assumption that c(G) ≤ 11. Hence p = 5. Let P = u1u′1u

′

2u
′

3u
′

4u2. By κ ′(G) ≥ 3, for
1 ≤ i ≤ 4, there exists u′′i ∈ NG(u′i)− NP(u′i), (possibly u′′1 = u′′3 , u

′′

2 = u′′4 , or u
′′

1 = u′′4).
Case 1.1 [(NG(u′1) ∩ NG(u′3)) ∪ (NG(u′2) ∩ NG(u′4))] − V (P) ≠ ∅.

By symmetry, we assume that there exists a w ∈ NG(u′1) ∩ (NG(u′3)− V (P)). By κ ′(G) ≥ 3, there exists a w′ ∈ NG(w)−
{u′1, u

′

3}. (We can view u′′1 = u′′3 = w.) By (1), G is reduced, and so w′ ∉ V (P) − {u2}. By κ(G) ≥ 2, G − w has a (w′, w′′)-
path Q4 such that V (Q7) ∩ V (P) = {w′′}. If z2 ∈ V (Q4), then y1y2x1P ′[x2, v1] u1u′1u

′

2u
′

3wQ4[w, z2]z1y1 is a cycle of length
10 + |E(P ′[x2, v1])| + |E(Q4[w, z2])|. By c ≤ 11, we must have w′ = z2 and so wz2 ∈ E(G). By symmetry, u′2z2 ∈ E(G).
This implies that u1u′1u

′

2z2wu′3u
′

4u2 is a path of length 7, contrary to p = 5. Hence z2 ∉ V (Q4) (and so Q4 is a path in L). If
w′ ∉ {w′′, u2} and w′′ ≠ u2, then define

Q ′4 =



←−Q4 [u1, w
′
]wu′1u

′

2u
′

3u
′

4u2 if w′′ = u1

u1
←−Q4 [u′1, w

′
]wu′3u

′

4u2 if w′′ = u′1
u1u′1wQ4[w

′, u′2]u
′

3u
′

4u2 if w′′ = u′2
u1u′1wQ4[w

′, u′3]u
′

4u2 if w′′ = u′3
u1u′1u

′

2u
′

3wQ4[w
′, u′4]u2 if w′′ = u′4

u1u′1u
′

2u
′

3wQ4[w
′, u2] if w′′ = u2 and w′ ≠ w′′.

In each of these cases, a (u1, u2)-path of length at least 6 in L is found, contrary to p = 5. Therefore, we may assume that
w′ = w′′ = u2, and so wu2 ∈ E(G). By symmetry, u′2u2 ∈ E(G). But then G[(V (P)− {u1}) ∪ {w}] contains a K−3,3, and so G is
not reduced, contrary to (1).
Case 1.2 (NG(u′1) ∩ NG(u′3)) ∪ (NG(u′2) ∩ NG(u′4)) ⊆ V (P).

Suppose first that [(NG(u1) ∩ NG(u′2)) ∪ (NG(u2) ∩ NG(u′3))] − V (P) ≠ ∅. By symmetry, we assume that there exists a
vertex w1 ∈ NG(u1) ∩ NG(u′2)− V (P). We first show that

u′1u
′

4 ∉ E(G). (3)

By contradiction, we assume that u′1u
′

4 ∈ E(G). Since G is reduced and has no K−3,3, u
′′

3 ∉ V (P). By κ(G) ≥ 2, G − {u′3} has a
(u′′3, u

′′′

3 )-path T3 such that V (T3) ∩ V (P) = {u′′′3 }. Define

T ′3 =



←−T3 [u1, u′′3]u
′

3u
′

2u
′

1u
′

4u2 if u′′′3 = u1

u1w1u′2
←−T3 [u′1, u

′′

3]u
′

3u
′

4u2 if u′′′3 = u′1
u1u′1u

′

2
←−T3 [u′′2, u

′′

3]u
′

3u
′

4u2 if u′′′3 = u′2
P[u1, u′3]T3[u

′′

3, u
′

4]u2 if u′′′3 = u′4
u1w1u′2u

′

1u
′

4u
′

3T3[u
′′

3, u2] if u′′′3 = u2.

Thus in any case, a (u1, u2)-path of length longer than 5 is found. This justifies (3).
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Byκ(G) ≥ 2,G−{u′1}has a (u′′1, u
′′′

1 )-path T1 such thatV (T1)∩V (P) = {u′′′1 }. SinceG is reduced, andby (3),u′′1 ∉ V (P)−{u2}.
Thus if u′′′1 ∈ V (P) − {u2}, then u′′1 ≠ u′′′1 . It follows by p = 5 that we must have u′′1 = u′′′1 = u2. Thus u′1u2 ∈ E(G). By
symmetry, we also have u′4u1 ∈ E(G).

LetW be the subgraph of Gwith V (W ) = V (P) ∪ {w1} and E(W ) = E(P) ∪ {w1u1, w1u′2, u1u′4, u
′

1u2}. Hence F(W ) = 3.
As |V (W )| = 7, by Theorem 2.7(iii), G is not reduced, contrary to (1). Thus we may assume that

(NG(u1) ∩ NG(u′2)) ∪ (NG(u2) ∩ NG(u′3)) ⊆ V (P). (4)

Subcase 1.2A u′2 ∈ NG(u2) and u′3 ∈ NG(u1).
Since G is reduced, u′′1, u

′′

4 ∉ V (P). Since κ(G) ≥ 2, both u′′1, u
′′

4 are contained in a cycle C14. Since {u1v1, u2v2, z1z2}
is an edge cut of G, either C14[u′′1, u

′′

4] or C14[u′′4, u
′′

1] is a path in L, and so L contains a (u′′4, u
′′

1)-path Q5. If z2 ∉ V (Q5),
then u1u′3u

′

4Q5[u′′4, u
′′

1]u
′

1u
′

2u2 has length at least 6, contrary to p = 5. Hence z2 ∈ V (Q5), and so y1y2x1P ′[x2, v1]P[u1, u′4]
Q5[u′′4, z2]z1y1 is a cycle of length 11+ |E(P ′[x2, v1])| + |E(Q5[u′′4, z2])|. By c(G) ≤ 11, we must have u′′4 = z2. By symmetry,
we also have u′′1 = z2. It follows that u1u′3u

′

4z2u
′

1u
′

2u2 has length 6, contrary to p = 5. This proves Case 1.2A.
Subcase 1.2B u′2 ∈ NG(u2) and u′3 ∉ NG(u1) (or u′2 ∉ NG(u2) and u′3 ∈ NG(u1)). By symmetry, we assume that u′2 ∈ NG(u2)
and u′3 ∉ NG(u1). Since G is reduced, u′′3 ∉ V (P).

Suppose first that u′′1 ∈ V (P). Since G is reduced, we must have u′′1 = u′4. As κ(G) ≥ 2, G − u′3 has a (u′′3, u
′′′

3 )-path Q6
with V (Q6) ∩ V (P) = {u′′′3 }. Since p = 5 and by (4), u′′′3 ∉ V (P) − {u1, u′1}. If u

′′′

3 = u′1, then by the assumption of Case 1.2,
NG(u′1) ∩ NG(u′3) − V (P) = ∅, and so |E(Q6)| ≥ 2. This implies that u1

←−Q6 [u′1, u
′′′

3 ]u
′

3u
′

4u2 has length at least 6, contrary to
p = 5. Thus u′′′3 = u1 and |E(Q6)| ≥ 2, and so←−Q6 [u1, u′′3]u

′

3u
′

2u
′

1u
′

4u1 has length at least 6, contrary to p = 5.
Therefore, u′′1 ∉ V (P). By κ(G) ≥ 2, G has a cycle C13 with u′′1, u

′′

3 ∈ V (C13). Since {u1v1, u2v2, z1z2} is an edge-cut of G,
we may assume that C13[u′′1, u

′′

3] is a path in L.
If V (C13[u′′1, u

′′

3])∩V (P) = ∅, then by the assumption of Case 1.2, u′′1 ≠ u′′3 and so u1u′1C13[u′′1, u
′′

3]u
′

3u
′

4u2 has length at least
6, contrary to p = 5. Thus V (C13[u′′1, u

′′

3])∩V (P) ≠ ∅. Hence C13[u′′1, u
′′

3] contains a (u′1, x
′)-path Q ′6 with V (Q ′6)∩V (P) = {x′}

and a (u′′3, x
′′)-pathQ ′′6 with V (Q ′′6 )∩V (P) = {x′′}. By p = 5 and since G is reduced, x′ ∉ V (P)−{u2, u′4} and x′′ ∉ V (P)−{u1}.

If x′ = u′4, then u1u′1Q
′

6[u
′′

1, u
′

4]u
′

3u
′

2u2 has length at least 6. Hence we must have x′ = u2 and x′′ = u1. Since u′3 ∉ NG(u1),
|E(Q ′′6 )| ≥ 2, and so

←−
Q ′′6 [u1, u′′3]u

′

3u
′

2u
′

1Q
′

6[u
′′

2, u2] is of length at least 6, contrary to p = 5. This proves Case 1.2B.
Subcase 1.2C u′2 ∉ NG(u2) and u′3 ∉ NG(u1).

Then u′′2, u
′′

3 ∉ V (P). Since κ(G) ≥ 2, G contains a cycle C23 with u′′2, u
′′

3 ∈ V (C23). Since {u1v1, u2v2, z1z2} is an edge-cut
of G, we may assume that C23[u′′2, u

′′

3] is a path in L. If V (C23[u′′2, u
′′

3]) ∩ V (P) = ∅, then as G is reduced, u′′2 ≠ u′′3 , and so
u1u′1u

′

2C23[u′′2, u
′′

3]u
′

3u
′

4u2 is of length at least 6, contrary to p = 5.
Hence V (C23[u′′2, u

′′

3])∩ V (P) ≠ ∅, and so C23[u′′2, u
′′

3] contains a (u′′2, x
′)-path T ′9 with V (T ′9)∩ V (P) = {x′} and a (u′′3, x

′′)-
path T ′′9 with V (T ′′9 )∩ V (P) = {x′′}. By p = 5, (4), and by the assumption of Subcase 1.2C, we must have x′ = u2 and x′′ = u1
with |E(T ′9)| = |E(T ′′9 )| = 2.

If u′′1 = u2, then by Theorem 2.7(i), F(G[V (P)∪V (T ′9)∪V (T ′′9 )]) ≤ 3, and so by Theorem 2.7(iii), G is not reduced, contrary
to (1). Hence u′′1 ≠ u2. By (3) and (1), u′′1 ∉ V (P). Since κ(G) ≥ 2,G−u′1 has a (u′′1, u

′′′

1 )-path V (Q7)∩(V (P)∪V (T ′9)∪V (T ′′9 )) =

{u′′′1 }. By p = 5 and by the assumption of Case 1.2, u′′′1 ∉ V (P)− {u2, u′4}. If u
′′′

1 = u′4, then
←−
T ′′9 [u1, u′′3]u

′

3u
′

2u
′

1Q7[u′′1, u
′

4]u2 has
length at least 7. Similarly, if u′′′1 ∈ V (T ′9) ∪ V (T ′′9 ) − V (P) or u′′′1 = u′4, then a (u1, u2)-path of length at least 7 in L can be
found. Hence u′′′1 = u2. But then,

←−
T ′′9 [u1, u′′3]u

′

3u
′

2u
′

1Q7[u′′1, u2] has length at least 6, contrary to p = 5. This proves Subcase
1.2C, and completes the proof of Case 1.
Case 2. 4 ≤ min{|V (G1)|, |V (G2)|} ≤ 6.

