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Catlin in 1988 indicated that there exist graph families F such that if every edge e in a 
connected graph G lies in a subgraph He of G isomorphic to a member in F , then G is 
supereulerian. In particular, if every edge of a connected graph G lies in a 3-cycle, then G
is supereulerian. The purpose of this research is to investigate how Catlin’s theorem can 
be extended to digraphs. A strong digraph D is supereulerian if D contains a spanning 
eulerian subdigraph. We show that there exists an infinite family of non-supereulerian 
strong digraphs each arc of which lies in a directed 3-cycle. We also show that there 
exist digraph families H such that a strong digraph D is supereulerian if every arc a
of D lies in a subdigraph Ha isomorphic to a member of H. A digraph D is symmetric 
if (x, y) ∈ A(D) implies (y, x) ∈ A(D); and is symmetrically connected if every pair of 
vertices of D are joined by a symmetric dipath. A digraph D is partially symmetric if 
the digraph obtained from D by contracting all symmetrically connected components is 
symmetrically connected. It is known that a partially symmetric digraph may not be 
symmetrically connected. We show that symmetrically connected digraphs and partially 
symmetric digraphs are such families. Sharpness of these results is discussed.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

We consider finite graphs and digraphs. Undefined 
terms and notations will follow [5] for graphs and [2]
for digraphs. As in [2], (u, v) represents an arc oriented 
from a vertex u to a vertex v . A digraph D is simple
if D has no loops and if for any pair of distinct vertices 
u, v ∈ V (D), there is at most one arc in D oriented from u
to v . For an integer n > 0, we use K ∗

n to denote the com-
plete digraph on n vertices. Hence for every pair of distinct 
vertices u, v ∈ V (K ∗

n ), there is exactly one arc (u, v) in 
A(K ∗

n ). A cycle on n vertices is often called an n-cycle. For 
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a digraph D , the underlying graph of D , denoted by G(D), 
is obtained from D by erasing the orientations of all arcs 
of D . A ditrail in D is an alternating sequence of vertices 
and arcs such that all the arcs are distinct. If all the ver-
tices of a ditrail are distinct we call it a dipath. An arc 
(u, v) ∈ A(D) is symmetric in D if (u, v), (v, u) ∈ A(D). 
A digraph D is symmetric if |V (D)| = 1 or if |A(D)| > 0
and every arc of D is symmetric. In particular, a symmetric 
dipath P is a dipath such that every arc of P is symmetric. 
Following [2], if X, Y ⊆ V (D), then define

(X, Y )D = {(x, y) ∈ A(D) : x ∈ X, y ∈ Y }.
When Y = V (D) − X , we define

∂+
D (X) = (X, V (D) − X)D and ∂−

D (X) = (V (D) − X, X)D .

If X ⊆ V (D) ∪ A(D), then D[X] denotes the subdigraph in-
duced by X . If S is a subdigraph of a digraph D and if 
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X ⊂ A(S) and Y ⊆ A(D) − A(S), we use S − X +Y to denote 
D[(A(S) − X) ∪ Y ]. For a vertex v ∈ V (D), the out-degree
of v is d+

D (v) = |∂+
D ({v})| and the in-degree of v in D is 

d−
D (v) = |∂−

D ({v})|. Furthermore, we define

∂D(v) = ∂+
D ({v}) ∪ ∂−

D ({v}) and dD(v) = d+
D (v) + d−

D (v).

Let N+
D (v) = {u ∈ V (D) : (v, u) ∈ A(D)} and N−

D (v) = {u ∈
V (D) : (u, v) ∈ A(D)} denote the out neighbors and in 
neighbors of v in D , respectively. When the digraph D
is understood from the context, we often omit the sub-
script D . Following [5] and [2], we use λ(D) and c(D) to 
denote the arc-strong connectivity of D and the number 
of components of the underlying graph G(D) of D , re-
spectively. By the definition of λ(D) in [2], for any integer 
k ≥ 0,

λ(D) ≥ k if and only if for any nonempty proper subset

X ⊂ V (D), |∂+
D (X)| ≥ k. (1)

Boesch, Suffel, and Tindell [4] in 1977 proposed the su-
pereulerian problem, which seeks to characterize graphs 
that have spanning eulerian subgraphs, and they indicated 
that this problem would be very difficult. Pulleyblank [12]
later in 1979 proved that determining whether a graph is 
supereulerian, even within planar graphs, is NP-complete. 
Since then, there have been lots of researches on this topic. 
Catlin [7] in 1992 presented the first survey on supereule-
rian graphs. Later Chen et al. [8] gave an update in 1995, 
specifically on the reduction method associated with the 
supereulerian problem. A recent survey on supereulerian 
graphs is given in [11].

