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Abstract: Let λ2(G) and τ (G) denote the second largest eigenvalue and
the maximum number of edge-disjoint spanning trees of a graph G, respec-
tively. Motivated by a question of Seymour on the relationship between
eigenvalues of a graph G and bounds of τ (G), Cioabă and Wong conjectured
that for any integers d , k ≥ 2 and a d -regular graph G, if λ2(G) < d − 2k−1

d+1 ,
then τ (G) ≥ k. They proved the conjecture for k = 2, 3, and presented
evidence for the cases when k ≥ 4. Thus the conjecture remains open
for k ≥ 4. We propose a more general conjecture that for a graph G with
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EDGE-DISJOINT SPANNING TREES, EDGE CONNECTIVITY 17

minimum degree δ ≥ 2k ≥ 4, if λ2(G) < δ − 2k−1
δ+1 , then τ (G) ≥ k. In this

article, we prove that for a graph G with minimum degree δ, each of the
following holds.

(i) For k ∈ {2, 3}, if δ ≥ 2k and λ2(G) < δ − 2k−1
δ+1 , then τ (G) ≥ k.

(ii) For k ≥ 4, if δ ≥ 2k and λ2(G) < δ − 3k−1
δ+1 , then τ (G) ≥ k.

Our results sharpen theorems of Cioabă and Wong and give a par-
tial solution to Cioabă and Wong’s conjecture and Seymour’s problem.
We also prove that for a graph G with minimum degree δ ≥ k ≥ 2, if
λ2(G) < δ − 2(k−1)

δ+1 , then the edge connectivity is at least k, which general-
izes a former result of Cioabă. As corollaries, we investigate the Laplacian
and signless Laplacian eigenvalue conditions on τ (G) and edge connectiv-
ity. C© 2015 Wiley Periodicals, Inc. J. Graph Theory 81: 16–29, 2016

Keywords: eigenvalue; adjacency matrix; Laplacian Matrix; signless Laplacian matrix; quotient
matrix; edge connectivity; edge-disjoint spanning trees; spanning tree packing number

1. INTRODUCTION

In this article, we consider finite undirected simple graphs. We follow notation of Bondy
and Murty [1] for graphs, unless otherwise defined. Thus for a graph G, c(G) denotes the
number of components of G, and κ ′(G) denotes the edge connectivity of G. A graph G
is nontrivial if E(G) �= ∅. For a graph G, we use d̄(G) to denote the average degree of
G. Let U ⊆ V (G), d̄G(U ) or simply d̄(U ) denotes the average degree of all vertices of U
in G. Thus d̄(G[U]) and d̄(U ) are different. The former means the average degree of the
induced subgraph G[U], while the latter is the average degree of all vertices of U in G.
For a connected graph G, τ (G) denotes the maximum number of edge-disjoint spanning
trees in G. A survey on τ (G) can be found in [11]. By definition, τ (K1) = ∞.

Let G be an undirected graph on n vertices with vertex set {v1, v2, · · · , vn}. The
adjacency matrix of G is an n by n matrix A(G) = (ai j) given by ai j equals the number
of edges between vi and v j for 1 ≤ i, j ≤ n. By definition, if G is simple, then A(G) is
a symmetric (0, 1)-matrix. Eigenvalues of G are the eigenvalues of A(G). We use λi(G)

to denote the i-th largest eigenvalue of G; and when the graph G is understood from the
context, we often use λi for λi(G). With this notation, we always have λ1 ≥ λ2 ≥ · · · ≥ λn.

Let A(G) be the adjacency matrix of a graph G and D(G) be the diagonal matrix
of row sums of A(G) (i.e. the degrees of G), which is the degree matrix of G. The
matrices L(G) = D(G) − A(G) and Q(G) = D(G) + A(G) are the Laplacian matrix
and the signless Laplacian matrix of G, respectively. We use μi(G) and qi(G) to denote
the i-th largest eigenvalue of L(G) and Q(G), respectively. It is not difficult to see that
μn(G) = 0. The second smallest eigenvalue of L(G), μn−1(G), is known as the algebraic
connectivity of G.

Seymour proposed the following problem on predicting τ (G) by means of the eigen-
values.

Problem 1. ([4]) Let G be a connected graph. Determine the relationship between
τ (G) and eigenvalues of G.
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Motivated by this problem of Seymour, Cioabă, and Wong proposed the following
conjecture.

Conjecture 1.1 (Cioabă and Wong [4]). Let k and d be two integers with d ≥ 2k ≥ 4.
If G is a d-regular graph with λ2(G) < d − 2k−1

d+1 , then τ (G) ≥ k.