We again assume that |V (G2)| ≥ |V (G1)|, and so 4 ≤ |V (G1)| ≤ 6. If |V (G1)| = 4, then V (G1) − {x1, y1, z1} = {w}. As
κ ′(G) ≥ 3, N(w) = {x1, y1, z1} and N(z1) ∩ {x1, y1} ≠ ∅. It follows that G has a 3-cycle, contrary to (1).

Assume that |V (G1)| = 5 and denote V (G1) − {x1, y1, z1} = {w, w′}. If ww′ ∈ E(G), then as κ ′(G) ≥ 3 and as
N(w) ∪ N(w′) ⊆ {x1, y1, z1}, N(w) ∩ N(w′) ≠ ∅, forcing G to have a 3-cycle, contrary to (1). Hence N(w) = N(w′) =
{x1, y1, z1}, and so G[{w, w′, x2; x1, y1, z1}] ∼= K−3,3, contrary to (1). (See Fig. 4(b)).

Hence |V (G1)| = 6. Let V (G1) − {x1, y1, z1} = {w1, w2, w3}, and let G1
= G[{w1, w2, w3, x1, x2, y1, y2, z1, z2}]. By

Theorem 2.7(i), F(G1) = 2|V (G1)| − |E(G1)| − 2. If dG(z1) ≥ 4, then F(G1) ≤ 2, and if dG(z1) = 3, then F(G1) ≤ 3. It follows
from Theorem 2.7 that G1 is not reduced, contrary to (1).
Case 3.min{|V (G1)|, |V (G2)|} ≥ 7.

Let Wi = {xi, yi}. For each i ∈ {1, 2}, let Pi be a longest (zi,Wi)-path in Gi, where that both xi, yi ∈ V (Pi) are possible.
Without loss of generality, assume that |E(P2)| ≥ |E(P1)|. If |E(P1)| ≥ 5, then by combining P1 and P2 with one suitable
edge in x1x2y1y2x1 and the edge z1z2, Gwould have a cycle of length at least 12, contrary to the assumption that c(G) ≤ 11.
Hence we must have

|E(P1)| ≤ 4. (5)

Claim 3. κ(G1) ≥ 2.
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Table 1
Contradictions to (5) in the proof of Claim 4B.

w1 w2 a (z1,W1)-path longer than 4 Symmetric cases and explanations

x1 x1 Q1[z1, w1]
←−Q2 [w2, y′′1]y

′

1 The cases when w1, w2 ∈ {x1, y1} can be excluded similarly.
x1 x′1 Q1[z1, w1]y′1

←−Q2 [y′′1, w2]y1 The case when w1 = y1 can be excluded similarly.
x′1 x1 Q1[z1, w1]y1y′1Q2[y′′1, w2] The case when w2 = y1 can be excluded similarly.
x′1 x′1 Q1[z1, w1]

←−Q2 [w2, y′′1]y
′

1y1

Let T (G1) be the block-cut-vertex tree of G1. By contradiction, we assume that T (G1) is a nontrivial tree. By (1), κ(G) ≥ 2.
Thus every block of G1 corresponding to a vertex in D1(T (G1)) (referred as an end block of G1) must contain x1, y1 or z1. We
may assume that x1 and z1 are in two different end blocks Bx1 , Bz1 , respectively. Let B1, b1, B2, b2, . . . , bk−1, Bk be the unique
(B1, Bk)-path of T (G1) with B1 = Bx1 and Bk = Bz1 . Since κ ′(G) ≥ 3 and since Bz1 is an end block, NG(z1) ∩ V (Bk) contains
a vertex z ′ which is not a cut vertex of G1, and so Bk ≠ K2. If |V (Bk)| ≤ 8, then by Lemma 2.8, Bk contains a nontrivial
collapsible subgraph, contrary to (1). Hence |V (Bk)| ≥ 9.

Let P denote a longest (z1, bk−1)-path in Bk. If |E(P)| ≥ 4, then P can be extended to a (z1, x1)-path of length at least 5,
contrary to (5). Hence |E(P)| ≤ 3. Since Bk is reduced and 2-connected, |E(P)| ≥ 2. If |E(P)| = 2, then since P is longest and
since κ(Bk) ≥ 2, Bk is spanned by a K2,t for some t ≥ 7. By κ ′(G) ≥ 3, every vertex in V (Bk)− {z1, bk−1} has degree 3 in Bk,
and so Bk must have a 3-cycle, contrary to (1). Thus we assume that P = z1v1v2bk−1 is a path of length 3. By κ ′(G) ≥ 3 and
(1), there exists a v′i ∈ NG(vi)− V (P), for each i ∈ {1, 2}, and v′1 ≠ v′2. By κ(Bk) ≥ 2 and by (1), Bk has a cycle C of length at
least 4 containing both v1v

′

1 and v2v
′

2. It follows that P ∪ C contains a (z1, bk−1)-path of length at least 4, whence G1 has a
(z1, x1)-path of length at least 5, contrary to (5). This proves Claim 3.

Claim 4. NG1(x1) ∩ NG1(y1) = ∅.

We shall prove Claim 4 by justifying several subclaims. We first show that |NG1(x1)∩ NG1(y1)| ≤ 1. In Claims 4A and 4B,
we assume that NG1(x1) ∩ NG1(y1) has distinct vertices x

′

1, y
′

1 to find contradictions.

Claim 4A. z1 ∉ NG(x1) ∩ NG(y1).

By contradiction, we assume that x′1 = z1. By (1), y′1z1 ∉ E(G), and so there exists a y′′1 ∈ NG1(y
′

1)−{x1, y1, z1}. By Claim 3,
G1 has a cycle C1 containing x1z1 and y′1y

′′

1 , with an orientation so that the edge x1z1 is oriented from x1 to z1.
If y′1 ∈ V (C1

[z1, y′′1]), then since G contains no K−3,3, |E(C1
[z1, y′1])| ≥ 3; and since G has no 3-cycles, |E(C1

[y′′1, x1])| ≥ 2.
It follows that |E(C1

[z1, x1])| ≥ 6, contrary to (5). Hence y′1 ∈ V (C1
[y′′1, x1]), and so by (5), |E(C1

[z1, y′′1])| ≤ 2. As G contains
no K−3,3, we must have |E(C1

[z1, y′′1])| = 2. Assume that C1
[z1, y′′1] = z1z ′1y

′′

1 .
Since κ ′(G) ≥ 3, NG(z ′1) − {y

′′

1, z1} contains a vertex w1. Since G has no K3, w1 ∉ {x1, y1, y′1}. By Claim 3, G1 contains
a (w1, w

′

1)-path Q1 such that V (Q1) ∩ {x1, y1, y′1, y
′′

1, z1} = {w
′

1}. By (5), we must have w′1 = y′1 and Q1 = w1y′1.
Arguing similarly with z ′1 replaced by y′′1 , we conclude that there must be a vertex w2 ∉ {w1, x1, y1, y′1, y

′′

1, z1} such that
w2y′′1, w2z1 ∈ E(G). Thus z1w2y′′1z

′

1y
′

1x1 has length 5, contrary to (5). This proves Claim 4A.

Claim 4B. |NG1(x1) ∩ NG1(y1)| ≤ 1.

If x′1, y
′

1 ∈ NG1(z1), then G[{x1, y1, z1, x2, x′1, y
′

1}]
∼= K−3,3, contrary to (1). Hence we assume that y′1 ∉ NG1(z1). By

κ ′(G) ≥ 3, NG1(y
′

1) − {x1, y1} contains a vertex y′′1 . Since y′1 ∉ NG1(z1), y
′′

1 ≠ z1. Since G is reduced, y′′1 ∉ {x1, x
′

1, y1}. By
κ(G1) ≥ 2, G1 has a cycle C2 containing both y′1y

′′

1 and z1. Without loss of generality, wemay assume that y′1 ∉ V (C2
[z1, y′′1]).

If x′1, x1, y1 ∉ V (C2
[z1, y′′1]), then C2

[z1, y′′1]y
′

1y1x
′

1x1 is a violation to (5). Therefore, there must be w1, w2 ∈ {x′1, x1, y1} as
well as a (z1, w1)-path Q1 and a (w2, y′′1)-path Q2 in C2

[z1, y′′1], such that for i = 1, 2, V (Qi)∩{x′1, x1, y1} = {wi}. Since G does
not have a K3 or a K−3,3, |E(Q2)| ≥ 2. The table below indicates a contradiction to (5) can always be found, which completes
the proof of Claim 4B (see Table 1).

Claim 4C. NG1(x1) ∩ NG1(y1) = ∅.

By contradiction and by Claims 4A and 4B, we assume that NG1(x1)∩NG1(y1) = {x
′

1}with x′1 ≠ z1. By κ(G1) ≥ 2, G1− x′1
has a (z1, {x1, y1})-path T1. By symmetry, we assume that V (T1) ∩ {x1, y1} = {y1}. As the path T1[z1, y1]x′1x1 has length
|E(T1)| + 2, by (5), |E(T1)| ≤ 2. By κ ′(G) ≥ 3, NG1(x

′

1)− {x1, y1} contains a x′′1 . By κ(G1) ≥ 2, G1 − x′1 has a (x′′1, x
′′′

1 )-path T2
with V (T2) ∩ V (T1) ∪ {x1} = {x′′′1 }.

Assume first that x′′′1 = z1. Since G has no K3, T1 = z1z ′1y1. By κ ′(G) ≥ 3, NG1(z
′

1) − {z1, y1} contains a z ′′1 . By κ(G1) ≥ 2,
G1 − z ′1 has a (z ′′1 , z

′′′

1 )-path T3 with V (T3) ∩ {x1, x′1, y1, z1} = {z
′′′

1 }. By (5), z ′′′1 = x′1 and T3 = z ′′1 x
′

1. If |E(T1)| ≥ 1, then
←−T1 [z1, x′′1]x

′

1z
′′

1 z
′

1y1 has length at least 5. Thus we must have z1x′1 ∈ E(G). Now by Theorem 2.7(i), F(G[{x1, x2, y1, y2, z1}
∪ V (T2)]) = 3, and so by Theorem 2.7(iii), G is not reduced, contrary to (1).

