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A dicycle cover of a digraph𝐷 is a familyF of dicycles of𝐷 such that each arc of𝐷 lies in at least one dicycle inF. We investigate
the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best
possible upper bounds of dicycle covers are obtained in a number of classes of digraphs including strong tournaments, Hamiltonian
oriented graphs,Hamiltonian oriented complete bipartite graphs, and families of possibly non-Hamiltonian digraphs obtained from
these digraphs via a sequence of 2-sum operations.

1. The Problem

We consider finite loopless graphs and digraphs, and unde-
fined notations and terms will follow [1] for graphs and [2]
for digraphs. In particular, a cycle is a 2-regular connected
nontrivial graph. A cycle cover of a graph 𝐺 is a collection
C of cycles of 𝐺 such that 𝐸(𝐺) = ⋃

𝐶∈C 𝐸(𝐶). Bondy [3]
conjectured that if𝐺 is a 2-connected simple graphwith 𝑛 ≥ 3
vertices, then 𝐺 has a cycle cover C with |C| ≤ (2𝑛 − 3)/3.
Bondy [3] showed that this conjecture, if proved, would be
best possible. Luo and Chen [4] proved that this conjecture
holds for 2-connected simple cubic graphs. It has been shown
that, for plane triangulations, serial-parallel graphs, or planar
graphs in general, one can have a better bound for the number
of cycles used in a cover [5–8]. Barnette [9] proved that if𝐺 is
a 3-connected simple planar graph of order 𝑛, then the edges
of𝐺 can be covered by atmost (𝑛+1)/2 cycles. Fan [10] settled
this conjecture by showing that it holds for all simple 2-
connected graphs.The best possible number of cycles needed
to cover cubic graphs has been obtained in [11, 12].

Adirected path in a digraph𝐷 froma vertex𝑢 to a vertex V
is called a (𝑢, V)-dipath. To emphasize the distinction between
graphs and digraphs, a directed cycle or path in a digraph is
often referred to as a dicycle or dipath. It is natural to consider
the number of dicycles needed to cover a digraph. Following
[2], for a digraph 𝐷,𝑉(𝐷) and 𝐴(𝐷) denote the vertex set

and arc set of 𝐷, respectively. If 𝐴󸀠 ⊆ 𝐴(𝐷), then 𝐷[𝐴
󸀠
] is

the subdigraph induced by 𝐴󸀠. Let 𝐾∗
𝑛
denote the complete

digraph on 𝑛 vertices. Any simple digraph 𝐷 on 𝑛 vertices
can be viewed as a subdigraph of 𝐾∗

𝑛
. If𝑊 is an arc subset of

𝐴(𝐾
∗

𝑛
), then𝐷 +𝑊 denotes the digraph𝐾∗

𝑛
[𝐴(𝐷) ∪𝑊].

A digraph 𝐷 is strong if, for any distinct 𝑢, V ∈ 𝑉(𝐷), 𝐷
has a (𝑢, V)-dipath. As in [2], 𝜆(𝐷) denotes the arc-strong-
connectivity of 𝐷. Thus a digraph 𝐷 is strong if and only if
𝜆(𝐷) ≥ 1. We use (𝑢, V) denoting an arc with tail 𝑢 and head
V. For𝑋,𝑌 ⊆ 𝑉(𝐷), we define

(𝑋, 𝑌)𝐷 = {(𝑥, 𝑦) ∈ 𝐴 (𝐷) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} ;

𝜕
+

𝐷
(𝑋) = (𝑋,𝑉 (𝐷) − 𝑋)𝐷 .

(1)

Let
𝑑
+

𝐷
(𝑋) =

󵄨󵄨󵄨󵄨𝜕
+

𝐷
(𝑋)

󵄨󵄨󵄨󵄨 ,

𝑑
−

𝐷
(𝑋) =

󵄨󵄨󵄨󵄨𝜕
−

𝐷
(𝑋)

󵄨󵄨󵄨󵄨 .

(2)

When𝑋 = {V}, we write 𝑑+
𝐷
(V) = |𝜕+

𝐷
{V}| and 𝑑−

𝐷
(V) = |𝜕−

𝐷
{V}|.

