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a b s t r a c t

Let G be a graph and s > 0 be an integer. If, for any function b : V (G) → Z2s+1 satisfying
v∈V (G) b(v) ≡ 0 (mod 2s+1), G always has an orientation D such that the net outdegree

at every vertex v is congruent to b(v)mod 2s+1, then G is strongly Z2s+1-connected. For a
graph G, denote by α(G) the cardinality of a maximum independent set of G. In this paper,
we prove that for any integers s, t > 0 and real numbers a, bwith 0 < a < 1, there exist an
integer N(a, b, s) and a finite family Y(a, b, s, t) of non-strongly Z2s+1-connected graphs
such that for any connected simple graph G with order n ≥ N(a, b, s) and α(G) ≤ t , if G
satisfies one of the following conditions:

(i) for any edge uv ∈ E(G), max{dG(u), dG(v)} ≥ an + b, or
(ii) for any u, v ∈ V (G) with distG(u, v) = 2, max{dG(u), dG(v)} ≥ an + b,

then G is strongly Z2s+1-connected if and only if G is not contractible to a member in the
finite family Y(a, b, s, t).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite graphs without loops, but multiple edges are allowed, and we follow [2] for undefined terms and
notations. In particular, for a graph G, κ ′(G), δ(G) and α(G) denote the edge-connectivity, the minimum degree and the
cardinality of amaximum independent set of G, respectively. Throughout this paper, s > 0 denotes an integer and Z denotes
the set of all integers. For an m ∈ Z, let Zm be the set of integers modulo m, as well as the (additive) cyclic group on m
elements.

If X ⊆ E(G), the contraction G/X is the graph obtained from G by identifying the two ends of each edge in X and then
deleting the resulting loops. We define G/∅ = G. If H is a subgraph of G, we write G/H for G/E(H). If H is a connected
subgraph of G and vH is the vertex in G/H onto which H is contracted, then H is the preimage of vH and is denoted by
PIG(vH).

Let D denote an orientation of G. Following [2], for each v ∈ V (G), we use d+

D (v) and d−

D (v) to denote the out-degree and
the in-degree of v under the orientation D, respectively. For an integerm > 1, if a graph G has an orientation D such that at
every vertex v ∈ V (G), d+

D (v) − d−

D (v) ≡ 0 (mod m), then we say that G admits amodm-orientation. The set of all graphs
which have mod m-orientations is denoted by Mm. If m = 2s is an even integer, then a connected graph G is in M2s if and
only if G is Eulerian. Hence we are only interested in the case whenm = 2s + 1 is an odd integer.

Let A be an (additive) abelian group, and let G be a graph with an orientation D = D(G). For any vertex v ∈ V (G), let
E+

D (v) denote the set of all edges directed out from v, and let E−

D (v) denote the set of all edges directed into v. For a function
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f : E(G) → A, define ∂ f : V (G) → A, called the boundary of f , as follows:

∂ f (v) =


e∈E+

D (v)

f (e) −


e∈E−

D (v)

f (e) for any vertex v ∈ V (G).

A function b : V (G) → A is a zero-sum function on A if


v∈V (G) b(v) ≡ 0, where 0 denotes the additive identity of A. The
set of all zero-sum functions on A of G is denoted by Z(G, A). Let A′ be a subset of A. We define F(G, A′) = {f : E(G) → A′

}.
For any zero-sum function b on A of G, a function f ∈ F(G, A′) satisfying ∂ f = b is referred to as an (A′, b)-flow.When b = 0,
an (A − {0}, 0)-flow is known as a nowhere-zero A-flow in the literature (see [9,10], among others). Following [10], if for
any zero-sum function b on A of G, G always has an (A − {0}, b)-flow, then G is A-connected.

A graph G is strongly Zm-connected if, under a given orientation D, for any zero-sum function b on Zm of G, there exists
a function f ∈ F(G, {±1}) such that ∂ f = b. Again, for a given b ∈ Z(G, Zm) and an f ∈ F(G, {±1}) with ∂ f = b, one can
keep the orientation of each edge with f (e) = 1 and reverse the orientation of each edge with f (e) = −1 to obtain a new
orientation D′ of G such that for any vertex v ∈ V (G), d+

