On r-hued coloring of planar graphs with girth at least 6

Huimin Song ${ }^{\mathrm{a}, \mathrm{b}}$, Hong-Jian Lai ${ }^{\mathrm{c}, *}$, Jian-Liang $\mathrm{Wu}^{\text {a }}$
${ }^{\text {a }}$ School of Mathematics, Shandong University, Jinan 250100, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Shandong University, Weihai 264209, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

ARTICLE INFO

Article history:

Received 27 January 2015
Received in revised form 5 May 2015
Accepted 10 May 2015
Available online 9 July 2015

Keywords:

(k, r)-coloring
r-hued coloring
Girth
Planar graph

Abstract

For integers $k, r>0$, a (k, r)-coloring of a graph G is a proper k-coloring c such that for any vertex v with degree $d(v), v$ is adjacent to at least $\min \{d(v), r\}$ different colors. Such coloring is also called as an r-hued coloring. The r-hued chromatic number of $G, \chi_{r}(G)$, is the least integer k such that a (k, r)-coloring of G exists. In this paper, we proved that if G is a planar graph with girth at least 6 , then $\chi_{r}(G) \leq r+5$. This extends a former result in Bu and Zhu (2012). It also implies that a conjecture on r-hued coloring of planar graphs is true for planar graphs with girth at least 6 .

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [1]. Thus $\Delta(G), \delta(G)$, $g(G)$ and $\chi(G)$ denote the maximum degree, the minimum degree, the girth and the chromatic number of a graph G, respectively. When no confusion on G arises, we often use Δ for $\Delta(G)$. For $v \in V(G)$, let $N_{G}(v)$ be the set of vertices adjacent to v in $G, N_{G}[v]=N_{G}(v) \cup\{v\}$, and $d_{G}(v)=\left|N_{G}(v)\right|$. When G is understood from the context, the subscript G is often omitted in these notations.

Let k, r be integers with $k>0$ and $r>0$, and let $[k]=\{1,2, \ldots, k\}$. If $c: V(G) \mapsto[k]$ is a mapping, and if $V^{\prime} \subseteq V(G)$, then define $c\left(V^{\prime}\right)=\left\{c(v) \mid v \in V^{\prime}\right\}$. A (k, r)-coloring of a graph G is a mapping $c: V(G) \mapsto[k]$ satisfying both the following.
(C1) $c(u) \neq c(v)$ for every edge $u v \in E(G)$;
(C2) $\left|c\left(N_{G}(v)\right)\right| \geq \min \left\{d_{G}(v), r\right\}$ for any $v \in V(G)$.
The condition (C2) is often referred to as the r-hued condition. Such coloring is also called as an r-hued coloring. For a fixed integer $r>0$, the r-hued chromatic number of G, denoted by $\chi_{r}(G)$, is the smallest integer k such that G has a (k, r) coloring. The concept was first introduced in [10] and [6], where $\chi_{2}(G)$ was called the dynamic chromatic number of G. The study of r-hued-colorings can be traced a bit earlier, as the square coloring of a graph is the special case when $r=\Delta$.

By the definition of $\chi_{r}(G)$, it follows immediately that $\chi(G)=\chi_{1}(G)$, and $\chi_{\Delta}(G)=\chi\left(G^{2}\right)$, where G^{2} is the square graph of G. Thus r-hued coloring is a generalization of the classical vertex coloring. For any integer $i>j>0$, any (k, i)-coloring of G is also a (k, j)-coloring of G, and so

$$
\chi(G) \leq \chi_{2}(G) \leq \cdots \leq \chi_{r}(G) \leq \cdots \leq \chi_{\Delta}(G)=\chi_{\Delta+1}(G)=\cdots=\chi\left(G^{2}\right)
$$

[^0]http://dx.doi.org/10.1016/j.dam.2015.05.015
0166-218X/© 2015 Elsevier B.V. All rights reserved.

In [9], it was shown that (3, 2)-colorability remains NP-complete even when restricted to planar bipartite graphs with maximum degree at most 3 and with arbitrarily high girth. This differs considerably from the well-known result that the classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3.

The r-hued chromatic numbers of some classes of graphs are known. For example, the r-hued chromatic numbers of complete graphs, cycles, trees and complete bipartite graphs have been determined in [5]. In [6], an analogue of Brooks Theorem for χ_{2} was proved. It was shown in [3] that $\chi_{2}(G) \leq 5$ holds for any planar graph G. A Moore graph is a regular graph with diameter d and girth $2 d+1$. Ding et al. [4] proved that $\chi_{r}(G) \leq \Delta^{2}+1$, where equality holds if and only if G is a Moore graph, which was improved to $r \Delta+1$ in [8]. Wegner [12] conjectured that if G is a planar graph, then

$$
\chi_{\Delta}(G)= \begin{cases}\Delta(G)+5, & \text { if } 4 \leq \Delta(G) \leq 7 \\ \lfloor 3 \Delta(G) / 2\rfloor+1, & \text { if } \Delta(G) \geq 8\end{cases}
$$

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by edge contraction, and G is called H-minor free if G does not have H as a minor.

Define

$$
K(r)= \begin{cases}r+3, & \text { if } 2 \leq r \leq 3 \\ \lfloor 3 r / 2\rfloor+1, & \text { if } r \geq 4\end{cases}
$$

Lih et al. proved the following towards Wegner's conjecture.
Theorem 1.1 (Lih et al. [7]). Let G be a K_{4}-minor free graph. Then

$$
\chi_{\Delta}(G) \leq K(\Delta(G))
$$

Song et al. extended this result by proving the following theorem. Theorem 1.1 is the special case when $r=\Delta$ of Theorem 1.2.

Theorem 1.2 (Song et al. [11]). Let G be a K_{4}-minor free graph. Then $\chi_{r}(G) \leq K(r)$.
A conjecture similar to the above-mentioned Wegner's conjecture is proposed in [11].
Conjecture 1.3. Let G be a planar graph. Then

$$
\chi_{r}(G) \leq \begin{cases}r+3, & \text { if } 1 \leq r \leq 2 \\ r+5, & \text { if } 3 \leq r \leq 7 \\ \lfloor 3 r / 2\rfloor+1, & \text { if } r \geq 8\end{cases}
$$

In this paper, we prove the following theorem.
Theorem 1.4. If $r \geq 3$ and G is a planar graph with $g(G) \geq 6$, then $\chi_{r}(G) \leq r+5$.
When $r \geq 8$, we have $r+5 \leq\lfloor 3 r / 2\rfloor+1$. Thus Theorem 1.4, together with Theorem 1.1 of [3] with $1 \leq r \leq 2$, justifies Conjecture 1.3 for all planar graphs with girth at least 6 . Bu and Zhu in [2] proved the special case when $r=\Delta$ of Theorem 1.4, and so Theorem 1.4 is a generalization of this former result in [2].