A fundamental theorem of Nash-Williams and Tutte characterizes graphs with at least
k edge-disjoint spanning trees.

Theorem 1.1 (Nash-Williams [10] and Tutte [13]). Let G be a connected graph with
E(G) �= ∅, and let k > 0 be an integer. Then τ (G) ≥ k if and only if for any X ⊆
E(G), |X | ≥ k(c(G − X ) − 1).

Utilizing Theorem 1.1, Cioabă [3], Cioabă and Wong [4] proved a number of theorems
in this direction, settling Conjecture 1.1 for the cases when k ∈ {2, 3} and obtaining
partial results towards the conjecture for other values of k.

Theorem 1.2 (Cioabă, Theorem 1.3 in [3]). Let k and d be two integers with d ≥ k ≥ 2.
If G is a d-regular graph with λ2(G) < d − 2(k−1)

d+1 , then κ ′(G) ≥ k.

Theorem 1.3 (Cioabă and Wong, Theorem 1.1 in [4]). Let d be an integer with d ≥ 4.
If G is a d-regular graph with λ2(G) < d − 3

d+1 , then τ (G) ≥ 2.

Theorem 1.4 (Cioabă and Wong, Theorem 1.2 in [4]). Let d be an integer with d ≥ 6.
If G is a d-regular graph with λ2(G) < d − 5

d+1 , then τ (G) ≥ 3.

Theorem 1.5 (Cioabă and Wong [4]). Let k and d be two integers with d ≥ 2k ≥ 4. If
G is a d-regular graph with λ2(G) < d − 2(2k−1)

d+1 , then τ (G) ≥ k.

The main purpose of this article is to continue the investigation between eigenvalues
of a simple graph (not necessarily regular) and the number of edge-disjoint spanning
trees. As suggested by Theorem 1.1, high edge connectivity also implies more edge-
disjoint spanning trees packing in a graph (see [7] for an example), we also investigate
the relationship between edge connectivity of a simple graph and its second largest
eigenvalue. Firstly, we present a more general conjecture, stated below.

Conjecture 1.2. Let k be an integer with k ≥ 2 and G be a graph with minimum degree
δ ≥ 2k. If λ2(G) < δ − 2k−1

δ+1 , then τ (G) ≥ k.

The following are the main results in this article. Theorem 1.6 generalizes Theorem 1.2.
While Theorems 1.7 (i) and (ii) settle two special cases of Conjecture 1.2, Theorem 1.7
(iii) sheds some light to support Conjecture 1.2. Theorem 1.7 generalizes Theorems 1.3,
1.4, and 1.5, provides further evidence to support Conjectures 1.1 and 1.2, and sharpens
Theorem 1.5.

Theorem 1.6. Let k be an integer with k ≥ 2 and G be a graph with minimum degree
δ ≥ k. If λ2(G) < δ − 2(k−1)

δ+1 , then κ ′(G) ≥ k.

Theorem 1.7. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(i) If δ ≥ 4 and λ2(G) < δ − 3
δ+1 , then τ (G) ≥ 2.

(ii) If δ ≥ 6 and λ2(G) < δ − 5
δ+1 , then τ (G) ≥ 3.

(iii) For k ≥ 4, if δ ≥ 2k and λ2(G) < δ − 3k−1
δ+1 , then τ (G) ≥ k.
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As applications of Theorem 1.6 and Theorem 1.7, we investigate the relationship
between algebraic connectivity, the second largest eigenvalue of signless Laplacian matrix
and edge connectivity, the number of edge-disjoint spanning trees of a simple graph.

In Section 2, we display some preliminaries and mechanisms, including eigenvalue
interlacing properties and quotient matrices. These will be applied in the proofs of the
main results, to be presented in Section 3 and 4. As corollaries, Laplacian and signless
Laplacian eigenvalue conditions on τ (G) and edge connectivity are presented in the last
section.

2. PRELIMINARIES

In this section, we present some of the preliminaries and former results to be used in our
arguments. Throughout this section, G always denotes a simple graph.

Let E
n = {(x1, x2, · · · , xn)

T |∑n
i=1 xi = 1 and xi ≥ 0 for i = 1, 2, · · · , n}.

Theorem 2.1 (Page 17 in [9]). Let A be an irreducible nonnegative n × n matrix with
the largest eigenvalue λ1. Then

λ1 = min
x∈En

{
max
xi �=0

(Ax)i

xi

}
= max

x∈En

{
min
xi �=0

(Ax)i

xi

}
.

Theorem 2.2 (Proposition 2.2 in [2]). Let G be a graph with largest eigenvalue λ1,
maximum degree � and average degree d̄. Then d̄ ≤ λ1 ≤ �.