Hence we must have x′′′1 ≠ z1. If x′′′1 = x1, then since G has no K3, |E(T2)| ≥ 3, and so T1[z1, y1]x′1T2[x
′

1, x1] has length at
least 5. Thus x′′′1 ≠ x1. Similarly, x′′′1 ≠ y1. Hence we must have T1 = z1z ′1y1 and x′′′1 = z ′1. By (5), |E(T2)| ≤ 2. As G has no K3,
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T2 = x′′1z
′

1. By κ(G1) ≥ 2, G1 − z ′1 has a (z1, z41)-path T4 with V (T4) ∩ {x1, y1, x′1, x
′′

1, z1} = {z
4
1}. By (5), z4 ≠ z ′1. If z

4
1 = x1,

then T4[z1, x1]x′1x
′′

1z
′

1y1 has length at least 5. Hence z41 ≠ x1. Similarly z41 ≠ y1, and so z41 = x′′1 . As G has no K3, |E(T4)| ≥ 2,
and so T4[z1, x′′1]z

′

1y1x
′

1x1 has length at least 6, contrary to (5). This contradiction justifies Claim 4C and proves Claim 4.
By Claim 4, there exist x′1 ∈ NG(x1)− NG1(y1), and y′1 ∈ NG1(y1)− NG1(x1). Thus x

′

1 ≠ y′1 and x′1y1, x1y
′

1 ∉ E(G).

Claim 5. Each of the following holds.
(i) NG1(x

′

1) ∩ NG1(y
′

1)− {z1} = ∅.
(ii) NG1(x

′

1) ∪ NG1(y
′

1)− {z1} is an independent set.
(iii) For any x ∈ NG1(x1)− {z1} and for any y ∈ NG1(y1)− {z1}, xy ∉ E(G).

To prove Claim 5(i) and (ii), we assume that there exist x′′1 ∈ NG1(x
′

1) and y′′1 ∈ NG1(y
′

1). In the proof of (i), we assume that
x′′1 = y′′1 with the notational convention that x′′1y

′′

1 denoting a single vertex x′′1 , and in the proof of (ii), we assume x′′1y
′′

1 ∈ E(G).
We put some useful observations in Claim 5A.

Claim 5A. Each of the following holds.
(i) G1 has no (z1, {x1, y1})-path disjoint from {x′1, x

′′

1, y
′

1, y
′′

1}.
(ii) G1 has no (z1, {x′1, y

′

1})-path of length at least 2 disjoint from {x′′1, y
′′

1}.
(iii) G1 has no (z1, {x′′1, y

′′

1})-path of length at least 3.

If G1 has a path Q [z1, x1] disjoint from {x′1, x
′′

1, y
′

1, y
′′

1}, then Q [z1, x1]x′1x
′′

1y
′′

1y
′

1y1 violates (5). This proves Claim 5A(i). The
proofs of Claim 5A(ii) and (iii) are similar and will be omitted. This justifies Claim 5A.

By Claim 3, G1 has a cycle C ′′ containing z1 and x′1x
′′

1 , and so by Claim 5A(ii), we must have z1x′1 ∈ E(C ′′) ⊆ E(G). By (1),
G has no 3-cycles, C ′′ must contain a path z1z ′1x

′′

1 , for some z ′1 ∉ {x
′

1, x
′′

1, y
′

1, y1}. By symmetry, z1y′1 ∈ E(G). By κ ′(G) ≥ 3,
NG(z ′1) − {z1, x

′′

1} has a vertex z ′′1 . By Claim 3, G1 has a cycle C3 containing z ′1z
′′

1 and x1x′1. Hence C3 contains either a path
Q 3
1 [z
′

1, x1] such that x′1, x
′′

1, y
′

1, y1 ∉ V (Q 3
1 ), contrary to Claim 5A(i); or a pathQ 3

2 [x
′′

1, x1] such that x′1, y
′

1, y1 ∉ V (Q 3
2 ), whence

z1x′1
←−
Q 3
2 [x1, x

′′

1]y
′

1y1 violates (5); or a path Q 3
3 [x1, y] with y ∈ {y1, y′1} such that [{x′1, x

′′

1} ∪ ({y1, y′1} − {y})] ∩ V (Q 3
3 ) = ∅,

whence z1z ′1x
′′

1x
′

1Q
3
3 [x1, y]y1 violates (5). This proves Claim 5(i) and (ii).

To prove Claim 5(iii), we assume that Claim 5(iii) does not hold by assuming that x′1 ∈ NG1(x1)−{z1} and y′1 ∈ NG1(y1)−
{z1}with x′1y

′

1 ∈ E(G). By κ ′(G) ≥ 3 and by Claim 5(ii), there exist x′′1 ∈ NG1(x
′

1)− {x1, y
′

1} and y′′1 ∈ NG1(y
′

1)− {y1, x
′

1}. Since
G has no K3, x′′1 ≠ y′′1 . By κ(G1) ≥ 2, G1 has a cycle C1 containing both x′1x

′′

1 and y′1y
′′

1 .

Claim 5 Case A. {x′1, y
′

1} ∩ V (C1
[x′′1, y

′′

1]) = ∅, or {x
′

1, y
′

1} ∩ V (C1
[y′′1, x

′′

1]) = ∅.
By symmetry, we may assume that {x′1, y

′

1} ∩ V (C1
[x′′1, y

′′

1]) = ∅, Then Q 1
= C1

[x′′1, y
′′

1] is an (x′′1, y
′′

1)-path, with
x′1, y

′

1 ∉ V (Q 1). By κ(G1) ≥ 2, G1 has paths Q 2
i [z1, wi]with V (Q 2

i ) ∩ (V (Q 1) ∪ {x1, y1, x′1, y
′

1}) = {wi}, for i = 1, 2.
Suppose first that {x1, y1} ∩ V (Q 1) = {w′}, for some w′ ∈ {x1, y1}. By symmetry, we may assume that w′ = y1. Thus

Q 2
1 [z1, w1]Q 1

[w1, y′′1]y
′

1x
′

1x1 (if w1 ∈ V (Q 1)[x′′1, w
′
]), or Q 2

1 [z1, w1]Q 1
[w1, y′′1]y

′

1x
′

1Q
1
[x′′1, w

′
] (if w1 ∈ V (Q 1)[w′, y′′1] − {w

′
})

or Q 2
1 [z1, w

′
]Q 1
[w′, y′′1]y

′

1x
′

1x1 (if w1 = w′) violates (5).

Next we assume {x1, y1} ⊂ V (Q 1). If y1 ∉ V (Q 1
[x′′1, x1]) (which is equivalent to x1 ∉ V (Q 1

[y1, y′′1])), then Q 2
1 [z1, w1]

←−
Q 1

[w1, x′′1]x
′

1y
′

1Q
1
[y′′1, y1] (if w1 ∈ V (Q 1

[x′′1, x1])), or Q 2
1 [z1, w1]Q 1

[w1, y′′1]y
′

1x
′

1Q
1
[x′′1, x1] (if w1 ∈ V (Q 1

[x1, y′′1])) violates

(5). If y1 ∈ V (Q 1
[x′′1, x1]) (which is equivalent to x1 ∈ V (Q 1

[y1, y′′1])), then Q 2
1 [z1, w1]

←−
Q 1
[w1, x′′1]x

′

1y
′

1

←−
Q 1
[y′′1, x1] (if w1 ∈

V (Q 1
[x′′1, x1])− {x1}), or Q

2
1 [z1, w1]Q 1

[w1, y′′1]y
′

1x
′

1Q
1
[x′′1, y1] (if w1 ∈ V (Q 1

[x1, y′′1])), violates (5).
Thus wemay assume that {x1, y1}∩V (Q 1) = ∅. If some wi ∈ {x1, y1, x′1, y

′

1}, then, without loss of generality, we assume
w1 ∈ {x1, x′1}. ThusQ

2
1 [z1, x1]x

′

1Q
1
[x′′1, y

′′

1]y
′

1y1 (ifw1 = x1) orQ 2
1 [z1, x

′

1]Q
1
[x′′1, y

′′

1]y
′

1y1 (ifw1 = x′1) is a violation to (5). Hence
we must have w1, w2 ∈ V (Q 1). Without loss of generality, we assume that |E(Q 2

1 )| ≥ |E(Q 2
2 )| and w2 ∈ V (Q 1

[w1, y′′1]).
SinceGhas notK3, when both |E(Q 2

1 )| = |E(Q 2
2 )| = 1,w1 andw2 are not adjacent. It follows thatQ 2

1 [z1, w1]Q 1
[w1, y′′1]y

′

1x
′

1x1
is a violation to (5). This settles Case A.

Claim 5 Case B. {x′1, y
′

1} ∩ V (C1
[x′′1, y

′′

1]) ≠ ∅ and {x
′

1, y
′

1} ∩ V (C1
[y′′1, x

′′

1]) ≠ ∅.
By symmetry, assume that x′1 ∈ V (C1

[x′′1, y
′′

1]). Then y′1 ∈ V (C1
[y′′1, x

′′

1]). As G has not K3, |E(C1
[x′1, y

′′

1])| ≥ 2 and
|E(C1
[y′1, x

′′

1])| ≥ 2. By symmetry, we assume that z1 ∉ V (C1
[x′1, y

′′

1]). By κ(G1) ≥ 2, for i = 1, 2, G1 has paths Q 3
i [z1, wi]

with V (Q 3
i ) ∩ (V (C1) ∪ {x1, y1, x′1, y

′

1}) = {wi} such that w1 ≠ w2. Hence we may assume that w1 ≠ x′1 (if w1 = x′1, then
we relabel w2 as w1).

Suppose first that {x1, y1} ∩ V (C1
[y′1, x

′′

1]) = {w
′
}, for some w′ ∈ {x1, y1}. Note that if w′ = x1, then x′1 ∈ V (C1

[x′′1, x1]),
and if w′ = y1, then y′1 ∈ V (C1

[y′′1, y1]). Table 2 shows that a contradiction to (5) can always be found.
Next we assume {x1, y1} ⊂ V (C1).
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Table 2
Claim 5 Case B, when {x1, y1} ∩ V (C1

[y′1, x
′′

1]) = {w
′
}.

w′ w1 is in a (z1,W1)-path longer than 4 Symmetric cases and explanations

x1 {y′1, y1} Q 3
1 [z1, w1]y′1

←−
C1
[y′1, x

′′

1]x
′

1x1 when w′ = y1 and w1 ∈ {x′1, x1}
x1 V (C1

[y′1, x
′′

1])− {y
′

1} Q 3
1 [z1, w1]C1

[w1, x′1]y
′

1
←−C1 [y′′1, x1] when w′ = y1 and w1 ∈ V (C1

[x′1, y
′′

1])− {x
′

1}

Thus we assume that z1 ∉ V (C1
[y′1, x

′′

1]).
x1 x1 Q 3

1 [z1, x1]x
′

1
←−C1 [x′′1, y

′

1]y1 when w′ = w1 = y1
x1 V (C1

[x′1, y
′′

1])− {x
′

1} Q 3
1 [z1, w1]C1

[w1, x′1]x1 when w′ = y1 and w1 ∈ V (C1
[y′1, x

′′

1])− {y
′

1}

y1 y′1 Q 3
1 [z1, y

′

1]y1C
1
[y1, x′1]x1

Subcase B1. x1, y1 ∉ V (C1
[x′1, y

′′

1]). (The case when x1, y1 ∉ V (C1
[y′1, x

′′

1]) is similar.)
Since G has not K3, the distance between x1 and y1 in C1

[x′1, y
′′

1] is at least 2. Note thatw1, w2, x1, y1 ∈ V (C1
[y′1, x

′′

1]). If for

some i ∈ {1, 2}, |V (C1
[y′1, wi]) ∩ {x1, y1}| ≤ 1, (say, y1 ∉ V (C1

[y′1, wi])), then Q 3
i [z1, wi]