D′(v) − d−

D′(v) = b(v) = ∂ f (v). This orientation D′ will be referred
to as a (Zm, b)-orientation of G. Thus a graph G is strongly Zm-connected if and only if for any b ∈ Z(G, Zm), G always has a
(Zm, b)-orientation. By definition, a graph G is Z3-connected if and only if G is strongly Z3-connected. But for an odd number
m ≥ 5, while every stronglyZm-connected graph isZm-connected, not everyZm-connected graph is stronglyZm-connected.
In Lemma 2.7 of [14](ii), it is known that K4 is not strongly Z2s+1-connected for any s ≥ 1. However, as every edge of K4 lies
in a 3-cycle, it is known (see for example, [10], or Lemma 2.1 of [12]) that K4 is Zm-connected for any m ≥ 4. It has been
proved [14,15] that strongly Z2s+1-connected graphs must be 2s-edge-connected and are precisely the graphs H such that
for any graph G containing H as a subgraph, G is in M2s+1 if and only if G/H is in M2s+1. Therefore, following the notation of
Catlin [3] and Catlin, Hobbs and Lai [4], the family of strongly Z2s+1-connected graphs is denoted byMo

2s+1.
Tutte and Jaeger proposed the following conjectures concerning mod (2s + 1)-orientations. A conjecture on strongly

Z2s+1-connected graphs has also been proposed recently.

Conjecture 1.1. Let s > 0 denote an integer.
(i) (Tutte [21]) Every 4-edge-connected graph has a mod 3-orientation.
(ii) (Jaeger [8,10]) Every 4s-edge-connected graph has a mod (2s + 1)-orientation.
(iii) (Jaeger [8,10]) Every 5-edge-connected graph is Z3-connected.
(iv) [13,15] Every (4s + 1)-edge-connected graph is strongly Z2s+1-connected.

Conjecture 1.1(i) iswell knownas Tutte’s 3-flow conjecture. Conjecture 1.1(ii) is an extension of Tutte’s 3-flow conjecture,
which includes Conjecture 1.1(i) as the special case of s = 1. In [11], Kochol showed that to prove Conjecture 1.1(i), it
suffices to prove that every 5-edge-connected graph has a mod 3-orientation. Consequently, Conjecture 1.1(iii) implies
Conjecture 1.1(i). To the best of our knowledge, all these conjectures remain open. The best known results so far have been
recently obtained by Thomassen [20], Wu [22] and Lovász et al. [18].

Theorem 1.1 (Thomassen [20]). Every 8-edge-connected graph is Z3-connected.

Theorem 1.2 (Lovász et al. [18], Wu [22]). Let s > 0 be an integer. Every 6s-edge-connected graph is strongly Z2s+1-connected.

Barat and Thomassen presented the first degree condition to ensure a simple graph to be Z3-connected. This was later
improved by Fan and Zhou [5] and Luo et al. [19].

Theorem 1.3 (Barat and Thomassen, Theorem 5.2 of [1]). There exists a positive integer N such that every simple graph G on
n ≥ N vertices with δ(G) ≥ n/2 is Z3-connected.

Theorem 1.4 (Fan and Zhou [5]). Let G be a simple graph on n ≥ 3 vertices such that dG(u) + dG(v) ≥ n, for every pair of
nonadjacent vertices u and v in G. With six exceptional graphs, G has a nowhere-zero 3-flow.

Theorem 1.5 (Luo et al., Theorem 1.8 of [19]). Let G be a simple graph on n ≥ 3 vertices such that dG(u) + dG(v) ≥ n, for every
pair of nonadjacent vertices u and v in G. With 12 exceptional graphs, G is Z3-connected.

The results in Theorems 1.3–1.5 have the format that if a simple graph satisfies the Dirac condition or the Ore condition,
then the graph has a nowhere-zero 3-flow or is Z3-connected, with finitely many exceptional cases. This motivates the
proofs of the following results.

Theorem 1.6 (Li and Lai, Theorem 1.6 of [16]). Let G be a simple graph on n vertices. For any integer s > 0 and for any real
numbers a and b with 0 < a < 1, there exist an integer N = N(a, b, s) and a finite family J(a, s) of non-strongly Z2s+1-
connected graphs such that if n ≥ N and if dG(u) + dG(v) ≥ an + b for every pair of nonadjacent vertices u and v in G, then G
is strongly Z2s+1-connected if and only if G cannot be contracted to a member in J(a, s).

For positive integers n and s with n ≥ 2s, let K+

s,n−s denote the simple graph obtained from the complete bipartite graph
Ks,n−s by adding one new edge joining two vertices of maximum degree.
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Theorem 1.7 (Fan and Zhou, Theorem 1.7 of [6]). Let G be a 2-edge-connected simple graph on n vertices such that dG(u) +

dG(v) ≥ n, for every pair of adjacent vertices u and v in G. Then G has a nowhere-zero 3-flow if and only if G is not isomorphic to
a K+

3,n−3 or to one of the 5 other exceptional graphs.

