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a b s t r a c t

For an integer s > 0 and for u, v ∈ V (G) with u ≠ v, an (s; u, v)-trail-system of G is a
subgraphH consisting of s edge-disjoint (u, v)-trails. A graph is supereulerianwithwidth
s if for any u, v ∈ V (G) with u ≠ v, G has a spanning (s; u, v)-trail-system. The supereu-
lerian width µ′(G) of a graph G is the largest integer s such that G is supereulerian with
width k for every integer k with 0 ≤ k ≤ s. Thus a graph G with µ′(G) ≥ 2 has a spanning
Eulerian subgraph. Catlin (1988) introduced collapsible graphs to study graphs with span-
ning Eulerian subgraphs, and showed that every collapsible graph G satisfies µ′(G) ≥ 2
(Catlin, 1988; Lai et al., 2009). Graphs Gwithµ′(G) ≥ 2 have also been investigated by Luo
et al. (2006) as Eulerian-connected graphs. In this paper, we extend collapsible graphs to s-
collapsible graphs and develop a new related reduction method to study µ′(G) for a graph
G. In particular, we prove that K3,3 is the smallest 3-edge-connected graph with µ′ < 3.
These results and the reductionmethodwill be applied to determine a best possible degree
condition for graphs with supereulerian width at least 3, which extends former results in
Catlin (1988) and Lai (1988).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are finite andmay havemultiple edges but no loops. Terminology and notation not defined here can
be found in [3]. In particular, for a graph G, δ(G),∆(G), κ(G) and κ ′(G) represent theminimumdegree, themaximumdegree,
the connectivity and the edge connectivity of a graphG, respectively. For subgraphsH1,H2 ofG,H1


H2 andH1


H2 denote

the union and intersection of H1 and H2, respectively, as defined in [3]. For vertices u, v ∈ V (G), a trail with end vertices
being u and v will be called a (u, v)-trail. We use O(G) to denote the set of all odd degree vertices in G. A graph G is Eulerian
if O(G) = Ø and G is connected, and is supereulerian if G has a spanning Eulerian subgraph.

Let G be a graph, and s > 0 be an integer. For any distinct u, v ∈ V (G), an (s; u, v)-trail-system of G is a subgraph H
consisting of s edge-disjoint (u, v)-trails. A graph is supereulerian with width s if for any u, v ∈ V (G) with u ≠ v, G has a
spanning (s; u, v)-trail-system. The supereulerian widthµ′(G) of a graph G is the largest integer s such that G is supereule-
rian with width k for any integer k with 1 ≤ k ≤ s. Luo et al. in [19] defined graphs with µ′(G) ≥ 2 as Eulerian-connected
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graphs and investigated, for a given integer r > 0, the minimum value ψ(r) such that if G is a ψ(r)-edge-connected graph,
then for any X ⊆ E(G)with |X | ≤ r ,µ′(G−X) ≥ 2. Note that if for some vertices u and v, G does not have a spanning (u, v)-
trail, then µ′(G) = 0. The vertex counter-part of µ′(G), called the spanning connectivity of a graph, has been intensively
studied, as can be seen in Chapters 14 and 15 of [11].

Following [3], if V ′
⊆ V (G) is a vertex subset, then G[V ′

] is the subgraph of G induced by V ′; if X ⊆ E(G) is an edge subset,
then G[X] is the subgraph of G induced by X . If v ∈ V (G), then NG(v) denotes the vertices of G adjacent to v in G. If H is a
graph and Z is a set of edges such that the end vertices of each edge in Z are in V (H), then H + Z denotes the graph with
vertex set V (H) and edge set E(H)


Z .

In [2], Boesch et al. first raised the problem of characterizing supereulerian graphs. They remarked that such a problem
would be difficult. In [20], Pulleyblank confirmed the remark by showing that the problem to determine if a graph is
supereulerian, even within planar graphs, is NP-complete. Jaeger [12] first proved that every 4-edge-connected graph is
supereulerian. In [4], Catlin introduced collapsible graphs as a tool to study supereulerian graphs. Catlin [4] and Lai et al.
[16] showed that ifG is collapsible, thenµ′(G) ≥ 2. (See also Chapter 3 of [21] and [26].)Most of the studies on supereulerian
graphs with width at most 2 can be found in Catlin’s survey [5] and its updates [9,15]. By definition, we have the obvious
inequality

µ′(G) ≤ κ ′(G), for any connected graph G. (1)

Determining when equality holds in (1) is one of the most natural questions. One purpose of this paper is to investigate
graphs G such that for a given integer k, µ′(G) ≥ k if and only if κ ′(G) ≥ k. Motivated by Catlin’s work in [4], in Section 2
we extend the concept of collapsible graphs to s-collapsible graphs, and use it to develop a new reduction method using
s-collapsible graphs. In Section 3, we study the s-collapsibility of complete graphs and some other dense graphs, and prove
that K3,3 is the smallest among all 3-edge-connected graphs G such that µ′(G) < κ ′(G). In the last section, we apply the
reduction method associated with s-collapsible graphs to study the structure of reduced graphs under a degree condition.
These allow us to obtain a best possible degree condition for supereulerian graphs with width at least 3, extending former
results in [4] and [13].

2. Reductions with s-collapsible graphs

Throughout this paper, we adopt the convention that any graph is 0-edge-connected, and so κ ′(G) ≥ 0 holds for any
graph G, and let s ≥ 1 denote an integer. For sets X and Y , the symmetric difference of X and Y is

X∆Y =


X


Y


−


X


Y

.

Definition 2.1. A graph G is s-collapsible if for any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning subgraph ΓR
such that

(i) both O(ΓR) = R and κ ′(ΓR) ≥ s − 1, and
(ii) G − E(ΓR) is connected.

A spanning subgraphΓR of Gwith both properties in Definition 2.1 is an (s, R)-subgraph of G. LetCs denote the collection
of s-collapsible graphs. ThenC1 is the collection of all collapsible graphs, defined in [4]. By definition, any (s+1, R)-subgraph
of G is also an (s, R)-subgraph of G. This implies that

Cs+1 ⊆ Cs, for any positive integer s. (2)

Proposition 2.2. Let G be a graph, and let s ≥ 1 be an integer. Then the following are equivalent.
(i) G ∈ Cs.
(ii) For any X ⊆ V (G) with |X | ≡ 0 (mod 2), G has a spanning connected subgraph LX such that O(LX ) = X and such that

κ ′(G − E(LX )) ≥ s − 1.

Proof. (i) H⇒ (ii). Given X ⊆ V (G) with |X | ≡ 0 (mod 2), let R = O(G)∆X . By the definition of R, it follows that |R| ≡ 0
(mod 2). Since G ∈ Cs, G has a spanning subgraph ΓR such that O(ΓR) = R, κ ′(ΓR) ≥ s − 1, and G − E(ΓR) is connected. Let
LX = G − E(ΓR). Then LX is a spanning connected subgraph such that O(LX ) = R∆O(G) = X∆O(G)∆O(G) = X . Moreover
κ ′(G − E(LX )) = κ ′(ΓR) ≥ s − 1.

(ii) H⇒ (i). Given R ⊆ V (G)with |R| ≡ 0 (mod 2), let X = R∆O(G). By the definition of X , it follows that |X | ≡ 0 (mod 2).
By (ii), G has a spanning connected subgraph LX such thatO(LX ) = X and such that κ ′(G−E(LX )) ≥ s−1. LetΓR = G−E(LX ).
Then both κ ′(ΓR) ≥ s − 1 and O(ΓR) = O(G)∆X = R. As G − E(ΓR) = LX is connected, G ∈ Cs. �

For a graph G, and for X ⊆ E(G), the contraction G/X is obtained from G by identifying the two ends of each edge in X
and then by deleting the resulting loops. If H is a subgraph of G, then we write G/H for G/E(H). When H is connected, we
use vH to denote the vertex in G/H onto which H is contracted.



P. Li et al. / Discrete Applied Mathematics 200 (2016) 79–94 81

Lemma 2.3. Suppose that H is a connected subgraph of G, and R ⊆ V (G) is a subset with |R| ≡ 0 (mod 2). Define

R′
=

R − V (H) if |R


V (H)| ≡ 0 (mod 2)

(R − V (H))


{vH} if |R


V (H)| ≡ 1 (mod 2).

If G/H has an (s, R′)-subgraph ΓR′ , and if H ∈ Cs, then G has an (s, R)-subgraph ΓR.

Proof. Let ΓR′ be an (s, R′)-subgraph of G/H . Define R∗
= V (H)


O(G[E(ΓR′)]). Thus R∗ consists of the vertices in H that

are incident with an odd number of edges in E(ΓR′). By the definition of R′, |R∗
| ≡ dΓR(vH) ≡ |R


V (H)| (mod 2). Define

R′′
= R∗∆(R


V (H)). By definition, |R′′

| ≡ |R∗
| + |R


V (H)| ≡ 0 (mod 2) and R′′

⊆ V (H). Since H ∈ Cs, H has an
(s, R′′)-subgraph ΓR′′ . Define

ΓR = G

E(ΓR′)


E(ΓR′′)


.

Since κ ′(ΓR′) ≥ s − 1 and κ ′(ΓR′′) ≥ s − 1, and as ΓR/ΓR′′ = ΓR′ when s ≥ 2, we conclude that κ ′(ΓR) ≥ s − 1. By
the definition of R′ and R′′, we observe that O(ΓR) − V (H) = R − V (H); since R


V (H) ⊆ V (H) and R∗

⊆ V (H), we
have (R∗∆(R


V (H)))


V (H) = R∗∆(R


V (H)), and so O(ΓR)


V (H) = (O(G[E(ΓR′)])


V (H)) ∆((R∗∆(R


V (H)))

V (H)) = R∗∆((R∗∆(R


V (H)))


V (H))= R∗∆R∗∆(R


V (H)) = (R


V (H)). Thus

O(ΓR) = O(G[E(ΓR′)])∆O(ΓR′′) = (R − V (H))


R


V (H)


= R.