2. Notations and terminology

Let G denote a planar graph embedded on the plane and $k>0$ be an integer. We use $F(G)$ to denote the set of all faces of this plane graph G. For a face $f \in F(G)$, if v is a vertex on f (or if e is an edge on f, respectively), then we say that v (or e, respectively) is incident with f. The number of edges incident with f is denoted by $d_{G}(f)$, where each cut edge counts twice. A face f of G is called a k-face (or a k^{+}-face, respectively) if $d_{G}(f)=k$ (or $d_{G}(f) \geq k$, respectively). A vertex of degree k (at least k, at most k, respectively) in G is called a k-vertex (k^{+}-vertex, k^{-}-vertex, respectively). We use $n_{i}(v)$ to denote the number of i-vertices adjacent to v.

For two vertices $u, w \in V(G)$, we say that u and w are weak-adjacent if there is a 2-vertex v such that $u, w \in N_{G}(v)$. A 3 -vertex v is a weak 3 -vertex if v is adjacent to a 2 -vertex. The neighbors of a weak 3 -vertex are called star-adjacent. If a 5 -vertex is weak-adjacent to five 5 -vertices, we call it a bad vertex. (As an example, see the vertex v in H_{4} of Fig. 2). If a 5 -vertex is adjacent to one weak 3-vertex and is weak-adjacent to four other 5 -vertices, we call it a semi-bad type vertex. As Fig. 2 demonstrates, the vertex v in H_{5} is a semi-bad type vertex.

Let G be a graph with $V=V(G)$, and let $V^{\prime} \subseteq V$ be a vertex subset. As in [1], $G\left[V^{\prime}\right]$ is the subgraph of G induced by V^{\prime}. A mapping $c: V^{\prime} \rightarrow[k]$ is a partial (k, r)-coloring of G if c is a (k, r)-coloring of $G\left[V^{\prime}\right]$. The subset V^{\prime} is the support of the partial (k, r)-coloring c. The support of c is denoted by $S(c)$. If c_{1}, c_{2} are two partial (k, r)-colorings of G such that $S\left(c_{1}\right) \subseteq S\left(c_{2}\right)$ and such that for any $v \in S\left(c_{1}\right), c_{1}(v)=c_{2}(v)$, then we say that c_{2} is an extension of c_{1}. Given a partial (k, r)-coloring c on $V^{\prime} \subset V(G)$, for each $v \in V-V^{\prime}$, define $\{c(v)\}=\emptyset$; and for every vertex $v \in V$, we extend the definition of $c\left(N_{G}(v)\right)$ by setting $c\left(N_{G}(v)\right)=\cup_{z \in N_{G}(v)}\{c(z)\}$, and define

$$
c[v]= \begin{cases}\{c(v)\}, & \text { if }\left|c\left(N_{G}(v)\right)\right| \geq r \tag{1}\\ \{c(v)\} \cup c\left(N_{G}(v)\right), & \text { otherwise } .\end{cases}
$$

$\mathrm{By}(1),|c[v]| \leq r$. We have the following observation.
Observation 2.1. Let c be a partial (k, r)-coloring of G with support $S(c)$. For any $u \notin S(c)$, and for any $v \in N_{G}(u)$, by the definition of $c[v]$, we have $|c[v]| \leq \min \{d(v), r\}$ and $c[v]$ represents the colors that cannot be used as $c(u)$ if one wants to extend the support of c to include u. In other words, the colors in $[k]-\bigcup_{v \in N(u)} c[v]$ are available colors to define $c(u)$ in extending the support of c from $S(c)$ to $S(c) \cup\{u\}$.

3. Proof of Theorem 1.4

Theorem 1.1 of [3] proved Theorem 1.4 for $r \in\{1,2\}$. So we assume that $r \geq 3$. Let $k=r+5$. Then $k \geq 8$. We shall argue by contradiction to prove Theorem 1.4, and assume that there exists a planar graph with girth at least 6 and without any (k, r)-coloring. Throughout the rest of this section, we assume that
G is a counterexample to Theorem 1.4 such that $|V(G)|$ is minimized.
By (2), for any non-empty proper subset $S \subset V(G), G-S$ has a (k, r)-coloring. In the following two subsections, we first investigate the structure of this minimum counterexample G, and then use charge and discharge method to obtain a contradiction to complete the proof.

3.1. Structure and properties of G

Since $\chi_{r}(G)=\chi_{\Delta}(G)$ for all $r \geq \Delta(G)$, we shall always assume that $r \leq \Delta(G)$. We investigate the structure of this minimum counterexample G via a sequence of lemmas.

Lemma 3.1. Each of the following holds.
(i) G is 2-connected.
(ii) G has no adjacent 2-vertices.
(iii) G has no path $v_{0} v_{1} v_{2} v_{3}$ such that in $G, d\left(v_{1}\right)=2, d\left(v_{2}\right)=3, d\left(v_{3}\right) \leq 3$.

Proof. (i) If G is disconnected, then by (2), every component of G has a (k, r)-coloring, and so G has a (k, r)-coloring, contrary to (2). Hence G is connected. Assume that G has a cut-vertex v and so G has two nontrivial connected subgraphs G_{1} and G_{2} satisfying $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$ and $G=G_{1} \cup G_{2}$. As for $i \in\{1,2\},\left|V\left(G_{i}\right)\right|<|V(G)|$, it follows by (2) that G_{i} has a (k, r)-coloring c_{i}. Permuting the colors in $c_{2}\left(V\left(G_{2}\right)\right)$ such that $c_{1}(v)=c_{2}(v)$ and such that $\left|c_{1}\left(N_{G_{1}}(v)\right) \cup c_{2}\left(N_{G_{2}}(v)\right)\right| \geq$ $\min \left\{d_{G}(v), r\right\}$. Since $r \leq \Delta(G)$, the permutation of colors in G_{2} can be done to satisfy the requirements. Now define $c: V(G) \rightarrow[k]$ by $c(x)=c_{i}(x)$ if $v \in V\left(G_{i}\right)$, for $1 \leq i \leq 2$. It follows that c is a (k, r)-coloring of G, contrary to (2). This justifies (i).
(ii) By contradiction, we assume that G has a path $w u v x$ such that $d_{G}(v)=d_{G}(u)=2$. By (2), $G-\{u, v\}$ has a (k, r)-coloring c. As $|c[w] \bigcup\{c(x)\}| \leq r+1<k$, we can extend c to c_{1} by letting $c_{1}(u) \in[k]-c[w] \bigcup\{c(x)\}$. Thus c_{1} is a partial (k, r)coloring with $S\left(c_{1}\right)=V(G)-\{v\}$ and $c_{1}(u) \neq c_{1}(x)$. As $d(u)=2$, we have $\left|c_{1}[u] \bigcup c_{1}[x]\right| \leq r+2<k$, which allows c_{1} be further extended to a (k, r)-coloring c_{2} of G by choosing $c_{2}(v) \in[k]-\left(c_{1}[u] \bigcup c_{1}[x]\right)$, contrary to (2). This proves (ii).
(iii) By contradiction, we assume G contains a path $P=v_{0} v_{1} v_{2} v_{3}$ with $d_{G}\left(v_{1}\right)=2, d_{G}\left(v_{2}\right)=3$ and $d_{G}\left(v_{3}\right) \leq 3$. Let $N\left(v_{2}\right)=\left\{v_{1}, v_{3}, v_{4}\right\}$. By (2), $G-\left\{v_{1}\right\}$ has a (k, r)-coloring c. Let c_{0} denote the restriction of c to $V(G)-\left\{v_{1}, v_{2}\right\}$. Since $d_{G}\left(v_{3}\right) \leq 3$, we have $\left|c_{0}\left[v_{3}\right] \cup c_{0}\left[v_{4}\right] \cup\left\{c_{0}\left(v_{0}\right)\right\}\right| \leq 3+r+1<k$, and so we can extend c_{0} to c_{1} by taking $c_{1}\left(v_{2}\right) \in[k]-\left\{c_{0}\left(v_{0}\right)\right\} \bigcup c_{0}\left[v_{4}\right] \bigcup c_{0}\left[v_{3}\right]$. This results in a (k, r)-coloring c_{1} of $G-\left\{v_{1}\right\}$ satisfying $c_{1}\left(v_{0}\right) \neq c_{1}\left(v_{2}\right)$. Since $d_{G}\left(v_{2}\right)=3$, we have $\left|c_{1}\left[v_{0}\right] \bigcup c_{1}\left[v_{2}\right]\right| \leq r+3<k$, and so c_{1} can be extended to a (k, r)-coloring c_{2} of G by defining $c_{2}\left(v_{1}\right) \in[k]-c_{1}\left[v_{0}\right] \bigcup c_{1}\left[v_{2}\right]$, contrary to (2). This completes the proof of the lemma.

