Note

Element deletion changes in dynamic coloring of graphs

Lian-Ying Miao ${ }^{\text {a }}$, Hong-Jian Lai ${ }^{\text {b,* }}$, Yan-Fang Guo ${ }^{\text {a }}$, Zhengke Miao ${ }^{\text {c }}$
${ }^{\text {a }}$ Institute of Mathematics, China University of Mining and Technology, Xuzhou 221116, China
${ }^{\text {b }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA
' School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China

ARTICLE INFO

Article history:

Received 9 July 2015
Received in revised form 12 January 2016
Accepted 12 January 2016

Keywords:

Dynamic coloring
Dynamic chromatic number

Abstract

A proper vertex k-coloring of a graph G is dynamic if for every vertex v with degree at least 2 , the neighbors of v receive at least two different colors. The smallest integer k such that G has a dynamic k-coloring is the dynamic chromatic number $\chi_{d}(G)$. In this paper the differences between $\chi_{d}(G)$ and $\chi_{d}(G-e)$, and between $\chi_{d}(G)$ and $\chi_{d}(G-v)$ are investigated respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, all graphs $G=(V, E)$ are finite, simple and undirected. For $v \in V, N_{G}(v)$ is the set of vertices adjacent to v, and the degree of v, denoted by $d_{G}(v)$, is $\left|N_{G}(v)\right|$. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum degree and minimum degree of G, respectively. When the graph G is understood from the context, we often omit the subscript G, and use δ, Δ for $\delta(G), \Delta(G)$, respectively. If $u v \in E$, then u is a neighbor of v. For $W \subseteq V, G-W$ denotes the graph obtained from G by deleting the vertices in W together with their incident edges. If $W=\{w\}$, we often write $G-w$ for $G-\{w\}$. If $U \subseteq V$, then $G[U]$ denotes the graph on U whose edges are precisely the edges of G with both ends in U. Let C_{n} and P_{n} denote a cycle and a path on n vertices, respectively. In a graph G, an elementary subdivision of an edge $e=u v \in E(G)$ is the operation of replacing e with a path $u v_{e} v$ through a new vertex v_{e}. A graph H is a subdivision of a graph G if H can be obtained from G by a sequence of elementary subdivisions. For a real number x, we use $\lceil x\rceil$ to denote the least integer no less than x.

For an integer $k>0$, let $\bar{k}=\{1,2, \ldots, k\}$. If $S \subseteq V(G)$ is a subset and $c: V(G) \mapsto \bar{k}$ is a mapping, then define $c(S)=\{c(x): x \in S\}$. A dynamic k-coloring of a graph G is a mapping $c: V(G) \mapsto \bar{k}$ satisfying both of the following:
(C1) If $u v \in E(G)$, then $\varphi(u) \neq \varphi(v)$, and
(C2) for each vertex $v \in V(G),|c(N(v))| \geq \min \left\{2, d_{G}(v)\right\}$.
The dynamic chromatic number $\chi_{d}(G)$ is the smallest integer k such that G has a dynamic k-coloring. Dynamic coloring was first introduced in [12,9], and is a special case of the r-hued colorings [8,7,13] when $r=2$. The study of dynamic coloring has drawn lots of attention, as seen in [1-6,8,9,12,10,11,13,14], among others.

Unlike classic colorings, a subgraph of a graph G may have a bigger dynamic chromatic number than G. A natural problem is to investigate the differences between $\chi_{d}(G)$ and $\chi_{d}(G-e)$, and between $\chi_{d}(G)$ and $\chi_{d}(G-v)$. This motivates the current study. In Section 2, we will investigate the best possible bounds for the differences between $\chi_{d}(G-e)$ and $\chi_{d}(G)$, and between $\chi_{d}(G-v)$ and $\chi_{d}(G)$.

[^0]http://dx.doi.org/10.1016/j.disc.2016.01.009 0012-365X/© 2016 Elsevier B.V. All rights reserved.

2. Comparisons between $\chi_{d}(G)$ and $\chi_{d}(G-e)$, and between $\chi_{d}(G)$ and $\chi_{d}(G-v)$

It is well known that if H is a subgraph of a graph G, then $\chi(G) \geq \chi(H)$. However, there exist graphs G with a subgraph H such that $\chi_{d}(H)>\chi_{d}(G)$. For example, let G be the 5-cycle with one chord, and let H be the 5-cycle, then it is routine to verify that $\chi_{d}(G)=4$ but $\chi_{d}(H)=5$.