Moreover, G − E(ΓR) = G[E(G/H − E(ΓR′))


E(H − E(ΓR′′))]. Since ΓR′ is an (s, R′)-subgraph of G/H , and since ΓR′′ is an
(s, R′′)-subgraph ofH , G/H −E(ΓR′) contains a spanning tree of G/H andH −E(ΓR′′) contains a spanning tree ofH . It follows
that G − E(ΓR) contains a spanning tree of G, and so by definition, ΓR is an (s, R)-subgraph of G. �

Corollary 2.4. Let s ≥ 1 be an integer. Then Cs satisfies the following.
(C1) K1 ∈ Cs.
(C2) If G ∈ Cs and if e ∈ E(G), then G/e ∈ Cs.
(C3) If H is a subgraph of G and if H,G/H ∈ Cs, then G ∈ Cs.

Proof. (C1) and (C2) follow immediately from definitions, and (C3) follows from Lemma 2.3. �

Corollary 2.5. Let s ≥ 1 be an integer. If a graph G ∈ Cs, then µ′(G) ≥ s + 1.

Proof. Let u and v be two distinct vertices of G. Let X = Ø. Since G ∈ Cs, by Proposition 2.2, G has a spanning connected
subgraph LX with O(LX ) = Ø and κ ′(G − E(LX )) ≥ s − 1. Since LX is Eulerian, LX can be partitioned into two edge-disjoint
(u, v)-trails T1, T2. By the edge version of Menger’s Theorem, G−E(LX ) has s−1 edge-disjoint (u, v)-paths, T3, T4, . . . , Ts+1.
Since T1


T2 = LX is spanning, {T1, T2, . . . , Ts+1} is spanning (s + 1; u.v)-trail-system. �

A subgraph H of G is Cs-maximal if H ∈ Cs and if G has no subgraph in Cs that properly contains H .

Lemma 2.6. Let G be a graph and let s > 0 be an integer. Each of the following holds.
(i) Let L1, L2 be vertex induced subgraphs of G. If V (L1)


V (L2) ≠ Ø and if L1, L2 ∈ Cs, then L1


L2 ∈ Cs.

(ii) The graph G has a unique set of vertex disjoint Cs-maximal subgraphs H1,H2, . . . ,Hc such that V (G) =
c

i=1 V (Hi), and
if G′

= G/(
c

i=1 E(Hi)), then G′ contains no nontrivial subgraph in Cs.

Proof. (i) Let J1, J2, . . . , Jt be the connected components of L1


L2. Since L1 ∈ Cs, by Corollary 2.4(C2), L1/(L1


L2) ∈ Cs.
Let vJi be the vertex in L1/(L1


L2) onto which Ji is contracted, (1 ≤ j ≤ t), and let X be a set of t − 1 additional edges,

(i.e.X


E(G) = Ø), such that the graphwith vertices {vJ1 , . . . , vJt } and edge setX is a tree. Since L1/(L1


L2) ∈ Cs, it follows
by definition of s-collapsible graphs that L1/(L1


L2)+ X ∈ Cs, and so by Corollary 2.4(C2), (L1/(L1


L2)+ X)/X ∈ Cs. By

definition of contraction and since L1, L2 are vertex induced connected subgraphs of G, we have
L1


L2

/L2 =


L1/


L1


L2


+ X

/X ∈ Cs.

It follows from L2 ∈ Cs and by Corollary 2.4(C3) that L1


L2 ∈ Cs.
(ii) The existence and the uniqueness of this set of Cs-maximal subgraphs H1,H2, . . . ,Hc follow from Corollary 2.4(C1) and
from (i). Let V (G′) = {u1, u2, . . . , uc}, where ui is the vertex onto which the subgraph Hi is contracted, (1 ≤ i ≤ c). Suppose
that G′ has a nontrivial subgraph H ′

∈ Cs. We may assume that V (H ′) = {u1, u2, . . . , ut} with t ≥ 2. Then by repeated
applications of Corollary 2.4(C3),

H = G


E(H ′)


t

i=1

E(Hi)


∈ Cs,

contrary to the assumption that these Hi’s are Cs-maximal. �



82 P. Li et al. / Discrete Applied Mathematics 200 (2016) 79–94

A graph is Cs-reduced if it contains no nontrivial subgraph in Cs. By Lemma 2.6, the graph G′
= G/(

c
i=1 E(Hi)) is

Cs-reduced; call it the Cs-reduction of G.

Corollary 2.7. Let s ≥ 1 be an integer. Let T be a spanning tree of a graph G. If for any e ∈ E(T ), e lies in a subgraph He ∈ Cs,
then G ∈ Cs.

Proof. The hypothesis implies that G has a nontrivial subgraph in Cs. Let H be a subgraph of G such that H ∈ Cs with |V (H)|
beingmaximized. IfG = H , thenwe are done. Assume that |V (H)| < |V (G)|. Since T is a spanning tree, theremust be an edge
e ∈ E(T )−E(H) such that e is incidentwith a vertex inH . By assumption,G has a subgraphHe ∈ Cs such that e ∈ E(He). Since
V (H)


V (He) ≠ Ø, by Lemma 2.6(i), H


He ∈ Cs, contrary to the maximality of H . Hence we must have G = H in Cs. �

Lemma 2.8. Let s ≥ 1 be an integer. Suppose that H is a connected subgraph of a given graph G, and let vH denote the vertex in
G/H onto which H is contracted. For any x ∈ V (G), define x′

= x if x ∈ V (G)− V (H) and x′
= vH if x ∈ V (H). If H ∈ Cs, then

for any u, v ∈ V (G) with u ≠ v, the following are equivalent.
(i) G has a spanning (s + 1; u, v)-trail-system.
(ii) If u′

≠ v′, then G/H has a spanning (s + 1; u′, v′)-trail-system; and if u′
= v′

= vH , then G/H is supereulerian.

Proof. (i) H⇒ (ii). Let T1, T2, . . . Ts+1 be edge-disjoint (u, v)-trails in G such that
s+1

i=1 Ti is spanning in G. For i ∈

{1, 2, . . . , s + 1}, define T ′

i to be the graph obtained from (Ti


H)/H by deleting the possible isolated vertex vH . Then
in G/H , if u′

≠ v′, T ′

1, T
′

2, . . . , T
′

s+1 are edge-disjoint (u
′, v′)-trails. Since

s+1
i=1 Ti is spanning in G, {T ′

1, T
′

2, . . . , T
′

s+1} is a span-
ning (s + 1; u′, v′)-trail-system of G/H . If u′

= v′, then since u ≠ v in G, we must have u′
= v′

= vH , and so T ′

1, T
′

2, . . . T
′

s+1

are edge-disjoint closed trails in G/H . Since
s+1

i=1 Ti is spanning in G,
s+1

i=1 T ′

i is a spanning closed trail in G/H , and so G/H
is supereulerian.

(ii) H⇒ (i). Suppose first that u′
= v′

= vH , and G/H is supereulerian. Let T ′ denote a spanning closed trail in G/H and
let X ′

= O(G[E(T ′)]). Since T ′ is an Eulerian subgraph of G/H , we conclude that X ′
⊆ V (H) and |X ′

| ≡ 0 (mod 2). Since
H ∈ Cs, by Proposition 2.2, H has a spanning connected subgraph LX ′ with O(LX ′) = X ′ such that κ ′(H − E(LX ′)) ≥ s − 1.
Thus H − E(LX ′) has s − 1 edge-disjoint (u, v)-paths T1, T2, . . . , Ts−1. Let Γ = G[E(T ′)


E(LX ′)]. Since T ′ is spanning

and connected in G/H , and since LX ′ is spanning and connected in H , Γ is a spanning connected subgraph of G with
O(Γ ) = O(G[E(T ′)])∆O(LX ′) = X ′∆X ′

= Ø. Thus Γ is a spanning Eulerian subgraph of G, and so Γ can be partitioned
into two edge-disjoint (u, v)-trails Ts and Ts+1, such that Ts


Ts+1 = Γ is spanning in G. Note that Γ is edge-disjoint from

H − E(LX ′) and from T1, T2, . . . , Ts−1. It follows that {T1, T2, . . . , Ts+1} is a spanning (s + 1; u, v)-trail-system.
Therefore we may assume that u′

≠ v′ and u′
≠ vH . Choose a spanning (s + 1; u′, v′)-trail-system {T ′

1, T
′

2, . . . , T
′

s+1} of
G/H such that dT ′

1
(vH) ≥ dT ′

2
(vH) ≥ · · · ≥ dT ′

s+1
(vH) and such that dT ′

1
(vH) is maximized. Since the T ′

i ’s are trails, the max-
imality of dT ′

1
(vH) implies that we must have dT ′

i
(vH) ≤ 2 for each i with 2 ≤ i ≤ s + 1. Since for each i, T ′

i is a (u
′, v′)-trail

in G/H ,

O(G[E(T ′

i )]) ⊆ V (H)


{u, v}, 1 ≤ i ≤ s + 1. (3)

Define Yi = O(G[E(T ′

i )])


V (H), (1 ≤ i ≤ s+1). Without loss of generality, we assume that t is an integer such that Yi ≠ Ø
when 1 ≤ i ≤ t , and Yi = Ø, for all i > t . (If vH ∈ {u′, v′

}, then {u, v}


V (H) ≠ Ø and so t = s+1.) For each iwith 1 ≤ i ≤ t ,
T ′

i is an (u
′, v′)-trail containing vH , and so there must be ui, vi ∈ Yi such that G[E(T ′

i )] contains an (u, ui)-trail Ji and a (vi, v)-
trail J ′i such that Ji and J ′i are edge-disjoint. (If v′

= vH , we choose vi = v and in this case, J ′i consists of only one vertex.)
Since T ′

1 and T ′

2 are edge disjoint, the maximality of dT ′
1
(vH) implies that J ′ = T ′

1


T ′

2 is an Eulerian subgraph of G/H
containing {u′, v′, vH}. Let X = O(G[E(J ′)]). As J ′ is an Eulerian subgraph of G/H , we have X ⊆ V (H) and |X | ≡ 0 (mod 2).
Since H ∈ Cs, and since X ⊆ V (H)with |X | ≡ 0 (mod 2), by Proposition 2.2, H has a spanning connected subgraph LX with
O(LX ) = X , such that κ ′(H − E(LX )) ≥ s − 1.