Lemma 3.2. Suppose v is a 2-vertex of G with $N_{G}(v)=\{u, w\}$. Let c be a partial (k, r)-coloring of G with $v \notin S(c), u, w \in S(c)$ such that $c(u) \neq c(w)$. If $|c[u] \bigcup c[w]|<k$, then G has a partial (k, r)-coloring c^{\prime} such that $S(c) \cup\{v\} \subseteq S\left(c^{\prime}\right)$ and such that for any $z \in S(c), c(z)=c^{\prime}(z)$. (We call that c^{\prime} is a partial (k, r)-coloring extending c, or an extension of c.)

Proof. Since $|c[u] \bigcup c[w]|<k$, one can define $c^{\prime}(v) \in[k]-c[u] \bigcup c[w]$, and $c^{\prime}(z)=c(z)$ for all $z \in S(c)$.
Lemma 3.3. Each of the following holds.
(i) Any 4-vertex v of G is adjacent to at most two 2-vertices.
(ii) If a 4-vertex v of G is adjacent to two 2-vertices, then v cannot be adjacent to any weak 3-vertex.
(iii) If a 4-vertex v of G is adjacent to one 2-vertex, then v cannot be adjacent to three weak 3-vertices.

Proof. (i) By contradiction, we assume that G has a 4 -vertex v adjacent to at least three 2 -vertices. Thus G has H_{1} (as depicted in Fig. 1) as a subgraph. The neighbors of v are $v_{1}, v_{2}, v_{3}, v_{4}$ with $d\left(v_{1}\right)=d\left(v_{2}\right)=d\left(v_{3}\right)=2$. By (2), $G-v_{1}$ has a $(k, r)-$ coloring. Choose a (k, r)-coloring c of $G-v_{1}$ such that $|\{c(v), c(x)\}|$ is maximized. We claim that $c(v) \neq c(x)$. Assume that, to the contrary, we have $c(v)=c(x)$. Since c is a (k, r)-coloring with $S(c)=V(G)-\left\{v_{1}\right\}$, the r-hued condition (C2) holds

Fig. 1. A vertex is represented by a solid point if all of its incident edges are drawn, otherwise it is represented by a hollow point.