Theorem 1.8 (Zhang et al., Theorem 1.3 of [24]). Let G be a simple graph on n ≥ 3 vertices such that dG(u) + dG(v) ≥ n,
for every pair of adjacent vertices u and v in G. Then G is Z3-connected if and only if G is not isomorphic to a member of
{K2,n−2, K+

2,n−2, K3,n−3, K+

3,n−3} or to one of the 15 other exceptional graphs.

Theorem 1.9 (Li et al., Theorem 1.4 of [17]). Let G be a simple 2-edge-connected graph on n ≥ 3 vertices. If for every uv ∉ E(G),
max{dG(u), dG(v)} ≥ n/2, then G is Z3-connected if and only if G is not contractible to one of 22 exceptional graphs.

Note that if dG(u) + dG(v) ≥ 2(an + b), then max{dG(u), dG(v)} ≥ an + b. Hence Theorem 1.6 implies the following
theorem, which, in some sense, generalizes Theorem 1.9.

Theorem 1.10. For any integer s > 0 and real numbers a, b with 0 < a < 1, there exist an integer N = N(a, b, s) and a finite
family J0(a, s) of non-strongly Z2s+1-connected graphs such that for any connected simple graph G with order n ≥ N, if

for any uv ∉ E(G), max{dG(u), dG(v)} ≥ an + b,

then G is strongly Z2s+1-connected if and only if G cannot be contracted to a member in J0(a, s).

For vertices u, v in G, let distG(u, v) denote the length of a shortest (u, v)-path in G.

Theorem 1.11 (Yan, Theorem 5.4 of [23]). Let G be a 2-edge-connected simple graph on n vertices. If for every pair u, v ∈ V (G)
with distG(u, v) = 2,max{dG(u), dG(v)} ≥ n/2, then G is Z3-connected if and only if G is not contractible to a member of a well
defined graph family and G is not isomorphic to one of 26 exceptional graphs.

Let B, s > 0 be integers. We shall define an Mo
2s+1-reduced graph in Section 2. Let F (B, s) be the family of graphs such

that a graph H is in F (B, s) if and only if H ∉ Mo
2s+1, |V (H)| ≤ B and H is Mo

2s+1-reduced. As implied by Lemma 2.2, for any
given positive integers B and s, F (B, s) is a finite family. The main results of this paper, motivated by the results above, are
the following.

Theorem 1.12. For any integers s, t > 0 and real numbers a, b with 0 < a < 1, there exist integers N = max{⌈ 12s−b−1
a ⌉,

⌈
24s−2b−6

a ⌉} and B1 = (12s−1)(⌊ 2
a ⌋+ t−1)+1 such that for any connected simple graph Gwith order n ≥ N and α(G) ≤ t, if

for every edge uv ∈ E(G), max{dG(u), dG(v)} ≥ an + b, (1.1)

then either G is strongly Z2s+1-connected or G is contractible to a member in F (B1, s).

Theorem 1.13. For any integers s, t > 0 and real numbers a, b with 0 < a < 1, there exist integers N = max{⌈ 12s−b−1
a ⌉,

⌈
24s−2b−6

a ⌉} and B2 = (12s−1)(⌊ 2
a ⌋+4st−1)+1 such that for any connected simple graph Gwith order n ≥ N andα(G) ≤ t, if

for every pair u, v ∈ V (G) with distG(u, v) = 2, max{dG(u), dG(v)} ≥ an + b, (1.2)

then either G is strongly Z2s+1-connected or G is contractible to a member in F (B2, s).

In the next section, we shall present some useful facts on strongly Z2s+1-connected graphs. In the last section, we first
prove a useful lemma, which facilitates the proofs of Theorems 1.12 and 1.13 later in Section 3.

2. Some useful facts

Let B, s > 0 be integers. By definition, every graph in F (B, s) is not in Mo
2s+1. Lemma 2.1(i) indicates that any graph G

contractible to a member in F (B, s) cannot be inMo
2s+1.

Lemma 2.1 ([13]). For any integer s > 0, each of the following holds.
(i) If G is strongly Z2s+1-connected and e is an edge of G, then G/e is strongly Z2s+1-connected.
(ii) If H is a subgraph of G and both H and G/H are strongly Z2s+1-connected, then so is G.