Given two real sequences θ1 ≥ θ2 ≥ · · · ≥ θn and η1 ≥ η2 ≥ · · · ≥ ηm with n > m, the
second sequence is said to interlace the first one if θi ≥ ηi ≥ θn−m+i, for i = 1, 2, · · · , m.
When we say the eigenvalues of a matrix B interlace the eigenvalues of a matrix A, it
means the non-increasing eigenvalue sequence of B interlaces that of A. The following
interlace results are well-known, and can be found in many textbooks.

Theorem 2.3 (Cauchy Interlacing). Let A be a real symmetric matrix and B be a
principal submatrix of A. Then the eigenvalues of B interlace the eigenvalues of A.

Corollary 2.4 ([8]). If H is an induced subgraph of G, then the eigenvalues of H
interlace the eigenvalues of G.

Let S and T be disjoint subsets of V (G). We denote by E(S, T ) the set of edges each
of which has one vertex in S and the other vertex in T and let e(S, T ) = |E(S, T )|. The
next useful lemma follows immediately from Theorem 2.2 and Corollary 2.4.

Lemma 2.5 ([4]). Let S and T be disjoint subsets of V (G) and e(S, T ) = 0. Then

λ2(G) ≥ λ2(G[S ∪ T ]) ≥ min{λ1(G[S]), λ1(G[T ])} ≥ min{d̄(G[S]), d̄(G[T ])},
where d̄ denotes the average degree of a graph.

Suppose that we partition V (G) into s nonempty subsets V1,V2, · · · ,Vs. We denote this
partition by π . The quotient matrix Aπ (G) = A(V1,V2, · · · ,Vs) of G with respect to π ,
is an s by s matrix (bi j) such that bi j is the average number of neighbors in Vj of the
vertices in Vi for 1 ≤ i, j ≤ s. If the partition π is not specified, we often use As to denote
the quotient matrix. As As is an s by s square real matrix, the following is well known
from linear algebra (for example, see Page 289 in [12]).

λ1(As) + λ2(As) + · · · · · · + λs(As) = tr(As). (1)
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We denote the average degree of Vi by di for 1 ≤ i ≤ s. By the definition of the quotient
matrix, the sum of all entries in the i-th row is exactly di. Let �π (G) = max1≤i≤s{di} and
δπ (G) = min1≤i≤s{di}. The following theorem is an analogue of Theorem 2.2.

Theorem 2.6. Let G be a connected graph and π be a partition of V (G). Then

δπ ≤ λ1(Aπ ) ≤ �π.

Proof. Suppose that the partition π has s parts. Let x = ( 1
s ,

1
s , · · · , 1

s )T ∈ E
s. By

Theorem 2.1,

λ1(Aπ ) ≤ max
1≤i≤s

(Ax)i

xi
= max

1≤i≤s

1
s · di

1
s

= max
1≤i≤s

di = �π.

Similarly, by Theorem 2.1,

λ1(Aπ ) ≥ min
1≤i≤s

(Ax)i

xi
= min

1≤i≤s

1
s · di

1
s

= min
1≤i≤s

di = δπ . �

Theorem 2.7 (Corollary 2.3 in [8]. See also [2], [5]). Let G be a graph. The eigenvalues
of any quotient matrix of G interlace the eigenvalues of G.

Lemma 2.8. Let G be a graph with minimum degree δ and U be a non-empty proper
subset of V (G). If e(U,V\U ) ≤ δ − 1, then |U | ≥ δ + 1.

Proof. We argue by contradiction and assume that |U | ≤ δ. Then |U |(|U | − 1) +
e(U,V\U ) ≥ |U |δ by counting the total degrees of vertices in U . But |U |(|U | − 1) +
e(U,V\U ) ≤ δ(|U | − 1) + (δ − 1) ≤ |U |δ − 1, contrary to the fact that |U |(|U | − 1) +
e(U,V\U ) ≥ |U |δ. Thus |U | ≥ δ + 1. �

3. EIGENVALUES AND EDGE CONNECTIVITY IN GRAPHS

In this section, we present the proof of Theorem 1.6.