Fig. 2. A bad vertex v in H_{4} (left); a semi-bad type vertex v in H_{5} (right).
for each of v_{2}, v_{3} and v if $r=3$; and if $r \geq 4$, then $\left|c\left(N_{G-v_{1}}(v)\right)\right|=3$. Let c_{0} be the restriction of c to $V(G)-\left\{v_{1}, v_{2}, v_{3}, v\right\}$. Then c_{0} is a partial (k, r)-coloring with $S\left(c_{0}\right)=V(G)-\left\{v_{1}, v_{2}, v_{3}, v\right\}$. We first extend c_{0} by recoloring v. By Observation 2.1, the colors in $[k]-\bigcup_{1 \leq i \leq 4} c_{0}\left[v_{i}\right]$ can be used to color v. Since $c_{0}\left[v_{1}\right]=\left\{c_{0}(x)\right\}$ and $\left|c_{0}\left[v_{i}\right]\right|=1$ for $2 \leq i \leq 3$, we have $\left|\bigcup_{1 \leq i \leq 4} c_{0}\left[v_{i}\right]\right| \leq r+3<k$. We define $c_{1}(v) \in[k]-\bigcup_{1 \leq i \leq 4} c_{0}\left[v_{i}\right]$ and $c_{1}(z)=c_{0}(z)$ for all $z \in V(G)-\left\{v_{1}, v_{2}, v_{3}, v\right\}$. Hence c_{1} is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$. Let v and w_{j} be the two neighbors of v_{j} in G, for $2 \leq j \leq 3$. With a similar argument, since $\left|c_{1}\left[w_{3}\right] \cup c_{1}[v]\right| \leq r+2<k$, it follows by Lemma 3.2 that there exists a (k, r)-coloring c_{2} of $G-\left\{v_{1}, v_{2}\right\}$, extending c_{1}. Since $\left|c_{2}\left[w_{2}\right] \cup c_{2}[v]\right| \leq r+3<k$, it follows by Lemma 3.2 that there exists a (k, r)-coloring c_{3} of $G-\left\{v_{1}\right\}$, extending c_{2}. But $c_{3}(x)=c_{1}(x) \neq c_{1}(v)=c_{3}(v)$, this leads to a contradiction to the maximality of $|\{c(v), c(x)\}|$. Hence we must have $c(v) \neq c(x)$. Since $|c[x] \cup c[v]| \leq r+4<k$, it follows by Lemma 3.2 that there exists a (k, r)-coloring c_{4} of G, contrary to (2). This proves (i).
(ii) By contradiction, we assume that G has a 4 -vertex v adjacent to two 2-vertices and at least a weak 3-vertex. Thus G has H_{2} (as depicted in Fig. 1) as a subgraph. We shall adopt the notation of H_{2} in Fig. 1, and let v_{1}, v_{2}, v_{3}, x denote the neighbors of v in G such that v_{1}, v_{2} are 2-vertices and x is a weak 3-vertex with $N_{G}(x)=\{v, w, t\}$. By the definition of weak 3-vertices, we may assume that $N_{G}(w)=\left\{w^{\prime}, x\right\}$. By (2), $G-x$ has a (k, r)-coloring c. Let c_{0} be the restriction of c to $V(G)-\left\{v_{1}, v_{2}, v, w, x\right\}$. Thus each of v_{1}, v_{2}, v, w satisfies the r-hued condition (C2) under the coloring c_{0}. As $\left|c_{0}\left[v_{i}\right]\right|=1$ for $1 \leq i \leq 2$ and $c_{0}[x]=\{c(t)\},\left|\cup_{1 \leq i \leq 3} c_{0}\left[v_{i}\right] \cup\left\{c_{0}(t)\right\}\right| \leq r+3<k$, we can extend c_{0} to c_{1} by setting $c_{1}(v) \in[k]-\left(\cup_{1 \leq i \leq 3} c_{0}\left[v_{i}\right] \cup\left\{c_{0}(t)\right\}\right)$ with $S\left(c_{1}\right)=V(G)-\left\{v_{1}, v_{2}, w, x\right\}$. Let $\left\{v, w_{i}\right\}$ be the neighbor set of v_{i} for $1 \leq i \leq 2$. As $\left|c_{1}[v] \cup c_{1}\left[w_{1}\right]\right| \leq 2+r<k$, by Lemma 3.2, c_{1} can be extended to c_{2} with $c_{2}\left(v_{1}\right) \in[k]-\left(c_{1}[v] \cup c_{1}\left[w_{1}\right]\right)$ and $S\left(c_{2}\right)=V(G)-\left\{v_{2}, \bar{w}, x\right\}$. As w is
a 2-vertex of G and as $w, v_{2} \notin S\left(c_{2}\right)$, we have $\left|c_{2}[v] \cup c_{2}[w] \cup c_{2}[t]\right| \leq 3+1+r<k$. Thus c_{2} can be extended to c_{3} with $c_{3}(x) \in[k]-\left(c_{2}[v] \cup c_{2}[w] \cup c_{2}[t]\right)$ and $S\left(c_{3}\right)=V(G)-\left\{w, v_{2}\right\}$. As $\left|c_{3}[v] \cup c_{3}\left[w_{2}\right]\right| \leq 4+r<k$, it follows by Lemma 3.2 that c_{3} can be extended to c_{4} with $c_{4}\left(v_{2}\right) \in[k]-\left(c_{3}[v] \cup c_{3}\left[w_{2}\right]\right)$ and $S\left(c_{4}\right)=V(G)-\{w\}$. As $N_{G}(w)=\left\{w^{\prime}, x\right\}$, we have $\left|c_{4}[x] \cup c_{4}\left[w^{\prime}\right]\right| \leq 3+r<k$. By Lemma 3.2, c_{4} can be extended to a (k, r)-coloring c_{5} of G by defining $c_{5}(w) \in[k]-\left(c_{4}[x] \cup c_{4}\left[w^{\prime}\right]\right)$, contrary to (2).
(iii) By contradiction, we assume that G has a 4-vertex v adjacent to one 2 -vertex w and three weak 3 -vertices v_{1}, v_{2}, v_{3}. Thus G has H_{3} (as depicted in Fig. 1) as a subgraph. We will adopt the notations in H_{3} of Fig. 1. By (2), $G-w$ has a (k, r)coloring c. Let c_{0} be the restriction of c to $V(G)-\left\{v, u_{1}, u_{2}, u_{3}, w\right\}$. For $i=1,2$, 3, let $\left\{v, u_{i}, u_{i}^{\prime}\right\}$ denote the neighbor set of v_{i}, and $\left\{u_{i}^{\prime \prime}, v_{i}\right\}$ denote the neighbor set of u_{i}, and let $\left\{v, w^{\prime}\right\}$ be the neighbor set of w.

As $k \geq 8, c_{0}$ can be extended to a (k, r)-coloring c_{1} by defining
$c_{1}(v) \in[k]-\left\{c_{0}\left(v_{1}\right), c_{0}\left(v_{2}\right), c_{0}\left(v_{3}\right), c_{0}\left(u_{1}^{\prime}\right), c_{0}\left(u_{2}^{\prime}\right), c_{0}\left(u_{3}^{\prime}\right), c_{0}\left(w^{\prime}\right)\right\}$ with $S\left(c_{1}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, w\right\}$.
For $i=1,2,3$, as $\left|c_{1}\left[u_{i}^{\prime \prime}\right] \cup c_{1}\left[v_{i}\right]\right| \leq r+3<k$, by Lemma 3.2, c_{1} can be extended to a (k, r)-coloring c_{2} such that $c_{2}\left(u_{i}\right) \in[k]-\left(c_{1}\left[u_{i}^{\prime \prime}\right] \cup c_{1}\left[v_{i}\right]\right)$ and $S\left(c_{2}\right)=V(G)-\{w\}$. As $\left|c_{2}[v] \cup c_{2}\left[w^{\prime}\right]\right| \leq 4+r<k$, by Lemma 3.2, c_{2} can be extended to a (k, r)-coloring c_{3} of G such that $c_{3}(w) \in[k]-\left(c_{2}[v] \cup c_{2}\left[w^{\prime}\right]\right)$, contrary to (2). This completes the proof of the lemma.

Lemma 3.4. If $r \neq 5$, any 5-vertex of G is adjacent to at most four 2-vertices; Furthermore, if it is adjacent to four 2-vertices, then it is not adjacent to a weak 3-vertex.

Proof. We argue by contradiction and assume that $r \neq 5$ and G has a 5 -vertex v with $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$, such that $u_{1}, u_{2}, u_{3}, u_{4}$ are 2 -vertices and u_{5} is either a 2-vertex or a weak 3 -vertex. For each i with $1 \leq i \leq 4$, let $N_{G}\left(u_{i}\right)=\left\{v, v_{i}\right\}$; and let v, v_{5} be two vertices adjacent to u_{5}. By Lemma 3.1(ii), $d\left(v_{i}\right) \geq 3$ for $1 \leq i \leq 4$. If u_{5} is a weak 3 -vertex, then denoting $N_{G}\left(u_{5}\right)=\left\{v, v_{5}, x\right\}$ where $d(x)=2$, we apply Lemma 3.1(iii) to the path $x u_{5} v_{5}$ to conclude that $d\left(v_{5}\right) \geq 4$.