Let K (m)
2 denote the loopless graph with two vertices and m parallel edges. Some examples of strongly Z2s+1-connected

graphs have been found in [15].

Lemma 2.2 (Lemmas 2.2 and 2.7 of [14], and Liang [15]). Let G be a graph and let m, s > 0 be integers. Each of the following
holds:

(i) K (m)
2 is strongly Z2s+1-connected if and only if m ≥ 2s;

(ii) Kn is strongly Z2s+1-connected if and only if n = 1 or n ≥ 4s + 1.
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For any graph G, every vertex lies in a maximal strongly Z2s+1-connected subgraph. Let H1,H2, . . . ,Hc denote the
collection of all maximal subgraphs that are inMo

2s+1. Then G′
= G/(∪c

i=1 E(Hi)) is theMo
2s+1-reduction of G. If G is strongly

Z2s+1-connected, then itsMo
2s+1-reduction is K1, a singleton. A graphwhich does not have any nontrivial subgraph inMo

2s+1 is
Mo

2s+1-reduced. Thus by definition, theMo
2s+1-reduction of a graph is alwaysMo

2s+1-reduced. Even when G is a simple graph,
itsMo

2s+1-reductionmay havemultiple edges. Lemma 2.2 implies that there are only finitely many nontrivialMo
2s+1-reduced

graphs with a given order.
Define κ ′(G) = max{κ ′(H) : H ⊆ Gwith |E(H)| > 0}. The following is a corollary of Theorem 1.2.

Lemma 2.3. Let G′ be the Mo
2s+1-reduction of a connected graph G such that G′

≠ K1. Then κ ′(G′) ≤ 6s − 1.

For multigraphs with bounded values of κ ′, the number of edges will also be bounded.

Lemma 2.4 (Gu et al. [7]). Let G be a graph with order n and let k > 0 be an integer. If κ ′(G) ≤ k, then |E(G)| ≤ (n − 1)k.

3. Proof of the main results

For notational convenience, throughout this section, we follow the notation in [3,4] to denote the family of strongly
Z2s+1-connected graphs by Mo

2s+1, and let G be a connected simple graph on n vertices. Let G′ be the Mo
2s+1-reduction of G

and n′
= |V (G′)|. Define

Xc = {v ∈ V (G′) : dG′(v) ≤ c}, X ′

c = {v ∈ Xc : PIG(v) ≠ K1},
Y = {v ∈ V (G) : dG(v) ≥ an + b}, W = {v ∈ X ′

c : PIG(v) ∩ Y ≠ ∅}.
(3.3)

Lemma 3.1. If G′
≠ K1, each of the following holds.

(i) If n ≥ max{⌈ c−b
a ⌉, ⌈ 2c−2b−2

a ⌉}, then |W | ≤ ⌊
2
a ⌋.

(ii) If c = 12s − 2, then n′
− |Xc | ≤ c|Xc | − 2(6s − 1).

Proof. (i) If W = ∅, |W | ≤ ⌊
2
a ⌋ holds immediately. If W ≠ ∅, for any vertex v ∈ W , by the definition of W , there exists a

vertex u ∈ PIG(v) ∩ Y such that

|V (PIG(v))| − 1 + c ≥ dG(u) ≥ an + b.

This implies that |V (PIG(v))| ≥ an + b − c + 1. Then

|W |(an + b − c + 1) ≤


v∈W

|V (PIG(v))| ≤ n. (3.4)

As n ≥ max{⌈ c−b
a ⌉, ⌈ 2c−2b−2

a ⌉}, by (3.4), we have

|W | ≤
n

an + b − c + 1
≤


2
a


.

(ii) We first suppose that V (G′
− Xc) ≠ ∅ and G′

− Xc ≠ K1. Since G′ isMo
2s+1-reduced, G

′
− Xc is alsoMo

2s+1-reduced. By
counting the edges in G′

− Xc and by Lemmas 2.3 and 2.4, we have

(c + 1)(n′
− |Xc |) − c|Xc | ≤ 2|E(G′

− Xc)| ≤ 2(6s − 1)(n′
− |Xc | − 1). (3.5)

Set c = 12s − 2. By (3.5), we have

n′
− |Xc | = (c − 12s + 3)(n′

− |Xc |) ≤ c|Xc | − 2(6s − 1). (3.6)

We now show that if V (G′
− Xc) = ∅ or if G′

− Xc = K1, then |Xc | ≥ 2, and so (3.6) holds as well. Since G′
≠ K1, n′ > 1.

