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a b s t r a c t

A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at
least 2, the neighbors of v receive at least two different colors. The smallest integer k such
that G has a dynamic k-coloring is the dynamic chromatic number χd(G). In this paper the
differences betweenχd(G) andχd(G−e), and betweenχd(G) andχd(G−v) are investigated
respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs G = (V , E) are finite, simple and undirected. For v ∈ V , NG(v) is the set of vertices adjacent to
v, and the degree of v, denoted by dG(v), is |NG(v)|. We use ∆(G) and δ(G) to denote the maximum degree and minimum
degree of G, respectively. When the graph G is understood from the context, we often omit the subscript G, and use δ, ∆ for
δ(G), ∆(G), respectively. If uv ∈ E, then u is a neighbor of v. For W ⊆ V , G − W denotes the graph obtained from G by
deleting the vertices inW together with their incident edges. IfW = {w}, we often write G− w for G− {w}. If U ⊆ V , then
G[U] denotes the graph on U whose edges are precisely the edges of Gwith both ends in U . Let Cn and Pn denote a cycle and
a path on n vertices, respectively. In a graph G, an elementary subdivision of an edge e = uv ∈ E(G) is the operation of
replacing e with a path uvev through a new vertex ve. A graph H is a subdivision of a graph G if H can be obtained from G
by a sequence of elementary subdivisions. For a real number x, we use ⌈x⌉ to denote the least integer no less than x.

For an integer k > 0, let k = {1, 2, . . . , k}. If S ⊆ V (G) is a subset and c : V (G) → k is a mapping, then define
c(S) = {c(x) : x ∈ S}. A dynamic k-coloring of a graph G is a mapping c : V (G) → k satisfying both of the following:
(C1) If uv ∈ E(G), then ϕ(u) ≠ ϕ(v), and
(C2) for each vertex v ∈ V (G), |c(N(v))| ≥ min{2, dG(v)}.

The dynamic chromatic number χd(G) is the smallest integer k such that G has a dynamic k-coloring. Dynamic coloring
was first introduced in [12,9], and is a special case of the r-hued colorings [8,7,13]when r = 2. The study of dynamic coloring
has drawn lots of attention, as seen in [1–6,8,9,12,10,11,13,14], among others.

Unlike classic colorings, a subgraph of a graph Gmay have a bigger dynamic chromatic number than G. A natural problem
is to investigate the differences between χd(G) and χd(G− e), and between χd(G) and χd(G− v). This motivates the current
study. In Section 2,wewill investigate the best possible bounds for the differences betweenχd(G−e) andχd(G), and between
χd(G − v) and χd(G).
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2. Comparisons between χd(G) and χd(G − e), and between χd(G) and χd(G − v)

It is well known that if H is a subgraph of a graph G, then χ(G) ≥ χ(H). However, there exist graphs G with a subgraph
H such that χd(H) > χd(G). For example, let G be the 5-cycle with one chord, and let H be the 5-cycle, then it is routine to
verify that χd(G) = 4 but χd(H) = 5.

In this section, we investigate tight bounds for the change of the dynamic chromatic number when an edge or a vertex
is being removed. We start with a lemma, which follows from definition immediately.

Lemma 2.1. If G is a connected graph on at least 2 vertices, then χd(G) ≤ 2 is and only if G ∈ {K1, K2}.

Theorem 2.1. Each of the following holds.
(i) Let G be a connected graph with |V (G)| ≥ 3. Then for any edge e = uv ∈ E(G),

χd(G) − 2 ≤ χd(G − e) ≤ χd(G) + 2. (1)

(ii) There exists a graph G such that χd(G − e) = χd(G) + 2 for at least one edge e ∈ E(G).
(iii) If a connected graph G satisfies that χd(G − e) = χd(G) − 2 for at least one edge e in G, then G = C5.

Proof. (i) Let k1 = χd(G − e), and let c1 : V (G − e) → k1 be a dynamic k1-coloring of G − e. Obtain a new coloring c ′

1 from
c1 by defining

c ′

1(z) =

c1(z) if z ∉ {u, v}

k1 + 1 if z = u
k1 + 2 if z = v.