Let𝑁+
𝐷
(V) = {𝑢 ∈ 𝑉(𝐷)−V : (V, 𝑢) ∈ 𝐴(𝐷)} and𝑁−

𝐷
(V) = {𝑢 ∈

𝑉(𝐷) − V : (𝑢, V) ∈ 𝐴(𝐷)} denote the out-neighbourhood and
in-neighbourhood of V in 𝐷, respectively. We call the vertices
in𝑁+
𝐷
(V) and𝑁−

𝐷
(V) the out-neighbours and the in-neighbours

of V. Thus, for a digraph 𝐷, 𝜆(𝐷) ≥ 1 if and only if, for any
proper nonempty subset Ø ̸= 𝑋 ⊂ 𝑉(𝐷), |𝜕+

𝐷
(𝑋)| ≥ 1.
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A dicycle cover of a digraph𝐷 is a collectionC of dicycles
of 𝐷 such that ⋃

𝐶∈C 𝐴(𝐶) = 𝐴(𝐷). If 𝐷 is obtained from a
simple undirected graph 𝐺 by assigning an orientation to the
edges of 𝐺, then 𝐷 is an oriented graph. The main purpose
is to investigate the number of dicycles needed to cover a
Hamiltonian oriented graph. We prove the following.

Theorem 1. Let 𝐷 be an oriented graph on 𝑛 vertices and 𝑚
arcs. If𝐷 has a Hamiltonian dicycle, then𝐷 has a dicycle cover
C with |C| ≤ 𝑚 − 𝑛 + 1. This bound is best possible.

In the next section, we will first show that every Hamilto-
nian oriented graph with 𝑛 vertices and𝑚 arcs can be covered
by at most 𝑚 − 𝑛 + 1 dicycles. Then we show that, for every
Hamiltonian graph𝐺with 𝑛 vertices and𝑚 edges, there exists
an orientation 𝐷 = 𝐷(𝐺) of 𝐺 such that any dicycle cover of
𝐷must have at least𝑚 − 𝑛 + 1 dicycles.

2. Proof of the Main Result

In this section, all graphs are assumed to be simple. We start
with an observation, stated as lemma below. A digraph 𝐷 is
weakly connected if the underlying graph of𝐷 is connected.

Lemma 2. A weakly connected digraph 𝐷 has a dicycle cover
if and only if 𝜆(𝐷) ≥ 1.

Proof. Suppose that 𝐷 has a dicycle cover C. If 𝐷 is not
strong, then there exists a proper nonempty subset Ø ̸= 𝑋 ⊂

𝑉(𝐷) such that |𝜕+
𝐷
(𝑋)| = 0. Since 𝐷 is weakly connected,

𝐷 contains an arc (𝑢, V) ∈ (𝑉(𝐷) − 𝑋),𝑋)
𝐷
. Since C is

a dicycle cover of 𝐷, there exists a dicycle 𝐶 ∈ C with
(𝑢, V) ∈ 𝐴(𝐶). Since (𝑢, V) ∈ (𝑉(𝐷) − 𝑋),𝑋)

𝐷
, we conclude

that Ø ̸= 𝐴(𝐶) ∩ (𝑋,𝑉(𝐷) − 𝑋))
𝐷
⊆ 𝜕
+

𝐷
(𝑋), contrary to

the assumption that |𝜕+
𝐷
(𝑋)| = 0. This proves that 𝐷 must

be strong.
Conversely, assume that 𝐷 is strong. For any arc 𝑎 =

(𝑢, V) ∈ 𝐴(𝐷), since 𝐷 is strong, there must be a directed
(V, 𝑢)-path 𝑃 in 𝐷. It follows that 𝐶𝑎 = 𝑃 + 𝑎 is a dicycle of
𝐷 containing 𝑎, and so {𝐶𝑎 : 𝑎 ∈ 𝐴(𝐷)} is a dicycle cover of
𝐷.

Let 𝐶 be a dicycle and let 𝑎 = (𝑢, V) be an arc not in 𝐴(𝐶)
but with 𝑢, V ∈ 𝑉(𝐶). Then 𝐶 + 𝑎 contains a unique dicycle
𝐶𝑎 containing 𝑎. In the following, we call𝐶𝑎 the fundamental
dicycle of 𝑎 with respect to 𝐶.

Lemma3. Let𝐷 be an oriented graph on 𝑛 vertices and𝑚 arcs.
If 𝐷 has a Hamiltonian dicycle, then 𝐷 has a dicycle cover C
with |C| ≤ 𝑚 − 𝑛 + 1.

Proof. Let𝐶
0
denote the directedHamiltonian cycle of𝐷. For

each 𝑎 ∈ 𝐴(𝐷)−𝐴(𝐶), let 𝐶
𝑎
denote the fundamental dicycle

of 𝑎with respect to𝐶.ThenC = {𝐶
0
}∪{𝐶
𝑎
: 𝑎 ∈ 𝐴(𝐷)−𝐴(𝐶)}

is a dicycle cover of𝐷 with |C| ≤ 𝑚 − 𝑛 + 1.