Let J = G[E(J ′)


E(LX )]. Then J is an Eulerian subgraph of G containing V (H)


{u, v}. Hence J can be partitioned into
two edge disjoint (u, v)-trails T1, T2.

Since κ ′(H − E(LX )) ≥ s − 1, for some permutation π on {3, 4, . . . , t}, H − E(LX ) has edge-disjoint (ui, vπ(i))-trails J ′′i ,
(3 ≤ i ≤ t). Define edge induced subgraphs as follows:

Ti =


G

E(Ji)


E(Jπ(i)′)


E(J ′′i )


if 3 ≤ i ≤ t

G[E(T ′

i )] if t + 1 ≤ i ≤ s + 1.

Recall that {T ′

1, T
′

2, . . . , T
′

s+1} is a spanning (s + 1; u′, v′)-trail-system of G/H , that Ji and J ′i are subgraphs of T ′

i , and that the
(ui, vi)-trails J ′′i (3 ≤ i ≤ t) in H − E(LX ) are edge-disjoint subgraphs. By the definition of the Ti’s, for all 1 ≤ i ≤ s + 1,
these Ti’s are edge-disjoint (u, v)-trails. Since V (G/H) =

s+1
i=1 V (T ′

i ) and since V (H) ⊆ V (T1)


V (T2), it follows thats+1
i=1 V (Ti) = V (G) and so {T1, T2, . . . , Ts+1} is a spanning (s + 1; u, v)-trail-system of G. �
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Corollary 2.9. Let G be a graph and H be a subgraph of G with H ∈ Cs. Each of the following holds.
(i) G ∈ Cs if and only if G/H ∈ Cs.
(ii) If µ′(G) ≥ s + 1, then for any e ∈ E(G), µ′(G/e) ≥ s + 1.
(iii) µ′(G) ≥ s + 1 if and only if µ′(G/H) ≥ s + 1.

Proof. (i) follows from Corollary 2.4. To prove (ii), we assume that e = xy and use ve to denote the vertex in G/e onto which
e is contracted. Let u, v′

∈ V (G/e) such that u ≠ v′. We may assume that u ≠ ve and so u ∈ V (G). Define v = v′ if v′
≠ ve

and v = x if v′
= ve. Since µ′(G) ≥ s + 1, for any integer k with 1 ≥ k ≥ s + 1, G has a spanning (k; u, v)-trail system

consisting of k edge-disjoint (u, v)-trails L1, L2, . . . , Lk. For each 1 ≤ i ≤ k, define L′

i = (Li + e)/{e} if x, y ∈ V (Li) or L′

i = Li
if |{x, y}


V (Li)| ≤ 1. By definition of the L′

i ’s, L
′

1, L
′

2, . . . , L
′

s+1 form a spanning (k; u, v′)-trail system in G/e. Thus (ii) must
hold.

By (ii), ifµ′(G) ≥ s+1, thenµ′(G/H) ≥ s+1. Thus to prove (iii), we only need to assume thatµ′(G/H) ≥ s+1 to prove
µ′(G) ≥ s+1. Let k be an integer with 1 ≤ k ≤ s+1, and let vH denote the vertex in G/H ontowhichH is contracted. For any
x ∈ V (G), define x′

= x if x ∉ V (H) and x′
= vH if x ∈ V (H). For any u, v ∈ V (G), if u′

≠ v′, then sinceµ′(G/H) ≥ s+1, G/H
has a spanning (k; u′v′)-trail system. If u′

= v′, then asµ′(G/H) ≥ s+1 ≥ 2, by the definition ofµ′, G/H is supereulerian. It
follows by Lemma 2.8 thatG has a spanning (k; u, v)-trail system, and so as u, v are arbitrary vertices ofG,µ′(G) ≥ s+1. �

For a graphG, let τ(G)denote themaximumnumber of edge-disjoint spanning trees ofG. By thewell known spanning tree
packing theorem of Nash-Williams [22] and Tutte [24], every 2k-edge-connected graphmust have k edge-disjoint spanning
trees. (For a direct proof of this fact, see [10], or Theorems 1.1 and 1.3 of [7]). Following Catlin’s notation, let F(G, s) denote
the minimum number of additional edges that must be added to G to result in a graph G′ (possibly having multiple edges)
with τ(G′) ≥ s. The value of F(G, s) has been studied and determined in [18], whose matroidal versions are proved in [14]
and [17]. Catlin proved the following when s = 2.

Theorem 2.10 (Catlin, Theorem 7 of [4]). If F(G, 2) ≤ 1, then G ∈ C1 if and only if κ ′(G) ≥ 2.

Further studies on F(G, 2) can be found in [6]. We extend this theorem to all other values of s.

Theorem 2.11. Let s ≥ 1 be an integer. If F(G, s + 1) ≤ 1, then G ∈ Cs if and only if κ ′(G) ≥ s + 1.

Proof. Suppose first that G ∈ Cs. By Corollary 2.5 and by (1), we have κ ′(G) ≥ µ′(G) ≥ s + 1.
Conversely, we assume that κ ′(G) ≥ s + 1 to prove that G ∈ Cs. By Theorem 2.10, we may assume that s > 1. Let

n = |V (G)|.
Since F(G, s + 1) ≤ 1, G has spanning trees T1, T2, . . . , Ts such that J = G −

s
i=1 E(Ti) is a spanning subgraph of Gwith

at most two components. Let X ⊆ V (G) be a subset with |X | ≡ 0 (mod 2). By Proposition 2.2, it suffices to show that G has
a spanning connected subgraph LX with O(LX ) = X and with κ ′(G − E(LX )) ≥ s − 1.

Claim 1. If for some i with 1 ≤ i ≤ s, Ti


J ∈ C1, then G ∈ Cs.

Suppose that H = T1


J ∈ C1. Then V (H) = V (T1) = V (G). By Proposition 2.2, as H ∈ C1, H has a spanning connected
subgraph LX with O(LX ) = X . Note that V (LX ) = V (H) = V (G). Since G− E(LX ) contains spanning trees T2, . . . , Ts, we have
κ ′(G − E(LX )) ≥ s − 1. By Proposition 2.2 again, G ∈ Cs. This proves Claim 1.

By Theorem 2.10 and by Claim 1, if J is connected, then G ∈ Cs and we are done. Hence J has two components J ′ and J ′′.
For each i with 1 ≤ i ≤ s, let Hi = Ti


J . By Claim 1, we may assume that for each i, Hi ∉ C1. By definition, F(Hi, 2) = 1,

for 1 ≤ i ≤ s, and so by Theorem 2.10, we may assume that for all i, κ ′(Hi) = 1. Thus for each i with 1 ≤ i ≤ s, there must
be an edge ei ∈ E(Ti) which is a cut edge of Hi, such that if T ′

i , T
′′

i are the components of Ti − ei, then V (J ′) = V (T ′

i ) and
V (J ′′) = V (T ′′

i ). It follows that {e1, e2, . . . , es} is an edge cut of G separating V (J ′) and V (J ′′), contrary to the assumption that
κ ′(G) ≥ s+ 1. Hence wemay assume that κ ′(H1) ≥ 2. By Theorem 2.10, H1 ∈ C1. By Claim 1, we conclude that G ∈ Cs. �

We need a theorem of Nash-Williams to derive a corollary of Theorem 2.11. For an explicit proof of this theorem, see
Theorem 2.4 of [25].

Theorem 2.12 (Nash-Williams [23]). Let G be a graph. If |E(G)|
|V (G)|−1 ≥ s+1, then G has a nontrivial subgraph L with τ(L) ≥ s+1.

Corollary 2.13. Let G be a connected nontrivial graph, and s ≥ 1 be an integer.
(i) If τ(G) ≥ s + 1, then G ∈ Cs.
(ii) If G is Cs-reduced, then for any nontrivial subgraph H of G, |E(H)|

|V (H)|−1 < s + 1.
(iii) If κ ′(G) ≥ s + 1 and G is Cs-reduced, then

F(G, s + 1) = (s + 1)(|V (G)| − 1)− |E(G)| ≥ 2.
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Proof. (i) If τ(G) ≥ s + 1, then F(G, s + 1) = 0 and κ ′(G) ≥ τ(G) ≥ s + 1. By Theorem 2.11, G ∈ Cs.
(ii) Assume that G isCs-reduced and for some connected subgraphH of G, |E(H)|

|V (H)|−1 ≥ s+1. Then by Theorem 2.12,H (and
so G) has a nontrivial subgraph Lwith τ(L) ≥ s+ 1. It follows from Corollary 2.13(i) that L ∈ Cs, contrary to the assumption
that G is Cs-reduced.

(iii) The formula F(G, s+ 1) = (s+ 1)(|V (G)| − 1)− |E(G)| follows from Lemma 3.1 of [14] (or indirectly, from Theorem
3.4 of [18]). Since G is nontrivial and Cs-reduced, G ∉ Cs. Now the inequality follows from Theorem 2.11. �

The following theorem of Chen is useful when dealing with graphs with small order.