By definition, c ′

1 : V (G) → k1 + 2 is a dynamic (k1 + 2)-coloring of G, and so χd(G) ≤ χd(G − e) + 2.
Now let k2 = χd(G) and c2 : V (G) → k2 be a dynamic k2-coloring of G. Since |V (G)| ≥ 3 and since G is connected,

there exists x ∈ NG(u) − {v} or y ∈ NG(v) − {u}. Choose such x and y so that |{x, y}| is maximized. If |{x, y}| = 1, then
by the maximality of |{x, y}|, and since G is connected, we must have dG(u) ≤ 2 and dG(v) ≤ 2. In this case, we have
χd(G) = χd(G−e), and so χd(G) ≤ χd(G−e)+2. Hence we assume that x ≠ y. Obtain a new coloring c ′

2 from c2 by defining

c ′

2(z) =

c2(z) if z ∉ {x, y}
k2 + 1 if z = x
k2 + 2 if z = y.

By definition, c ′

2 : V (G− e) → k2 + 2 is a dynamic (k2 + 2)-coloring of G− e, and so χd(G− e) ≤ χd(G) + 2. This proves (i).
(ii) For an integer r ≥ 4, let H be a complete r-partite graph with partite sets V1, V2, . . . , Vr , such that |Vi| ≥ 2 for each i
with 1 ≤ i ≤ r , and let u and v be two new vertices. Let G be the graph obtained from H by adding a new edge uv to H and
by joining u to every vertex in V1 and joining v to every vertex in V2. It is routine to verify that χd(G) = χ(G) = r , and that
χd(G − uv) = r + 2, since the vertices in each of V1 and V2 must be colored with at least two colors.
(iii) Let G be a connected graph with at least one edge such that χd(G − e) = χd(G) − 2 for some edge e = uv ∈ E(G), and
let k = χd(G− e). If χd(G− e) ≤ 2, then by Lemma 2.1, G ∈ {K2, P3}, contrary to the assumption that χd(G− e) = χd(G)−2
for some e ∈ E(G). Hence we assume that k = χd(G − e) ≥ 3.

Let c : V (G − e) → k be a dynamic k-coloring. Assume without loss of generality, that dG(u) ≥ dG(v). If dG(v) = 1,
then v is an isolated vertex of G − e. As k ≥ 3, we can pick a vertex u′

∈ NG(u) − {v} and redefine c(v) ∈ k − {c(u), c(u′)}
to obtain a k-coloring of G, contrary to the assumption that χd(G − e) = χd(G) − 2. If dG(u) ≥ 3, then by k ≥ 3, we can
redefine c(u) = k + 1 to obtain a (k + 1)-coloring of G, contrary to the assumption that χd(G − e) = χd(G) − 2. Hence we
may assume that dG(u) = dG(v) = 2. Let NG(u) = {v, u′

},NG(v) = {u, v′
}. We have the following claims.

Claim 1. u′
≠ v′.

If u′
= v′, then obtain a new coloring c ′ from c by defining

c ′(z) =


c(z) if z ≠ u
k + 1 if z = u.

By definition, c ′
: V (G) → k + 1 is a dynamic (k+ 1)-coloring of G, contrary to the assumption that χd(G− e) = χd(G)− 2.

Thus Claim 1 must hold.

Claim 2. c(u) = c(v′) ≠ c(u′) = c(v).
If c(u) ≠ c(v′), then obtain a new coloring c ′′ from c by defining

c ′′(z) =


c(z) if z ≠ v
k + 1 if z = v.
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By definition, c ′′
: V (G) → k + 1 is a dynamic (k+1)-coloring of G, contrary to the assumption that χd(G− e) = χd(G)−2.

Thus we must have that c(u) = c(v′). By a similar argument, we also have that c(u′) = c(v). Since uu′
∈ E(G − e), we

conclude that c(u) ≠ c(u′).

Claim 3.min{dG(u′), dG(v′)} ≥ 2.
By contradiction, assumewithout loss of generality that dG(v′) = 1, and so NG(v

′) = {v}. Obtain a new coloring c(3) from
c by defining

c(3)(z) =

c(z) if z ∉ {v, v′
}

k + 1 if z = v

a where a ∈ k − {c(u)}, if z = v′.

By definition, c(3)
: V (G) → k + 1 is a dynamic (k+1)-coloring of G, contrary to the assumption thatχd(G−e) = χd(G)−2.

This proves Claim 3.