If V (G′
− Xc) = ∅, then |Xc | = |V (G′)| ≥ 2. Suppose that G′

− Xc = K1 but |Xc | = 1. Then G′
= K (m)

2 . It contradicts the fact
that G′ has a unique vertex with degree no more than c and a unique vertex with degree no less than c + 1. Hence we must
have |Xc | ≥ 2 in this case. This completes the proof of Lemma 3.1. �

Slightly stronger versions of Theorems 1.12 and 1.13 will be proved, which are presented as Theorems 3.1 and 3.2,
respectively. By Lemma 2.1, if G′ is the Mo

2s+1-reduction of G, then G ∈ Mo
2s+1 if and only if G′

∈ Mo
2s+1. Therefore, the

necessity of each of Theorems 3.1 and 3.2 is implied by Lemma 2.1. To prove the sufficiency of each of Theorems 3.1 and 3.2,
we shall show that if G is a graph satisfying the hypothesis and if G is not inMo

2s+1, then theMo
2s+1-reduction G′ of Gmust be

in the specified finite family.
Recall that for integers B, s > 0, we define the family F (B, s) such that a graph H is in F (B, s) if and only if H ∉ Mo

2s+1,
|V (H)| ≤ B and H is Mo

2s+1-reduced.
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Theorem 3.1. For any integers s, t > 0 and real numbers a, b with 0 < a < 1, there exist an integer N = max{⌈ 12s−b−1
a ⌉,

⌈
24s−2b−6

a ⌉} and a finite family Y1(a, b, s, t) of non-strongly Z2s+1-connected graphs such that for any connected simple graph G
with order n ≥ N and α(G) ≤ t, if (1.1) holds, then G is strongly Z2s+1-connected if and only if the Mo

2s+1-reduction of G is not
a member in Y1(a, b, s, t).

Proof. Suppose that the real numbers a, bwith 0 < a < 1 and the integers s, t > 0 are given. Set

N = max


12s − b − 1
a


,


24s − 2b − 6

a


,

and let G1(a, b, s, t) denote the family of all connected simple graphs of order n ≥ N and satisfying (1.1) with α(G) ≤ t .
Define

Y1(a, b, s, t) = {G′
|G′ is the Mo

2s+1-reduction of a graph G ∈ G1(a, b, s, t)} \ {K1}.

Let G ∈ G1(a, b, s, t) be a graph, let G′ be the Mo
2s+1-reduction of G and n′

= |V (G′)|. Since K1 ∉ Y1(a, b, s, t), if G ∈ Mo
2s+1,

then theMo
2s+1-reduction of G is not in Y1(a, b, s, t). Nowwe assume that G ∉ Mo

2s+1. By Lemma 2.1(ii), theMo
2s+1-reduction

of G is in Y1(a, b, s, t). It remains to show that Y1(a, b, s, t) is a finite family.
Since G ∉ Mo

2s+1, we have n′ > 1. We first show that there exists an integer B1 = B1(a, s, t) such that n′
≤ B1. Define

Xc, X ′
c, Y ,W as in (3.3) and set c = 12s − 2. Since n ≥ ⌈

12s−b−1
a ⌉, we have c < an + b. Hence for any vertex v ∈ Xc − X ′

c ,
dG(v) ≤ c < an+b. As G satisfies (1.1), Xc −X ′

c is an independent set of G and X ′
c = W . Since n ≥ max{⌈ c−b+1

a ⌉, ⌈ 2c−2b−2
a ⌉},

it follows by Lemma 3.1(i) and α(G) ≤ t that

|Xc | = |X ′

c | + |Xc − X ′

c | ≤


2
a


+ α(G) ≤


2
a


+ t. (3.7)

By Lemma 3.1(ii) and (3.7),

n′
= |Xc | + (n′

− |Xc |)

≤ |Xc | + c|Xc | − 2(6s − 1)

≤ (c + 1)


2
a


+ t


− 2(6s − 1)

= (12s − 1)


2
a


+ t − 1


+ 1.