Theorem 2.14 (Chen [8]). If G satisfies κ ′(G) ≥ 3 and |V (G)| ≤ 11, then G ∈ C1 if and only if G cannot be contracted to the
Petersen graph.

3. Complete graphs and other examples

In this section, we shall study the Cs membership and the µ′ values of certain graphs, which will be useful in our argu-
ments in later sections. For a graph G, if X, Y ⊆ V (G) are disjoint vertex subsets, then [X, Y ]G denotes the set of edges in G
with one end in X and the other end in Y . We start with a simple example. For an integer ℓ > 1, and a graphH , lH denotes the
graph obtained fromH by replacing each edge ofH by a set of ℓ parallel edges joining the same pair of vertices. For example,
ℓK2 is the loopless connected graph with two vertices and ℓ edges. By Corollaries 2.5 and 2.13 and as µ′(G) ≤ κ ′(G) for any
graph G, we have

Corollary 3.1. Let ℓ ≥ 2, s ≥ 1 be integers. Then ℓK2 ∈ Cs if and only if ℓ ≥ s + 1.

Next we consider the problem to determine the values of n such that Kn ∈ Cs, for a given integer s ≥ 1.

Lemma 3.2. Let n ≥ 2, s ≥ 2 be integers.
(i) If both n and s are odd and if sn > n2

− 3n + 3, then Kn ∉ Cs.
(ii) If at least one of n and s is even, and if sn > n2

− 3n + 2, then Kn ∉ Cs.

Proof. In the proofs below, for each n satisfying the inequalities, we will choose a particular R ⊆ V (Kn), and assume that if
Kn has an (s, R)-subgraph Γ , then a contradiction will be obtained.
(i) Take R ⊂ V (G) with |R| = n − 1 ≡ 0 (mod 2). Since Γ is an (s, R)-subgraph, by Definition 2.1, we have κ ′(Γ ) ≥ s − 1,
s − 1 ≡ 0 (mod 2) and O(Γ ) = R. Thus for any v ∈ R, we must have dΓ (v) ≥ s. It follows that 2|E(Γ )| =


v∈V (Γ ) dΓ (v) ≥

s(n − 1)+ (s − 1) = sn − 1. As sn > n2
− 3n + 3, we have

|E(Kn)− E(Γ )| ≤
n(n − 1)

2
−

sn − 1
2

<
(n2

− n)− (n2
− 3n + 3 − 1)
2

= n − 1.

Hence Kn − E(Γ ) cannot be connected, contrary to the assumption that Γ is an (s, R)-subgraph of Kn.
(ii) Set R = V (Kn) if s ≡ 1 (mod 2), and R = Ø if s ≡ 0 (mod 2). Then since κ ′(Γ ) ≥ s − 1, we have δ(Γ ) ≥ s, and so
2|E(Γ )| ≥ sn. Since sn > n2

− 3n + 2, we have

|E(Kn)− E(Γ )| ≤
n(n − 1)

2
−

sn
2
<
(n2

− n)− (n2
− 3n + 2)

2
= n − 1.

Hence Kn − E(Γ ) cannot be connected, contrary to the assumption that Γ is an (s, R)-subgraph of G. �

Theorem 3.3. Let s ≥ 2 and n ≥ 2 be integers. Then Kn ∈ Cs if and only if n ≥ s + 3.

Proof. By Corollary 2.5 and (1), ifKn ∈ Cs, then κ ′(Kn) ≥ s+1. Thus if n < s+1, thenKn ∉ Cs. Since s ≥ 2, if s+1 ≤ n ≤ s+2,
then by simple elementary computation in the respective two cases, we obtain sn > n2

− 3n + 3, and so by Lemma 3.2,
Ks+1, Ks+2 ∉ Cs. This completes the proof of necessity.

To prove sufficiency, we first consider n > s + 3. Note that Kn/Ks+3 contains a spanning tree isomorphic to K1,n−(s+3)
with the contraction image of Ks+3 being a vertex of degree n − (s + 3), such that every edge e of this spanning tree lies in
a subgraph He ∼= (s + 3)K2. By Corollaries 3.1 and 2.7, Kn/Ks+3 ∈ Cs. Thus if we can show Ks+3 ∈ Cs, then it follows from
Corollary 2.4(C3) that Kn ∈ Cs.

Let n = s+ 3 and denote V (Kn) = {v1, v2, . . . , vn}. Then as s ≥ 2, n = s+ 3 ≥ 5. Let R ⊆ V (Kn) be a subset with |R| ≡ 0
(mod 2). We shall show that for any possible values of |R|, Kn always has an (s, R)-subgraph ΓR.

In the arguments below, wewill utilize the fact that if n−3 > n
2 , then the quadratic function x(n− x)−3x has minimum

value n− 4 when 1 ≤ x ≤
n
2 . As for integer value n, we have n− 3 > n

2 if and only if n ≥ 7, we first consider the cases when
n ≥ 7.
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Case 1. n = 2k + 1, for some integer k ≥ 3.
For each even subset R ⊂ V (G)with |R| = 2ℓ ≥ 0 with 0 ≤ ℓ ≤ k, we will find an (s, R)-subgraph ΓR below. By symme-

try and since n ≥ 7 is odd, we may assume that v1 ∉ R, and when ℓ > 0, R = {vi, v2k−i+3 : i = 2, 3, 4, . . . , ℓ+ 1}. Let Cn =

v1v2 . . . vnv1 be a hamiltonian cycle of Kn. Since s = n − 3, Kn − E(Cn) is an s-edge-connected, s-regular graph. If |R| = 0,
then define ΓR = Kn − E(Cn); if ℓ > 0, then define M(ℓ) = {viv2k−i+2 : with i = 2, 3, . . . , ℓ}


{vℓ+1v2k}. Note that M(k) is a

perfect matching of Kn − E(Cn)− v1, and observe thatM(ℓ)


E(Cn) = Ø. Let ΓR = Kn − E(Cn)− M(ℓ). We claim that

κ ′(ΓR) ≥ n − 4 = s − 1. (4)

Let X, Y be a vertex partition of V (Kn) = V (ΓR) with |X | = x and |Y | = n − x such that 1 ≤ x ≤ n − x. Then in [X, Y ]Kn ,
there are at most 2x edges in Cn and at most x edges in M(ℓ). It follows that |[X, Y ]ΓR | ≥ x(n − x) − 3x ≥ n − 4, where
1 ≤ x ≤ n/2, and so (4) must hold.

By the definition of R, we have O(ΓR) = R; as G−E(ΓR) contains the hamiltonian cycle Cn, it is connected. These, together
with (4), imply that Kn ∈ Cs.
Case 2. n = 2k, for some integer k ≥ 4.

By symmetry and since n is even, we may assume that if |R| = 2l > 0, then R = {v1, vk+1, . . . , vℓ, vk+l}. Let M1 =

{vivk+i : i = 1, 2, . . . , k}, M2 = {vivk+i+1 : i = 1, 2, . . . , k − 1}


{vkvk+1}, and M3 = {vivk+i+2 : i = 1, 2, . . . , k − 2}


{vk−1vk+1, vkvk+2}. Then M1,M2,M3 are mutually edge disjoint perfect matchings of Kn. Let L = G[M1


M2


M3], and
define

ΓR =


Kn − E(L) if |R| = 0,
Kn − E(L − {vivk+i : 1 ≤ i ≤ ℓ}) if |R| = 2ℓ for some 0 < ℓ ≤ k.

We claim that

κ ′(ΓR) ≥ κ ′(ΓR) ≥ n − 4 = s − 1. (5)

Let X, Y be a vertex partition of V (Kn) = V (ΓR) with |X | = x and |Y | = n − x such that 1 ≤ x ≤ n − x. Then in [X, Y ]Kn ,
there are at most x edges in each Mi. It follows that |[X, Y ]ΓR | ≥ x(n − x)− 3x ≥ n − 4, and so (5) must hold.

By the definition of ΓR, we have O(ΓR) = R; as G − E(ΓR) contains a hamiltonian cycle v1vk+2vkvk+1vk−1 v2kvk−2 v2k−1
· · · v2vk+3v1, whose edge set isM2


M3, it is connected. These, together with (5), imply that Kn ∈ Cs.

Case 3. n ∈ {5, 6}.
For n = 5, we have s = 2; let C5 = v1v3v5v2v4v1. Define

ΓR =


C5 if R = Ø,

C5


{v3v4} if R = {v3, v4},

C5


{v3v4}


− v2v5 if R = {v2, v3, v4, v5}.

In any case, O(ΓR) = R and both ΓR and G − E(ΓR) are connected. By symmetry and by definition, K5 ∈ C2.
Suppose that n = 6 and so s = 3. Let C6 = v1v2v3v4v5v6v1, and H = C6 + v2v5. Define

ΓR =


C6 if R = Ø,
H if R = {v2, v5},
H


{v4v6} if R = {v2, v4, v5, v6},

H


{v1v3, v4v6} if R = V (K6).

In any case, we have O(ΓR) = Rwith κ ′(ΓR) ≥ 2 such that G− E(ΓR) is connected. By symmetry and by definition, K6 ∈ C3.
�

Example 3.1. We present some examples G with κ ′(G) = µ′(G) = 3. Let Cn = v1v2 · · · vnv1 denote a cycle on n vertices
and let v0 ∉ {v1, v2, . . . , vn} be a vertex. Thewheel on n + 1 vertices, denoted byWn, is obtained from Cn and v0 by adding
n new edges v0vi, (1 ≤ i ≤ n). These new edges v0vi, (1 ≤ i ≤ n), are referred to as spokes ofWn. The graphW ′

n is obtained
from Wn by contracting a spoke. Isomorphically, we can write W ′

n = Wn/{v0vn}. The following can be routinely verified
(hint: apply Corollary 2.9(ii) for Example 3.1(ii)).