Proof of Theorem 1.6. We argue by contradiction and assume that κ ′(G) ≤ k − 1.
Then there exists a non-empty proper subset V1 ⊆ V (G) such that e(V1,V\V1) ≤ k − 1.
Let r = e(V1,V\V1) and V2 = V\V1. By Lemma 2.8, |V1| ≥ δ + 1 and |V2| ≥ δ + 1. The
quotient matrix of G with respect to the partition (V1,V2) is

A2 =
[

d̄1 − r
|V1|

r
|V1|

r
|V2| d̄2 − r

|V2|

]
,

where d̄i denotes the average degree of Vi in G for i = 1, 2. By (1), λ2(A2) = tr(A2) −
λ1(A2). By Theorem 2.6, λ1(A2) ≤ max{d̄1, d̄2} and by Theorem 2.7, λ2(A2) ≤ λ2(G).
Thus λ2(G) ≥ λ2(A2) ≥ tr(A2) − max{d̄1, d̄2}, which implies that

λ2(G) ≥ tr(A2) − max{d̄1, d̄2} = d̄1 + d̄2 −
(

r

|V1| + r

|V2|
)

− max{d̄1, d̄2} ≥ δ − 2(k − 1)

δ + 1
,

contrary to the fact that λ2(G) < δ − 2(k−1)

δ+1 . This completes the proof of the theorem. �
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4. EIGENVALUES AND EDGE-DISJOINT SPANNING TREES

The proof for Theorem 1.7 will be given in this section. We shall argue by contradiction
and assume that τ (G) ≤ k − 1. By Theorem 1.1, there exists an edge subset X ⊆ E(G)

such that |X | ≤ k(c(G − X ) − 1) − 1. Let c(G − X ) = t and G1, G2, . . . , Gt be the com-
ponents of G − X . For 1 ≤ i ≤ t, let Vi = V (Gi), Ei = E(Gi), and ri = e(Vi,V\Vi). With-
out lose of generality, we always assume that

r1 ≤ r2 ≤ · · · ≤ rt . (2)

With these notations and by |X | ≤ k(c(G − X ) − 1) − 1, we have∑
1≤i< j≤t

e(Vi,Vj) ≤ k(t − 1) − 1 = kt − k − 1. (3)

Claim 4.1. For k ≥ 2, if λ2(G) < δ − 2k−1
δ+1 , then there exist no indices p and q with

1 ≤ p �= q ≤ t such that e(Vp,Vq) = 0 and rp, rq ≤ 2k − 1.

Proof of Claim 1. We argue by contradiction. By Lemma 2.8, |Vp| ≥ δ + 1 and |Vq| ≥
δ + 1. It follows that d̄(G[Vp]) ≥ δ − 2k−1

|Vp| ≥ δ − 2k−1
δ+1 and d̄(G[Vq]) ≥ δ − 2k−1

|Vq| ≥ δ −
2k−1
δ+1 . By Lemma 2.5, λ2(G) ≥ min{d̄(G[Vp]), d̄(G[Vq])} ≥ δ − 2k−1

δ+1 , contrary to the
assumption that λ2(G) < δ − 2k−1

δ+1 . Thus the proof for Claim 4.1 is done.

Claim 4.2. For k ≥ 2, if δ ≥ 2k and if λ2(G) < δ − 2k−1
δ+1 , then for any i with 1 ≤ i ≤ t,

ri ≥ k.

Proof of Claim 2. We argue by contradiction and assume that for some i, ri < k.
Then κ ′(G) < k. By Theorem 1.6, λ2(G) ≥ δ − 2(k−1)

δ+1 , contrary to the assumption that
λ2(G) < δ − 2k−1

δ+1 . Therefore, we must have ri ≥ k. This proves Claim 2.

4.1 The Case when k = 2

In this subsection, we shall prove Theorem 1.7(i). By (3) with k = 2, we have

t∑
i=1

ri = 2
∑

1≤i< j≤t

e(Vi,Vj) ≤ 4t − 6.

Let xl denote the multiplicity of l in {r1, r2, · · · , rt} for l = 1, 2, 3. By Claim 2,
rt ≥ · · · ≥ r2 ≥ r1 ≥ 2. Thus x1 = 0. It follows by (3) with k = 2 that

2x2 + 3x3 + 4(t − x2 − x3) ≤
t∑

i=1

ri ≤ 4t − 6,

which implies that 2x2 + x3 ≥ 6. Thus if x2 = 0, then x3 ≥ 6; and if x2 = 1, then x3 ≥ 4.
It follows that when 0 ≤ x2 ≤ 1, there always exist p and q with 1 ≤ p �= q ≤ t such that
e(Vp,Vq) = 0 and rp ≤ 3 and rq = 3. But such indices p and q are forbidden by Claim
4.1, a contradiction.