←−
C1
[wi, x′1] C

1
[x′′1, y1] has length at

least 5. Hence wemay assume that x1, y1 ∈ V (C1
[y′1, w1]). Then Q 3

1 [z1, w1] C1
[w1, y′′1]y

′

1y1 has length at least 5. This proves
Subcase B1.
Subcase B2. {x1, y1} ∩ V (C1

[x′1, y
′′

1]) ≠ ∅ and {x1, y1} ∩ V (C1
[y′1, x

′′

1]) ≠ ∅.
We may assume that x1 ∈ V (C1

[x′1, y
′′

1]) and y1 ∈ V (C1
[y′1, x

′′

1]).
If w1, w2 ∩ {x1, y1} ≠ ∅, then by symmetry, we may assume that w1 = x1, and so Q 3

1 [z1], [x1]C
1
[x′1, y

′′

1]y
′

1y1 has
length at least 5. Therefore, we may assume that w1, w2 ∩ {x1, y1} = ∅. If {w1, w2} ≠ {x′1, y

′

1} ≠ ∅, say w1 = x′1, then

Q 3
1 [z1, x

′

1]
←−
C1
[x′1, y

′′

1]y
′

1y1 has length at least 5. Therefore by symmetry, we assume that w1 ∈ V (C1
[y′1, x

′′

1])− {y1, y
′

1}. Thus
Q 3
1 [z1, w1]C1

[w1, x′′1]c
1
[x′1, y

′

1]y1 has length at least 5, contrary to (5). This proves Subcase B2.
Finally we may assume that {x1, y1} ∩ V (C1) = ∅. If some wi ∈ {x1, y1, x′1, y

′

1}, then, without loss of generality, we
assume w1 ∈ {x1, x′1}. Thus Q

3
1 [z1, x1]C

1
[x′1, y

′′

1]y
′

1y1 (if w1 = x1) or Q 3
1 [z1, x

′

1]Q
1
[x′′1, y

′′

1]y
′

1y1 (if w1 = x′1) is a violation to
(5). Hence we must have w1, w2 ∈ V (C1)− {x′1, y

′

1}. By symmetry, we may assume that w1 ∈ V (C1
[y′1, x

′′

1])− {y
′

1}. Hence
Q 3
− 1[z1, w1]C1

[w1, x′1]y
′

1y1 has length at least 5, contrary to (5). This justifies Claim 5(iv), and completes the proof of
Claim 5.

We are now back to the proof of Case 3. By Claim 3, G1−z1 has an (x1, y1)-path T = u0u1u2...us with u0 = x1 and us = y1.
By Claims 4 and 5(i)–(iii), respectively, we have

u0us−1, u1us ∉ E(G), u2 ≠ us−2, and u2us−2, u1us−1 ∉ E(G).

Hence s ≥ 6. By Claim 3, G1 has internally disjoint paths Qi[z1, wt ], (1 ≤ t ≤ 2), for some distinct w1, w2 ∈ V (T ) such that
V (Qt) ∩ V (T ) = {wt}. Let w1 = ui and w2 = uj. By symmetry, we may assume that i < j and j ≥ ⌈ s2⌉ + 1 ≥ 4. It follows
that T [u0, uj]z1 has length at least 5, contrary to (5). This completes the proof of Lemma 3.1. �

Proof of Theorem 1.1. By contradiction, assume that

G is a counterexample with |V (G)|minimized. (6)

In particular,

G is non-supereulerian and G is not contractible to P(10). (7)

Suppose that G has a nontrivial collapsible H . Since κ ′(G/H) ≥ κ ′(G) and the circumference of G/H is not bigger than that
of G, it follows by (6) that G/H is either supereulerian, whence by Theorem 2.1(iv), G is supereulerian; or G/H is contractible
to P(10), implying that G is contractible to P(10). Thus G is not a counterexample to Theorem 1.1. If G has a cut vertex, then
by (6), either each block of G is supereulerian, whence G is supereulerian; or one block of G is contractible to P(10), whence
G is contractible to P(10). Therefore, we may assume that

G is reduced with κ(G) ≥ 2 and G ≠ K1. (8)

Claim 6. g(G) ≥ 5.

Suppose that G has a 4-cycle C ′ = x1x2y1y2x1, and we shall use the same notation as in Definition 2.4. By Lemma 3.1,
κ ′(G/π(C ′)) ≥ 3. As any cycle ofG/π(C ′) can be (possibly trivially) extended to a cycle ofG, and so c(G/π(C ′)) ≤ c(G) ≤ 11.
By (6), either G/π(C ′) is supereulerian, whence by Theorem 2.5(b), G is also supereulerian, contrary to (6); or G/π(C ′) is
contractible to the P(10). When G/π(C ′) is contractible to the P(10), if the edge eπ(C ′) is being contracted, then by the
definition of contraction, G is also contractible to P(10), contrary to (6). Hence eπ(C ′) must be an edge in P(10), as depicted
in Fig. 5.

Weadopt thenotation in Fig. 5,where for 1 ≤ i ≤ 2,Hi is the preimage of the vertex in P(10) such that xi, yi ∈ V (Hi). Since
Hi is connected, Hi has an (xi, yi)-path Pi. If a |E(Pi)| = 1, then G has a K3; if |E(P1)| = |E(P2)| = 2, then G[V (P1) ∪ V (P2)] ∼=
K−3,3. Hence by (1), wemay assume that |E(P1)| ≥ 3 and |E(P2)| ≥ 2. Let ei be an edge in G− (E(C ′)∪E(H1)∪E(H2)) incident
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Fig. 5. The graph Gwhen eπ(C ′) is an edge of P(10).

Fig. 6. Graphs in the proof of Claim 8.

with a vertex in Hi. It follows that G[E(P1) ∪ E(P2) ∪ E(C ′) ∪ {e1, e2}] contains a path Q from e1 to e2 with |E(Q )| ≥ 7. As
P(10) − eπ(C ′) has a path Q ′ from e1 to e2 of length 8, it follows that Q ∪ Q ′ is a cycle of G of length at least 13, contrary to
the assumption c(G) ≤ 11. This completes the proof of Claim 6.

By Theorems 2.3 and 2.9 and Claim 6, we may assume that

|V (G)| ≥ 14, g(G) ≥ 5 and c(G) ≥ 9. (9)

Let p = c(G) and C = u1u2 · · · upu1 be a longest cycle in G. In the discussions below, the subscripts for ui will be taken mod
p. By κ(G) ≥ 2 and as G is non-supereulerian, we may assume that G − V (C) has a path P1

= v1v2 · · · vs with s > 1 such
that for some 1 ≤ j1 < j2 ≤ p, v1uj1 , vsuj2 ∈ E(G). Choose a longest such path P1, and assume without loss of generality
that j1 = 1.

If s ≥ 5, then as c(G) ≤ 11, both |E(C[u1, uj2 ])| ≤ 5 and |E(C[uj2 , u1])| ≤ 5. It follows that C ′ = P1
[v1, vs]C[uj2 , u1]v1 is

a cycle on G, and |E(C)| < |E(C ′)|, contrary to the fact that C is a longest cycle in G. Hence we must have 1 ≤ s ≤ 4.
Suppose that s ∈ {3, 4}. If for each vk, 1 ≤ k ≤ 4, NG(vk) ⊆ V (P1) ∪ {u1, uj2}, then by κ ′(G) ≥ 3 and by Lemma 2.8, G is

not reduced, contrary to (1). Thus there must be a path P2 in G with V (P2) ∩ (V (C) ∪ V (P1)) = {vt , ut ′}, where 1 ≤ t ≤ 4
and 1 < t ′ < j2 or j2 < t ′ ≤ p. By symmetry, we assume that 1 < t ′ < j2. Since C is longest, t ′ ≥ t + |E(P2)| and
j2 − t ′ ≥ |E(P2)| + (s − t + 1). It follows by |E(P2)| ≥ 1 that |E(C[u1, uj])| = j2 + 1 ≥ s + 2 + 2|E(P2)| ≥ s + 4, and
so |E(C[uj2 , u1])| = p − |E(C[u1, uj2 ])| ≤ 11 − (s + 4) = 7 − s ∈ {3, 4}. Since C is longest, and since replacing C[uj2 , u1]

by u1P1uj2 in C results in another cycle C ′, we must have s = 3, |E(C[uj2 , u1])| = 4, |E(P2)| = 1, t ′ ∈ {p − 7, p − 6} and
10 ≤ p ≤ 11.

Since s = 3, by symmetry, we assume that t ≠ 3. By κ ′(G) ≥ 3 and since G is reduced, NG(v3)−{v2, uj} contains a vertex
w ∉ V (P1). Since C is longest, w ∉ V (C[uj2 , u1]) − {u1}. By Claim 6, w ≠ u1, and so w = ut ′′ with 2 ≤ t ′′ ≤ j2 − 1. Since
G contains no K3, t ′ ≠ t ′′. If 2 ≤ t ′′ ≤ t ′, then u1P1

[v1, v3]C[ut ′′ , u1] is a cycle of G, and so t ′′ ∈ {p − 5, p − 6}. As t ′ ≠ t ′′,
we must have t ′ = p − 7 < t ′′, contrary to the fact t ′ > t ′′. If t ′ < t ′′ ≤ j2 − 1, a contradiction will be obtained with a
similar argument. Thus we must have s ≤ 2 and NG(vs) ⊂ V (P1) ∪ V (C). By κ ′(G) ≥ 3, by (1) and by Claim 6, there exists
ui, uj ∈ NG(vs) ∩ V (C) with 1 < i < j < p.

Claim 7. c(G) ≥ 10.

By contradiction, we assume that c(G) = 9. If s = 2, then as c(G) = 9, both C[u1, ui] and C[uj, u1] has length at least 3. By
g(G) ≥ 5, wemust have ui = u4 and uj = u7. By κ ′(G) ≥ 3, by g(G) ≥ 5 andwith a similar argument,NG(v1)−(V (C)∪{v2})
has a vertex w′ with u4, u7 ∈ NG(w

′), forcing the existence of a 4-cycle, contrary to g(G) ≥ 5.
Hence s = 1, and so for any w ∈ V (G) − V (C), N(w) ⊆ V (C). By g(G) ≥ 5, for each w, there exists an i, such

that N(w) = {ui, ui+3, ui+6}, where the subscripts are taken mod 9. By (9), there must be at least 14 − 9 = 5 vertices
in V (G) − V (C). Therefore, there must exist w1, w2 ∈ V (G) − V (C) and an i such that ui ∈ N(w1) ∩ N(w2). Hence
N(w1) = N(w2), contrary to g(G) ≥ 5. This proves Claim 7.

Claim 8. c(G) = 11.