(i) µ′(Kn) = κ ′(Kn) = n − 1.
(ii) if G ∈ {Wn,W ′

n} for n ≥ 3, then µ′(G) = κ ′(G) = 3.

4. K3,3 is the smallest graph G with µ′(G) < κ′(G) = 3

The main result of this section will determine the smallest graph G with µ′(G) < κ ′(G) = 3. For a vertex v ∈ V (G),
define

EG(v) = {e ∈ E(G) : e is incident with v in G}.

We start by quoting a conditional reduction lemma; its proof is straightforward.
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Table 1
µ′(K+

2,3) ≥ 3.

u v Spanning (3; u, v)-trail system Similar cases by symmetry

v1 v2 {e1}, {e′

1, e2, e
′

2}, {e3, v4v5, v5v2} v ∈ {v3, v4}, u = v1
v1 v5 {e1, v2v5}, {e2, v3v5}, {e3, v4v5}
v2 v3 {e1, e2}, {e′

1, e3, e
′

3, e
′

2}, {v2v5, v5v3} (u, v) ∈ {(v2, v4), (v3, v4)}

v2 v5 {v2v5}, {e1, e2, v3v5}, {e′

1, e3, v4v5} (u, v) ∈ {(v3, v5), (v4, v5)}

Lemma 4.1 (Lemma 5.4.1 of [17]). Let G be a graph and let H = 2K2 be a subgraph of G. Denote V (H) = {z1, z2} and E(H) =

{e1, e2}. Suppose that

|EG(zi)− E(H)| ≤ 2, for each i = 1, 2. (6)

Let vH denote the vertex in G/H onto which H is contracted. For each vertex v ∈ V (G), define v′
= v if v ∈ V (G) − V (H) and

v′
= vH if v ∈ V (H). Each of the following holds for any u, v ∈ V (G).
(i) If {u′, v′

} − {vH} ≠ Ø, and if G/H has a spanning (3; u′, v′)-trail-system, then G has a spanning (3; u, v)-trail-system.
(ii) If {u, v} = {z1, z2} and if G − E(H) has a spanning (u, v)-trail, then G has a spanning (3; u, v)-trail-system.

A subgraph 2K2 of G is a contractible 2K2 of G if it satisfies (6) and Lemma 4.1(ii).

Example 4.1. Let Cn be a cycle on n ≥ 3 vertices. Then ∀e ∈ E(2Cn), repeat the application of Lemma 4.1 to digons not
containing e to result in a 4K2. This shows that µ′(2Cn − e) = 3.

Lemma 4.2. Let K3,3, K+

2,3, K
′

2,4, K
′′

2,4, K
′′′

2,4, and S(2, 1) be the graphs depicted in Fig. 1A. Each of the following holds.
(i) µ′(K3,3) = 2.
(ii) For each G ∈ {K+

2,3, K
′

2,4, K
′′

2,4, K
′′′

2,4}, µ
′(G) = 3.

(iii) If G is a non-hamiltonian graph spanned by a S(2, 1), and if κ ′(G) ≥ 3, then µ′(G) = 3.
Proof. We shall use the notations in Fig. 1A in the proofs.

(i) By Theorem 2.10, K3,3 ∈ C1, and so by Corollary 2.5,µ′(K3,3) ≥ 2. It suffices to show that for some u, v ∈ V (K3,3), K3,3
does not have a spanning (3; u, v)-trail-system.

Suppose that K3,3 has a spanning (3; v1, v3)-trail-system {P1, P2, P3}. Let e1 = v1v2, e2 = v1v4, and e3 = v1v6; and
f1 = v3v2, f2 = v3v4 and f3 = v3v6. Since P1, P2, P3 are edge-disjoint, we must have

|{e1, e2, e3}


E(Pi)| = 1 = |{f1, f2, f3}


E(Pi)|, ∀i ∈ {1, 2, 3}. (7)

By (7), we may assume that ei ∈ E(Pi), (1 ≤ i ≤ 3). If f1 ∉ E(P1), then since K3,3 is 3-regular, P1 must use v2v5, which
will force f1 lying in no Pi’s, contrary to (7). Therefore, we must have f1 ∈ E(P1). Similarly, we must have f2 ∈ E(P2) and
f3 ∈ E(P3). Since v5 ∉ V (Pi), (1 ≤ i ≤ 3), it follows that K3,3 does not have a spanning (3; v1, v3)-trail-system, and so
µ′(K3,3) = 2. This proves (i).

(ii) To show that µ′(K+

2,3) = 3, by (1), it suffices to show that for any distinct u, v ∈ V (K+

2,3) and any integer 1 ≤ s ≤ 3,
there will always be a spanning (s; u, v)-trail system. Since τ(K+

2,3) = 2, it follows by Corollaries 2.13 and 2.5 that
µ′(K+

2,3) ≥ 2. Table 1 shows that we can always find spanning (3; u, v)-trail systems for any u, v ∈ V (K+

2,3). This proves that
µ′(K+

2,3) = 3. The proofs for the cases when G ∈ {K ′

2,4, K
′′

2,4, K
′′′

2,4} are similar but somewhat more elaborate, and will thus be
omitted. This proves (ii).

(iii) Let G be a minimally 3-edge-connected non-hamiltonian graph spanned by an S(2, 1), and let G̃ be the underlying
simple graph of G. We adopt the labels of S(2, 1) in Fig. 1A, and denote e1 = v1v2, e2 = v1v3, e3 = v3v5, e4 = v1v4,
e5 = v5v6. If ei has a duplicated edges, then we assume that ei, e′

i are parallel edges in the discussions below. Since G is not
hamiltonian,

v2v3 ∉ E(G), and for any i ∈ {2, 3} and for any j ∈ {4, 6}, vivj ∉ E(G). (8)

Since G is minimally 3-edge-connected, and by (8),

for every i ∈ {2, 3}, there exists exactly one j ∈ {1, 5} such that vivj is a parallel edge in G. (9)

By (9) and by symmetry, we assume that v1, v2 are joined by parallel edges e1 and e′

1.
Case 1. G̃ = S(2, 1) and v1, v3 are joined by parallel edges e2, e′

2.
If v1, v4 are also joined by parallel edges, then by κ ′(G) ≥ 3, either G[{v4, v6}] or G[{v5, v6}] is a contractible 2K2; and

contracting this 2K2 results in a graph isomorphic to K+

2,3. By Lemma 4.2(ii), and by Lemma 4.1, µ′(G) = 3. Hence we
assume that G[{v1, v4}] ∼= K2. Then by κ ′(G) ≥ 3, we have G[{v4, v6}] ∼= G[{v5, v6}] ∼= 2K2, and both are contractible 2K2.
Contracting these 2K2 results in a graph J(4), depicted in Fig. 1B, with

V (J(4)) = {v1, v2, v3, v4} and E(J(4)) = {e1, e′

1, e2, e
′

2, v1v4, v2v4, v3v4}. (10)

It is routine to verify that µ′(J(4)) = 3, and so by Lemma 4.1, µ′(G) = 3. This proves Case 1.
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Fig. 1A. Graphs K3,3 , K+

2,3 , S(2, 1), K
′

2,4 , K
′′

2,4 and K ′′′

2,4 .

Fig. 1B. Graphs J(4), J(5) and J(6, i), 1 ≤ i ≤ 4.

Case 2. G̃ = S(2, 1) and v1, v3 are not joined by parallel edges.
By (9), v3, v5 are joined by parallel edges e3, e′

3. If G[{v4, v6}] ∼= 2K2, then as G is minimally 3-edge-connected, either
G[{v1, v4}] ∼= 2K2 or G[{v5, v6}] ∼= 2K2. In the first case, G[{v3, v5}] and G[{v4, v6}] are contractible 2K2’s; in the second case,
G[{v1, v2}] andG[{v4, v6}] are contractible 2K2’s. As contracting the corresponding 2K2’s results in a graph isomorphic to J(4)
defined in (10), and as µ′(J(4)) = 3, it follows by Lemma 4.1 that µ′(G) = 3. Hence we may assume that G[{v4, v6}] ∼= K2,
and so by κ ′(G) ≥ 3, we have both G[{v1, v4}] ∼= 2K2 and G[{v5, v6}] ∼= 2K2. In order for G[{v1, v4}] not to be a contractible
2K2, we must have G[{v1, v2}] ∼= 2K2. Thus G ∼= J(6, 2) depicted in Fig. 1B. Now it is routine to verify that µ′(G) = 3. This
proves Case 2.

In the cases of Cases 3, 4, and 5, G̃ differs from S(2, 1) but contains S(2, 1) as a spanning subgraph.
Case 3. G̃ ≠ S(2, 1) and v1v6, v4v5 ∈ E(G̃).

Then either e2, e′

2 are parallel edges joining v1, v3 or e3, e′

3 are parallel edges joining v3, v5 in G. Define J(6, 1), depicted
in Fig. 1B, as follows:

V (J(6, 1)) = V (S(2, 1)), and E(J(6, 1)) = E(S(2, 1))


{e′

1, v1v6, v4v5}, (11)

and define G′

2 = J(6, 1)+ e′

2 and G′′

2 = J(6, 1)+ e′

3. By the assumption of Case 3, and since G is minimally 3-edge-connected,
we have G ∈ {G′

2,G
′′

2}. It is routine to verify that µ′(G) = 3. This proves Case 3.

Case 4. G̃ ≠ S(2, 1) and v4v5 ∈ E(G̃) and v1v6 ∉ E(G̃).
If G[{v4, v6}] ∼= 2K2, then G[{v4, v6}] is always a contractible 2K2. It follows that either G[{v1, v3}] ∼= 2K2, whence

{v4v5, v5v6} induces another contractible 2K2 in G/G[{v4, v6}]; or G[{v1, v3}] ∼= K2, whence G[{v3, v5}] ∼= 2K2 and
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G[{v1, v2}] is a contractible 2K2 in G. After contracting these contractible 2K2’s, we obtain a graph isomorphic to J(4) defined
in (10). As we already know that µ′(J(4)) = 3, by Lemma 4.1, µ′(G) = 3.