If $3 \leq r \leq 4$, we have $2 r \leq r+4$. By (2), $G-\left\{v, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ has a (k, r)-coloring c_{1}. Since $\mid c_{1}\left[u_{5}\right] \cup$ $\left\{c_{1}\left(v_{1}\right), c_{1}\left(v_{2}\right), c_{1}\left(v_{3}\right), c_{1}\left(v_{4}\right)\right\} \mid \leq r+4<k$, we extend c_{1} to a (k, r)-coloring c_{2} with $S\left(c_{2}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ by defining $c_{2}(v) \in[k]-\left(c_{1}\left[u_{5}\right] \cup\left\{c_{1}\left(v_{1}\right), c_{1}\left(v_{2}\right), c_{1}\left(v_{3}\right), c_{1}\left(v_{4}\right)\right\}\right)$. For $1 \leq i \leq 4$, as $\left|c\left[v_{i}\right] \bigcup c[v]\right| \leq 2 r \leq r+4<k$, it follows by Lemma 3.2 that c_{2} can be extended to a (k, r)-coloring c of G, contrary to (2).

Therefore, we assume that $r \geq 6$, and so $k=r+5 \geq 11$. If u_{5} is 2 -vertex, then by (2), $G-v$ has a (k, r)-coloring c. Let c_{1} be the restriction of c to $V(G)-\left\{v, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. As $\left|c_{1}\left[v_{2}\right] \cup\left\{c_{1}\left(u_{1}\right)\right\}\right| \leq r+1<k$, we extend c_{1} to c_{2} by defining $c_{2}\left(u_{2}\right) \in$ $[k]-\left(c_{1}\left[v_{2}\right] \cup\left\{c_{1}\left(u_{1}\right)\right\}\right)$. For $i=2,3,4$, as $\left|c_{i}\left[v_{i+1}\right] \cup\left\{c_{i}\left(u_{1}\right), \ldots, c_{i}\left(u_{i}\right)\right\}\right| \leq r+4<k$, the coloring c_{i} can be extended to c_{i+1} by defining $c_{i+1}\left(u_{i+1}\right) \in[k]-\left(c_{i}\left[v_{i+1}\right] \cup\left\{c_{i}\left(u_{1}\right), \ldots, c_{i}\left(u_{i}\right)\right\}\right)$. Hence $S\left(c_{5}\right)=V(G)-\{v\}$, and $c_{5}\left(u_{1}\right), c_{5}\left(u_{2}\right), c_{5}\left(u_{3}\right), c_{5}\left(u_{4}\right), c_{5}\left(u_{5}\right)$ are mutually distinct. Since every u_{i} is a 2-vertex, $\left|\bigcup_{i=1}^{5} c_{5}\left[u_{i}\right]\right| \leq 10<6+5 \leq k$, this coloring c_{5} can be extended to a (k, r)-coloring c_{6} by defining $c_{6}(v) \in[k]-\bigcup_{i=1}^{5} c_{5}\left[u_{i}\right]$. As $S\left(c_{6}\right)=V(G)$, this is a contradiction to (2).

Hence u_{5} must be a weak 3-vertex, By (2), $G-v$ has a (k, r)-coloring c. Let c_{1} be the restriction of c to $V(G)-$ $\left\{v, u_{1}, u_{2}, u_{3}, u_{4}, x\right\}$. As $\left|c_{1}\left[v_{1}\right] \cup\left\{c_{1}\left(u_{5}\right)\right\}\right| \leq r+1<k$, one can extend c_{1} to c_{2} by defining $c_{2}\left(u_{1}\right) \in[k]-\left(c_{1}\left[v_{1}\right] \cup\left\{c_{1}\left(u_{5}\right)\right\}\right)$. For $i=2,3,4$, as $\left|c_{i}\left[v_{i}\right] \cup\left\{c_{i}\left(u_{5}\right), c_{i}\left(u_{1}\right), \ldots, c_{i}\left(u_{i-1}\right)\right\}\right| \leq r+4<k$, one can extend c_{i} to c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in$ $[k]-\left(c_{i}\left[v_{i}\right] \cup\left\{c_{i}\left(u_{5}\right), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right)$. Hence $S\left(c_{5}\right)=V(G)-\{v, x\}$, and $c_{5}\left(u_{1}\right), c_{5}\left(u_{2}\right), c_{5}\left(u_{3}\right), c_{5}\left(u_{4}\right), c_{5}\left(u_{5}\right)$ are mutually distinct. Note that in $G\left[S\left(c_{5}\right) \bigcup\{v\}\right]$, each $u_{i},(1 \leq i \leq 5)$, is a 2-vertex. Therefore, $\left|\bigcup_{i=1}^{5} c_{5}\left[u_{i}\right]\right| \leq 10<6+5 \leq k$, and so c_{5} can be extended to a (k, r)-coloring c_{6} by defining $c_{6}(v) \in[k]-\bigcup_{i=1}^{5} c_{5}\left[u_{i}\right]$ with $S\left(c_{6}\right)=V(G)-\{x\}$. Denote $N_{G}(x)=\left\{u_{5}, x_{1}\right\}$. Since $\left|c_{6}\left[u_{5}\right] \cup c_{6}\left[x_{1}\right]\right| \leq 3+r<k$, this coloring c_{6} can be extended to a (k, r)-coloring c_{7} of G by defining $c_{7}(x) \in[k]-\left(c_{6}\left[u_{5}\right] \cup c_{6}\left[x_{1}\right]\right)$, contrary to (2). This justifies (iii) and proves the lemma.

Lemma 3.5. If a 5-vertex v of G is adjacent to at least four 2-vertices, then any one of its weak-adjacent neighbors must be an r-vertex.

Proof. Denote $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. We assume that $u_{1}, u_{2}, u_{3}, u_{4}$ are 2 -vertices. Let $N_{G}\left(u_{i}\right)=\left\{v, v_{i}\right\}, 1 \leq i \leq 4$. By definition, each v_{i} is a weak-adjacent neighbor of v. By contradiction, we assume that v_{4} is not an r-vertex. By (2), $\bar{G}-u_{4}$ has a (k, r)-coloring c.

Let $G_{0}=G-\left\{u_{1}, u_{2}, u_{3}, u_{4}, v\right\}$, and c_{0} be the restriction of c to $V\left(G_{0}\right)$. Since $\left|\cup_{i=1}^{5} c_{0}\left[u_{i}\right]\right| \leq r+4<k$, we extend c_{0} to a (k, r)-coloring c_{1} with $S\left(c_{1}\right)=S\left(c_{0}\right) \cup\{v\}=V\left(G_{0}\right) \cup\{v\}$ by defining $c_{1}(v) \in[k]-\left(\cup_{i=1}^{5} c_{0}\left[u_{i}\right]\right)$. Let $G_{1}=G-\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. For each $i=1,2,3$, 4, we inductively define $G_{i+1}=G\left[V\left(G_{i}\right) \cup\left\{u_{i}\right\}\right]$, and extend c_{i} to c_{i+1} with $S\left(c_{i+1}\right)=V\left(G_{i+1}\right)$ as follows.