In this section, we investigate tight bounds for the change of the dynamic chromatic number when an edge or a vertex is being removed. We start with a lemma, which follows from definition immediately.

Lemma 2.1. If G is a connected graph on at least 2 vertices, then $\chi_{d}(G) \leq 2$ is and only if $G \in\left\{K_{1}, K_{2}\right\}$.
Theorem 2.1. Each of the following holds.
(i) Let G be a connected graph with $|V(G)| \geq 3$. Then for any edge $e=u v \in E(G)$,

$$
\begin{equation*}
\chi_{d}(G)-2 \leq \chi_{d}(G-e) \leq \chi_{d}(G)+2 \tag{1}
\end{equation*}
$$

(ii) There exists a graph G such that $\chi_{d}(G-e)=\chi_{d}(G)+2$ for at least one edge $e \in E(G)$.
(iii) If a connected graph G satisfies that $\chi_{d}(G-e)=\chi_{d}(G)-2$ for at least one edge e in G, then $G=C_{5}$.

Proof. (i) Let $k_{1}=\chi_{d}(G-e)$, and let $c_{1}: V(G-e) \mapsto \bar{k}_{1}$ be a dynamic k_{1}-coloring of $G-e$. Obtain a new coloring c_{1}^{\prime} from c_{1} by defining

$$
c_{1}^{\prime}(z)= \begin{cases}c_{1}(z) & \text { if } z \notin\{u, v\} \\ k_{1}+1 & \text { if } z=u \\ k_{1}+2 & \text { if } z=v\end{cases}
$$

By definition, $c_{1}^{\prime}: V(G) \mapsto \overline{k_{1}+2}$ is a dynamic $\left(k_{1}+2\right)$-coloring of G, and so $\chi_{d}(G) \leq \chi_{d}(G-e)+2$.
Now let $k_{2}=\chi_{d}(G)$ and $c_{2}: V(G) \mapsto \bar{k}_{2}$ be a dynamic k_{2}-coloring of G. Since $|V(G)| \geq 3$ and since G is connected, there exists $x \in N_{G}(u)-\{v\}$ or $y \in N_{G}(v)-\{u\}$. Choose such x and y so that $|\{x, y\}|$ is maximized. If $|\{x, y\}|=1$, then by the maximality of $|\{x, y\}|$, and since G is connected, we must have $d_{G}(u) \leq 2$ and $d_{G}(v) \leq 2$. In this case, we have $\chi_{d}(G)=\chi_{d}(G-e)$, and so $\chi_{d}(G) \leq \chi_{d}(G-e)+2$. Hence we assume that $x \neq y$. Obtain a new coloring c_{2}^{\prime} from c_{2} by defining

$$
c_{2}^{\prime}(z)= \begin{cases}c_{2}(z) & \text { if } z \notin\{x, y\} \\ k_{2}+1 & \text { if } z=x \\ k_{2}+2 & \text { if } z=y\end{cases}
$$

By definition, $c_{2}^{\prime}: V(G-e) \mapsto \overline{k_{2}+2}$ is a dynamic $\left(k_{2}+2\right)$-coloring of $G-e$, and so $\chi_{d}(G-e) \leq \chi_{d}(G)+2$. This proves (i). (ii) For an integer $r \geq 4$, let H be a complete r-partite graph with partite sets $V_{1}, V_{2}, \ldots, V_{r}$, such that $\left|V_{i}\right| \geq 2$ for each i with $1 \leq i \leq r$, and let u and v be two new vertices. Let G be the graph obtained from H by adding a new edge $u v$ to H and by joining u to every vertex in V_{1} and joining v to every vertex in V_{2}. It is routine to verify that $\chi_{d}(G)=\chi(G)=r$, and that $\chi_{d}(G-u v)=r+2$, since the vertices in each of V_{1} and V_{2} must be colored with at least two colors.
(iii) Let G be a connected graph with at least one edge such that $\chi_{d}(G-e)=\chi_{d}(G)-2$ for some edge $e=u v \in E(G)$, and let $k=\chi_{d}(G-e)$. If $\chi_{d}(G-e) \leq 2$, then by Lemma $2.1, G \in\left\{K_{2}, P_{3}\right\}$, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$ for some $e \in E(G)$. Hence we assume that $k=\chi_{d}(G-e) \geq 3$.