Assume that c(G) = 10. Suppose s = 2. By g(G) ≥ 5, by symmetry and since C is a longest cycle, we may assume that
u4, uj ∈ N(v2) with j ∈ {7, 8}. (See Fig. 6(a).) As κ ′(G) ≥ 3, there exists a vertex w ∈ N(v1)− {u1, v2}. If j = 8 and w = u6,



X. Ma et al. / Discrete Applied Mathematics 202 (2016) 111–130 123

Fig. 7. Possible cases when c(G) = 11 in the proof of Theorem 1.1.

then C[u1, u6]v1v2C[u8, u1] is a cycle longer than C . Hence when j = 8, w ≠ u6. It follows by (1) and by g(G) ≥ 5 that
w ∉ V (C) no matter whether u7 or u8 ∈ NG(v2). By (1) and since C is longest, if ui ∈ NG(v2), then w ∉ {ui, ui±1, ui±2},
where the subscripts are taken mod 10. Therefore by s = 2, ∅ ≠ N(w) − {v1} ⊆ V (C). Suppose that some uk ∈ NG(w).
As u4v2v1wuk is a path of length 4, the distance between uk and u4 on C is at least 4, forcing 8 ≤ k ≤ 10. As u1v1wuk has
length 3, the distance between u1 and uk on C is at least 3, and so k ∉ {9, 10}. It follows that k = 8. Since j ∈ {7, 8}, either
j = 8, whence G has a 4-cycle wu8v2v1w, contrary to Claim 6; or j = 7, whence C[u1, u7]v2v1wC[u8, u1] is a cycle of 13 in
G, contrary to c(G) ≤ 11. These contradictions indicate that s < 2.

Hence s = 1, and so for any v ∈ V (G) − V (C), N(v) ⊆ V (C). By g(G) ≥ 5, by symmetry and since C is longest,
for each v ∈ V (G) − V (C), if ui ∈ N(v), then either ui+3 ∈ N(v) and |N(v) ∩ {ui+6, ui+7}| = 1, or ui−3 ∈ N(v) and
|N(v)∩{ui+3, ui+4}| = 1, where the subscripts are takenmod 10 (see Fig. 6(b)). Assume thatN(v)∩N(v′) ≠ ∅ and (without
loss of generality) u1 ∈ N(v)∩N(v′). Then by g(G) ≥ 5 and by symmetry, wemust have u4v, u5v

′
∈ E(G), and consequently,

u7v, u8v
′
∈ E(G). It follows that G has a cycle C[u1, u4]v

←−C [u7, u5]v
′C[u8, u1] of length 12, contrary to c(G) = 10.

Hencewemay assume thatN(v)∩N(v′) = ∅. By (9), |V (G)−V (C)| ≥ 4, and sowemay assume that v, v′ ∈ V (G)−V (C)
such that N(v) = {ui1 , ui2 , ui3} and N(v′) = {ui1+1, ui2+1, ui3+1} or N(v′) = {ui1+1, ui2+1, ui3+2}. (See Fig. 6(b).) Without
loss of generality, we assume that i1 = 1 i2 = 4, and i3 ∈ {7, 8}.

If i3 = 8, then by g(G) ≥ 5, we have u9v
′
∈ E(G), and so G has a cycle v′C[u9, u4]v

←−C [ui3 , u5]v
′ of length at least 11,

contrary to c(G) = 10. Hence i3 = 7, and |{u8, u9} ∩ N(v′)| = 1. If v′u8 ∈ E(G), then G has a cycle v
←−C [u4, u8]v

′C[u5, u7]v

of length 12, contrary to c(G) = 10. Thus u9v
′
∈ E(G), and so G has a cycle v′C[u9, u4]v

←−C [u7, u5]v
′ of length 11, contrary

to c(G) = 10. This proves Claim 8.
By Claims 7 and 8, we must have c(G) = 11. Suppose first that s = 2. (See Fig. 7(a).) By g(G) ≥ 5, and by symmetry, we

may assume that |{u4, u5} ∩ N(v2)| = 1 and |{u7, u8, u9} ∩ N(v2)| = 1. As κ ′(G) ≥ 3, N(v1) − {u1, v2} has a vertex w. By
g(G) ≥ 5, we have w ∉ {u1, u2, u3, u10, u11}. As C is longest, if ui ∈ NG(v2) and w ∈ V (C), then the distance between ui and
w on C must be at least 3. If follows that w ∉ V (C).

By g(G) ≥ 5, NG(w) ∩ {u1, u2, u11} = ∅. Since C is longest, if ui ∈ NG(v2), then NG(w) ∩ {ui, ui±1, ui±2, ui±3} = ∅. It
follows by |{u4, u5} ∩ N(v2)| = 1 and |{u7, u8, u9} ∩ N(v2)| = 1 that NG(w) ∩ V (C) = ∅, forcing s ≥ 3, contrary to s = 2.
Thus we must have s = 1, and so for any v ∈ V (G) − V (C), N(v) ⊆ V (C). By g(G) ≥ 5, for each v ∈ V (G) − V (C), if
ui, uj ∈ N(v), then the distance of ui and uj on C must be at least 3. These lead to the following observations.

Observation 3.2. If ui ∈ NG(v), (1 ≤ i ≤ 11), then either ui+3 ∈ N(v) and |N(v) ∩ {ui+6, ui+7, ui+8}| = 1, or ui+4 ∈ N(v)
and |N(v) ∩ {ui+7, ui+8}| = 1, or {ui+5, ui+8} ⊂ N(v), where the subscripts are taken mod 11.
By (9), V (G) − V (C) has at least 3 distinct vertices v, v′, v′′. Since every vertex in V (G) − V (C) has at least 3 neighbors on
V (C), and since |V (C)| = 11, either for two vertices v and v′ (say) N(v) ∩ N(v′) ≠ ∅, or there exists at least one i such that
ui ∈ N(v), ui+1 ∈ N(v′) and ui+2 ∈ N(v′′).

Claim 9. If u1 ∈ N(v) ∩ N(v′), then u4, u7 ∈ N(v) and u6, u9 ∈ N(v′).
By Observation 3.2, we may assume that ui1 , ui3 ∈ N(v) and ui2 , ui4 ∈ N(v′) with 4 ≤ i1 < i2 ≤ 6 < 7 ≤ i3 < i4 ≤ 9.

If i2 − i1 = 1 or i4 − i3 = 1, then C[u1, ui1 ]v
←−C [ui3 , ui2 ]v

′C[ui4 , u1] has length at least 12, contrary to c(G) = 11. Hence we
must have that u4, u7 ∈ N(v) and u6, u9 ∈ N(v′) (see Fig. 7(b)). This proves Claim 9.

Claim 10. For any distinct x, y ∈ {v, v′, v′′}, N(x) ∩ N(y) = ∅.
Suppose not, and without loss of generality, we assume that u1 ∈ N(v) ∩ N(v′). By Claim 9, u4, u7 ∈ N(v) and u6, u9 ∈

N(v′). If v′′ ∈ N(u1), then by g(G) ≥ 5, we must have u5, u8 ∈ N(v′′), and so C[u1, u4]v
←−C [u7, u5]v

′′C[u8, u1] has length 13,
contrary to c(G) = 11. If v′′ ∈ NG(u4), thenbyClaim9withu4 replacingu1 and v, v′′ replacing v, v′, wehaveu7, u10 ∈ NG(v

′′)
(see Fig. 7(b)), whence G has 4-cycle u4v

′′u7vu4, contrary to g(G) ≥ 5. If v′′ ∈ NG(u6), then by Claim 9 with u6 replacing
u1 and v′′, v′ replacing v, v′, we have u3, u11 ∈ NG(v

′′), and so C[u6, u11]v
′′←−C [u3, u1]vC[u4, u6] is a cycle of length 13, con-

trary to c(G) = 11. Thus NG(v
′′) ∩ {u1, u4, u6} = ∅. By symmetry, NG(v

′′) ∩ {u7, u9} = ∅, and so NG(v
′′) ⊆ {u2, u3, u5,

u8, u10, u11}. If u2, u5 ∈ NG(v
′′), then C[u6, u1]v

←−C [u4, u2]v
′′u5u6 is a cycle of length 13, contrary to c(G) = 11. This, to-

gether with g(G) ≥ 5, implies |NG(v
′′) ∩ {u2, u3, u5}| ≤ 1. By Symmetry, |NG(v

′′) ∩ {u8, u10, u11}| ≤ 1. It follows that
3 ≤ |NG(v

′′)| = |NG(v
′′) ∩ {u2, u3, u5, u8, u10, u11}| ≤ 2. This contradiction justifies Claim 10.
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By Claim 10 and by c(G) = 11, we may assume that u1v, u2v
′
∈ E(G). Suppose that u1, ui, uj ∈ NG(v) (1 < i < j < 11)

and u2, ui′ , uj′ ∈ NG(v
′) (1 < i′ < j′ < 11). If i ≥ 7, then by g(G) ≥ 5, j ≥ 10, and so←−C [uj, u1]vuj is a cycle of length at

most 4. By symmetry and by g(G) ≥ 5, we may assume that

4 ≤ i ≤ 6 < j < 10, and 5 ≤ i′ ≤ 7 < j′ < 11. (10)

Claim 11. None of the following holds.
(i) Both j = i′ + 1 and i = 4.
(ii) Either i < i′ ≤ i+ 2, or j < j′ ≤ j+ 2, or j < i′ ≤ j+ 2.

If we have both j = i′+1 and i = 4, then vC[uj, u2]v
′←−C [ui′ , u4]v has length 12. This justifies Claim 11(i). We again argue

by contradiction to prove Claim 11(ii). If i < i′ ≤ i+ 2, then C[u2, ui]v
←−C [u1, ui′ ]v

′u2 has length at least 12. If j < j′ ≤ j+ 2,
then C[u2, uj]v

←−C [u1, uj′ ]v
′u2 has length at least 12. If j < i′ ≤ i+ 2, then C[u2, uj]v

←−C [u1, ui′ ]v
′u2 has length at least 12. As

any of these lead to a contradiction, Claim 11 must hold.
By (10), 4 ≤ i ≤ 6. If i ≥ 5, then by Claim 11(ii), i′ ≥ i + 3 ≥ 8, contrary to (10). Hence i = 4. By Claim 11(ii), i′ = 7,

and so j ≥ 8. By Claim 11(i), we must have j ≥ 9. By c(G) = 11, we must have j′ = 11, and so G has a 4-cycle v′u11u1u2v
′,

contrary to g(G) ≥ 5. This completes the proof of Theorem 1.1. �

4. Applications to 3-connected hamiltonian claw-free graphs

A subgraph H of G is dominating if E(G − V (H)) = ∅. Harary and Nash-Williams proved a useful relationship between
dominating eulerian subgraphs and hamiltonian line graphs.

Theorem 4.1 (Harary and Nash-Williams, [15]). Let G be a connected graph with at least 3 edges. The line graph L(G) is
hamiltonian if and only if G has a dominating eulerian subgraph.