For $i=1,2,3,\left|c_{i}[v] \cup c_{i}\left[v_{i}\right]\right| \leq i+1+r<r+5$. Recall that $d_{G}\left(v_{4}\right) \neq r$. If $d_{G}\left(v_{4}\right) \geq r+1$, then by the definition of (k, r)-coloring, $\left|c_{4}\left(N_{G_{4}}\left(v_{4}\right)\right)\right|=\left|c\left(N_{G_{4}}\left(v_{4}\right)\right)\right| \geq r$, and so by $(1),\left|c_{4}\left[v_{4}\right]\right|=1$. If $d_{G}\left(v_{4}\right) \leq r-1$, then $d_{G_{4}}\left(v_{4}\right) \leq r-2$, and so by (1), $\left|c_{4}\left[v_{4}\right]\right| \leq d_{G_{4}}\left(v_{4}\right)+1 \leq r-1$. Hence we always have $\left|c_{4}\left[v_{4}\right] \cup c_{4}[v]\right| \leq r-1+5<r+5$. For all $i=1,2,3,4$, the discussion above implies that $\left|c_{i}[v] \cup c_{i}\left[v_{i}\right]\right|<r+5$, and so $c_{i}(v) \neq c_{i}\left(v_{i}\right)$. By Lemma 3.2, c_{i} can be extended to c_{i+1} with $S\left(c_{i+1}\right)=V\left(G_{i}\right) \cup\left\{u_{i}\right\}=V\left(G_{i+1}\right)$. Since $G_{5}=G, c_{5}$ is a (k, r)-coloring of G, contrary to (2).

Lemma 3.6. Suppose that $r=5$ and G has a bad vertex or a semi-bad type vertex v, with $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ as depicted in Fig. 2. (We shall adopt the notations in Fig. 2.) Then $G-v$ has $a(k, r)$-coloring c satisfying each of the following.
(i) If v is a bad vertex, then for each i with $1 \leq i \leq 5$, we have

$$
c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)=\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c\left(v_{5}\right)\right\} \quad \text { and } \quad\left|\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c\left(v_{5}\right)\right\}\right|=5
$$

(ii) If v is a semi-bad type vertex, then for each i with $1 \leq i \leq 4$, we have

$$
c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)=\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c\left(v_{5}\right)\right\} \quad \text { and } \quad\left|\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c\left(v_{5}\right)\right\}\right|=5 .
$$

(Thus we may assume that $c\left(v_{5}\right)=5, c\left(v_{i}\right)=i$ and $c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)=\{1,2,3,4,5\}, 1 \leq i \leq 4$.) Moreover, we have $4 \leq d\left(v_{5}\right) \leq 5$ and one of the following must hold.
(ii-1) If $d\left(v_{5}\right)=4$, then $c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}\right)=\{1,2,3,4\}$, and for any $i \in\{1,2,3\}, y_{i}$ is not a 2 -vertex.
(ii-2) If $d\left(v_{5}\right)=5$, then $\{1,2,3,4\} \subseteq c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right)$.
Proof. (i) By (2), $G-v$ has a (k, r)-coloring c. Let $A=\left\{c\left(v_{1}\right), c\left(v_{2}\right), c\left(v_{3}\right), c\left(v_{4}\right), c\left(v_{5}\right)\right\}$. Choose $a \in[k]-A$ such that if $c\left[v_{5}\right]-A \neq \emptyset$, then $a \in c\left[v_{5}\right]-A$. Let c_{0} be the restriction of c with $S\left(c_{0}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, v\right\}$.
Claim 1. $|A|=5$.
By contradiction, we assume that there exist $i, j \in\{1,2,3,4,5\}$ such that $i<j$ and $c_{0}\left(v_{i}\right)=c_{0}\left(v_{j}\right)$. Then we first extend c_{0} to a partial (k, r)-coloring c_{1} by letting $c_{1}(v)=a$. Next apply Lemma 3.2 to extend c_{1} to a partial (k, r)-coloring c_{2} by coloring u_{1} with $c_{2}\left(u_{1}\right) \in[k]-\left(c_{1}\left[v_{1}\right] \cup\left\{c_{1}(v)\right\}\right)$ and $S\left(c_{2}\right)=V(G)-\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\}$. For $2 \leq i \leq 4$, apply Lemma 3.2 repeatedly to extend c_{i} to a partial (k, r)-coloring c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in[k]-\left(c_{i}\left[v_{i}\right] \cup\left\{c_{i}(v), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right)$ with $S\left(c_{i+1}\right)=$ $S\left(c_{i}\right) \cup\left\{u_{i}\right\}$. Hence $S\left(c_{5}\right)=V(G)-\left\{u_{5}\right\}$. If $c\left[v_{5}\right] \subseteq A$, then $\left|c_{5}\left[v_{5}\right] \cup c_{5}[v]\right| \leq 4+5<10$, and so c_{5} can be extended to a (k, r)-coloring c_{6} of G by letting $c_{6}\left(u_{5}\right) \in[k]-\left(c_{5}\left[v_{5}\right] \cup c_{5}[v]\right)$. If $c\left[v_{5}\right]-A \neq \emptyset$, then as $c_{5}(v)=c_{1}(v)=a \in c_{5}$ [$\left.v_{5}\right]$, we again have $\left|c_{5}\left[v_{5}\right] \bigcup c_{5}[v]\right|<10$, and so c_{5} can always be extended to a (k, r)-coloring c_{6} of G, contrary to (2). This proves Claim 1 .

By Claim 1, we have $|A|=5$. By permuting the colors, we assume that in $G-v$ has a (k, r)-coloring c such that $c\left(v_{i}\right)=i$ for $1 \leq i \leq 5$. Thus $A=\{1,2,3,4,5\}$. Again let c_{0} be the restriction of c with $S\left(c_{0}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, v\right\}$. Note that $\left|c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)\right| \leq d_{G}\left(v_{i}\right)$ for all $i=1, \ldots, 5$. If v is a bad vertex, $d_{G}\left(v_{i}\right)=5$ for all $i=1, \ldots, 5$. Thus to prove (i), it suffices to justify the claim below.
Claim 2. For any i with $1 \leq i \leq 5, A \subseteq c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)$.
By contradiction and by symmetry, we assume that there exists a color $a^{\prime} \in A-c\left(N\left[v_{1}\right]-\left\{u_{1}\right\}\right)$. Then we extend c_{0} to a (k, r)-coloring c_{1} by choosing $c_{1}\left(u_{1}\right)=a^{\prime}$ with $S\left(c_{1}\right)=S\left(c_{0}\right) \cup\left\{u_{1}\right\}$. For each $i=2,3,4,5$, as $\mid c_{i-1}\left[v_{i}\right] \cup$ $\left\{c_{i-1}\left(u_{1}\right), \cdots, c_{i-1}\left(u_{i-1}\right)\right\} \mid \leq r+i-1<k$, we can extend c_{i-1} to a (k, r)-coloring c_{i} by defining $c_{i}\left(u_{i}\right) \in[k]-$ $\left(c_{i-1}\left[v_{i}\right] \cup\left\{c_{i-1}\left(u_{1}\right), \cdots, c_{i-1}\left(u_{i-1}\right)\right\}\right.$) with $S\left(c_{i}\right)=S\left(c_{i-1}\right) \cup\left\{u_{i}\right\}$. Since $c_{5}\left(u_{1}\right)=c_{1}\left(u_{1}\right)=a^{\prime} \in A$, it follows that $\left|\left\{c_{5}\left(u_{1}\right), \cdots, c_{5}\left(u_{5}\right)\right\} \cup A\right|<10=k$. Since $S\left(c_{5}\right)=V(G)-\{v\}$, we can extend c_{5} to a (k, r)-coloring c_{6} of G by letting $c_{6}(v) \in[k]-\left(\left\{c_{5}\left(u_{1}\right), \cdots, c_{5}\left(u_{5}\right)\right\} \cup A\right)$, contrary to (2). This proves Claim 2. Now Lemma 3.6(i) follows from Claims 1 and 2.
(ii) Assume that v is a semi-bad type vertex. Then $d_{G}\left(v_{5}\right) \geq 4$ by Lemma 3.1(iii). We make the following claims.