Hence we must have x2 ≥ 2, and so we may assume, by (2), that r1, r2 = 2 and
2 ≤ r3 ≤ 3. Let V ′ = V\(V1 ∪ V2). Then V3 ⊆ V ′. By Lemma 2.8, |Vi| ≥ δ + 1 for i =

Journal of Graph Theory DOI 10.1002/jgt



22 JOURNAL OF GRAPH THEORY

1, 2, 3, and so |V ′| ≥ |V3| ≥ δ + 1. The quotient matrix of G with respect to the partition
(V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 2
|V1|

1
|V1|

1
|V1|

1
|V2| d̄2 − 2

|V2|
1

|V2|
1

|V ′|
1

|V ′| d̄′ − 2
|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′} = d̄1 + d̄2 + d̄′ −
(

2

|V1| + 2

|V2| + 2

|V ′|
)

− max{d̄1, d̄2, d̄′} ≥ 2δ − 6

δ + 1
,

contrary to the assumption in Theorem 1.7 (i) that λ2(G) < δ − 3
δ+1 . This completes the

proof of Theorem 1.7 (i).

4.2 The Case when k = 3

In this subsection, we shall prove Theorem 1.7(ii). By (3) with k = 3, we have

t∑
i=1

ri = 2
∑

1≤i< j≤t

e(Vi,Vj) ≤ 6t − 8.

Let xl denote the multiplicity of l in {r1, r2, · · · , rt} for 1 ≤ l ≤ 5. By Claim 2, rt ≥ · · · ≥
r2 ≥ r1 ≥ 3. Thus x1 = x2 = 0. It follows that

3x3 + 4x4 + 5x5 + 6(t − x3 − x4 − x5) ≤
t∑

i=1

ri ≤ 6t − 8,

which implies that

3x3 + 2x4 + x5 ≥ 8. (4)

Case 4.1. x3 ≥ 2.

Then by (2), r1 = r2 = 3 and r3 ≤ 5. Let V ′ = V\(V1 ∪ V2). Then it must be the case
that

(i) there is exactly one edge between V1 and V2;
(ii) there are exactly two edges between Vi and V ′ for each i = 1, 2.

Thus the structure is unique. By Lemma 2.8, |Vi| ≥ δ + 1 for i = 1, 2, 3. Then |V ′| ≥
|V3| ≥ δ + 1. The quotient matrix of G with respect to the partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 3
|V1|

1
|V1|

2
|V1|

1
|V2| d̄2 − 3

|V2|
2

|V2|
2

|V ′|
2

|V ′| d̄′ − 4
|V ′|

⎤
⎥⎦,
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where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′} = d̄1 + d̄2 + d̄′ −
(

3

|V1| + 3

|V2| + 4

|V ′|
)

− max{d̄1, d̄2, d̄′} ≥ 2δ − 10

δ + 1
,

contrary to the assumption in Theorem 1.7 (ii) that λ2(G) < δ − 5
δ+1 .

Case 4.2. x3 = 1.

By (4), 2x4 + x5 ≥ 5. If x4 = 0, then x5 ≥ 5, and so there exist p and q with
1 ≤ p �= q ≤ t such that e(Vp,Vq) = 0 and rp = 3 and rq = 5. This is prohibited
by Claim 4.1. Therefore we must have x4 ≥ 1, and so by (2), r1 = 3, r2 = 4, and
r3, r4 ≤ 5. By Lemma 2.8, |Vi| ≥ δ + 1 for i = 1, 2, 3, 4. Let V ′ = V\(V1 ∪ V2). Thus
V3,V4 ⊆ V ′, whence |V ′| ≥ 2(δ + 1). The quotient matrix of G with respect to the
partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 3
|V1|

1
|V1|

2
|V1|

1
|V2| d̄2 − 4

|V2|
3

|V2|
2

|V ′|
3

|V ′| d̄′ − 5
|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′} = d̄1 + d̄2 + d̄′ −
(

3

|V1| + 4

|V2| + 5

|V ′|
)

− max{d̄1, d̄2, d̄′} ≥ 2δ − 19/2

δ + 1
,

contrary to the assumption in Theorem 1.7 (ii) that λ2(G) < δ − 5
δ+1 .

Case 4.3. x3 = 0.

By (4), 2x4 + x5 ≥ 8. If x4 < 2, then either x4 = 1 and x5 ≥ 6, or x4 = 0 and x5 ≥ 8. In
either case, there exist p and q with 1 ≤ p �= q ≤ t such that e(Vp,Vq) = 0 and rp, rq ≤ 5,
violating Claim 4.1. Hence, by (2), we may assume that r1 = r2 = 4. Since 2x4 + x5 ≥ 8,
r3, r4 ≤ 5.