Let G be a graph such that κ(L(G)) ≥ 3 and such that L(G) is not complete. A vertex cut X in L(G) is an edge in G such that
both sides of G− X have at least one edge. An edge-cut X with at least two nontrivial components in G− X is an essential
edge cut of G. A graph G is essentially k-edge-connected if G does not have an essential edge cut of size less than k. For each
v ∈ D2(G), let EG(v) = {ev

1, e
v
2} and X2(G) = {ev

2 : v ∈ D2(G)}. Since κ(L(G)) ≥ 3, D2(G) is an independent set of G and for
any v ∈ D2(G), |X2(G) ∩ EG(v)| = 1. Define

G0 = G/((∪v∈D1(G) EG(v)) ∪ X2(G)) = (G− D1(G))/X2(G) (11)
NE(G) = ∪v∈D2(G) EG(v)− X2(G).

The graph G0 is called the core of G, and edges in NE(G) are called the nontrivial edges in G0. Let V (NE(G)) denote the set
of vertices in G incident with an edge in NE(G). By the definition of G0, vertices in G adjacent to a vertex in D1(G) can be
viewed as vertices in G0, which are the contraction images of edges in ∪v∈D1(G) EG(v). Let G′0 be the reduction of G0. Then G′0
is a contraction of G0 as well as G, and so we can view E(G′0) ⊆ E(G0) ⊆ E(G). Define

Λ(G0) = {v ∈ V (G0) : PIG(v) ≠ K1 or PIG0(v) ∩ V (NE(G)) ≠ ∅} (12)
Λ′(G0) = {v ∈ V (G′0) : PIG(v) ≠ K1 or PIG(v) ∩ V (NE(G)) ≠ ∅}.

Applying Theorem 4.1, Shao proved the following.

Theorem 4.2 (Shao, Section 1.4 of [27]). Let G be a connected graph with |E(G)| ≥ 3 and let G0 be the core of graph G, then each
of the following holds:
(i) G0 is nontrivial and δ(G0) ≥ κ ′(G0) ≥ 3.
(ii) G0 is well defined.
(iii) L(G) is hamiltonian if and only if G0 has a dominating eulerian subgraph H such that Λ(G0) ⊆ V (H).

Proof. The justifications of (i) and (ii), and of the sufficiency of (iii) can be found in Section 1.4 of [27]. We shall only show
the necessity of (iii). Suppose that L(G) is hamiltonian, then by Theorem 4.1, G must have a dominating eulerian subgraph
H . By the definition of dominating eulerian subgraphs, H must contain all nontrivial vertices of G0. Since every nontrivial
edge of G0 is the contraction image of a path of length 2 in G, both ends of any nontrivial edge must also be in H . �

Applying Theorems 1.1 and 4.2, one can derive the following on hamiltonian line graphs.

Theorem 4.3. Let G be a graph such that κ(L(G)) ≥ 3. Let G0 be the core of G. Then one of the following must hold.
(i) L(G) is hamiltonian.
(ii) G0 is contracted to the Petersen graph P(10).
(iii) c(G0) ≥ 12 and G0 does not have a dominating eulerian subgraph.



X. Ma et al. / Discrete Applied Mathematics 202 (2016) 111–130 125

Fig. 8. Graphs in Definition 4.6.

Proof. Suppose that L(G) is not hamiltonian. By Theorem 4.2, G0 does not have any dominating eulerian subgraphs, and
κ ′(G0) ≥ 3. By Theorem 1.1, and since G0 cannot be supereulerian, either G0 is contracted to the Petersen graph P(10),
whence (ii) must hold; or c(G0) ≥ 12, whence Theorem 4.3(iii) must hold. �

LetGbe a claw-free graph. Then for any v ∈ V (G),G[NG(v)] is either connected (in this case, v is called a locally connected
vertex of G) or is a disjoint union of two cliques. If G[NG(v)] is connected and not a clique, then the local completion of G
at x is a graph obtained from G by adding edges to join nonadjacent vertices in NG(v). The closure of G, denoted by cl(G),
is the graph obtained from G by repeated applications of local completions, until every locally connected vertex has its
neighborhood being a clique. This construction was introduced by Ryjác̆ek [26], and he proved the following useful result.

Theorem 4.4 (Ryjác̆ek, [26]). Let G be a claw-free graph. Then
(i) cl(G) is uniquely determined.
(ii) cl(G) is the line graph of some triangle-free simple graph.
(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Theorem 4.5 (Brousek, Ryjác̆ek and Favaron, [5]). Let G be a claw-free graph. Then
(i) If G is Zk-free, then cl(G) is also Zk-free for any integer k ≥ 1.
(ii) If G is Pi-free, then cl(G) is also Pi-free for any integer i ≥ 3.

Definition 4.6. Let P(10)′ be the graph obtained from the Petersen graph P(10) by attaching exactly one pendant edge to
every vertex of P(10); let P(10)′′ be the graph by replacing one edge e = vivj ∈ E(P(10)) by a (vi, vj)-path of length 2, by
attaching exactly one pendant edge to every vertex of P(10) − {vi, vj} and by attaching at most one pendant edge to each
of vi and vj. Let P(10)(3) denote any member in the family of graphs each of which is obtained from P(10) by attaching at
least one pendant edge to every vertex of P(10) such that one vertex of P(10) is attached with at least 2 pendent edges; and
P(10)(4) denote any member in the family of graphs each of which is obtained from P(10) by attaching to a vertex (say, v1)
of P(10) by a non-tree simple graph Hv1 spanned by a K1,t for some t ≥ 2, and by attaching exactly one pendant edge to
every vertex of P(10)− v1. Let P(10)(5) denote any member in the family of graphs each of which is obtained from P(10) by
replacing each of the two vertices of an edge e = vivj ∈ E(P(10)) by non-tree simple graphs Hvi and Hvj , spanned by a K1,t1 ,
and a K1,t2 , respectively, for some t1, t2 ≥ 2, and by attaching exactly one pendant edge to every vertex of P(10) − {vi, vj}

(see Fig. 8).

The next lemma summarizes some observations which follow from Definition 4.6 and Theorem 4.1.

Lemma 4.7. Each of the following holds.
(i) If G = P(10)′, then L(G) is {Z9, P12}-free.
(ii) If G = P(10)(3), then L(G) is {Z10, P12}-free.
(iii) If G ∈ {P(10)′′, P(10)(4), P(10)(5)}, then L(G) is {Z10, P13}-free.
(vi) If G ∈ {P(10)′, P(10)′′, P(10)(3), P(10)(4), P(10)(5)}, then L(G) is not hamiltonian.

We are now ready to prove Theorem 1.8, restated as the following corollaries of Theorem 1.1.
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Corollary 4.8. Let Γ be a 3-connected {K1,3, Pk}-free graph.
(i) Suppose that k = 12. Then Γ is hamiltonian if and only if cl(Γ ) ∉ {L(P(10)′), L(P(10)(3))}.
(ii) Suppose that k = 12. Then Γ is hamiltonian if and only if cl(Γ ) ∉ {L(P(10)′), L(P(10)′′), L(P(10)(3)), L(P(10)(4)),
L(P(10)(5))}.

Corollary 4.9. Let Γ be a 3-connected {K1,3, Z9}-free graph. Then Γ is hamiltonian if and only if cl(Γ ) ≠ L(P(10)′).

Let k > 0 be an integer. Let Pk+1 = v0v1v2...vk denote a path on k+ 1 vertices, and let Yk be the graph with

V (Yk) = V (Pk+1) ∪ {vk+1} and E(Yk) = E(Pk+1) ∪ {vk−1vk+1}.

By definition, Y2 ∼= K1,3. If k = 2, then any vertex in D1(Y2) is a root of Y2. If k ≥ 3, then the unique vertex in D1(Yk) which
is not adjacent to the vertex in D3(Yk) is the root of Yk. Thus for a connected simple graph G and an integer k > 0, L(G) is
Zk-free if and only if G does not have Yk+2 as a subgraph.

Before we prove Corollaries 4.8 and 4.9, we investigate some properties of graphs whose cores are contractible to P(10).
The observations below follow from the definition of the Petersen graph P(10).

Lemma 4.10. Each of the following holds.
(i) Let u, v ∈ V (P(10)) be distinct vertices. If uv ∉ E(P(10)), then P(10) contains a Hamilton (u, v)-path; if uv ∈ E(P(10)),
then for any w ∈ N(u)− v, P(10)− w has a Hamilton (u, v)-path.
(ii) For any v ∈ V (P(10)) and e ∈ E(P(10)), P(10) contains a Hamilton (v, v′)-path Q with e ∈ E(Q ) such that e is not incident
with v′.
(iii) For any pair of edges e, e′ ∈ E(P(10)), there exists a vertex w such that P(10) has a Hamilton path Q with e, e′ ∈ E(Q ) such
that no end of Q is incident with e or e′, and such that one end of Q is adjacent to w.
(iv) For any v ∈ V (P(10)) and for any e ∈ E(P(10)), P(10) has a Y8 rooted at v with e ∈ E(Y8) but e is not incident with any
vertex in D1(Y8)− {v}.
(v) For any pair of distinct vertices u, v ∈ V (P(10)), P(10) has a Hamilton path Q from u with v being the next to the last vertex
in Q .

Proof. All can be verified routinely using the definition of P(10). We only sketch the justification for (iii).
(iii). For given e, e′ ∈ E(P(10)), by the definition of P(10), there exists a cycle C of length 9 containing e and e′. Let

w ∈ V (P(10))− V (C). As w has degree 3, there must be a vertex v ∈ NP(10)(w) such that {e, e′} ∩ EC (v) = ∅ and EC (v) has
an edge e′′ not adjacent to either e or e′. Thus P(10)[E(C − e′′) ∪ {wv}] is the desirable path. �

Definition 4.11. Let G be a connected, essentially 3-edge-connected simple graph whose core G0 is contracted to the
Petersen graph P(10). Let V (P(10)) = {v1, v2, . . . , v10}. For each i, let Li = PIG0(vi), and ni = |V (Li)|. A star on n ≥ 2
vertices is a graph isomorphic to K1,n−1. For each i, let EP(10)(vi) = {ei1, e

i
2, e

i
3}, and let AG(Li) = {wi

1, w
i
2, w

i
3} such that wi

j is
incident with eij. Since edges in EP(10)(vi) may be adjacent in G, the wi

j ’s may not be distinct.

(i) If Li is not spanned by a star, then define L′i to be the reduction of Li−D1(L1). If vi is spanned by a star, then define L′i = K1.
(ii) If L′i ≠ K1, then vi is of Type 1A; if L′i = K1 and Li is not spanned by a star, then vi is of Type 1B.
(iii) Assume that L′i = K1 and Li is spanned by a star. If Li ≠ K1,ni−1 and every cycle of Li is a 3-cycle, then vi is of Type 2A; if
Li is a star with ni ≥ 2, then vi is of Type 2B; if V (Li) = {vi}, and vi ∈ V (NE(G)), then vi is of Type 3A; and if V (Li) = {vi},
and vi ∉ V (NE(G)), then vi is of Type 3B.