Claim $3.4 \leq d_{G}\left(v_{5}\right) \leq 5$.
By contradiction, we assume that $d_{G}\left(v_{5}\right) \geq 6$. By (2), $G-\left\{u_{5}, x\right\}$ has a (k, r)-coloring c. As $d_{G-\left\{u_{5}, x\right\}}\left(v_{5}\right) \geq 5=r, v_{5}$ satisfies the r-hued condition (C2) under this coloring c, and so $c\left[v_{5}\right]=\left\{c\left(v_{5}\right)\right\}$. Let c_{0} be the restriction of c to $S(c)-\{v\}$. Extend c_{0} to c_{1} by letting $c_{1}(v) \in[k]-\left(\cup_{i=1}^{4}\left\{c_{0}\left(u_{i}\right)\right\}\right) \cup\left(\cup_{j=1}^{5}\left\{c_{0}\left(v_{j}\right)\right\}\right)$. Thus $c_{1}(v) \neq c_{1}\left(v_{5}\right)$ and

$$
\left|c_{1}[v] \cup c_{1}\left[v_{5}\right] \cup c_{1}[x]\right|=\left|\left\{c_{1}\left(u_{1}\right), c_{1}\left(u_{2}\right), c_{1}\left(u_{3}\right), c_{1}\left(u_{4}\right), c_{1}(v), c_{1}\left(v_{5}\right), c_{1}\left(x_{1}\right)\right\}\right| \leq 7<k,
$$

and so we can extend c_{1} to c_{2} by defining $c_{2}\left(u_{5}\right) \in[k]-\left(c_{1}[v] \cup c_{1}\left[v_{5}\right] \cup c_{1}[x]\right)$, with $S\left(c_{2}\right)=V(G)-\{x\}$. Since $\left|c_{2}\left[x_{1}\right] \cup c_{2}\left[u_{5}\right]\right| \leq r+3<k$, we can further extend c_{2} to a (k, r)-coloring c_{3} of G by letting $c_{3}(x) \in[k]-\left(c_{2}\left[x_{1}\right] \cup c_{2}\left[u_{5}\right]\right)$, contrary to (2). This justifies Claim 3.

By (2), $G-v$ has a (k, r)-coloring c. In the rest of the proof of this lemma, we let c_{0} denote the restriction of c to $V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x, v\right\}$, and let $A=c\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right)$.
Claim 4. $|A|=5$. (Thus we shall assume that $A=\{1,2,3,4,5\}$ in the rest of the proof of this lemma.)
Suppose that $|A|<5$. As $S\left(c_{0}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x, v\right\}$, we have $\left|c_{0}\left[v_{5}\right] \cup\left\{c_{0}\left(x_{1}\right)\right\}\right|<k$ and so c_{0} can be extended to c_{1} by defining $c_{1}\left(u_{5}\right) \in[k]-\left(c_{0}\left[v_{5}\right] \cup\left\{c_{0}\left(x_{1}\right)\right\}\right)$. Define $u_{0}=u_{5}$. For $i=1,2$, 3, 4, as $\left|c_{i}\left[v_{i}\right] \cup\left\{c_{i}\left(u_{0}\right), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right| \leq r+4<k, c_{i}$ can be extended to c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in[k]-\left(c_{i}\left[v_{i}\right] \cup\right.$ $\left.\left\{c_{i}\left(u_{0}\right), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right)$. Now $S\left(c_{5}\right)=V(G)-\{v, x\}$. Since $|A| \leq 4,\left|c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right| \leq 5+4=9<k$, we extend c_{5} to c_{6} by defining $c_{6}(v) \in[k]-\left(c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right)$. Since $c_{6}\left(u_{5}\right)=c_{1}\left(u_{5}\right) \neq c_{0}\left(x_{1}\right)=c_{6}\left(x_{1}\right)$, and since $\left|c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right| \leq r+3<k$, it follows by Lemma 3.2, c_{6} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Claim 4.
Claim 5. For $1 \leq i \leq 4$, we have $c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)=A=\{1,2,3,4,5\}$.
By contradiction, we may assume that there exists a $j \in A-c\left(N\left[v_{1}\right]-\left\{u_{1}\right\}\right)$. First extend c_{0} to c_{1} by defining $c_{1}\left(u_{1}\right)=j$. As $\left|c_{1}\left[v_{5}\right] \cup c_{1}\left(\left\{u_{1}, x_{1}\right\}\right)\right| \leq 5+2<k$, we extend c_{1} to c_{2} by defining $c_{2}\left(u_{5}\right) \in[k]-\left(c_{1}\left[v_{5}\right] \cup c_{1}\left(\left\{u_{1}, x_{1}\right\}\right)\right)$. For $i=2,3,4$, as $\left|c_{i}\left[v_{i}\right] \cup\left\{c_{i}\left(u_{5}\right), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right| \leq r+4<k, c_{i}$ can be extended to c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in$ $[k]-\left(c_{i}\left[v_{i}\right] \cup\left\{c_{i}\left(u_{5}\right), c_{i}\left(u_{1}\right), \cdots, c_{i}\left(u_{i-1}\right)\right\}\right)$. Now $S\left(c_{5}\right)=V(G)-\{v, x\}$. Since $c_{5}\left(u_{1}\right)=c_{1}\left(u_{1}\right)=j \in A$, we have $\left|c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right|<10=k$. Hence c_{5} can be extended to c_{6} by defining $c_{6}(v) \in[k]-\left(c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right)$. Since $c_{6}\left(u_{5}\right)=c_{2}\left(u_{5}\right) \neq c_{1}\left(x_{1}\right)=c_{6}\left(x_{1}\right)$ and since $\left|c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right| \leq r+3<k$, it follows by Lemma 3.2 that c_{6} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Claim 5.