To prove that Theorem 1 is best possible, we need to
construct, for each integer 𝑛 ≥ 4, a Hamiltonian oriented
graph on 𝑛 vertices and𝑚 arcs 𝐷 such that any dicycle cover
C of𝐷must have at least𝑚 − 𝑛 + 1 dicycles inC.

Let 𝐺 be a Hamiltonian simple graph. We present a
construction of such an orientation 𝐷 = 𝐷(𝐺). Since 𝐺 is
Hamiltonian, wemay assume that𝑉(𝐺) = {V

1
, V
2
, . . . , V

𝑛
} and

𝐶 = V
1
V
2
, . . . , V

𝑛
V
1
is a Hamiltonian cycle of 𝐺.

Definition 4. One defines an orientation 𝐷 = 𝐷(𝐺) as
follows.

(i) Orient the edges in the Hamiltonian cycle 𝐶 =

V
1
V
2
, . . . , V

𝑛
V
1
as follows:

(V
𝑖+1
, V
𝑖
) ∈ 𝐴 (𝐷) ,

𝑖 = 1, 2, . . . , 𝑛 − 1, (V
1
, V
𝑛
) ∈ 𝐴 (𝐷) .

(3)

(ii) For each 𝑖 = 2, 3, . . . , 𝑛 − 2, and for each 𝑗 = 𝑖 + 2, 𝑖 +

3, . . . , 𝑛, assign directions to edges of𝐺 not in 𝐸(𝐶) as
follows:

(V
𝑖
, V
𝑗
) ∈ 𝐴 (𝐷) ,

if V
𝑖
V
𝑗
∈ 𝐸 (𝐺) − 𝐸 (𝐶) , 𝑖 + 1 < 𝑗 ≤ 𝑛,

(V
1
, V
𝑗
) ∈ 𝐴 (𝐷) ,

if V
1
V
𝑗
∈ 𝐸 (𝐺) − 𝐸 (𝐶) , 𝑖 + 1 < 𝑗 ≤ 𝑛 − 1.

(4)

We make the following observations stated in the lemma
below.

Lemma 5. Each of the following holds for the digraph𝐷:

(i) The dicycle𝐶
0 = V1V𝑛V𝑛−1, . . . , V3V2V1 is a Hamiltonian

dicycle of𝐷.
(ii) The digraph𝐷 − 𝐴(𝐶

0
) is acyclic.

(iii) 𝑁+
𝐷
(V
𝑛
) = {V

𝑛−1
};𝑁−
𝐷
(V
1
) = {V

2
};𝑁−
𝐷
(V
2
) = {V

3
}.

(iv) Thedicycle𝐶
0
is the only dicycle of𝐷 containing the arc

(V
1
, V
𝑛
).

(v) The dicycle 𝐶
0
is the unique Hamiltonian dicycle of𝐷.

(vi) If𝐶󸀠󸀠 is a dicycle of𝐷, then𝐶󸀠󸀠 contains at most one arc
in 𝐴(𝐷) − 𝐴(𝐶

0
).

Proof. (i) follows immediately from Definition 4(i).
(ii) By Definition 4, the labels of the vertices 𝑉(𝐷) =

{V
1
, V
2
, . . . , V

𝑛
} satisfy (V

𝑖
, V
𝑗
) ∈ 𝐴(𝐷) − 𝐴(𝐶

0
) only if 𝑖 < 𝑗.

It follows (e.g., Section 2.1 of [2]) that 𝐷 − 𝐴(𝐶
0
) is acyclic,

and so (ii) holds.
(iii) This follows immediately from Definition 4.
(iv) Let 𝐶󸀠 be a dicycle of 𝐷 with (V1, V𝑛) ∈ 𝐴(𝐶

󸀠
). Since

(V1, V𝑛) ∈ 𝐴(𝐶
󸀠
) ∩ 𝐴(𝐶0), we choose the largest label 𝑖 ≤ 𝑛,

such that (V1, V𝑛), (V𝑛, V𝑛−1), . . . , (Vi+1, V𝑖) ∈ 𝐴(𝐶
󸀠
) ∩ 𝐴(𝐶0).