It is natural to consider the supereulerian problem in 
digraphs. A strong digraph D is eulerian if for each ver-
tex v ∈ V (D), we have d+

D (v) = d−
D (v). A strong digraph D

is supereulerian if D contains a spanning eulerian sub-
digraph. One of the central problems is to characterize 
supereulerian digraphs.

Theorem 1.1. (Jaeger [10] and Catlin [6].) Every 4-edge-con-
nected graph is supereulerian.

Theorem 1.2. (Catlin, Corollary 1 of [6].) there exist graph fam-
ilies F such that if every edge of a connected graph G lies in a 
subgraph of G isomorphic to a member in F , then G is supereu-
lerian. In particular, if every edge of G lies in a 3-cycle of G, then 
G is supereulerian.

The purpose of this paper is to see if the above-
mentioned results of Jaeger and Catlin can be extended to 
digraphs. Firstly, we shall show that both Theorem 1.1 and 
Theorem 1.2 cannot be directly extended to digraphs. To 
be more precise, we in the next section will show that 
for any integer k > 0, there exists infinitely many non-
supereulerian digraphs D with λ(D) ≥ k. To show that 
Theorem 1.2 cannot be extended to digraphs, we need 
more concepts. A digraph D is weakly connected if G(D), 
its underlying graph, is connected. Let H be a family of 
digraphs. A strong digraph D is locally H if every arc 
a ∈ A(D) lies in a subdigraph Ha of D , where Ha ∈ H. For 
convenience, we also call a locally {H} digraph D as a lo-
cally H digraph. Let C3 denote a directed 3-cycle. Unlike 
graphs, we in Section 2 will also show that a strong and 
locally C3 digraph may not be supereulerian. Thus what 
local structures could assure supereulerian property will 
be the objective of this research. We will introduce the 
graph families of symmetrically connected digraphs and 
partially symmetric digraphs, in subsequent sections be-
low, and prove the following results.

Theorem 1.3. Each of the following holds.

(i) Every symmetrically connected digraph is supereulerian.
(ii) Every partially symmetric digraph is supereulerian.

Moreover, in Sections 3 and 4, we will show that every 
weakly connected locally symmetrically connected digraph 
is supereulerian and every weakly connected locally par-
tially symmetric digraph is supereulerian. The sharpness of 
these results are also discussed.

2. Examples of nonsupereulerian strong digraphs

As Catlin in [6] indicated that

every connected graph in which every edge lies

in a 3-cycle is supereulerian, (2)

it is natural to see if every strong digraph in which ev-
ery arc lies in a directed 3-cycle is supereulerian. In this 
section, we shall present, for any integer k > 0, an infinite 
family of D such that every digraph in D is locally {C3}
with λ(D) ≥ k but nonsupereulerian.

We need the following necessary condition for a di-
graph to be supereulerian. Let D be a digraph and U ⊂
V (D). We call a collection of ditrails P1, P2, · · · , Pt of the 
induced subdigraph D[U ] a cover of U if ∪t

i=1 V (Pi) = U
and A(Pi) ∩ A(P j) = ∅, whenever i 
= j. The minimum 
value of such t is denoted by τ (U ). For any subset A ⊆
V (D) − U , define B =: V (D) − U − A. Let

h(U , A) =: min{|∂+
D (A)|, |∂−

D (A)|}
+ min{|(U , B)D |, |(B, U )D |} − τ (U ).

Then we have the following proposition.

Proposition 2.1. (Hong, Lai and Liu, Proposition 2.1 of [9].) If 
D has a spanning eulerian subdigraph, then for any U ⊂ V (D), 
and for any subset A ⊆ V (D) − U , we have h(U , A) ≥ 0.