Let B1 = (12s − 1)(⌊ 2
a ⌋ + t − 1) + 1. Then n′

≤ B1.
Since G′ is Mo

2s+1-reduced and 1 < n′
≤ B1, it follows by the definition of F (B, s) that G′

∈ F (B1, s), and so
Y1(a, b, s, t) ⊆ F (B1, s). By Lemma 2.2, F (B1, s) is a finite family, and so Y1(a, b, s, t) is a finite family. This completes
the proof of Theorem 3.1. �

Theorem 3.2. For any integers s, t > 0 and real numbers a, b with 0 < a < 1, there exist an integer N = max{⌈ 12s−b−1
a ⌉,

⌈
24s−2b−6

a ⌉} and a finite family Y2(a, b, s, t) of non-strongly Z2s+1-connected graphs such that for any connected simple graph G
with order n ≥ N and α(G) ≤ t, if (1.2) holds, then G is strongly Z2s+1-connected if and only if the Mo

2s+1-reduction of G is not
a member in Y2(a, b, s, t).

Proof. Suppose that the real numbers a, bwith 0 < a < 1 and the integers s, t > 0 are given. Set

N = max


12s − b − 1
a


,


24s − 2b − 6

a


,

and let G2(a, b, s, t) denote the family of all connected simple graphs of order n ≥ N and satisfying (1.2) with α(G) ≤ t .
Define

Y2(a, b, s, t) = {G′
|G′ is the Mo

2s+1-reduction of a graph G ∈ G2(a, b, s, t)} \ {K1}.

Let G ∈ G2(a, b, s, t) be a graph, let G′ be the Mo
2s+1-reduction of G and n′

= |V (G′)|. Since K1 ∉ Y2(a, b, s, t), if G ∈ Mo
2s+1,

then theMo
2s+1-reduction of G is not in Y2(a, b, s, t). Nowwe assume that G ∉ Mo

2s+1. By Lemma 2.1(ii), theMo
2s+1-reduction

of G is in Y2(a, b, s, t). It remains to show that Y2(a, b, s, t) is a finite family.
Since G ∉ Mo

2s+1, we have n′ > 1. We first show that there exists an integer B2 = B2(a, s, t) such that n′
≤ B2. Define

Xc, X ′
c, Y ,W as in (3.3) and set c = 12s − 2. Then the following claim holds.

Claim A. |Xc − X ′
c | + |X ′

c − W | ≤ 4st.



A. Yu et al. / Discrete Mathematics 339 (2016) 850–856 855

Define T = (Xc − X ′
c) ∪ (


v∈X ′

c−W PIG(v)). Since n ≥ ⌈
12s−b−1

a ⌉, we have c < an + b, and so for any vertex u ∈ Xc − X ′
c ,

dG(u) ≤ c < an + b. Hence T ⊆ V (G) − Y . As G satisfies (1.2), every connected component of G[T ] (respectively,
G[Xc − X ′

c], G[


v∈X ′
c−W PIG(v)]) is a complete graph. Furthermore, a connected component of G[Xc − X ′

c] (respectively,
G[


v∈X ′

c−W PIG(v)]) is also a connected component of G[T ]. Assume that G[Xc − X ′
c] has t1 connected components and

G[


v∈X ′
c−W PIG(v)] has t2 connected components, i.e., |X ′

c − W | = t2. Then G[T ] has t1 + t2 connected components and
so t1 + t2 ≤ α(G) ≤ t . Since each component of G[Xc − X ′

c] is not strongly Z2s+1-connected, by Lemma 2.2(ii), its order is no
more than 4s.

Hence

|Xc − X ′

c | + |X ′

c − W | ≤ t1 · 4s + t2 ≤ 4s(t1 + t2) ≤ 4s · α(G) ≤ 4st.

This justifies Claim A.
Since n ≥ max{⌈ c−b+1

a ⌉, ⌈ 2c−2b−2
a ⌉}, it follows by Claim A and Lemma 3.1(i) that

|Xc | = |W | + |Xc − X ′

c | + |X ′

c − W | ≤


2
a


+ 4st. (3.8)

By Lemma 3.1(ii) and (3.8),

n′
= |Xc | + (n′

− |Xc |)

≤ |Xc | + c|Xc | − 2(6s − 1)

≤ (c + 1)


2
a


+ 4st


− 2(6s − 1)

= (12s − 1)


2
a


+ 4st − 1


+ 1.

Let B2 = (12s − 1)(⌊ 2
a ⌋ + 4st − 1) + 1. Then n′

≤ B2.
Since G′ is Mo

2s+1-reduced and 1 < n′
≤ B2, it follows by the definition of F (B, s) that G′

∈ F (B2, s), and so
Y2(a, b, s, t) ⊆ F (B2, s). By Lemma 2.2, F (B2, s) is a finite family, and so Y2(a, b, s, t) is a finite family. This completes
the proof of Theorem 3.2. �
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