Let $c: V(G-e) \mapsto \bar{k}$ be a dynamic k-coloring. Assume without loss of generality, that $d_{G}(u) \geq d_{G}(v)$. If $d_{G}(v)=1$, then v is an isolated vertex of $G-e$. As $k \geq 3$, we can pick a vertex $u^{\prime} \in N_{G}(u)-\{v\}$ and redefine $c(v) \in \bar{k}-\left\{c(u), c\left(u^{\prime}\right)\right\}$ to obtain a k-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. If $d_{G}(u) \geq 3$, then by $k \geq 3$, we can redefine $c(u)=k+1$ to obtain a $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. Hence we may assume that $d_{G}(u)=d_{G}(v)=2$. Let $N_{G}(u)=\left\{v, u^{\prime}\right\}, N_{G}(v)=\left\{u, v^{\prime}\right\}$. We have the following claims.

Claim 1. $u^{\prime} \neq v^{\prime}$.
If $u^{\prime}=v^{\prime}$, then obtain a new coloring c^{\prime} from c by defining

$$
c^{\prime}(z)= \begin{cases}c(z) & \text { if } z \neq u \\ k+1 & \text { if } z=u\end{cases}
$$

By definition, $c^{\prime}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. Thus Claim 1 must hold.

Claim 2. $c(u)=c\left(v^{\prime}\right) \neq c\left(u^{\prime}\right)=c(v)$.
If $c(u) \neq c\left(v^{\prime}\right)$, then obtain a new coloring $c^{\prime \prime}$ from c by defining

$$
c^{\prime \prime}(z)= \begin{cases}c(z) & \text { if } z \neq v \\ k+1 & \text { if } z=v\end{cases}
$$

By definition, $c^{\prime \prime}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. Thus we must have that $c(u)=c\left(v^{\prime}\right)$. By a similar argument, we also have that $c\left(u^{\prime}\right)=c(v)$. Since $u u^{\prime} \in E(G-e)$, we conclude that $c(u) \neq c\left(u^{\prime}\right)$.

Claim 3. $\min \left\{d_{G}\left(u^{\prime}\right), d_{G}\left(v^{\prime}\right)\right\} \geq 2$.
By contradiction, assume without loss of generality that $d_{G}\left(v^{\prime}\right)=1$, and so $N_{G}\left(v^{\prime}\right)=\{v\}$. Obtain a new coloring $c^{(3)}$ from c by defining

$$
c^{(3)}(z)= \begin{cases}c(z) & \text { if } z \notin\left\{v, v^{\prime}\right\} \\ k+1 & \text { if } z=v \\ a & \text { where } a \in \bar{k}-\{c(u)\}, \text { if } z=v^{\prime}\end{cases}
$$

By definition, $c^{(3)}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. This proves Claim 3.

Claim 4. $d_{G}\left(u^{\prime}\right)=d_{G}\left(v^{\prime}\right)=2$.
By contradiction and by symmetry, assume that $d_{G}\left(u^{\prime}\right) \geq 3$. Pick a color $a^{\prime} \in c\left(N_{G}\left(u^{\prime}\right)\right)-\{c(u), c(v)\}$ if $c\left(N_{G}\left(u^{\prime}\right)\right)-$ $\{c(u), c(v)\} \neq \emptyset$, and define $\left\{a^{\prime}\right\}=\emptyset$ if $c\left(N_{G}\left(u^{\prime}\right)\right)-\{c(u), c(v)\}=\emptyset$.

If $k=\chi_{d}(G-e) \geq 4$, then obtain a new coloring $c^{(4)}$ from c by defining

$$
c^{(4)}(z)= \begin{cases}c(z) & \text { if } z \notin\{u, v\} \\ a & \text { where } a \in \bar{k}-\left(\{c(u), c(v)\} \cup\left\{a^{\prime}\right\}\right), \text { if } z=u \\ k+1 & \text { if } z=v\end{cases}
$$

By definition, $c^{(4)}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. Thus we assume that $k=\chi_{d}(G-e)=3$. By Claim 2, we may assume that $c(u)=c\left(v^{\prime}\right)=1$ and $c\left(u^{\prime}\right)=c(v)=2$ in the rest of the proof.