The authors in [3] and [9] have independently pre-
sented infinite families of non-supereulerian digraphs with 
arbitrarily high arc-strong connectivity. In those digraphs 
shown in [3] and [9], there exist some arcs which are 
not lying in a directed 3-cycle. In this section, we will 
construct an infinite family of non-supereulerian digraphs 
with arbitrarily high arc-strong connectivity such that ev-
ery arc of each of these digraphs lies in a directed 3-cycle.

Example 2.1. Let α, β, k > 0 be integers with α, β ≥ k + 1, 
and let A and B be two disjoint set of vertices with |A| =
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Fig. 1. The digraph D = D(α,β,k, �).

α and |B| = β . Let � ≥ αβ +1 be an integer, and U be a set 
of vertices disjoint from A ∪ B with |U | = �. We construct a 
digraph D = D(α, β, k, �) such that V (D) = A ∪ B ∪ U and 
the arcs of D are given as required in (D1) and (D2) below. 
(See Fig. 1.)

(D1) D[A ∪ B] ∼= K ∗
α+β is a complete digraph.

(D2) For every vertex u ∈ U , and for every v ∈ A, (u, v) ∈
A(D) and for every w ∈ B , (w, u) ∈ A(D). Thus for 
any u ∈ U , we have N+

D (u) = A and N−
D (u) = B . No 

two vertices in U are adjacent.

A digraph D is quasitransitive if, for every triple of 
distinct vertices x, y, z ∈ V (D), with (x, y), (y, z) ∈ A(D), 
there is at least one arc between x and z. Thus the di-
graphs in Example 2.1 are quasitransitive. Using canonical 
decompositions of quasitransitive digraphs by Bang-Jensen 
and Huang in [1], Bang-Jensen and Maddaloni charac-
terized supereulerian quasitransitive digraphs and further 
showed that there exists a polynomial algorithm to deter-
mine if a quasitransitive digraph is supereulerian in [3].

Proposition 2.2. Let D = D(α, β, k, �) for some given param-
eters α, β, k and � as defined in Example 2.1. Then each of the 
following holds.

(i) λ(D) > k.
(ii) Every arc of D lies in a directed 3-cycle.

(iii) D is not supereulerian.

Proof. (i) We use (1) to show (i). Let ∅ 
= X ⊂ V (D) be 
a proper nonempty subset. Let nX = |X ∩ (A ∪ B)|. If 0 <
nX < α + β , then by Example 2.1(D1), ∂+

D (X) ≥ |(X ∩ U ,

A − X)D ∪ (X ∩ (A ∪ B), (A ∪ B) − X)D | ≥ nX (α +β −nX ) ≥
α + β − 1 ≥ 2k + 1 > k. Hence we assume that either 
A ∪ B ⊆ X or X ∩(A ∪ B) = ∅. If X ∩(A ∪ B) = ∅, then X ⊆ U , 
and so by Example 2.1(D2), |∂+

D (X)| ≥ |(X, A)D | ≥ |A| > k. 
Thus we may assume that A ∪ B ⊆ X . Then |∂+

D (X)| =
|(B, U − X)D | ≥ |B| > k. Hence by (1), λ(D) > k.

(ii) Let a = (u, v) be an arc in D . If u, v ∈ A ∪ B , then by 
Example 2.1(D1), a is in a K ∗

α+β and so a lies in a directed 
3-cycle of D . Since U is an independent set of D , by Exam-
ple 2.1(D2), we may assume that u ∈ B and v ∈ U , whence 
for any w ∈ A, wuv w is a directed 3-cycle; if u ∈ U and 
v ∈ A, then for any w ′ ∈ B , w ′uv w ′ is a directed 3-cycle. 
This justifies (ii).
(iii) We apply Proposition 2.1. By (D1), D[A ∪ B] ∼=
K ∗

α+β , and so |∂+
D (A)| = αβ . By (D2), |(U , B)D | = 0 and so 

τ (U ) = |U | > αβ . Therefore we have

h(U , A) = |∂+
D (A)| + |(U , B)D | − τ (U ) = αβ − |U | < 0.

It follows from Proposition 2.1 that D is not supereule-
rian. �

Thus Example 2.1 indicates that there exists an infinite 
family of non-supereulerian digraphs with arbitrarily high 
arc-strong connectivity such that every arc of each of these 
digraphs lies in a directed 3-cycle. Hence both Theorem 1.1
and Theorem 1.2 cannot be directly extended to digraphs.