Since 𝐶󸀠 ̸= 𝐶
0
, we have 𝑖 ≥ 3. Since 𝐶󸀠 is a dicycle, there

must be a vertex V𝑗 ∈ 𝑉(𝐷) such that (V𝑖, V𝑗) ∈ 𝐴(𝐶
󸀠
). By the

choice of 𝑖, we must have (V𝑖, V𝑗) ∉ 𝐴(𝐶0), and so (V𝑖, V𝑗) ∈
𝐴(𝐷) − 𝐴(𝐶

0
). By Definition 4(ii), we have 𝑖 + 2 ≤ 𝑗 ≤ 𝑛,

contrary to the fact that𝐶󸀠 is a dicycle of𝐷 containing (V
1
, V
𝑛
).

This proves (iv).
(v) Let 𝐶

󸀠 be a Hamiltonian dicycle of 𝐷. Since
𝑉(𝐶
󸀠
) = 𝑉(𝐷), we have V

𝑛
∈ 𝑉(𝐶

󸀠
). We claim that
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(V
1
, V
𝑛
) ∈ 𝐴(𝐶

󸀠
). If (V

1
, V
𝑛
) ∉ 𝐴(𝐶

󸀠
), then there exists V

𝑖
∈

𝑉(𝐶) (𝑖 ∈ {V
2
, V
3
, . . . , V

𝑛−1
}) such that (V

𝑖
, V
𝑛
) ∈ 𝐴(𝐶

󸀠
). Hence,

(V
𝑖
, V
𝑛
), (V
𝑛
, V
𝑛−1

), . . . , (V
𝑖+2
, V
𝑖+1
) ∈ 𝐴(𝐶

󸀠
). By Definition 4(i)

and (ii), 𝑁+(V
𝑖+1
) ⊂ {V

𝑖+2
, V
𝑖+3
, . . . , V

𝑛
}, contrary to the fact

that 𝐶󸀠 is a Hamiltonian dicycle of 𝐷. Thus, (V
1
, V
𝑛
) ∈ 𝐴(𝐶

󸀠
).

It follows from Lemma 5(iv) that we must have 𝐶󸀠 = 𝐶
0
.

(vi) By contradiction, we assume that 𝐷 has a dicycle
𝐶
󸀠󸀠 which contains two arcs: 𝑎1, 𝑎2 ∈ 𝐴(𝐷) − 𝐴(𝐶0). Since

𝑉(𝐷) = {V1, V2, . . . , V𝑛}, we assume that 𝑎1 = (V𝑖, V𝑖󸀠) and
𝑎2 = (V𝑗, V𝑗󸀠). Without loss of generality and by Lemma 2, we
further assume that 1 ≤ 𝑖 < 𝑗 < 𝑛.

Let 𝑖 ≥ 𝑡 ≥ 1 be the smallest integer such that V𝑡 ∈ 𝑉(𝐶
󸀠󸀠
).

Since 𝐶󸀠󸀠 is a dicycle of 𝐷, there must be V
𝑠
∈ 𝑉(𝐶

󸀠󸀠
) such

that (V𝑠, V𝑡) ∈ 𝐴(𝐶
󸀠󸀠
). By Definition 4, either (V

𝑠
, V
𝑡
) ∈ 𝐴(𝐶

0
)

and 𝑠 = 𝑡 + 1 < 𝑗 or (V
𝑠
, V
𝑡
) ∈ 𝐴(𝐷) − 𝐴(𝐶

0
) and 1 < 𝑠 +

1 < 𝑡. By the choice of 𝑡, we can only have 𝑠 = 𝑡 + 1 and
(V
𝑡+1
, V
𝑡
) ∈ 𝐴(𝐶

󸀠󸀠
) ∩ 𝐴(𝐶

0
). Choose the largest integer ℎ with

𝑡 + 1 ≤ ℎ < 𝑗 such that (V
𝑡+1
, V
𝑡
), (V
𝑡+2
, V
𝑡+1
), . . . , (V

ℎ
, V
ℎ−1

) ∈

𝐴(𝐶
󸀠󸀠
) ∩ 𝐴(𝐶

0
). Since 𝐶󸀠󸀠 is a dicycle, there must be V

𝑘
with

1 ≤ 𝑘 ≤ 𝑛 such that (V
𝑘
, V
ℎ
) ∈ 𝐴(𝐶

󸀠󸀠
). By the maximality of ℎ

and by Definition 4(i), we conclude that (V
𝑘
, V
ℎ
) ∉ 𝐴(𝐶

0
). By

Definition 4(ii), 1 ≤ 𝑘 ≤ ℎ−2. By theminimality of 𝑡, wemust
have 𝑡 ≤ 𝑘 ≤ ℎ − 2. It follows by 𝑗 > ℎ that 𝐶󸀠󸀠 cannot contain
𝑎
2
= (V
𝑗
, V
𝑗
󸀠), contrary to the assumption. This contradiction

justifies (vi).