Remark 4.12. From Definition 4.11, we have the following remarks.
(i) By the definition of collapsible graphs, if a nontrivial collapsible graph is not spanned by a star, then it must have a cycle
of length at least 4. Thus if vi is of Type 1B, then c(Li) ≥ 4.
(ii) A vertex can be both of Types 1A, 1B, 2A, 2B and of Type 3A.
(iii) Since G is essentially 3-edge-connected, if Li ∈ {C4, C5, C6}, then V (Li)− AG(Li) is an independent set.
(iv) If vi is of Type 1B, then Li−D1(Li) is a nontrivial collapsible graph. For any v ∈ V (Li)−D1(Li), if any cycle containing v is
of length 3, then Li − D1(Li) must be a collection of K3’s commonly sharing v. As G is essentially 3-edge-connected, Li must
be spanned by a star. Hence Li must have a cycle C of length at least 4, and so Li has a Pk (k ≥ 4) from v. Since Li − D1(Li) is
collapsible, either C has a chord or C is adjacent to a vertex of Li not in C . Hence Li has a Yk′ (k′ ≥ 3) rooted at v.

Throughout the rest of this section, we always assume that G is a connected, essentially 3-edge-connected simple graph
whose core G0 is contracted to the Petersen graph P(10). In the arguments, we shall use P(10) to denote both the Petersen
graph as well as the contraction image of G0, for notational convenience.
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Lemma 4.13. If vi is of Type 1A, then each of the following holds.
(i) For any wi

j ∈ AG(Li), Li has a path from wi
j with length at least 3. Furthermore, the length of any longest path in Li from wi

j
is 3 if and only if Li is a 4-cycle.
(ii) If L′i ∉ {C4, C5, C6}, then for any wi

j ∈ AG(Li), Li has a Yk rooted at wi
j with k ≥ 2. Furthermore, Li does not have a Yk rooted

at wi
j with k ≥ 3 for any j if and only if both Li ∈ {K2,3, S(1, 2)} and

AG(Li) =

D2(K2,3) if L′i = K2,3
NL′i

(z0) for some z0 ∈ D3(S(1, 2)) if L′i = S(1, 2),

where S(1, 2) is defined in Definition 2.6.

Proof. We first claim that κ ′(L′i) ≥ 2. If e is a cut edge of L′i , then as L′i is the reduction of Li−D1(Li), emust be an essential edge
cut of Li. Hence e an edge in {ei1, e

i
2, e

i
3} will form an essential edge cut of G contrary to the assumption that G is essentially

3-edge-connected. Thus κ ′(L′i) ≥ 2, and so L′i has a cycle. Let C be a longest cycle of L′i and c = |V (C)|. Since G is reduced, we
have c ≥ 4.

(i) For any wi
j ∈ AG(Li), Li has a path P = P[wi

j, w] for some w ∈ V (C) such that P is internally disjoint from V (C). It
follows that P ∪ C contains a path from wi

j with length at least |E(C)| − 1 ≥ 3. If the length of any longest path from wi
j in

Li is 3, then the path P = P[wi
j, w] has length 0, and so Li must be a 4-cycle.

(ii) If L′i has a cut vertex z, then L′i has two subgraphs Z ′, Z ′′ such that V (Z ′) ∩ V (Z ′′) = {z}. Since κ ′(Li) ≥ 2 and since Li
is reduced, each of Z ′ and Z ′′ has a cycle of length at least 4. Therefore, no matter whether wi

j ∈ V (Z ′) or wi
j ∈ V (Z ′′), Li will

always have a Yk with k ≥ 3 rooted at wi
j . Hence we may assume that κ(L′i) ≥ 2.

Assume first that c = 4 and L′i � C4. By κ(L′i) ≥ 2, L′i must have a graph J = K2,3 as a subgraph. If wi
j ∉ D2(K2,3), then L′i

has a path from wi
j to a vertex in J , internally disjoint from J . Thus L′i always has a Yk (k ≥ 3) rooted at wi

j . Therefore, we may
assume that D2(K2,3) = {w

i
1, w

i
2, w

i
3}. If L

′

i ≠ K2,3, then by κ(L′i) ≥ 2, J is contained in a K2,4, and so for each wi
j , L
′

i has a Y3

rooted at wi
j . This completes the proof when c = 4.

Now assume that c = 5 and L′i � C5. By c = 5 and by κ(L′i) ≥ 2, Li must have an S(1, 2). If wi
j ∉ D2(S(1, 2)), then L′i has a

path fromwi
j to a vertex in S(1, 2), internally disjoint from S(1, 2). Thus L′i always has a Yk (k ≥ 3) rooted atwi

j . Therefore, we
may assume that {wi

1, w
i
2, w

i
3} ⊂ D2(S(1, 2)), and so for some z0 ∈ D3(S(1, 2)), NS(1,2)(z0) = {wi

1, w
i
2, w

i
3}. If L

′

i ≠ S(1, 2),
then by κ(L′i) ≥ 2 and c = 5, J is contained in either an S(2, 2) or an S(1, 3). This implies that L′i must have a Yk with k ≥ 3
rooted at some wi

j . This completes the proof when c = 5.
Finally, we assume that c ≥ 6. Since G is essentially 3-edge-connected, if v, v′ are two adjacent vertices in C , then either

the preimage of one of {v, v′} intersects AG(Li), or one of {v, v′} has degree at least 3 in L′i .
It follows that if c ≥ 7, then for any j, L′i has a Y2 rooted at wi

j , and a Yk with k ≥ 3 for at least one wi
j . Hence we may

assume that c = 6. If for some j, wi
j ∉ V (C), then L′i has a path Q from wi

j to V (C), internally disjoint from V (C). Thus, L′i has
a Yk for some k ≥ 3 rooted at awi

j′ for some j′ ≠ j. Therefore, wemay assume that {wi
1, w

i
2, w

i
3} ⊆ V (C). Since L′i ≠ C , either

C has a chord or there is a vertex not in C but adjacent to a vertex in C , and so for some wi
j , L
′

i has a Y3 rooted at wi
j . �

Lemma 4.14. Suppose that vi, vj ∈ V (P(10)) are distinct vertices such that vi is of Type 1A and L′i ∉ {C4, C5, C6}, and vj is not
of Type 3B. Each of the following holds.
(i) If vivj ∉ E(P(10)), then G has both a P14 and a Y12.
(ii) If vivj ∈ E(P(10)), then G has both a Pk with k ≥ 14 and a maximal Yk′ with k′ ≥ 11. Furthermore, k′ = 11 only if both vj is
of Type 3A and L′i ∈ {K2,3, S(1, 2)} with AG(Li) satisfying Lemma 4.13 (ii).

Proof. By Definition 4.11(ii) and (iii), and since vj is not of Type 3B, any path of length k ending at vj in P(10) can be lifted
and extended to a path of length at least k+ 1 by including an additional edge either in Lj (if vj is not of Types 3A and 3B) or
incident with the only vertex in Lj (if vj is of Type 3A).

(i) Since vivj ∉ E(P(10)), by Lemma 4.10(i), P(10) has a Hamilton (vi, vj)-path Q ′, which can be lifted to a (wi
1, w

j
1)-path

Q (say) in G of length at least 9. By Lemma 4.13, Li has a path of length 4 from wi
1, and Li has a Y2 rooted at wi

1. It follows that
Q ′′ can be further extended to a P14 in G. For Y12, we first lift Q ′ to a path Q ′′ from Li to Lj in Gwith |E(Q ′′)| ≥ 10 by including
an additional edge either in Lj (if vj is not of Type 3A) or incident with w

j
1 (if vj is of Type 3A), and then extend it to a Y12 in

G by including a Y3 in Li.
(ii) By the definition of P(10), there is a (vi, vj)-path Q ′ in P(10) with |E(Q ′)| = 8, which can be lifted to a (wi

1, w
j
1)-path

Q (say) of length at least 8 in G. By Lemma 4.13(i), Li has a path of length at least 4 from wi
1. If vj is not of Type 2B or 3A, then

by Lemma 4.13 and by |E(Lj)| ≥ 2, Q can be extended to a path Pk with k ≥ 15 as well as a Yk′ with k′ ≥ 13 (each contains at
least 4 edges in Li and two edges in Lj). Now assume that vj is of Type 2B or 3A. By a similar argument, Q can be extended to
a path Pk with k ≥ 14 which contains at least 4 edges in Li and one edge in Lj (if vj is of Type 2B) or adjacent to w

j
1 (if vj is of
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Type 3A). If vj is of Type 2B, then Q can be extended to a Yk′ with k′ ≥ 12 (each contains at least 4 edges in Li and two edges
in Lj). If vj is of Type 3A, then Q can be extended to maximal Yk′ in G with k′ ≥ 11 by including a Y2 in Li and one edge in Lj
(if vj is of Type 2B) or adjacent to w

j
1 (if vj is of Type 3A). By Lemma 4.13(ii), k′ = 11 only if vj is of 3A and L′i ∈ {K2,3, S(1, 2)}

with AG(Li) satisfying Lemma 4.13(ii). This proves Lemma 4.14. �

Lemma 4.15. If P(10) has two Type 1A vertices, then G has both a P14 and a Y12.

Proof. Assume that for i ≠ j, vi and vj are of Type 1A. By Lemma 4.14, if one of L′i and L′j is not in {C4, C5, C6, K2,3, S(1, 2)},
then G has a P14 and a Y12. Hence we assume that L′i, L

′

j ∈ {C4, C5, C6, K2,3, S(1, 2)}. By Lemma 4.10(v), P(10) has a (vi, vk)-
Hamilton path Q with vjvk ∈ E(Q ). As L′i, L

′

j ∈ {C4, C5, C6, K2,3, S(1, 2)}, the length 8 path Q [vi, vj] can be lifted to a P15
(including 3 edges in Li and three edges in Lj) as well as a Y12 (including 3 edges in Li, at least one edge in Lj and the edge
vjvk) in G. This proves Lemma 4.15. �

Lemma 4.16. If vi is of Type 1A and L′i ∉ {C4, C5, C6, K2,3, S(1, 2)}, then either L(G) is hamiltonian, or G has both a P14 and a Y12.

Proof. By Lemma 4.15, we may assume that for any j ≠ i, vj is not of Type 1A. By Lemma 4.14, if for some j ≠ i, vj is not of
Type 3B, G has both a P14 and a Y12. Hence we may assume that for any j ≠ i, vj is of Type 3B. Let X = {ei1, e

i
2, e

i
3}. Then X is

an edge cut of G0, and G0 − X has PIG0(vi) as a component. Let G1 denote the other component of G0 − X . Then G0/G1 is also
a 3-edge-connected graph. By Theorem 4 of [19] (or by Theorem 1.1), either G0/G1 has a spanning eulerian subgraph L′ or
G0/G1 has a cycle C ′ of length at least 9.

If G/G1 has a spanning eulerian subgraph L′, then we may assume that ei1, e
i
2 ∈ E(L′). Since G1 = P(10) − vi, by the

definition of P(10), P(10) has a cycle L′′ of length 9, missing only one vertex of Type 3B. It follows that G0[E(L′)∪ E(L′′)] is an
eulerian subgraph missing one vertex of Type 3B, and so G0[E(L′) ∪ E(L′′)] can be lifted to a dominating eulerian subgraph
of G. By Theorem 4.1, L(G) is hamiltonian.