Hence we assume that G[{v4, v6}] ∼= K2. Then by κ ′(G) ≥ 3, G[{v5, v6}] ∼= 2K2. Thus either G[{v3, v5}] ∼= 2K2, or
G[{v1, v3}] ∼= 2K2. If G[{v3, v5}] ∼= 2K2, then G[{v1, v2}] is a contractible 2K2, and G/G[{v1, v2}] ∼= J(5), depicted in Fig. 1B,
with

V (J(5)) = {v1, v3, v4, v5, v6} and E(J(5)) = {v1v3, e3, e′

3, e5, e
′

5, v1v4, v1v5, v4v5}. (12)

If G[{v1, v3}] ∼= 2K2, then G = S(2, 1)+{e′

1, e
′

2, e
′

5, v4v5}, which is the graph J(6, 3) depicted in Fig. 2B. It is routine to verify
that µ′(G) = 3.

Case 5. G̃ ≠ S(2, 1) and v4v5 ∉ E(G̃) and v1v6 ∈ E(G̃).
If G[{v4, v6}] ∼= 2K2, then G[{v4, v6}] is a contractible 2K2. By κ ′(G) ≥ 3, either G[{v3, v5}] = 2K2 or G[{v1, v3}] = 2K2. If

G[{v3, v5}] = 2K2, then all the 2K2’s in G are contractible, and contracting all these contractible 2K2’s results in a J(4). Thus
by µ′(J(4)) ≥ 3 and Lemma 4.1, µ′(G) = 3 in this case. If G[{v1, v3}] = 2K2, then G/G[{v4, v6}] ∼= K+

2,3. By Lemma 4.2(ii),
µ′(K+

2,3) = 3, and so by Lemma 4.1, µ′(G) = 3.
Therefore, we assume thatG[{v4, v6}] ∼= K2. Then by κ ′(G) ≥ 3,G[{v1, v4}] ∼= 2K2. By κ ′(G) ≥ 3, eitherG[{v3, v5}] = 2K2

or G[{v1, v3}] = 2K2. If G[{v3, v5}] = 2K2, then G[{v3, v5}] is contractible, and G/G[{v3, v5}] ∼= J(5) defined in (12). As we
already know thatµ′(J(5)) = 3, by Lemma 4.1,µ′(G) = 3. If G[{v1, v3}] = 2K2, then G ∼= (J(6, 1)+ {e′

2, e
′

4})− v4v5, where
J(6, 1) is defined in (11). We denote J(6, 4) = (J(6, 1) + {e′

2, e
′

4}) − v4v5, as depicted in Fig. 1B. It is routine to verify that
µ′(J(6, 4)) = 3, and so by Lemma 4.1, µ′(G) = 3.

By (8) and (9), these cases cover all the possibilities and so the proof of (iii) is complete. �

Lemma 4.3. If e ∉ E(K3,3) is an edge whose ends are in V (K3,3), and if G = K3,3 + e, then µ′(G) ≥ 3.

Proof. We use the notation of Fig. 1A for K3,3 and let G = K3,3 + e. By symmetry, we may assume that e = v1vi. If G[v1, vi]
is a contractible 2K2 of G, then i ∈ {2, 4, 6} and G/G[v1, vi] is isomorphic to W4, the wheel on 5 vertices. By Example 3.1,
µ′(W4) = 3 and so by Lemma 4.1, µ′(G) ≥ 3. Now assume that i ∈ {3, 5}. It is routine to show that µ′(G) ≥ 3. (Detailed
verification can be found in Chapter 5 of [17].) �

Before proving the next theorem, we observe that, for every integer k ≥ 1,

µ′(G) ≥ k if and only if very block H of G satisfies µ′(H) ≥ k. (13)

Theorem 4.4. Let G be a graph on n vertices.
(i) (Lemma 5 of [4]) If n ≤ 4, and if κ ′(G) ≥ 2, then µ′(G) ≥ 2 if and only if G ≠ K2,2.
(ii) If n ≤ 6, and if κ ′(G) ≥ 3, then µ′(G) ≥ 3 if and only if G ≠ K3,3.

Proof of (ii). By Lemma 4.2(i), µ′(K3,3) < 3. It suffices to show that if G ≠ K3,3, then µ′(G) ≥ 3. We argue by contradiction
and assume that

G is a counterexample with |E(G)| + |V (G)| minimized. (14)

If n ≤ 3, then κ ′(G) ≥ 3 implies that F(G, 3) ≤ 1, and so in (ii), it follows from Theorem 2.11 for s = 2 and from Corollary 2.5
that n ≥ 4. We claim that

4 ≤ n ≤ 6, κ(G) ≥ 2, G is C2-reduced and minimally 3-edge-connected. (15)

As n ≥ 4, by assumption, n ≤ 6, hence 4 ≤ n ≤ 6. By (13) and by (14), we conclude that κ(G) ≥ 2. If G has a nontrivial sub-
graphH withH ∈ C2, thenG/H satisfies both |V (G/H)| < 6 and κ ′(G/H) ≥ 3. It follows from |V (G/H)| ≤ 5 thatG/H ≠ K3,3
and so by (14),wehaveµ′(G/H) ≥ 3. By Corollary 2.9(iii)with s = 2, and byH ∈ C2, we conclude thatµ′(G) ≥ 3, contrary to
(14). ThusGmust beC2-reduced. If there exists an edge e ∈ E(G) such that κ ′(G−e) ≥ 3, then by (14),we haveµ′(G−e) ≥ 3.
But µ′(G) ≥ µ′(G − e) ≥ 3, contrary to (14). Therefore, Gmust be minimally 3-edge-connected. This justifies (15).

If G has a subgraph H which is a contractible 2K2, then as κ ′(G/H) ≥ κ ′(G) ≥ 3, by (14), µ′(G/H) ≥ 3. By Lemma 4.1,
µ′(G) ≥ 3, contrary to (14). Thus

G has no contractible 2K2. (16)

By (15) and (16), we make the following observations.

Observation 1. Let G̃ denote the underlying simple graph of G, and suppose that G̃ has a hamiltonian cycle C.
(i) If G̃ has at most one vertex of degree at least 4, then the vertices of degree 2 in G̃ must be an independent set of G̃.
(ii) Every edge of G̃ not lying in a 2-edge-cut of G̃ is not a parallel edge in G. For every edge cut X of size 2 in G̃, exactly one

edge in X is a parallel edge in G.
(iii) Every chord of C in G̃ cannot have parallel edges in G.
(iv) Every edge of G must be in a 3-edge-cut of G.
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Fig. 2. Graphs in Claim 2.

In fact, if G̃ has two adjacent vertices (say v1, v2) of degree 2 in G̃, then since G̃ has at most one vertex of degree at least
4, we may assume that v1 is not incident with a vertex of degree at least 4 in G̃. Since κ ′(G) ≥ 3, at least one edge incident
with v1 must be a parallel edge, and so by definition, G has a contractible 2K2, violating (16). This justifies Observation 1(i).
Observation 1(ii) and (iv) follow from the assumption that G is minimally 3-edge-connected, stated in (15). Since any chord
of C is not lying in a 2-edge-cut of G̃, Observation 1(iii) follows from Observation 1(ii).

Note that by Theorem 2.14, every such graph has a spanning Eulerian subgraph. By (15) and by n ≤ 6, we further claim
that

every such graph G has a Hamilton cycle C = v1v2 · · · vnv1. (17)

To justify (17), we observe that every 2-connected graph on 4 vertices must be hamiltonian, and so we assume that
n ∈ {5, 6}. Now we proceed by contradiction. Let c be the length of a longest cycle of G. Since κ(G) ≥ 2 and n ≥ 5, we have
n > c ≥ 4.

Assume first that c = 4. Hence G has a K2,2. Let K ∼= K2,t be a subgraph of Gwith t maximized. For any v ∈ V (G)− V (K),
by κ(G) ≥ 2, v must have two internally disjoint paths from v to K . As c = 4, v must be adjacent to the two vertices of
degree t in K ∼= K2,t , violating the maximality of K . Hence G is spanned by a K2,3 or a K2,4. Since c = 4, G must be obtained
from a K2,3 or a K2,4 by duplicating some edges in the K2,3 or K2,4, as otherwise G has a cycle longer than 4.

If G is spanned by a K2,3, then by (16) and (15), we conclude that G ∼= K+

2,3, and so by Lemma 4.2, µ′(G) = 3, contrary
to (14). Now assume that G is spanned by a K2,4. By κ ′(G) ≥ 3 and c = 4, one of the two edges incident with a vertex of
degree 2 in this K2,4 must be a parallel edge. It follows from (16) and (15) that G ∈ {K ′

2,4, K
′′

2,4, K
′′′

2,4}. By Lemma 4.2(ii), we
have µ′(G) = 3, contrary to (14). This finishes the case when c = 4.

Next, we assume that c = 5; n = 6 follows from necessity. By κ(G) ≥ 2, and by c = 5, we conclude that G is a
non-hamiltonian graph spanned by an S(2, 1) with κ ′(G) ≥ 3, and so by Lemma 4.2(iii), µ′(G) = 3, contrary to (14). This
justifies (17).

Recall that G̃ denotes the underlying simple graph of G. Let C be a hamiltonian cycle of G̃. Let f (G, C) = |E(G̃)|−n denote
the number of chords of C in G̃. If f (G, C) = 0, then G = 2Cn − e by (15), and so by Example 4.1,µ′(G) = 3, contrary to (14).
Hence f (G, C) ≥ 1. If n ≥ 5 and f (G, C) = 1, then by κ ′(G) ≥ 3 and by (15), it is straightforward to verify that G must have
a contractible 2K2, violating (16). Therefore, we have

Claim 1. When n ≥ 5, f (G, C) ≥ 2.