To complete the proof of Theorem 1, we present the next
lemma.

Lemma 6. Let 𝐺 be a Hamiltonian simple graph. There exists
an orientation 𝐷 = 𝐷(𝐺) such that every dicycle cover of 𝐷
must have at least𝑚 − 𝑛 + 1 dicycles.

Proof. Let 𝐺 be a Hamiltonian graph and let 𝐷 = 𝐷(𝐺)

be the orientation of 𝐺 given in Definition 4. For notational
convenience, we adopt the notations in Definition 4 and
denote 𝑉(𝐷) = {V

1
, V
2
, . . . , V

𝑛
}. Thus, by Lemma 5(v), 𝐶

0
=

V
1
V
𝑛
V
𝑛−1

, . . . , V
2
V
1
is the unique Hamiltonian dicycle of𝐷.

Let C be a dicycle cover of 𝐷. By Lemma 5(iv), we must
have 𝐶

0
∈ C. For each arc 𝑎 ∈ 𝐴(𝐷) − 𝐴(𝐶

0
), since C is a

dicycle cover of𝐷, theremust be a dicycle𝐶(𝑎) ∈ C such that
𝑎 ∈ 𝐴(𝐶(𝑎)). By Lemma 5(vi),𝐴(𝐶(𝑎))∩𝐴(𝐷)−𝐴(𝐶

0
) = {𝑎}.

It follows that if 𝑎, 𝑎󸀠 ∈ 𝐴(𝐷) − 𝐴(𝐶
0
), then 𝑎 ̸= 𝑎

󸀠 implies
𝐶(𝑎) ̸= 𝐶(𝑎

󸀠
) inC.Thuswe have {𝐶(𝑎) | 𝑎 ∈ 𝐴(𝐷)−𝐴(𝐶

0
)} ⊆

C. Hence

|C| ≥
󵄨󵄨󵄨󵄨{𝐶 (𝑎) : 𝑎 ∈ 𝐴 (𝐷) − 𝐴 (𝐶0)} ∪ {𝐶0}

󵄨󵄨󵄨󵄨

= 𝑚 − 𝑛 + 1.

(5)

This proves the lemma.

By Lemmas 3 and 6, Theorem 1 follows. We are about to
show that Theorem 1 can be applied to obtain dicycle cover
bounds for certain families of oriented graphs. Let𝑇

𝑛
denote a

tournament of order 𝑛.Then𝑇
𝑛
is an oriented graph. Camion

[13, 14] proved that every strong tournament is Hamiltonian.
Hence the corollary below follows fromTheorem 1.

Corollary 7. Every strong tournament on 𝑛 vertices has a
dicycle cover C with |C| ≤ 𝑛(𝑛 − 1)/2 − 𝑛 + 1. This bound
is best possible.

A bipartite graph 𝐺(𝐴, 𝐵) with vertex bipartition (𝐴, 𝐵)

is balanced if |𝐴| = |𝐵|. If bipartite graph 𝐺(𝐴, 𝐵) has a
Hamiltonian cycle, then𝐺 is balanced. Let𝐾

𝑚,𝑛
be a complete

bipartite graph with vertex bipartition (𝐴, 𝐵) and |𝐴| =

𝑚, |𝐵| = 𝑛; then 𝐾𝑚,𝑛 has Hamiltonian cycle if and only
if 𝑚 = 𝑛 ≥ 2; that is, 𝐾𝑚,𝑛 is balanced. Let 𝐾𝑛,𝑛 denote a
balanced complete bipartite graph.

Corollary 8. Every Hamiltonian orientation of balanced com-
plete bipartite graph 𝐾𝑛,𝑛 has a dicycle cover C with |C| ≤

(𝑛 − 1)
2. This bound is best possible.