Claim 4. dG(u′) = dG(v′) = 2.
By contradiction and by symmetry, assume that dG(u′) ≥ 3. Pick a color a′

∈ c(NG(u′)) − {c(u), c(v)} if c(NG(u′)) −

{c(u), c(v)} ≠ ∅, and define {a′
} = ∅ if c(NG(u′)) − {c(u), c(v)} = ∅.

If k = χd(G − e) ≥ 4, then obtain a new coloring c(4) from c by defining

c(4)(z) =

c(z) if z ∉ {u, v}

a where a ∈ k − ({c(u), c(v)} ∪ {a′
}), if z = u

k + 1 if z = v.

By definition, c(4)
: V (G) → k + 1 is a dynamic (k+1)-coloring of G, contrary to the assumption thatχd(G−e) = χd(G)−2.

Thus we assume that k = χd(G − e) = 3. By Claim 2, we may assume that c(u) = c(v′) = 1 and c(u′) = c(v) = 2 in the
rest of the proof.

If c(NG(u′) − {u}) = {3}, then NG(u′) is an independent set, and as c(v′) = 1, v′
∉ NG(u′) − {u}. Pick a vertex

u′′
∈ NG(u′) − {u}. Obtain a new coloring c(5) from c by defining

c(5)(z) =

c(z) if z ∉ {u, v, u′′
}

3 if z = u
k + 1 if z ∈ {v, u′′

}.

By definition, c(5)
: V (G) → k + 1 is a dynamic (k+1)-coloring of G, contrary to the assumption thatχd(G−e) = χd(G)−2.

If there exists an u′′′
∈ NG(u′) − {u} with c(u′′′) = 1, then obtain a new coloring c(6) from c by defining

c(6)(z) =

c(z) if z ∉ {u, v}

3 if z = u
4 if z = v.

By definition, c(6)
: V (G) → 4 is a dynamic 4-coloring ofG, contrary to the assumption thatχd(G−e) = χd(G)−2. Therefore,

we must have dG(u′) = dG(v′) = 2.
Denote NG(u′) = {u, u′′

},NG(v
′) = {v, v′′

}. Assume first that u′′
≠ v′′ or both u′′

= v′′ and dG(u′′) ≥ 3. Obtain a new
coloring c(7) from c by defining

c(7)(z) =


c(z) if z ∉ {u′, v′

}

k + 1 if z ∈ {u′, v′
}.

By definition, c(7)
: V (G) → k + 1 is a dynamic (k+1)-coloring of G, contrary to the assumption thatχd(G−e) = χd(G)−2.

It follows that wemust have u′′
= v′′ and dG(u′′) = dG(v′′) = 2, and so G = C5. This completes the proof of Theorem 2.4. �

The corollary below follows from Theorem 2.1(iii) and from Theorem 2.2 of [8].

Corollary 2.1. Let G be a connected graph. The following are equivalent.
(i) G = C5.
(ii) For any edge e ∈ E(G), χd(G − e) = χd(G) − 2.

In view of Theorem 2.1(ii) and Corollary 2.1, it is natural to investigate conditions on a graph G such that χd(G − e) ≤

χd(G) + 1 for any e ∈ E(G). The next result is an attempt in this direction.

Theorem 2.2. Let G be a connected graph with n = |V (G)| ≥ 2. If G does not contain a subdivision of K3,3, then χd(G − e) ≤

χd(G) + 1 for any e ∈ E(G).
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Proof. To the contrary, we assume that there exists a K3,3-minor free graph G such that χd(G− e) ≥ χd(G)+2 for some e =

uv ∈ E(G). By Theorem 2.1(i), we have χd(G−e) = χd(G)+2. As the theorem holds trivially if n ≤ 5, we assume that n ≥ 6.
Without loss of generality, we assume that dG(u) ≥ dG(v). Let k = χd(G) and let c : V (G) → k be a dynamic k- coloring
of G. We make the following claims.

Claim 1. d(u) ≥ d(v) ≥ 3.
If d(v) ≤ 2, then since n ≥ 6 and since G is connected, we have dG(u) ≥ 2. Pick a vertex x ∈ NG(u) − {v} and obtain a

new coloring c ′
: V (G − e) → k + 1 as follows:

c ′(z) =


c(z) if z ≠ x
k + 1 if z = x.

By definition, c ′ is a dynamic (k+ 1)-coloring of G− e, contrary to the assumption that χd(G− e) = χd(G)+ 2. This justifies
Claim 1.