Claim 2. Theorem 4.4(ii) holds if 4 ≤ n ≤ 5.

We shall use the notations in Fig. 2 in our arguments below. By (16), G cannot have a contractible 2K2. Therefore, if n = 4,
G must be either K4 or L(4, 1, 1) as depicted in Fig. 2. In fact, as n = 4, 1 ≤ F(G, C) ≤ 2, where F(G, C) = 2 if and only if
G = K4. By Example 3.1, µ′(K4) = 3. We assume that F(G, C) = 1, and without lose of generality, that v2v4 ∈ E(G) and
v1v3 ∉ E(G) (see Fig. 2). By κ ′(G) ≥ 3, one of the two edges incident with v1 or v3 must have parallel edges. By (16) and
(15), these parallel edges must be all incident with v2 or all incident with v4, and so G ∼= L(4, 1, 1). It is straightforward to
verify that µ′(L(4, 1, 1)) = 3, and so we assume n = 5.

By Claim 1 and (15), 2 ≤ f (G, C) ≤ 4. If f (G, C) = 4, then one of the chords of C may be removed and the resulting
graph is still 3-edge-connected, contrary to (15). Next we assume f (G, C) = 3. As G is spanned by a 5-cycle, G̃ has a vertex
of degree 4. We assume that v1 has degree 4 in G̃, and so v1v3, v1v4 ∈ E(G̃). By symmetry, we assume that the third chord
of C in G̃ is v2v5, resulting in a wheelW4. AsW4 is already 3-edge-connected, we conclude that if f (G, C) = 3, then G = W4,
(see Fig. 2). By Example 3.1, µ′(W4) = 3. Finally we assume that f (G, C) = 2. If these two chords of C are not incident
with the same vertex in C , then ∆(G̃) = 3. By κ ′(G) ≥ 3, any vertex of degree 2 in G̃ must be incident with parallel edges
in G. As ∆(G̃) = 3, G must have a contractible 2K2, contrary to (16). Hence we may assume that v1 has degree 4 in G̃ and
v1v3, v1v4 ∈ E(G̃). As v1 is the only vertex of G̃ with degree 4, any parallel edge not incident with v1 must be a contractible
2K2. By (15) and (16), Gmust be isomorphic to a L(5, 2, 1), (see Fig. 2). It is routine to verify thatµ′(L(5, 2, 1)) = 3. (Detailed
verifications can be found in Chapter 5 of [17].) This completes the proof for Claim 2.

We are now ready to complete the proof of Theorem 4.4(ii). By Claim 2 and Lemma 4.3, we may assume that n = 6 and
G is not spanned by a K3,3. If f (G, C) ≤ 1, then∆(G̃) = 3 with 4 vertices of degree 2, which cannot be independent, contrary
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Fig. 3A. The graphs L(6, 2, j)with 1 ≤ j ≤ 3 in Case 1.

Fig. 3B. G has 6 vertices with 3 chords of C in Case 2.

to Observation 1(i). If f (G, C) ≥ 5, then G̃ is not minimally 3-edge-connected, violating (15). Hence 2 ≤ f (G, C) ≤ 4. Let
d = ∆(G̃).
Case 1. f (G, C) = 2. Then 3 ≤ d ≤ 4.

If d = 4, we may assume that v1 has degree 4. By Observation 1(i), we must have v1v3, v1v5 ∈ E(G̃). By κ ′(G) ≥ 3, we
may assume that G[{v3, v4}] ∼= 2K2. By (16), we must have G[{v2, v3}] ∼= 2K2. By κ ′(G) ≥ 3, either that G[{v5, v6}] ∼= 2K2,
which is a contractible 2K2 of G; or G[{v1, v6}] ∼= 2K2, and so G = L(6, 2, 1), (see Fig. 3A).

If d = 3, then by symmetry and by Observation 1(i), we may assume either v1v4, v2v5 ∈ E(G̃), or v2v6, v3v5 ∈ E(G̃) or
v1v4, v3v5 ∈ E(G̃). If v1v4, v2v5 ∈ E(G̃), then by Observation 1(ii), both v1v2 and v4v5 are not parallel edges in G. It follows
thatGwill always have a contractible 2K2, contrary to (16). Nextwe assume that v2v6, v3v5 ∈ E(G̃). By κ ′(G) ≥ 3 andby sym-
metry, we may assume that G[{v1, v2}] ∼= 2K2. As G[{v1, v2}] cannot be a contractible 2K2, we must have G[{v2, v3}] ∼= 2K2.
By (15) and (16), either both G[{v4, v5}] ∼= 2K2 and G[{v5, v6}] ∼= 2K2, whence κ ′(G − v3v5) ≥ 3, contrary to (15); or
G[{v3, v4}] ∼= 2K2, whence G = L(6, 2, 2), (see Fig. 3A).

Finally we assume that d = 3 and v1v4, v3v5 ∈ E(G̃). It is straightforward to verify that if G[{v2, v3}] ∼= 2K2, then it will
be a contractible 2K2. Thus we must have G[{v1, v2}] ∼= 2K2. By symmetry and (16), we also have G[{v1, v6}] ∼= 2K2. Hence
G = L(6, 2, 3), (see Fig. 3A).

Therefore, if f (G, C) = 2, then G ∈ {L(6, 2, 1), L(6, 2, 2), L(6, 2, 3)}. It is routine to verify that in any of these cases,
µ′(G) ≥ 3. This proves Case 1.
Case 2. f (G, C) = 3. Then 3 ≤ d ≤ 5.

If d = 5, then we may assume that v1v3, v1v4, v1v5 ∈ E(G̃). As before, it is routine to verify that if G[{v2, v3}] ∼= 2K2,
then G[{v2, v3}] is a contractible 2K2. Hence by Observation 1(ii), G[{v1, v2}] ∼= 2K2. By symmetry, G[{v1, v6}] ∼= 2K2, and
so G = L(6, 3, 1) (depicted in Fig. 3B).

If d = 3, then C has 3 independent chords in G̃, forcing G ∈ {K3,3, L(6, 3, 6)}. However, G ≠ K3,3 by hypothesis, and so
G = L(6, 3, 6), (see Fig. 3B).

Next we suppose that d = 4 and v1 has degree 4 in G̃. Assume first that v1 is adjacent to v2, v3, v5, v6. If v3v5 ∈ E(G̃),
then v3v5 is not in any 3-edge-cut of G; if v3v6 ∈ E(G̃), then v1v3 is not in any 3-edge-cut of G. By Observation 1(iv), neither
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Fig. 4. G has at least 4 chords of C in Case 3.

possibility holds. By symmetry,wemust have v2v4 ∈ E(G̃). ByObservation 1(ii) and by (16),wemust haveG[{v1, v6}] ∼= 2K2,
and so G = L(6, 3, 2) (depicted in Fig. 3B).

Therefore, by symmetry, we may assume that v1 is adjacent to v2, v4, v5, v6. To avoid a contractible 2K2, v3 must have
degree 3 in G̃. Hence either v3v6 ∈ E(G̃) or v3v5 ∈ E(G̃). If v3v6 ∈ E(G̃), then by (15) and (16), G[{v1, v2}] ∼= 2K2, and so
G = L(6, 3, 3) (depicted in Fig. 3B).

Suppose that v3v5 ∈ E(G̃). By (15) and (16), we must have G[{v1, v2}] ∼= 2K2, and either G[{v1, v6}] ∼= 2K2 or
G[{v5, v6}] ∼= 2K2. It follows that G ∈ {L(6, 3, 4), L(6, 3, 5)} (depicted in Fig. 3B). However, v1v5 is not in any 3-edge-cut of
G if G ∈ {L(6, 3, 4), L(6, 3, 5)}, contrary to Observation 1(iv).

Therefore, if f (G, C) = 3, then G ∈ {L(6, 3, j) : j = 1, 2, 3, 6}. It is routine to verify that in any of these cases, µ′(G) ≥ 3.
(Detailed verifications can be found in Chapter 5 of [17].)
Case 3. f (G, C) = 4. Then as n = 6 and C has at least 4 chords, 4 ≤ d ≤ 5.

If G̃ has a vertex v of degree 2, then at least 4 edges in E(G̃)−E(C)will be joining the vertices of V (C)−{v}, and so Gmust
have at least one edge e, both of whose ends are of degree at least 4 in G̃, such that κ ′(G − e) ≥ 3. Thus G is not minimally
3-edge-connected, contrary to (15). This, together with Lemma 4.3, implies that

δ(G̃) ≥ 3, and G is not spanned by a K3,3 or any L(6, 3, j)with 1 ≤ j ≤ 6. (18)

If d = 5, then we assume that v1 is adjacent to all other 5 vertices of G̃. By (18), δ(G̃) ≥ 3, and so v2v6 ∈ E(G̃). Thus
G = L(6, 4, 1) (depicted in Fig. 4). Assume that d = 4 and that v1 is a vertex of degree 4 in G̃.
Case 3.1. v1 is adjacent to all but v4.

By (18), δ(G̃) ≥ 3, and so by symmetry, we may assume that v2v4 ∈ E(G̃), and either v2v6 or v4v6 ∈ E(G̃). If v2v6 ∈ E(G̃),
then κ ′(G − v1v2) ≥ 3, violating (15). Hence we have v4v6 ∈ E(G̃) and so G = L(6, 4, 2) (depicted in Fig. 4).
Case 3.2. v1 is adjacent to v2, vi, v4, v6, where i ∈ {3, 5}.