3. Locally symmetrically connected supereulerian 
digraphs

In this section, we will introduce symmetrically con-
nected digraphs and show that every locally symmetrically 
connected digraph is supereulerian. We will also show that 
this result is best possible in some sense.

Definition 3.1. Let D be a digraph such that either D = K1
or A(D) 
= ∅. If for any u, v ∈ V (D), D contains a symmet-
ric dipath from u to v , then D is called a symmetrically 
connected digraph. Let SC be the family of all symmetri-
cally connected digraphs.

Theorem 3.1. Every symmetrically connected digraph is su-
pereulerian.

Proof. By contradiction, we assume that D is not supereu-
lerian. By Definition 3.1 and (1), D is strong. Thus D con-
tains a nontrivial eulerian subdigraph. Choose S to be an 
eulerian subdigraph of D such that

|V (S)| is maximized among all eulerian

subdigraph of D. (3)

Since D is not supereulerian, we have |V (S)| < |V (D)|. 
Pick a vertex u ∈ V (D) − V (S) and v ∈ V (S). As u, v ∈
V (D), and D is symmetrically connected, D contains a 
symmetric dipath P = v0 v1 · · · vm with v0 = u and vm = v . 
Since u ∈ V (D) − V (S) and v ∈ V (S), there exists a small-
est integer t > 0 such that vt ∈ V (S). Since P is symmetric, 
the arcs (v1, v0), (v2, v1), · · · , (vt , vt−1) ∈ A(D). It follows 
that D[A(S) ∪ {(v0, v1), (v1, v2), · · · , (vt−1, vt), (v1, v0),

(v2, v1), · · · , (vt , vt−1)}] is also an eulerian subdigraph of 
D , contrary to (3). �

The symmetric difference between two digraphs D1
and D2, written as D1  D2, is the induced digraph on the 
arc set (A(D1) ∪ A(D2)) − (A(D1) ∩ A(D2)). Thus D1  D2
has no isolated vertices and contains arcs that are either 
in D1 or in D2 but not in both.

Corollary 3.1. Every weakly connected locally SC digraph is su-
pereulerian.
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Proof. Let D be a weakly connected and locally sym-
metrically connected digraph. We will prove that D is 
symmetrically connected. For any u1, uk ∈ V (D), we shall 
follow Definition 3.1 to show there exists a symmet-
ric dipath from u1 to uk . Since D is weakly connected 
then there exists an undirected path P in G(D) ly-
ing between u1 and uk . If P has only one arc and 
since {(u1, uk), (uk, u1)} ∩ A(D) 
= ∅, by Definition 3.1, 
{u1, uk} are endpoints of a symmetrically connected di-
path P . Then D contains a symmetric dipath from u1
to uk and we are done. If not, then for any continuous 
three vertices {u j−1, u j, u j+1} ∈ V (P ) where 1 ≤ j − 1
and j + 1 ≤ k. Since {(u j−1, u j), (u j, u j−1)} ∩ A(D) 
= ∅
and {(u j, u j+1), (u j+1, u j)} ∩ A(D) 
= ∅, by Definition 3.1, 
{u j−1, u j} are endpoints of a symmetrically connected di-
path P1 and {u j, u j+1} are endpoints of a symmetrically 
connected dipath P2. Since u j ∈ V (P1) ∩ V (P2), implies 
that V (P1) ∩ V (P2) 
= ∅. Then there exists a symmetrically 
connected dipath P3 ⊆ (P1  P2) with endpoints u j−1 and 
u j+1. Then there exists a symmetrically connected subdi-
graph lies between u j−1 and u j+1. This shows that the 
locally symmetrically connected digraph D is transitive 
for the arcs of any undirected path. Hence, by transitiv-
ity, (u1, uk) lies in a symmetrically connected subdigraph. 
This shows that D contains a symmetric dipath from u1
to uk implies that D is symmetrically connected. By Theo-
rem 3.1, D is supereulerian. �

The sharpness of Corollary 3.1 will be justified in the 
proposition below.

Proposition 3.1. Let H be a strong digraph with |V (H)| =
n > 1. If there exists a vertex v ∈ V (H) such that d(v) ≤ n − 1
and v is not incident with any symmetric arcs, then there exists 
an infinite family F(H) of strong, locally H, non-supereulerian 
digraphs.