Proof. Since an oriented balanced complete bipartite graph
𝐾
𝑛,𝑛 has 𝑛

2 arcs, so, byTheorem 1, we have |C| ≤ 𝑛2−2𝑛+1 =
(𝑛 − 1)

2.
To prove the bound is best possible, we need to construct,

for each integer 𝑛 ≥ 2, a Hamiltonian oriented balanced
complete bipartite graph on 2𝑛 vertices such that any dicycle
cover C of 𝐾

𝑛,𝑛
must have at least (𝑛 − 1)2 dicycles in C. We

may assume that 𝑉(𝐾
𝑛,𝑛
) = {𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
, V
1
, V
2
, . . . , V

𝑛
} and

𝐶 = 𝑢
1
V
1
𝑢
2
V
2
, . . . , 𝑢

𝑛
V
𝑛
𝑢
1
is a Hamiltonian cycle of 𝐾

𝑛,𝑛
. We

construct an orientation𝐷
𝑛,𝑛

= 𝐷(𝐾
𝑛,𝑛
) as the orientation of

Definition 4; thus, by Lemmas 5 and 6, every dicycle coverC
of 𝐷
𝑛,𝑛

must have at least (𝑛 − 1)
2 dicycles. This proves the

corollary.

3. Dicycle Covers of 2 Sums of Digraphs
In this section, we will show that Theorem 1 can also be
applied to certain non-Hamiltonian digraphs which can be
built via 2 sums. We start with 2 sums of digraphs.

Definition 9. Let𝐷
𝑛
1

= (𝑉(𝐷
𝑛
1

), 𝐴(𝐷
𝑛
1

)) and𝐷
𝑛
2

= (𝑉(𝐷
𝑛
2

),

𝐴(𝐷
𝑛
2

)) be two disjoint digraphs; 𝑎
1
= (V
12
, V
11
) ∈ 𝐴(𝐷

𝑛
1

)

and 𝑎
2
= (V
22
, V
21
) ∈ 𝐴(𝐷

𝑛
2

).The2-sum𝐷
𝑛
1

⊕
2
𝐷
𝑛
2

of𝐷
𝑛
1

and
𝐷
𝑛
2

is obtained from the union of𝐷
𝑛
1

and𝐷
𝑛
2

by identifying
the arcs 𝑎

1
and 𝑎
2
; that is, V

11
= V
21
and V
12
= V
22
.

Definition 10. Let 𝐷
𝑛
1

, 𝐷
𝑛
2

, . . . , 𝐷
𝑛
𝑠

be 𝑠 disjoint
digraphs with 𝑛1, 𝑛2, . . . , 𝑛𝑠 vertices, respectively. Let
𝐷𝑛
1

⊕2𝐷𝑛
2

⊕2 ⋅ ⋅ ⋅ ⊕2𝐷𝑛
𝑠

denote a sequence of 2 sums of
𝐷𝑛
1

, 𝐷𝑛
2

, . . . , 𝐷𝑛
𝑠

, that is, (((𝐷𝑛
1

⊕2𝐷𝑛
2

)⊕2𝐷𝑛
3

)⊕2 ⋅ ⋅ ⋅ )⊕2𝐷𝑛
𝑠

.

Theorem 11. Let 𝐷
𝑛
1

, 𝐷
𝑛
2

, . . . , 𝐷
𝑛
𝑠

be 𝑠 disjoint Hamiltonian
oriented graphs on 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑠
vertices and 𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑠

arcs, respectively, and let 𝐷 = 𝐷
𝑛
1

⊕
2
𝐷
𝑛
2

⊕
2
⋅ ⋅ ⋅ ⊕
2
𝐷
𝑛
𝑠

. Then
𝐷 has a dicycle cover C with |C| ≤ |𝐴(𝐷)| − |𝑉(𝐷)| + 1. This
bound is best possible.

Proof. By Theorem 1, 𝐷
𝑛
𝑖

(𝑖 = 1, 2, . . . , 𝑠) has a dicycle cover
C
𝑖 with |C𝑖| ≤ 𝑚𝑖 − 𝑛𝑖 + 1. Let C = ⋃

𝑠

𝑖=1
C𝑖. Then |C| ≤

(𝑚
1
−𝑛
1
+1)+ (𝑚

2
−𝑛
2
+1)+ ⋅ ⋅ ⋅ + (𝑚

𝑠
−𝑛
𝑠
+1) = (𝑚

1
+𝑚
2
+

⋅ ⋅ ⋅ +𝑚
𝑠
) − (𝑛
1
+ 𝑛
2
+ ⋅ ⋅ ⋅ + 𝑛

𝑠
) + 𝑠 = (𝑚

1
+𝑚
2
+ ⋅ ⋅ ⋅ +𝑚

𝑠
− (𝑠 −

1))− (𝑛
1
+𝑛
2
+ ⋅ ⋅ ⋅ +𝑛

𝑠
−2(𝑠−1))+1 = |𝐴(𝐷)|− |𝑉(𝐷)|+1. By

Definition 10,C is a dicycle cover of𝐷. Thus,𝐷 has a dicycle
coverC with |C| ≤ |𝐴(𝐷)| − |𝑉(𝐷)| + 1.
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Let 𝐺
𝑛
𝑖

be 𝑠 disjoint Hamiltonian simple graphs for 𝑖 ∈
{1, 2, . . . , 𝑠}. We may assume that 𝑉(𝐺