Claim 2. |c(N(u) − {v})| = |c(N(v) − {u})| = 1.
If |c(N(u)−{v})| ≥ 2 and |c(N(v)−{u})| ≥ 2, then c is also a dynamic k-coloring ofG−uv, and soχd(G−e) ≤ k = χd(G).

Thus min{|c(N(u) − {v})|, |c(N(v) − {u})|} = 1. By symmetry, we may assume that |c(N(u) − {v})| = 1.
If |c(N(v) − {u})| ≥ 2, then by Claim 1, there exists a vertex x ∈ N(u) − {v}. Define a coloring c ′′

: V (G − e) → k + 1 as
follows:

c ′′(z) =


c(z) if z ≠ x
k + 1 if z = x.

By definition, c ′′ is a dynamic (k+ 1)-coloring of G− e, contrary to the assumption that χd(G− e) = χd(G) + 2. This proves
Claim 2.

Claim 3. c(N(u) − {v}) ≠ c(N(v) − {u}).
By contradiction, assume that c(N(u)−{v}) = c(N(v)−{u}). By Claim 1, there exist x ∈ N(u)−{v} and y ∈ N(v)−{u, x}.

Obtain a coloring c(3)
: V (G − e) → k + 1 as follows:

c(3)(z) =


c(z) if z ∉ {x, y}
k + 1 if z ∈ {x, y}. (2)

By definition, c(3) is a dynamic (k+1)-coloring of G− e, contrary to the assumption that χd(G− e) = χd(G)+2. This proves
Claim 3.

Claim 4. For every x ∈ N(u) − {v} and for every y ∈ N(v) − {u}, either xy ∈ E(G) or NG(x) ∩ NG(y) contains a vertex of
degree 2 in G.

Suppose that there exist a vertex x ∈ N(u) − {v} and a vertex y ∈ N(v) − {u} such that xy ∉ E(G) and NG(x) ∩ NG(y)
contains no vertices of degree 2 in G. Obtain a coloring c(3)

: V (G − e) → k + 1 as defined in (2). By definition, c(3) is a
dynamic (k + 1)-coloring of G − e, contrary to the assumption that χd(G − e) = χd(G) + 2. Hence Claim 4 must hold.

By Claims 1–4, G[N(u) ∪ N(v) ∪ N(N(u)) ∪ N(N(v))] contains a subdivision of K3,3, contrary to the assumption of the
theorem. This completes the proof of Theorem 2.2. �

To investigate the corresponding problem using vertex removal instead of edge removal, we quote a theorem of
Montgomery.

Theorem 2.3 (Montgomery, [12]). For any graph G, χd(G− v) ≥ χd(G)− 2 for any vertex v ∈ V (G). The only graphs for which
χd(G − v) ≥ χd(G) − 2 for at least one vertex are K1,n−1, n ≥ 3 and C5.

A natural question is to see if there exists a constant M > 0 such that χd(G − v) ≤ χd(G) + M for any vertex v ∈ V (G).
The next example addresses to this problem, and indicates that the difference χd(G − v) − χd(G) could be unbounded.

Example 2.1. For any integer M ≥ 1, there exists a graph G such that χd(G − v) ≥ χd(G) + M for at least one vertex
v ∈ V (G).

Let k ≥ 4 and M = k − 3 be integers. Let SKk be the bipartite graph with vertex bipartition X and Y , where X = k and
Y = X [2], which is the set of all 2-element subsets of k, such that a vertex x ∈ X is adjacent to a vertex {i, j} ∈ Y if and only if
x ∈ {i, j}. Thus SKk is the graph obtained from Kk by subdividing every edge of Kk exactly once. (See [9] and [12].) As shown
in [9] and [12], we know that χd(SKk) = k. Let Gk be the graph obtained from SKk by adding a new vertex w to SKk and
joining w to every vertex of SKk. Obtain a dynamic 3-coloring c of Gk by defining c(w) = 3, c(x) = 1 if x ∈ X and c(y) = 2
if y ∈ Y . It follows that χd(Gk) = 3. Since Gk − w = SKk, we have χd(G − v) = χd(G) + M .

Remark 2.1. Given the main results in this note, it is natural to seek possible characterization of graphs G such that
χd(G − e) = χd(G) − c for some edge e ∈ E(G) (or for any e ∈ E(G)), where c ∈ {−1, 0, 1}. This seems to be a difficult task,
and remains to be investigated.
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