Proof. Let H be such a given digraph. Then H contains a 
vertex v such that v is not incident with any symmetric 
arcs. We have N+

H (v) ∩ N−
H (v) = ∅.

Let α ≥ |N+
H (v)| and β ≥ |N−

H (v)| be integers such that 
α+β ≥ n, and let k = 1, and � ≥ αβ +1 be integers. Define 
D = D(α, β, k, �) as in Example 2.1. We have the following 
observations, which justify the proposition.

(A) D is strong and nonsupereulerian. This observation fol-
lows from Proposition 2.2 with k = 1.

(B) For any arc a ∈ A(D), there exists a subdigraph Ha of 
D such that Ha is isomorphic to H .

Let a = (x, y) be an arc in A(D). If a ∈ A(D[A ∪ B]), then 
by (D1), D[A ∪ B] ∼= K ∗

α+β . It follows by the assumption 
that α + β ≥ n = |V (H)| that D[A ∪ B] has a subdigraph 
isomorphic to H which contains a. Hence by (D2), we may 
assume that (x, y) ∈ (A ∪ B, U )D or (x, y) ∈ (U , A ∪ B)D . In 
either case, let A′ ⊆ A and B ′ ⊆ B be subsets with |A′| =
|N+

H (v)| and |B ′| = |N−
H (v)|, respectively. Then D[A′ ∪ B ′ ∪

{x, y}] contains a subdigraph isomorphic to H and contains 
(x, y). This proves (B) and justifies that D is locally H . �
4. Partially symmetric supereulerian digraphs

We investigate a different kind of local structural con-
dition which warrants a digraph to be supereulerian. For 
any digraph D , define a relation on V (D) such that u ∼ v
if and only if u = v or D has a symmetrically connected 
subdigraph H with u, v ∈ V (H). If H1 and H2 are two 
subdigraphs of D , then we define H1 ∪ H2 to be the sub-
digraph of D with vertex set V (H1) ∪ V (H2) and arc set 
A(H1) ∪ A(H2).

Lemma 4.1. If H1 and H2 are two symmetrically connected 
subdigraphs of D such that V (H1) ∩ V (H2) 
= ∅, then H1 ∪ H2
is also a symmetrically connected subdigraph of D.

Proof. It suffices to show that for any u, v ∈ V (H1 ∪ H2), 
H1 ∪ H2 contains a symmetric dipath from u to v . If 
u, v ∈ V (H1), then since H1 is symmetrically connected, 
by Definition 3.1, H1 contains a symmetric dipath from u
to v . Hence H1 ∪ H2 has a symmetric dipath from u to v . 
Similarly, if u, v ∈ V (H2), then H1 ∪ H2 also has a sym-
metric dipath from u to v .

Thus we assume that u ∈ V (H1)\V (H2) and v ∈
V (H2)\V (H1). Since V (H1) ∩ V (H2) 
= ∅, we can take a 
vertex r ∈ V (H1) ∩ V (H2). Since H1 and H2 are symmetri-
cally connected, H1 contains a (u, r)-symmetric dipath P1
and H2 contains a (r, v)-symmetric dipath P2. It follows 
that D[A(P1) ∪ A(P2)] contains a symmetric dipath from 
u to v . �

By Lemma 4.1, the relation ∼ is an equivalence rela-
tion on V (D). Each equivalence class induces a maximal 
symmetrically connected subdigraph of D . We have the 
following observation.

Observation 4.1. Let D be a digraph. Each of the following holds.

(i) D has a unique collection of maximal symmetrically con-
nected subdigraphs.

(ii) If H1 and H2 are two maximal symmetrically connected 
subdigraphs, then either H1 = H2 , or V (H1) ∩ V (H2) = ∅.

Definition 4.1. Let c ≥ 2 be an integer and let D be a 
weakly connected digraph and let {H1, H2, · · · , Hc} be the 
set of maximal symmetrically connected subdigraphs of D .

(i) If for any proper nonempty subset J ⊂ {H1, H2, · · · ,

Hc}, there exist an Hi ∈ J and a vertex v ∈ V (Hi), 
and an H j /∈J such that

N+
D (v) ∩ V (H j) 
= ∅ and N−

D (v) ∩ V (H j) 
= ∅,

then D is partially symmetric.
(ii) Let PS denote the family of all partially symmetric 

digraphs.