Therefore, G0/G1 must have a cycle C ′ of length at least 9. By Lemma 4.10(iv), P(10) has a Y8 rooted at vi, which can be
lifted to a Yk (with k ≥ 8) rooted at wi

1 (say). Since E(Li) ∪ X = E(G0/G1) and since |E(C ′|)| ≥ 9, G0[E(Li) ∪ X] has a path Q ′

from wi
1 of length at least 5 (consisting of a path from wi

1 to C ′ and a path in C ′). It follows that Q ′ ∪ Y8 contains both a P14
and a Y12. This proves the lemma. �

Lemma 4.17. Suppose that G does not have a Pk or a Y12 as a subgraph, and that L(G) is not hamiltonian. In (i)–(iv) and (iv) below,
we assume that k = 14. Then each of the following holds.
(i) If v1 is of Type 1A, then for any i ≥ 2, vi is not of Type 3B.
(ii) For any i, vi is not of Type 1A.
(iii) For any i, vi is not of Type 3B.
(iv) If vi it of Type 1B, then for any j ≠ i, vj cannot be of Type 1B or 2A. Moreover, all Type 2A vertices are independent in G.
(v) If k = 14, then for any i, vi is not of Type 1B; and if k = 13, then P(10) does not have a vertex of Type 2A.
(vi) P(10) does not have two nontrivial edges of G0.

Proof. (i) Since v1 is of Type 1A, by Lemma 4.16, L′i = K1 for i ≥ 2; by Lemma 4.15, we have L′1 ∈ {K1, C4, C5, C6, S(1, 2), K2,3}

such that if L′1 ∈ {C4, C5, C6}, then AG(Li) satisfies Remark 4.12(iii) and if L′1 ∈ {S(1, 2), K2,3}, then AG(Li) satisfies
Lemma 4.13(ii). Let X = {e11, e

1
2, e

1
3} be the three edges in P(10) incident with v1 such that for 1 ≤ j ≤ 3, w1

j is incident with
e1j . If for some j ≥ 2, vj is of Type 3B, then by the definition of P(10), P(10) − vj has a spanning cycle C ′. We may assume
that e11, e

1
2 ∈ E(C ′). Hence by Theorem 2.1(iv), E(C ′) induces a (w1

1, w
1
2)-trail in G containing at least one end of every edge

in E(G)− E(PIG(v1)). Since L′1 ∈ {C4, C5, C6, K1, S(1, 2), K2,3}, it is routine to verify that L′1 has a (w1
1, w

1
2)-path Q ′ such that

E((L′1)− V (Q ′)) = ∅. It follows that G0[E(C ′)∪ E(Q ′)] can be lifted to a dominating eulerian subgraph of G. By Theorem 4.1,
L(G) is hamiltonian, contrary to the assumption of the lemma.

(ii) By contradiction, we may assume that v1 is of Type 1A. By Lemma 4.14, L′1 ∈ {C4, C5, C6, K2,3, S(1, 2)}. For any i ≥ 2,
by Lemmas 4.15 and 4.17(i), vi is not of Types 1A and 3B, and L′i = K1. Let vj ∈ V (P(10))−(NP(10)(v1))∪{v1}. By Lemma4.10(i),
P(10) has a (v1, vj)-Hamilton path Q ′ of length 9. Since vj is not of Type 3B, Q ′ can be lifted to a path Q ′′ from w1

1 of length
at least 10. Since L′1 ∈ {C4, C5, C6, K2,3, S(1, 2)}, by Remark 4.12(iii) and Lemma 4.14(ii), it is routine to find that L′1 has both
a P4 from w1

1 and a Y3 rooted at w1
1 . It follows that Q ′ ∪ P4 and Q ′ ∪ Y3 can be lifted to a Pk (k ≥ 14) and a Yk′ (k′ ≥ 12) in G,

contrary to the assumption of Lemma 4.17.
(iii) Suppose that v1 is of Type 3B. Then v1 ∈ V (G0) and P(10) − v1 has a spanning cycle C ′. By Lemma 4.17(ii) and by

Theorem 2.1(iv), C ′ can be lifted to a spanning eulerian subgraph L′ of G0 − v1. By Theorem 4.2(iii), L(G) is hamiltonian,
contrary to the assumption of Lemma 4.17.

(iv) By contradiction, we first assume that v1 is of Type 1B and v2 is of Type 1B or 2A. By Remark 4.12(iv), L1 contains a
Pk (k ≥ 4) and a Yk′ (k′ ≥ 3) rooted at any vertex of L1. By Lemma 4.10(i) or (ii), P(10) has a (v1, v2)-path of length at least
8, which can be lifted to a P14 as well as a Y12 of G by including a path of length at least 3 in L1 and a path of length at least 2
(or a Y3) in L2. Hence we cannot have two Type 1B vertices.

Next, we assume that v1 and v2 are nonadjacent in P(10) and both of Type 2A. By Lemma 4.10(i), P(10) has a (v1, v2)-path
Q1 of length 9, which can be lifted to a P14 and a Y12 in G by including two edges in L1 and two edges in L2.



X. Ma et al. / Discrete Applied Mathematics 202 (2016) 111–130 129

Remark 4.18. By (ii)–(iv) of Lemma 4.17, we make the following remarks.
(i) P(10) has at most one vertex of Type 1B. Moreover, if P(10) has a vertex of Type 1B, then all other vertices must be of
Type 2B or 3A.
(ii) If v1 if of Type 2A, then any vertex not incident with v1 must be of Type 2B or 3A. Furthermore, if v1v2 ∈ E(P(10)) and
both v1 and v2 are of Type 2A, any other vertices of P(10) must be of Type 2B or 3A.

(v) We only prove the case when k = 14. The case when k = 13 is similar and so it will be omitted. Suppose that v1 is of
Type 1B. ByRemark 4.18(i), all other verticesmust be of Type 2Bor 3A. If P(10)has a nontrivial edge e, then by Lemma4.10(ii),
P(10) has a Hamilton (v1, vj)-path Q with e not incident with vj. It follows that Q can be lifted to a (w1

1, w
j
1)-path Q ′ with

|E(Q ′)| ≥ 10, for some w1
1 ∈ AG(L1) and w

j
1 ∈ AG(Lj). By Remark 4.12(iv), L1 has a Pk (k ≥ 4) from w1

1 and a Yk′ (k′ ≥ 3)
rooted at w1

1 . Since Lj is of Type 2B or 3A, Q ′ can be extended to a path of length at least 11. It follows that by including the
P4 or Y3 in L1, Q ′ can be extended to a Pk with k ≥ 14 and a Yk′ with k′ ≥ 12, contrary to the assumption of the lemma. This
proves (v).

(vi) Suppose that P(10) has two nontrivial edges e, e′ of G0. By Lemma 4.10(iii), for some vertex vk, P(10) − vk has a
Hamilton (v1, vk)-path Q with e, e′ ∈ E(Q ) such that neither e nor e′ is incident with a vertex in {v1, vk}. Since Q contains
2 nontrivial edges, it can be lifted to a (w1

1, w
k
1)-path Q ′ of length at least 11. By Lemma 4.17(v) and Remark 4.18(ii), v1 and

vk are of Types 2A, 2B or 3A. It follows that Q can be lifted to a Pk with k ≥ 14 in G. If P(10) has a vertex (say v1) of Type 2A
or 2B, then by Lemma 4.10(ii), P(10) has a Hamilton (v1, vj)-path T containing e and e is not incident with vj. As e ∈ E(T )

and as vj is of Types 2A, 2B or 3A, T can be extended to a path from w1
1 (say) of length at least 11 by including an additional

edge incident with a vertex in Lj. Since v1 is of Type 2A or 2B, L1 has a Y2 rooted at w1
1 , and so G has a Y12. Therefore, we have

found both a P14 and a Y12 in G, contrary to the assumption of the lemma. This proves (vi). �

The next lemma can also be verified by similar arguments, whose proofs are then omitted.

Lemma 4.19. Suppose that L(G) is not hamiltonian. Then each of the following holds.
(i) Suppose P(10) has one vi of Type 2A. Then G has a P13 and a Y11. If, in addition, P(10) has a nontrivial edge e, then G has both
a Y12 and a P14.
(ii) Suppose P(10) has one vi of Type 2B such that |V (Li)| ≥ 3, then G has a Y11 and a P12; if, in addition, P(10) has a nontrivial
edge e, then G has both a Y12 and a P13.
(iii) Suppose that P(10) has a Type 2A vertex u, and a Type 2A or 2B vertex v. If uv ∉ E(P(10)), then G has a P13 and a Y12, if
uv ∈ E(P(10)), then G has a P12 and a Y11. If, in addition, P(10) has a nontrivial edge, then G has a P14 if uv ∉ E(P(10)), and a
P13 and a Y12 if uv ∈ E(P(10)).
(iv) Suppose that every vertex of P(10) is of Type 2B. If P(10) contains a nontrivial edge, then G has a P13. If, in addition, for some
i, |V (Li)| ≥ 3, then G has a Y12.

Proof of Corollaries 4.8 and 4.9. The necessity of both Corollaries 4.8 and 4.9 follows from Lemma 4.7(iv). It remains to
prove the sufficiency of the two corollaries. By Theorems 4.4 and 4.5, It suffices to prove the sufficiency of Corollaries 4.8
and 4.9 for line graphs. Let G be a graph such that L(G) is 3-connected and non-hamiltonian, and let G0 denote the core of
G. If L(G) is Pk-free, then G does not have Pk+1 as a subgraph; If L(G) is Zk-free, then G does not have Yk+2 as a subgraph. By
Theorem 4.3, either Theorem 4.3(ii) or Theorem 4.3(iii) must hold.
Case 1. Theorem 4.3(ii) holds and G0 is contracted to the Petersen graph P(10).

Suppose that L(G) is Z9-free. Then G does not contain a Y11. By Lemmas 4.17 and 4.19, every vertex of P(10) must be of
Type 2B with each Li ∼= K2. Hence G0 = P(10) and G = P(10)′.

Suppose that L(G) is P12-free. Then G does not contain a P13. By Lemmas 4.17 and 4.19, every vertex of P(10) must be of
Type 2B. Hence G0 = P(10) and G ∈ {P(10)′, P(10)(3)}.

Suppose that L(G) is P13-free and G ∉ {P(10)′, P(10)(3)}. Then G does not contain a P14. By Lemmas 4.17 and 4.19,
G0 = P(10) and G ∈ {P(10)′′, P(10)(4), P(10)(5)}. This completes the proof for Case 1.
Case 2. Theorem 4.3(iii) holds and c(G0) ≥ 12 and G0 does not have a dominating eulerian subgraph. Let C ′ be a longest
cycle of G0 with |E(C ′)| = c(G0) ≥ 12. Since G0 is a contraction of G, there must be an edge subset X such that G0 = G/X .
Therefore, there must be a cycle C of G such that C ′ = G/(E(C) ∩ X). Let C = u1...uhu1 for some h ≥ 12. Since C is not
dominating in G, there must be an edge e = w1w2 ∈ E(G− C). Since G is connected, we may assume that w1u1 ∈ E(G), and
so G has a path Ph+2 = w2w1u1...uh. Since h ≥ 12, G has a P14 and a Y11. This implies that in Corollaries 4.8 and 4.9, this case
cannot occur, and so it completes the proof for both corollaries. �
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