If $c\left(N_{G}\left(u^{\prime}\right)-\{u\}\right)=\{3\}$, then $N_{G}\left(u^{\prime}\right)$ is an independent set, and as $c\left(v^{\prime}\right)=1, v^{\prime} \notin N_{G}\left(u^{\prime}\right)-\{u\}$. Pick a vertex $u^{\prime \prime} \in N_{G}\left(u^{\prime}\right)-\{u\}$. Obtain a new coloring $c^{(5)}$ from c by defining

$$
c^{(5)}(z)= \begin{cases}c(z) & \text { if } z \notin\left\{u, v, u^{\prime \prime}\right\} \\ 3 & \text { if } z=u \\ k+1 & \text { if } z \in\left\{v, u^{\prime \prime}\right\}\end{cases}
$$

By definition, $c^{(5)}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$.
If there exists an $u^{\prime \prime \prime} \in N_{G}\left(u^{\prime}\right)-\{u\}$ with $c\left(u^{\prime \prime \prime}\right)=1$, then obtain a new coloring $c^{(6)}$ from c by defining

$$
c^{(6)}(z)= \begin{cases}c(z) & \text { if } z \notin\{u, v\} \\ 3 & \text { if } z=u \\ 4 & \text { if } z=v\end{cases}
$$

By definition, $c^{(6)}: V(G) \mapsto \overline{4}$ is a dynamic 4-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. Therefore, we must have $d_{G}\left(u^{\prime}\right)=d_{G}\left(v^{\prime}\right)=2$.

Denote $N_{G}\left(u^{\prime}\right)=\left\{u, u^{\prime \prime}\right\}, N_{G}\left(v^{\prime}\right)=\left\{v, v^{\prime \prime}\right\}$. Assume first that $u^{\prime \prime} \neq v^{\prime \prime}$ or both $u^{\prime \prime}=v^{\prime \prime}$ and $d_{G}\left(u^{\prime \prime}\right) \geq 3$. Obtain a new coloring $c^{(7)}$ from c by defining

$$
c^{(7)}(z)= \begin{cases}c(z) & \text { if } z \notin\left\{u^{\prime}, v^{\prime}\right\} \\ k+1 & \text { if } z \in\left\{u^{\prime}, v^{\prime}\right\}\end{cases}
$$

By definition, $c^{(7)}: V(G) \mapsto \overline{k+1}$ is a dynamic $(k+1)$-coloring of G, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)-2$. It follows that we must have $u^{\prime \prime}=v^{\prime \prime}$ and $d_{G}\left(u^{\prime \prime}\right)=d_{G}\left(v^{\prime \prime}\right)=2$, and so $G=C_{5}$. This completes the proof of Theorem 2.4.

The corollary below follows from Theorem 2.1(iii) and from Theorem 2.2 of [8].
Corollary 2.1. Let G be a connected graph. The following are equivalent.
(i) $G=C_{5}$.
(ii) For any edge $e \in E(G), \chi_{d}(G-e)=\chi_{d}(G)-2$.

In view of Theorem 2.1(ii) and Corollary 2.1, it is natural to investigate conditions on a graph G such that $\chi_{d}(G-e) \leq$ $\chi_{d}(G)+1$ for any $e \in E(G)$. The next result is an attempt in this direction.

Theorem 2.2. Let G be a connected graph with $n=|V(G)| \geq 2$. If G does not contain a subdivision of $K_{3,3}$, then $\chi_{d}(G-e) \leq$ $\chi_{d}(G)+1$ for any $e \in E(G)$.

Proof. To the contrary, we assume that there exists a $K_{3,3}$-minor free graph G such that $\chi_{d}(G-e) \geq \chi_{d}(G)+2$ for some $e=$ $u v \in E(G)$. By Theorem 2.1(i), we have $\chi_{d}(G-e)=\chi_{d}(G)+2$. As the theorem holds trivially if $n \leq 5$, we assume that $n \geq 6$. Without loss of generality, we assume that $d_{G}(u) \geq d_{G}(v)$. Let $k=\chi_{d}(G)$ and let $c: V(G) \mapsto \bar{k}$ be a dynamic k - coloring of G. We make the following claims.