For a digraph D and let {H1, H2, · · · , Hc} be the set 
of all symmetrically connected components of D . Define 
D ′ to be the digraph obtained from D by contracting all 
symmetrically connected components. By Definition 4.1, 
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D is partially symmetric if and only if D ′ is symmetri-
cally connected. In fact, if D ′ is symmetrically connected, 
then Definition 4.1 (i) holds. Conversely, let M be a sym-
metrically connected component of D ′ . If M 
= D ′ , then 
J = V (M) is a subset of all symmetrically connected com-
ponents of D , and so by Definition 4.1(i), there exists a 
vertex Hi ∈ V (M) and a H j ∈ V (D ′) − V (M) such that both 
(Hi, H j), (H j, Hi) ∈ A(D ′), contrary to the assumption that 
M is a component.

Let K ∗
s and K ∗

t be two complete digraphs of order s ≥ 2
and t ≥ 2, respectively, such that u1, u2 are two distinct 
vertices of K ∗

s and v1, v2 are two distinct vertices of K ∗
t . 

Let D be the digraph obtained from the disjoint union of 
K ∗

s and K ∗
t by adding the arcs (u1, v1) and (v2, u2). Then 

by the remark above, D is partially symmetric but not 
symmetrically connected.

Example 4.1. Let J1, J2 be digraphs with V ( J1) = V ( J2) =
{v1, v2, v3, v4} and A( J1) = {(v1, v2), (v2, v1), (v1, v4),

(v2, v3), (v3, v4), (v4, v3), (v3, v1), (v4, v2)}, and A( J2) =
{(v1, v2), (v2, v1), (v1, v3), (v1, v4), (v3, v4), (v4, v3),

(v3, v2), (v4, v2)}. Then we have these observations.

(i) For i ∈ {1, 2}, J i does not have a symmetric (v2, v3)-
dipath, and so J i is not symmetrically connected.

(ii) For i ∈ {1, 2}, the maximal symmetrically connected 
subdigraph of J i are H1 = D[{v1, v2}] and H2 =
D[{v3, v4}].

(iii) By Definition 4.1(i), J1 is partially symmetric but J2 is 
not partially symmetric.

(iv) For any arc a ∈ A(K ∗
4 ) − A( J2), J2 +a is symmetrically 

connected.

Lemma 4.2. Let D be a partially symmetric digraph. Then each 
of the following holds.

(i) For every 1 ≤ i ≤ c, we have that |V (Hi)| ≥ 2.
(ii) D is strong.

(iii) |V (D)| ≥ 4.
(iv) D does not have symmetric arcs connecting a vertex in Hi

and a vertex in H j for any distinct i, j ∈ {1, 2, · · · , c}.

Proof. Let {H1, H2, · · · , Hc} be the set of maximal sym-
metrically connected subdigraphs of D with c ≥ 2.

(i) By contradiction, we assume that for some maximal 
symmetrically connected subdigraph Hi of D , V (Hi) = {u}. 
Let J = {H1, H2, · · · , Hc} − {Hi}. Since D is partially sym-
metric, there must be an H j ∈ J and a vertex v ∈ V (H j)

such that (v, u), (u, v) ∈ A(D). It follows by the maximal-
ity of H j that u ∈ V (H j), contrary to Observation 4.1(ii). 
Hence Lemma 4.2(i) must hold.

(ii) Let X be a nonempty proper subset of V (D). By (1), 
it suffices to show that |∂+

D (X)| ≥ 1. If for some i, both 
X ∩ V (Hi) 
= ∅ and V (Hi) − X 
= ∅, then by Definition 3.1, 
|∂+

D (X)| ≥ |∂+
Hi

(X ∩ V (Hi))| ≥ 1. Hence we assume that no 
such Hi exists. Since V (D) = ∪c

i=1 V (Hi), we may assume 
that for some integer m with 1 ≤ m < c, X = ∪m

j=1 V (H j). 
Since D is partially symmetric, by Definition 4.1, there ex-
ist a vertex x ∈ V (Hh) for some 1 ≤ h ≤ m and a maximal 
symmetrically connected subdigraph Hr with m +1 ≤ r ≤ c
such that N+

D (x) ∩ V (Hr) 
= ∅ and N−
D (x) ∩ V (Hr) 
= ∅. This 

implies that |∂+
D (X)| ≥ 1, and so D must be strong.