𝑛
𝑖

) = {V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑛
𝑖

}

and 𝐶
𝑖
= V
𝑖1
V
𝑖2
, . . . , V

𝑖𝑛
𝑖

V
𝑖1
is a Hamiltonian cycle of 𝐺

𝑛
𝑖

, and
let

𝐷
𝑛
𝑖

= 𝐷(𝐺
𝑛
𝑖

) be the orientation of 𝐺
𝑛
𝑖

given in Definition 4.

(6)

For notational convenience, we adopt the notations in
Definition 4 and denote 𝑉(𝐷

𝑛
𝑖

) = {V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑛
𝑖

}. Thus, by
Lemma 5(v), 𝐶

𝑖
0

= V
𝑖1
V
𝑖𝑛
𝑖

, . . . , V
𝑖2
V
𝑖1
is the unique Hamilto-

nian dicycle of 𝐷
𝑛
𝑖

. Let 𝑎
𝑖
= (V
𝑖2
, V
𝑖1
) be an arc of 𝐷

𝑛
𝑖

. We
construct the 2-sum digraph𝐷

𝑛
1

⊕
2
𝐷
𝑛
2

⊕
2
⋅ ⋅ ⋅ ⊕
2
𝐷
𝑛
𝑠

from the
union of𝐷

𝑛
1

, 𝐷
𝑛
2

, . . . , 𝐷
𝑛
𝑠

by identifying the arcs 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑠

such that V
11
= V
21
= ⋅ ⋅ ⋅ = V

𝑠1
and V
12
= V
22
= ⋅ ⋅ ⋅ = V

𝑠2
. We

assume that V
1
fl V
11
= V
21
= ⋅ ⋅ ⋅ = V

𝑠1
and V
2
fl V
12
= V
22
=

⋅ ⋅ ⋅ = V
𝑠2
(the case when 𝑠 = 2 is depicted in Figure 1).

Claim 1. There does not exist a dicycle whose arcs intersect
arcs in two or more𝐷

𝑛
𝑖

’s (𝑖 = 1, 2, . . . , 𝑠).
By Definition 9, we have 𝑉(𝐷

𝑛
𝑖

) ∩ 𝑉(𝐷
𝑛
𝑗

) = {V
1
, V
2
} (𝑖 ̸=

𝑗). Without loss of generality, we consider oriented graphs
𝐷
𝑛
1

and𝐷
𝑛
2

; suppose that there exists a dicycle 𝐶
0
such that

{𝐴 (𝐶
0
) − (V

2
, V
1
)} ∩ 𝐴 (𝐷

𝑛
1

) ̸= Ø,

{𝐴 (𝐶0) − (V2, V1)} ∩ 𝐴 (𝐷𝑛
2

) ̸= Ø.
(7)

Thus, there must exist four different arcs

{(V
1𝑖
󸀠 , V
1
) , (V
1
, V
2𝑖
󸀠󸀠) , (V

2𝑗
󸀠󸀠 , V
2
) , (V
2
, V
1𝑗
󸀠)} ∈ 𝐴 (𝐶

0
) (8)

with (V
1𝑖
󸀠 , V
1
), (V
2
, V
1𝑗
󸀠) ∈ 𝐴(𝐷

𝑛
1

) and (V
1
, V
2𝑖
󸀠󸀠), (V
2𝑗
󸀠󸀠 , V
2
) ∈

𝐴(𝐷𝑛
2

), as shown in Figure 2, or four different arcs

{(V
1𝑠
󸀠 , V
2
) , (V
2
, V
2𝑠
󸀠󸀠) , (V

2𝑘
󸀠󸀠 , V
1
) , (V
1
, V
1𝑘
󸀠)} ∈ 𝐴 (𝐶

0
) (9)

with (V
1𝑠
󸀠 , V
2
), (V
1
, V
1𝑘
󸀠) ∈ 𝐴(𝐷

𝑛
1

) and (V
2
, V
2𝑠
󸀠󸀠), (V
2𝑘
󸀠󸀠 , V
1
) ∈

𝐴(𝐷
𝑛
2

), as shown in Figure 3.
By Definition 9, Lemma 5(iii), and (6), we have𝑁−

𝐷
(V
1
) =

{V
2
}, and so V

1𝑖
󸀠 = V
2
or V
2𝑘
󸀠󸀠 = V
2
, contrary to the assumption

that 𝐶
0
is a dicycle. This proves Claim 1.