By symmetry,wemay assume that i = 3. By (18), δ(G̃) ≥ 3. ByObservation 1(iv), v2v4 ∉ E(G̃); but also v3v5, v3v6, v4v6 ∉

E(G̃), whence v2v5, v2v6 ∈ E(G̃), contrary to Observation 1(iv).
Thus in Case 3, when f (G, C) = 4, we must have G ∈ {L(6, 4, 1), L(6, 4, 2)}. It is routine to show that µ′(L(6, 4, 1)) =

µ′(L(6, 4, 2)) = 3. Detailed verifications can be found in Chapter 5 of [17].
This completes the proof of the theorem. �

5. Degree condition for supereulerian graphs with larger width

Settling three open problems of Bauer in [1], Catlin and Lai proved the following.

Theorem 5.1. Let G be a 2-edge-connected simple graph G on n vertices.
(i) (Catlin, Theorem 9 of [4]) If δ(G) > n

5 − 1, then for sufficiently large n, G is supereulerian.
(ii) (Lai, Theorem 5 of [13]) If G is bipartite, or G is triangle free, and if δ(G) > n

10 , then for sufficiently large n, G is supereu-
lerian.

Both bounds in Theorem 5.1 are best possible in the sense that there exist an infinite family of non-supereulerian
2-edge-connected graphs G on n vertices with δ(G) =

n
5 −1 (for Theorem 5.1(i)) and an infinite family of non-supereulerian

bipartite graphs on n verticeswith δ(G) =
n
10 (for Theorem5.1(ii)). Themain purpose of this section is to extend the theorem

above, by using a more general argument than in the proofs in both [4] and [13]. We start with some additional notations
and a preparatory lemma before presenting our main arguments. If G is a graph and G′ is the Cs-reduction of G, then for any
vertex u ∈ V (G′), G has a maximal Cs-subgraph Hu such that u is the vertex onto which Hu is contracted. The subgraph Hu
is called the preimage of u in G. It is possible that Hu consists of a single vertex, in which case u is a trivial vertex of the
contraction. If H is a subgraph of G, then define

AG(H) = {v ∈ V (H) : NG(v)− V (H) ≠ Ø}.
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Lemma 5.2. Let n, p, c be positive integers, and f (n, p) be a function of n and p such that for every fixed p > 0, limn→∞ f (n, p) =

∞. Suppose that G is a simple graph on n vertices such that one of the following holds:
(i) δ(G) ≥ f (n, p)− 1;
(ii) G is triangle free and δ(G) ≥

f (n,p)
2 .

Then for sufficiently large n (such that f (n, p) ≥ 2c + 2, say), any vertex u in the Cs-reduction of G whose degree is at most
c has as its preimage the maximal Cs-subgraph Hu with

|V (Hu)| ≥ f (n, p). (19)

Proof. Let G′ be the Cs-reduction of G. Define W = {u ∈ V (G′) : dG′(u) ≤ c} and for each u ∈ W , choose v ∈ V (Hu). Then
V (Hu) contains all vertices in NG(v) except at most c vertices in AG(H)


(V (G)− V (Hu)). HenceV (Hu)


NG(v)


− AG(H)

 ≥ dG(v)− c. (20)

By assumption, there exists an N such that for any n ≥ N , f (n, p) ≥ 2c + 2. We assume that n ≥ N in the rest of the proof.
Suppose first that (i) holds. By (20), |(V (Hu)


NG(v))−AG(H)| ≥ dG(v)−c ≥ f (n, p)−1−c ≥ (2c+2)−1−c = c+1.

It follows that there exists a vertex z ∈ V (Hu)


NG(v) − AG(H) such that NG(z) ⊆ V (Hu). By (i), we have |V (Hu)| ≥

|NG(z)


{z}| ≥ dG(z)+ 1 ≥ f (n, p).
Now suppose that (ii) holds and so G is triangle free and δ(G) ≥

f (n,p)
2 . Again by (20), |(V (Hu)


NG(v)) − AG(H)| ≥

dG(v) − c ≥
f (n,p)

2 − c ≥
2c+2
2 − c > 0. It follows that there exists a vertex z ′

∈ V (Hu)


NG(v) − AG(H) such that
NG(z ′) ⊆ V (Hu). By (20) againwith v replaced by z ′, we have |NG(z ′)−AG(Hu)| ≥ dG(z ′)−c > 0. This implies that there exists
a z ′′

∈ NG(z ′)−AG(Hu) ⊆ V (Hu)−AG(Hu). By the choices of z ′ and z ′′, we have NG(z ′)


NG(z ′′) ⊆ V (Hu). Since G is triangle
free and since z ′z ′′

∈ E(G), we have NG(z ′)


NG(z ′′) = Ø. It follows that |V (Hu)| ≥ |NG(z ′)


NG(z ′′)| ≥ dG(z ′) + dG(z ′′)
≥ 2δ(G) ≥ f (n, p). This completes the proof of the lemma. �

Theorem 5.3. Let n, p, s be positive integers such that p ≥ 2. Suppose that G is a simple graph on n vertices.
(i) If n is sufficiently large (say n ≥ 2p((2s + 2)p − 2)) and if

δ(G) ≥
n
p

− 1, (21)

then the Cs-reduction of G has at most p vertices.
(ii) If G is triangle free, n is sufficiently large (say n ≥ 2p((2s + 2)p − 2)), and if

δ(G) ≥
n
2p
, (22)

then the Cs-reduction of G has at most p vertices.

Proof. As the arguments to prove both conclusions are similar, we shall prove them simultaneously.
For given p > 0 and s > 0, choose an integer c = (2s + 2)p − 3. Let G′ be the Cs-reduction of G, and assume that

n′
= |V (G′)| > 1. Define

W = {u ∈ V (G′) : dG′(u) ≤ c}.

Choose f (n, p) =
n
p . Then as c = (2s+2)p−3 and as n ≥ 2p((2s+2)p−2) = 2p(c +1), we have f (n, p) ≥ 2c +2. Choose

any u ∈ W and any z ∈ V (Hu). By Lemma 5.2, (19) must hold, and so,

n ≥


u∈W

|V (Hu)| ≥ |W | · f (n, p) =
n|W |

p
.

This implies that

|W | ≤ p. (23)

Since G′ is Cs-reduced, by Corollary 2.13(iii), we have

|E(G′)| ≤ (s + 1)n′
− (s + 3). (24)

By the definition ofW , we have

2|E(G′)| =


v∈V (G′)

dG′(v) =


v∈V (G′)−W

dG′(v)+


v∈W

dG′(v) ≥


v∈V (G′)−W

dG′(v) ≥ c|V (G′)− W |.

This, together with (23) and (24), implies that cn′
− cp ≤ c|V (G′)− W | ≤ 2|E(G′)| ≤ 2(s + 1)n′

− 2(s + 3). Hence

n′
≤

cp − 2(s + 3)
c − 2(s + 1)

. (25)
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As c > p(2s + 2)− 4 = 2p(s + 1)− 2(s+ 3)+ 2(s + 1), it follows that c(p + 1) > cp− 2(s + 3)+ 2(p + 1)(s+ 1), and so
algebraic manipulations lead to (c − 2(s + 1))(p + 1) > cp − 2(s + 3). This, together with (25), implies

n′
≤

cp − 2(s + 3)
c − 2(s + 1)

< p + 1.

Hence n′
≤ p, and so the theorem follows. �

The theorem above can be applied to study the supereulerian width of some dense graphs, as shown in Corollary 5.4. By
definition of µ′(G), µ′(G) ≥ 2 implies that G is supereulerian. It follows that when s = 1 and p = 5, Corollary 5.4 yields the
results as stated in Theorem 5.1.

Corollary 5.4. Let n, s be positive integers such that 1 ≤ s ≤ 2. Suppose that G is a simple graph on n vertices with κ ′(G) ≥ s+1.
Let p(s) = 2s + 3. Each of the following holds for sufficiently large n.
(i) If

δ(G) ≥
n

p(s)
− 1, (26)

then µ′(G) ≥ s + 1 if and only if the Cs-reduction of G is not a Ks+1,s+1.
(ii) If G is triangle free, and if

δ(G) ≥
n

2p(s)
, (27)

then µ′(G) ≥ s + 1 if and only if the Cs-reduction of G is not a Ks+1,s+1.

Proof. Let p = p(s). Let G be a simple graph G satisfying (26) or a triangle free graph satisfying (27). Let G′ denote the
Cs-reduction of G.

If |V (G′)| = 1, then G′
= K1 ∈ Cs. By Corollary 2.4, G ∈ Cs. By Corollary 2.5, µ′(G) ≥ s + 1. Hence we may assume that

|V (G′)| > 1.
By Theorem 5.3, there exists an integer N1(s) such that if n ≥ N1(s), |V (G′)| ≤ p. We shall further show that |V (G′)| ≤

p − 1, for all sufficiently large n. Assume by contradiction that we always have |V (G′)| = p. By Lemma 5.2 with c = p and
f (n, p) =

n+1
p , we conclude that there exists an integer N = N2(s) ≥ N1 such that when n ≥ N , every vertex v in G′ has a

nontrivial preimage Hv with at least ⌈f (n, p)⌉ vertices. It follows that

n =


v∈V (G′)

|V (Hv)| ≥ pf (n, p) = n + 1.

This contradiction shows that, when n ≥ N , we must have 1 < |V (G′)| ≤ p − 1.
Since p(1) = 5 and p(2) = 7, by Theorem 4.4, the conclusions of Corollary 5.4(i) and (ii) must hold. �

Final Remark: There exist natural bounds of µ′(G): if κ ′(G) ≥ 2k ≥ 4, then κ ′(G) ≥ µ′(G) ≥ k. It is not known to which
extent this inequality can be improved. In particular, we do not know when κ ′(G) equals µ′(G).
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