(iii) By Definition 4.1 we have that c ≥ 2, and by (i) each 
maximal symmetrically connected subdigraph Hi with 
|V (Hi)| ≥ 2, this shows that |V (D)| ≥ 4.

(iv) If for some i, j ∈ {1, 2, · · · , c}, D has symmetric arcs 
connecting a vertex in Hi and a vertex in H j , then Hi ∪
H j is symmetrically connected. By Definition 4.1, con-
trary to Hi is maximal symmetrically connected. Hence 
Lemma 4.2(iv) must hold. �
Theorem 4.1. Every partially symmetric digraph is supereule-
rian.

Proof. We argue by contradiction and assume that D is 
partially symmetric and

D is not supereulerian. (4)

Let {H1, H2, · · · , Hc} be the set of all maximal symmet-
rically connected subdigraphs of D . Since D is partially 
symmetric digraph, by Lemma 4.2(ii), D is strong and so 
D contains a nontrivial eulerian subdigraph. Choose an eu-
lerian subdigraph S of D such that

|V (S)| is maximized among all eulerian

subdigraphs of D. (5)

Since D is not supereulerian, V (D) − V (S) 
= ∅. Since D is 
strong, there exists an arc (u, v) ∈ ∂+

D (V (S)).
If for some i with 1 ≤ i ≤ c, u, v ∈ V (Hi). Since Hi

is symmetrically connected, by Definition 3.1, Hi has a 
(v, u)-dipath P = v1 v2 · · · vk with v = v1 and u = vk such 
that P is symmetric. Since v1 = v /∈ V (S) and vk = u ∈
V (S), there exists a smallest index i0 > 1 such that vi0 ∈
V (S). It follows that D[V (S) ∪{vi0−1, vi0 }] is eulerian with 
one more vertex than S , contrary to (5).

Therefore, there does not exist such Hi , consequently, 
for each maximal symmetrically connected subdigraph Hi
of D , either V (Hi) ∩ V (S) = ∅ or V (Hi) ⊆ V (S). Without 
loss of generality, we assume that for some t with 1 ≤ t ≤
c, H1, H2, · · · , Ht are contained in S and Ht+1 · · · Hc are 
disjoint from V (S).

Since D is partially symmetric digraphs, by Defini-
tion 4.1(i), there exist a vertex x ∈ V (Hk) for some k with 
1 ≤ k ≤ t and for some j with t + 1 ≤ j ≤ c such that 
N+

D (x) ∩ V (H j) 
= ∅ and N−
D (x) ∩ V (H j) 
= ∅. Suppose that 

x′ ∈ N+
D (x) ∩ V (H j) and x′′ ∈ N−

D (x) ∩ V (H j). Since H j is 
strong, H j has a (x′, x′′)-dipath x1x2 · · · xq with x′ = x1
and x′′ = xq . Since V (H j) ∩ V (S) = ∅, it follows that C =
D[A(P ) ∪ {(x, x′), (x′′, x)}] is a dicycle of D − A(S). Thus 
S ′ = D[A(S) ∪ A(C)] is also an eulerian subdigraph of D
with |V (S ′)| ≥ |V (S)| + 1, contrary to (5). �
Corollary 4.1. Every weakly connected locally PS digraph is 
supereulerian.

Proof. Let D be a weakly connected and locally partially 
symmetric digraph, {H1, H2, · · · , Hc} be the set of maxi-
mal symmetrically connected subdigraphs of D with c ≥ 2. 
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We shall verify Definition 4.1(i) to prove that D is partially 
symmetric.