By Claim 1, for every dicycle 𝐶 in 𝐷, all arcs in 𝐶 (except
for the arc (V

2
, V
1
)) belong to exactly one of oriented graphs

𝐷
𝑛
𝑖

(𝑖 = 1, 2, . . . , 𝑛). By Definition 4 and Lemma 6, every
dicycle cover of oriented graph𝐷𝑛

𝑖

(𝑖 = 1, 2, . . . , 𝑛)must have
at least𝑚𝑖 − 𝑛𝑖 + 1 dicycles. This completes the proof.

By Corollary 7 and Theorem 11, we have the following
corollary.

Corollary 12. Let 𝐷
𝑛
1

, 𝐷
𝑛
2

, . . . , 𝐷
𝑛
𝑠

be 𝑠 disjoint strong
tournaments with 𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑠
vertices, respectively. Then

𝐷
𝑛
1

⊕
2
𝐷
𝑛
2

⊕
2
⋅ ⋅ ⋅ ⊕
2
𝐷
𝑛
𝑠

has a dicycle cover C with |C| ≤

(𝑛
1
(𝑛
1
− 1)/2 + 𝑛

2
(𝑛
2
− 1)/2 + ⋅ ⋅ ⋅ + 𝑛

𝑠
(𝑛
𝑠
− 1)/2) − (𝑛

1
+ 𝑛
2
+

⋅ ⋅ ⋅ + 𝑛
𝑠
) + 𝑠. This bound is best possible.

Let𝐺
𝑛
be aHamiltonian graph with 𝑛 vertices and𝑚 arcs;

let 𝐷𝑖
𝑛
(𝑖 is an integer) denote a Hamiltonian orientation of
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Figure 1: The 2-sum digraph for𝐷
𝑛1
and𝐷

𝑛2
.
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Figure 3

𝐺
𝑛
. For a positive integer 𝑠, let 𝐻(𝐺

𝑛
, 𝑠) denote the family of

all 2-sum generated digraphs𝐷1
𝑛
⊕2𝐷
2

𝑛
⊕2 ⋅ ⋅ ⋅ ⊕2𝐷

𝑠

𝑛
, as well as

a member in the family (for notational convenience). By the
definition of𝐻(𝐺

𝑛
, 𝑠), we have𝐻(𝐺

𝑛
, 1) = 𝐷

1

𝑛
and𝐻(𝐺

𝑛
, 𝑠) =

𝐻(𝐺
𝑛
, 𝑠 − 1) ⊕

2
𝐷
𝑠

𝑛
. The conclusions of the next corollaries

follow from Theorem 1. The sharpness of these corollaries
can be demonstrated using similar constructions displayed in
Lemma 6 and Corollary 8.

Corollary 13. Let𝑚, 𝑛 ≥ 3 be integer, let𝐺
𝑛
be a Hamiltonian

graph with 𝑛 vertices and 𝑚 edges, and let 𝐾
𝑛
be a complete

graph on 𝑛 ≥ 3 vertices:

(i) Any member in 𝐻(𝐺
𝑛
, 𝑠) has a dicycle cover C with

|C| ≤ 𝑠(𝑚 − 𝑛 + 1). This bound is best possible.

(ii) In particular, any 𝐻(𝐾
𝑛
, 𝑠) has a dicycle cover C with

|C| ≤ 𝑠(𝑛(𝑛 − 1)/2 − 𝑛 + 1). This bound is best possible.
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Corollary 14. Let𝑚, 𝑛 ≥ 3 be integer, let 𝐵
𝑛
be a Hamiltonian

bipartite graph with 2𝑛 vertices and 𝑚 edges, and let 𝐾
𝑛,𝑛

be a
complete bipartite graph:

(i) Any 𝐻(𝐵
𝑛
, 𝑠) has a dicycle cover C with |C| ≤ 𝑠(𝑚 −

2𝑛 + 1). This bound is best possible.
(ii) In particular, any𝐻(𝐾𝑛,𝑛, 𝑠) has a dicycle coverC with

|C| ≤ 𝑠(𝑛 − 1)
2. This bound is best possible.
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