Subcase 3.1: t = 4. Then (V1,V2,V3,V4) is a partition of V (G). As 2x4 + x5 ≥ 8,
we must have x4 = 4 and x5 = 0. Thus ri = 4 for i = 1, 2, 3, 4. By Claim 1, and since
r1 = 4, there exists Vj (say j = 2) such that e(V1,Vj) = 2. Let V ′ = V\(V1 ∪ V2). Then

Journal of Graph Theory DOI 10.1002/jgt



24 JOURNAL OF GRAPH THEORY

|V ′| = |V3| + |V4| ≥ 2(δ + 1). The quotient matrix of G with respect to the partition
(V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 4
|V1|

2
|V1|

2
|V1|

2
|V2| d̄2 − 4

|V2|
2

|V2|
2

|V ′|
2

|V ′| d̄′ − 4
|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′} = d̄1 + d̄2 + d̄′ −
(

4

|V1| + 4

|V2| + 4

|V ′|
)

− max{d̄1, d̄2, d̄′} ≥ 2δ − 10

δ + 1
,

contrary to the assumption in Theorem 1.7 (ii) that λ2(G) < δ − 5
δ+1 .

Subcase 3.2: t ≥ 5.
Subcase 3.2.1: r5 ≤ 5. Let V ′ = V\(V1 ∪ V2). By Lemma 2.8, |Vi| ≥ δ + 1 for i =

1, 2, 3, 4, 5. Then |V ′| ≥ |V3| + |V4| + |V5| ≥ 3(δ + 1). The quotient matrix of G with
respect to the partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 4
|V1|

1
|V1|

3
|V1|

1
|V2| d̄2 − 4

|V2|
3

|V2|
3

|V ′|
3

|V ′| d̄′ − 6
|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′} = d̄1 + d̄2 + d̄′ −
(

4

|V1| + 4

|V2| + 6

|V ′|
)

− max{d̄1, d̄2, d̄′} ≥ 2δ − 10

δ + 1
,

contrary to the assumption in Theorem 1.7 (ii) that λ2(G) < δ − 5
δ+1 .

Subcase 3.2.2: r5 > 5. As 2x4 + x5 ≥ 8, we must have ri = 4 for i = 1, 2, 3, 4.
Let V ′′ = V \ (V1 ∪ V2 ∪ V3 ∪ V4), and so (V1,V2,V3,V4,V ′′) is a partition of V (G).
By Claim 1, e(Vi,Vj) ≥ 1 for 1 ≤ i, j ≤ 4. Since ri = 4 for i = 1, 2, 3, 4., we must
have e(Vi,V ′′) ≤ 1 for i = 1, 2, 3, 4. Thus e(V ′′,V\V ′′) = ∑4

i=1 e(Vi,V ′′) ≤ 4 ≤ δ − 1.
By Lemma 2.8, |V ′′| ≥ δ + 1. Let V ′ = V\(V1 ∪ V2). Then |V ′| = |V3| + |V4| + |V ′′| ≥

Journal of Graph Theory DOI 10.1002/jgt



EDGE-DISJOINT SPANNING TREES, EDGE CONNECTIVITY 25

3(δ + 1). Let e(V1,V2) = y. Then y ≥ 1. The quotient matrix of G with respect to the
partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − 4
|V1|

y
|V1|

4−y
|V1|

y
|V2| d̄2 − 4

|V2|
4−y
|V2|

4−y
|V ′|

4−y
|V ′| d̄′ − 2(4−y)

|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′}
= d̄1 + d̄2 + d̄′ −

(
4

|V1| + 4

|V2| + 2(4 − y)

|V ′|
)

− max{d̄1, d̄2, d̄′}

≥ 2δ − 10

δ + 1
,

contrary to the assumption in Theorem 1.7 (ii) that λ2(G) < δ − 5
δ+1 . This completes the

proof.

4.3 The Case when k ≥ 4

In this subsection, we shall prove Theorem 1.7(iii). Let xl denote the multiplicity of l in
{r1, r2, · · · , rt} for 1 ≤ l ≤ 2k − 1. By Claim 2, rt ≥ · · · ≥ r2 ≥ r1 ≥ k. Thus x j = 0 for
j = 1, 2, · · · , k − 1. By (3), we have

kxk +(k + 1)xk+1 + · · · + (2k − 1)x2k−1 + 2k(t − (xk + xk+1 + · · · + x2k−1))

≤
t∑

i=1

ri ≤ 2kt − 2(k + 1),

which implies that

kxk + (k − 1)xk+1 + · · · + 2x2k−2 + x2k−1 ≥ 2(k + 1).

Let h be the smallest index such that xh �= 0. Then we have

(2k − h)xh + (2k − h − 1)xh+1 + · · · + 2x2k−2 + x2k−1 ≥ 2(k + 1). (5)

Since h ≥ k, we have 2(k + 1) > 2(2k − h).

Case 4.4. xh ≥ 2.