Let J = {Hi1 , Hi2 , · · · , Him } and let J ′ = {Him+1 , Him+2 ,· · · , Him+s } with m + s = c. Let X = ∪m
j=1 V (Hi j ) and Y =

∪s
k=1 V (Him+k ). Since D is weakly connected then there ex-

ists an arc a ∈ (X, Y )D ∪ (Y , X)D . By Lemma 4.2(iv), we 
may assume that

D does not have any symmetric dipath connecting

a vertex in X and a vertex in Y . (6)

Since D is locally partially symmetric, by Definition 4.1(ii), 
D contains a partially symmetric subdigraph Q of D
with a ∈ A(Q ). Without loss of generality, let a = (u, v) ∈
(X, Y )D . Since a ∈ A(Q ), we have u ∈ V (Q ) ∩ V (X) and 
v ∈ V (Q ) ∩ V (Y ). Let {Q 1, Q 2, · · · , Q d} be the set of maxi-
mal symmetrically connected subdigraphs of Q with d ≥ 2. 
By (6) and by Definition 4.1(i), we may assume that for 
some index l with 1 ≤ l ≤ d − 1, we have ∪l

r=1 V (Q ir ) ⊆ X
and ∪d

r=l+1 V (Q ir ) ⊆ Y . Since Q is partially symmetric, by 
Definition 4.1(i), for some h with 1 ≤ h ≤ l, there exists 
an x′ ∈ V (Q ih ), and for some k with l + 1 ≤ k ≤ d, we 
have N+

Q (x′) ∩ V (Q ik ) 
= ∅ and N−
Q (x′) ∩ V (Q ik ) 
= ∅. Since 

{H1, H2, · · · , Hc} is the set of maximal symmetrically con-
nected subdigraphs of D , there must be an s′ with 1 ≤ s′ ≤
m such that x′ ∈ V (Q ih ) ⊆ V (His′ ); and there must be an 
s′′ with m + 1 ≤ s′′ ≤ m + s such that V (Q ik ) ⊆ V (His′′ ). 
Therefore, by Definition 4.1(i), D must be partially sym-
metric. By Theorem 4.1, D is supereulerian. �

Observe that in Example 4.1 (iv), J2 is “nearly symmet-
rically connected”. The next example presents an infinite 
family of non-supereulerian digraphs, such that for each 
digraph D in the family, every arc of D lies in a subdi-
graph isomorphic to J2. This, in some sense, indicates that 
Corollary 4.1 is best possible.

Example 4.2. Let α, β, k > 0 be integers with α, β ≥ k + 1, 
and let A and B be two disjoint set of vertices with |A| =
α and |B| = β . Let � ≥ αβ +1 be an integer, and U be a set 
of vertices disjoint from A ∪ B with |U | = 2�. We construct 
a digraph J = J (α, β, k, �) such that V ( J ) = A ∪ B ∪ U and 
the arcs of J are given as required in (J1) and (J2) below.

(J1) D[A ∪ B] ∼= K ∗
α+β is a complete digraph.

(J2) Write U = {u1, u′
1, u2, u′

2, · · · , u�, u′
�} such that for 

each 1 ≤ i ≤ �, J [{ui, u′
i}] ∼= K ∗

2 , N+
J (ui) = N+

J (u′
i) = A

and N−
J (ui) = N−

J (u′
i) = B .
Proposition 4.1. Let J = J (α, β, k, �) for some given parame-
ters α, β, k and � as defined in Example 4.2. Then each of the 
following holds.

(i) λ( J ) > k.
(ii) Every arc of J lies in a subdigraph isomorphic to J2.

(iii) D is not supereulerian.

Proof. (i) The proof (i) similar to that of Proposition 2.2(i), 
and will be omitted.

(ii) Let a = (u, v) be an arc in D . If u, v ∈ A ∪ B , then by 
Example 4.2(D2), a is in K ∗

α+β and so as a lies in a subdi-
graph isomorphic to J2. Thus we may assume that either 
a ∈ A(D[{ui, u′

i}]) for some i, or a ∈ (B, U )D ∪ (U , A)D . In 
any case, by Example 4.2(J2), for any w ∈ A and w ′ ∈ B , 
and for any i with 1 ≤ i ≤ �, J [{w, w ′, ui, u′

i}] ∼= J2. Hence 
(ii) must hold.

(iii) We apply Proposition 2.1. By (J1), J [A ∪ B] ∼= K ∗
α+β , 

and so |∂+
J (A)| = αβ . By (J2), |(U , B) J | = 0 and so τ (U ) =

|U | > αβ . It follows that

h(U , A) = |∂+
J (A)| + |(U , B) J | − τ (U ) = αβ − |U | < 0.

It follows from Proposition 2.1 that J is not supereule-
rian. �
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