Claim 1. $d(u) \geq d(v) \geq 3$.
If $d(v) \leq 2$, then since $n \geq 6$ and since G is connected, we have $d_{G}(u) \geq 2$. Pick a vertex $x \in N_{G}(u)-\{v\}$ and obtain a new coloring $c^{\prime}: V(G-e) \mapsto \overline{k+1}$ as follows:

$$
c^{\prime}(z)= \begin{cases}c(z) & \text { if } z \neq x \\ k+1 & \text { if } z=x\end{cases}
$$

By definition, c^{\prime} is a dynamic $(k+1)$-coloring of $G-e$, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)+2$. This justifies Claim 1.

Claim 2. $|c(N(u)-\{v\})|=|c(N(v)-\{u\})|=1$.
If $|c(N(u)-\{v\})| \geq 2$ and $|c(N(v)-\{u\})| \geq 2$, then c is also a dynamic k-coloring of $G-u v$, and so $\chi_{d}(G-e) \leq k=\chi_{d}(G)$.
Thus $\min \{|c(N(u)-\{v\})|,|c(N(v)-\{u\})|\}=1$. By symmetry, we may assume that $|c(N(u)-\{v\})|=1$.
If $|c(N(v)-\{u\})| \geq 2$, then by Claim 1, there exists a vertex $x \in N(u)-\{v\}$. Define a coloring $c^{\prime \prime}: V(G-e) \mapsto \overline{k+1}$ as follows:

$$
c^{\prime \prime}(z)= \begin{cases}c(z) & \text { if } z \neq x \\ k+1 & \text { if } z=x\end{cases}
$$

By definition, $c^{\prime \prime}$ is a dynamic $(k+1)$-coloring of $G-e$, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)+2$. This proves Claim 2.

Claim 3. $c(N(u)-\{v\}) \neq c(N(v)-\{u\})$.
By contradiction, assume that $c(N(u)-\{v\})=c(N(v)-\{u\})$. By Claim 1, there exist $x \in N(u)-\{v\}$ and $y \in N(v)-\{u, x\}$. Obtain a coloring $c^{(3)}: V(G-e) \mapsto \overline{k+1}$ as follows:

$$
c^{(3)}(z)= \begin{cases}c(z) & \text { if } z \notin\{x, y\} \tag{2}\\ k+1 & \text { if } z \in\{x, y\}\end{cases}
$$

By definition, $c^{(3)}$ is a dynamic $(k+1)$-coloring of $G-e$, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)+2$. This proves Claim 3.

Claim 4. For every $x \in N(u)-\{v\}$ and for every $y \in N(v)-\{u\}$, either $x y \in E(G)$ or $N_{G}(x) \cap N_{G}(y)$ contains a vertex of degree 2 in G.

Suppose that there exist a vertex $x \in N(u)-\{v\}$ and a vertex $y \in N(v)-\{u\}$ such that $x y \notin E(G)$ and $N_{G}(x) \cap N_{G}(y)$ contains no vertices of degree 2 in G. Obtain a coloring $c^{(3)}: V(G-e) \mapsto \overline{k+1}$ as defined in (2). By definition, $c^{(3)}$ is a dynamic $(k+1)$-coloring of $G-e$, contrary to the assumption that $\chi_{d}(G-e)=\chi_{d}(G)+2$. Hence Claim 4 must hold.

By Claims $1-4, G[N(u) \cup N(v) \cup N(N(u)) \cup N(N(v))]$ contains a subdivision of $K_{3,3}$, contrary to the assumption of the theorem. This completes the proof of Theorem 2.2.

To investigate the corresponding problem using vertex removal instead of edge removal, we quote a theorem of Montgomery.

Theorem 2.3 (Montgomery, [12]). For any graph $G, \chi_{d}(G-v) \geq \chi_{d}(G)-2$ for any vertex $v \in V(G)$. The only graphs for which $\chi_{d}(G-v) \geq \chi_{d}(G)-2$ for at least one vertex are $K_{1, n-1}, n \geq 3$ and C_{5}.

A natural question is to see if there exists a constant $M>0$ such that $\chi_{d}(G-v) \leq \chi_{d}(G)+M$ for any vertex $v \in V(G)$. The next example addresses to this problem, and indicates that the difference $\chi_{d}(G-v)-\chi_{d}(G)$ could be unbounded.