Since 2(k + 1) > 2(2k − h), there exists an integer b ≥ 3 such that (b − 1)(2k − h) <

2(k + 1) ≤ b(2k − h). By 2(k + 1) ≤ b(2k − h), we have h ≤ (2b−2)k−2
b . It follows by

(b − 1)(2k − h) < 2(k + 1) and by (5) that xh + xh+1 + · · · + x2k−2 + x2k−1 ≥ b, and so
by (2), we have r1 ≤ r2 ≤ · · · ≤ rb ≤ 2k − 1. By Lemma 2.8, |Vi| ≥ δ + 1 with 1 ≤ i ≤ b.
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Let V ′ = V\(V1 ∪ V2). Then |V ′| ≥ |V3| + · · · + |Vb| ≥ (b − 2)(δ + 1). Let e(V1,V2) =
y. Then y ≥ 1. The quotient matrix of G with respect to the partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − h
|V1|

y
|V1|

h−y
|V1|

y
|V2| d̄2 − h

|V2|
h−y
|V2|

h−y
|V ′|

h−y
|V ′| d̄′ − 2(h−y)

|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′}
= d̄1 + d̄2 + d̄′ −

(
h

|V1| + h

|V2| + 2(h − y)

|V ′|
)

− max{d̄1, d̄2, d̄′}

≥ 2δ − 2( b−1
b−2 h − y

b−2 )

δ + 1

≥ 2

⎛
⎝δ −

2(b−1)2

b(b−2)
k − 3b−2

b(b−2)

δ + 1

⎞
⎠ > 2

(
δ − 3k − 1

δ + 1

)
, (6)

contrary to the assumption in Theorem 1.7 (iii) that λ2(G) < δ − 3k−1
δ+1 . (See Appendix

A for the proof of (6)). This proves Case 1.

Case 4.5. xh = 1.

Then (5) becomes (2k − h − 1)xh+1 + · · · + 2x2k−2 + x2k−1 ≥ 2(k + 1) − (2k −
h) = h + 2 ≥ k + 2. Let h′ be the smallest index such that xh′ > 0 with h′ > h. Then

(2k − h′)xh′ + · · · + 2x2k−2 + x2k−1 ≥ h + 2 ≥ k + 2. (7)

As h′ ≥ h ≥ k, we have h′ + 2 > k and so k + 2 > 2k − h′. Thus there must be an integer
b′ ≥ 2 such that (b′ − 1)(2k − h′) < k + 2 ≤ b′(2k − h′). It follows by k + 2 ≤ b′(2k −
h′) that h′ ≤ (2b′−1)k−2

b′ . By (b′ − 1)(2k − h′) < k + 2 and by (7), we have xh′ + · · · +
x2k−2 + x2k−1 ≥ b′, and so by (2), r1 ≤ r2 ≤ · · · ≤ rb′ ≤ rb′+1 ≤ 2k − 1. By Lemma 2.8,
|Vi| ≥ δ + 1 for i = 1, 2, · · · , b′ + 1. Let V ′ = V\(V1 ∪ V2). Then |V ′| ≥ |V3| + · · · +
|Vb′+1| ≥ (b′ − 1)(δ + 1). Let e(V1,V2) = y. Then y ≥ 1. The quotient matrix of G with
respect to the partition (V1,V2,V ′) is

A3 =

⎡
⎢⎣

d̄1 − h
|V1|

y
|V1|

h−y
|V1|

y
|V2| d̄2 − h′

|V2|
h′−y
|V2|

h−y
|V ′|

h′−y
|V ′| d̄′ − h+h′−2y

|V ′|

⎤
⎥⎦,

where d̄i denotes the average degree of Vi in G for i = 1, 2 and d̄′ denotes the average
degree of V ′ in G.

By (1), λ2(A3) + λ3(A3) = tr(A3) − λ1(A3). By Theorem 2.7, λ2(G) ≥ λ2(A3),

λ3(G) ≥ λ3(A3) and by Theorem 2.6, λ1(A3) ≤ max{d̄1, d̄2, d̄′}. Thus λ2(G) + λ3(G) ≥
tr(A3) − max{d̄1, d̄2, d̄′}. As λ2(G) ≥ λ3(G), we have

2λ2(G) ≥ tr(A3) − max{d̄1, d̄2, d̄′}
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= d̄1 + d̄2 + d̄′ −
(

h

|V1| + h′

|V2| + h + h′ − 2y

|V ′|
)

− max{d̄1, d̄2, d̄′}

≥ 2δ − b′h + b′h′ − 2y

(b′ − 1)(δ + 1)
≥ 2δ − 2(b′h′ − y)

(b′ − 1)(δ + 1)

≥ 2

(
δ −

2b′−1
b′−1 k − 3

b′−1

δ + 1

)
> 2

(
δ − 3k − 1

δ + 1

)
, (8)

contrary to the assumption in Theorem 1.7 (iii) that λ2(G) < δ − 3k−1
δ+1 . (See Appendix

B for the proof of (8)). This completes the proof.