Example 2.1. For any integer $M \geq 1$, there exists a graph G such that $\chi_{d}(G-v) \geq \chi_{d}(G)+M$ for at least one vertex $v \in V(G)$.

Let $k \geq 4$ and $M=k-3$ be integers. Let $S K_{k}$ be the bipartite graph with vertex bipartition X and Y, where $X=\bar{k}$ and $Y=X^{[2]}$, which is the set of all 2-element subsets of \bar{k}, such that a vertex $x \in X$ is adjacent to a vertex $\{i, j\} \in Y$ if and only if $x \in\{i, j\}$. Thus $S K_{k}$ is the graph obtained from K_{k} by subdividing every edge of K_{k} exactly once. (See [9] and [12].) As shown in [9] and [12], we know that $\chi_{d}\left(S K_{k}\right)=k$. Let G_{k} be the graph obtained from $S K_{k}$ by adding a new vertex w to $S K_{k}$ and joining w to every vertex of $S K_{k}$. Obtain a dynamic 3-coloring c of G_{k} by defining $c(w)=3, c(x)=1$ if $x \in X$ and $c(y)=2$ if $y \in Y$. It follows that $\chi_{d}\left(G_{k}\right)=3$. Since $G_{k}-w=S K_{k}$, we have $\chi_{d}(G-v)=\chi_{d}(G)+M$.

Remark 2.1. Given the main results in this note, it is natural to seek possible characterization of graphs G such that $\chi_{d}(G-e)=\chi_{d}(G)-c$ for some edge $e \in E(G)$ (or for any $e \in E(G)$), where $c \in\{-1,0,1\}$. This seems to be a difficult task, and remains to be investigated.

Acknowledgments

The research of Lian-Ying Miao is supported by NSFC (11271365); the research of Zhengke Miao is supported by NSFC (11571149).

References

[1] S. Akbari, M. Ghanbari, S. Jahanbekam, On the list dynamic coloring of graphs, Discrete Appl. Math. 157 (2009) 3005-3007.
[2] M. Alishahi, On the dynamic coloring of graphs, Discrete Appl. Math. 159 (2011) 152-156.
[3] Y. Chen, S.H. Fan, H.-J. Lai, H.M. Song, L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math. 160 (2012) 1064-1071.
[4] C. Ding, S.H. Fan, H.-J. Lai, Upper bound on conditional chromatic number of graphs, J. Jinan Univ. Nat. Sci. Med. 29((2008) 7-14.
[5] L. Esperet, Dynamic list coloring of bipartite graphs, Discrete Appl. Math. 158 (2010) 1963-1965.
[6] S.-J. Kim, S.-J. Lee, W.-J. Park, Dynamic coloring and list dynamic coloring of planar graph, Discrete Appl. Math. 161 (2013) $2207-2212$.
[7] H.-J. Lai, X. Li, G. Yu, An inequality for the group chromatic number of a graph, Discrete Math. 307 (2007) 3076-3080.
[8] H.-J. Lai, J. Lin, B. Montgomery, Z. Tao, S. Fan, Conditional colorings of graphs, Discrete Math. 306 (2006) 1997-2004.
[9] H.-J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193-201.
[10] X. Li, X. Yao, W. Zhou, H.J. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009) 320-324.
[11] Y. Lin, Upper bounds of conditional chromatics number (Master thesis), Jinan University, 2008.
[12] B. Montgomery, Dynamic coloring (Ph.D. dissertation), West Virginia University, 2001.
[13] H.M. Song, S.H. Fan, Y. Chen, L. Sun, H.-J. Lai, On r-hued coloring of K_{4}-minor free graphs, Discrete Appl. Math. 315-316 (2014) 47-52.
[14] H.M. Song, H.-J. Lai, J.L. Wu, On r-hued coloring of planar graphs with girth at least 6, Discrete Applied Mathematics 198 (2016) $251-263$.

[^0]: * Corresponding author.

 E-mail addresses: miaolianying@cumt.edu.cn (L.-Y. Miao), hongjianlai@gmail.com (H.-J. Lai), 243834696@qq.com (Y.-F. Guo), zkmiao@jsnu.edu.cn (Z. Miao).