5. LAPLACIAN AND SIGNLESS LAPLACIAN EIGENVALUE

CONDITIONS

In this section, we will investigate the relationship between μn−1(G), q2(G) and τ (G),
κ ′(G) of a simple graph G. Theorem 5.3 and 5.4 are main results, which are analogues
of Theorem 1.6 and Theorem 1.7. We present a useful theorem first.

Theorem 5.1 (Weyl Inequalities). Let B and C be Hermitian matrices of order n, and
let 1 ≤ i, j ≤ n. Then

(i) λi(B) + λ j(C) ≤ λi+ j−n(B + C) if i + j ≥ n + 1.
(ii) λi(B) + λ j(C) ≥ λi+ j−1(B + C) if i + j ≤ n + 1.

Corollary 5.2. Let δ, �, λ2, μn−1, and q2 be the minimum degree, maximum degree,
second largest eigenvalue, second smallest Laplacian eigenvalue and second largest
signless Laplacian eigenvalue of a graph G. Then

(i) μn−1 + λ2 ≤ �.
(ii) δ + λ2 ≤ q2.

Proof. Let A, D, L, Q be the adjacency matrix, diagonal matrix, Laplacian matrix
and signless Laplacian matrix.

(i) : Since L = D − A, we have D = L + A. By Theorem 5.1 (i), λn−1(L) + λ2(A) ≤
λ1(D). Thus μn−1 + λ2 ≤ �.

(ii) : Since Q = D + A, by Theorem 5.1 (i), λn(D) + λ2(A) ≤ λ2(Q). Thus δ + λ2 ≤
q2. �

Theorem 5.3. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(1) (i) If δ ≥ 4 and μn−1(G) > � − δ + 3
δ+1 , then τ (G) ≥ 2.

(ii) If δ ≥ 6 and μn−1(G) > � − δ + 5
δ+1 , then τ (G) ≥ 3.

(iii) For k ≥ 4, if δ ≥ 2k and μn−1(G) > � − δ + 3k−1
δ+1 , then τ (G) ≥ k.

(iv) For k ≥ 2 and δ ≥ k, if μn−1(G) > � − δ + 2(k−1)

δ+1 , then κ ′(G) ≥ k.

Proof. By Corollary 5.2 and Theorems 1.6-1.7. �
Theorem 5.4. Let k ≥ 2 be an integer, G be a graph with minimum degree δ.

(i) If δ ≥ 4 and q2(G) < 2δ − 3
δ+1 , then τ (G) ≥ 2.

(ii) If δ ≥ 6 and q2(G) < 2δ − 5
δ+1 , then τ (G) ≥ 3.
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(iii) For k ≥ 4, if δ ≥ 2k and q2(G) < 2δ − 3k−1
δ+1 , then τ (G) ≥ k.

(iv) For k ≥ 2 and δ ≥ k, if q2(G) < 2δ − 2(k−1)

δ+1 , then κ ′(G) ≥ k.

Proof. By Corollary 5.2 and Theorems 1.6-1.7.
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APPENDIX A: THE PROOF OF (6)

It suffices to show that 2(b−1)2

b(b−2)
k − 3b−2

b(b−2)
< 3k − 1, which can be seen from the follow

equivalences:

2(b − 1)2

b(b − 2)
k − 3b − 2

b(b − 2)
< 3k − 1
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⇐⇒ 1 − 3b − 2

b(b − 2)
< 3k − 2(b − 1)2

b(b − 2)
k

⇐⇒ b2 − 5b + 2

b(b − 2)
<

b2 − 2b − 2

b(b − 2)
k.

As b ≥ 3 and k ≥ 1, it suffices to show that b2 − 5b + 2 < b2 − 2b − 2, which is equiv-
alent to 4 < 3b, which is correct since b ≥ 3. This completes the proof.

APPENDIX B: THE PROOF OF (8)

It suffices to show that 2b′−1
b′−1 k − 3

b′−1 < 3k − 1, which can be seen from the follow
equivalences:

2b′ − 1

b′ − 1
k − 3

b′ − 1
< 3k − 1

⇐⇒ 1 − 3

b′ − 1
< 3k − 2b′ − 1

b′ − 1
k

⇐⇒ b′ − 4

b′ − 1
<

b′ − 2

b′ − 1
k,

which is obviously correct when b′ ≥ 2 and k ≥ 1. It completes the proof.
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