By Claim 3, $d_{G}\left(v_{5}\right) \in\{4,5\}$. Thus we will proceed our proof by discussing each of these two possibilities. As noted before, we have a (k, r)-coloring of $G-v$ with $c\left(v_{i}\right)=i,(1 \leq i \leq 5), A=c\left(\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}\right)$ and c_{0} is its restriction with

Fig. 3. v is a semi-bad type vertex and v_{5} is adjacent to three weak-3-vertices.
$S\left(c_{0}\right)=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, x, v\right\}$. We will continue using the notations of H_{5} in Fig. 2 for our discussions below, except that y_{4} will be removed in the proof of Case 1.
Case 1. $d\left(v_{5}\right)=4$.
We shall show that (ii-1) holds. As $c\left(v_{5}\right)=5$, we first claim that $c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}\right)=\{1,2,3,4\}$. Assume that the claim is false and there exists a color $a \in\{1,2,3,4\}-c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}\right)$. Then we extend c_{0} to c_{1} by assigning $c_{1}\left(u_{5}\right)=a$. Let $u_{0}=u_{5}$. For $1 \leq i \leq 4$, as $\left|c_{i}\left[v_{i}\right] \cup c_{i}\left(\left\{u_{0}, u_{1}, \cdots, u_{i-1}\right\}\right)\right| \leq r+4<k$, we can extend c_{i} to c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in[k]-\left(c_{i}\left[v_{i}\right] \cup c_{i}\left(\left\{u_{0}, u_{1}, \cdots, u_{i-1}\right\}\right)\right)$. Note that $S\left(c_{5}\right)=V(G)-\{v, x\}$. As $c_{5}\left(u_{5}\right)=c_{1}\left(u_{5}\right)=a \in A$, we have $\left|c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right|<10=k$. Hence we can extend c_{5} to c_{6} by letting $c_{6}(v) \in[k]-c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A$. As $\left|c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right| \leq r+3<k$ and $c_{6}\left(u_{5}\right)=c_{1}\left(u_{5}\right)=a \neq c_{0}\left(x_{1}\right)=c_{6}\left(x_{1}\right)$, by Lemma 3.2, c_{6} can be extended to a (k, r)-coloring c_{7} of G by letting $c_{7}(x) \in[k]-\left(c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right)$, contrary to (2). This justifies the claim that $c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}\right)=\{1,2,3,4\}$.

We claim next that for any i with $1 \leq i \leq 3, y_{i}$ cannot be a 2 -vertex. If not, we may assume that y_{1} is a 2 -vertex. Let $a^{\prime}=c\left(y_{1}\right)$. Let c_{0}^{\prime} be the restriction of c_{0} with $\bar{S}\left(c_{0}^{\prime}\right)=S\left(c_{0}\right)-\left\{y_{1}\right\}=V(G)-\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, y_{1}, v, x\right\}$. Extend c_{0}^{\prime} to c_{1}^{\prime} by defining $c_{1}^{\prime}\left(u_{5}\right)=a^{\prime} \in\{1,2,3,4\}$. Similar to the arguments above, c_{1}^{\prime} can be extended to c_{5}^{\prime} with $S\left(c_{5}^{\prime}\right)=V(G)-\left\{v, x, y_{1}\right\}$. Since $c\left(N\left[v_{i}\right]-\left\{u_{i}\right\}\right)=A$ for $1 \leq i \leq 4, c_{5}^{\prime}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right) \subset\{6,7,8,9,10\}$. As $c_{5}^{\prime}\left(u_{5}\right)=c_{1}^{\prime}\left(u_{5}\right) \in A$, we have $\left|c_{5}^{\prime}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right|<10=k$. Hence we can extend c_{5}^{\prime} to c_{6}^{\prime} by letting $c_{6}^{\prime}(v) \in[k]-\left(c_{5}^{\prime}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right)$. Let $N_{G}\left(y_{1}\right)=\left\{w, v_{5}\right\}$. For $\left|c_{6}^{\prime}[w] \cup c_{6}^{\prime}\left[v_{5}\right]\right| \leq r+4<k$ and $\left|c_{6}^{\prime}\left[x_{1}\right] \cup c_{6}^{\prime}\left[u_{5}\right]\right| \leq r+3<k$, we extend c_{6}^{\prime} to a (k, r)-coloring c_{7}^{\prime} of G by letting $c_{7}^{\prime}\left(y_{1}\right) \in[k]-\left(c_{6}^{\prime}[w] \cup c_{6}^{\prime}\left[v_{5}\right]\right)$ and $c_{7}^{\prime}(x) \in[k]-\left(c_{6}^{\prime}\left[x_{1}\right] \cup c_{6}^{\prime}\left[u_{5}\right]\right)$, contrary to (2). Thus by symmetry, for any $1 \leq i \leq 3, y_{i}$ is not a 2 -vertex.
Case 2. $d\left(v_{5}\right)=5$.
We shall show that (ii-2) holds. By contradiction, we assume that there exists a color $a \in\{1,2,3,4\}-$ $c\left(\left\{x_{1}, y_{1}, y_{2}, y_{3}, y_{4}\right\}\right)$. Then we extend c_{0} to c_{1} by assigning $c_{1}\left(u_{5}\right)=a$. Let $u_{0}=u_{5}$. For $1 \leq i \leq 4$, as $\mid c_{i}\left[v_{i}\right] \cup$ $c_{i}\left(\left\{u_{0}, u_{1}, \cdots, u_{i-1}\right\}\right) \mid \leq r+4<k$, we can extend c_{i} to c_{i+1} by defining $c_{i+1}\left(u_{i}\right) \in[k]-\left(c_{i}\left[v_{i}\right] \cup c_{i}\left(\left\{u_{0}, u_{1}, \cdots, u_{i-1}\right\}\right)\right)$. Note that $S\left(c_{5}\right)=V(G)-\{v, x\}$. As $c_{5}\left(u_{5}\right)=c_{1}\left(u_{5}\right)=a \in A$, we have $\left|c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A\right|<10=k$. Hence we can extend c_{5} to c_{6} by letting $c_{6}(v) \in[k]-c_{5}\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right) \cup A$. As $\left|c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right| \leq r+3<k$ and $c_{6}\left(u_{5}\right) \neq c_{6}\left(x_{1}\right)$, we finally extend c_{6} to a (k, r)-coloring c_{7} of G by letting $c_{7}(x) \in[k]-\left(c_{6}\left[x_{1}\right] \cup c_{6}\left[u_{5}\right]\right)$, contrary to (2). This completes the proof for Case 2, as well as the proof for the lemma.

Lemma 3.7. Suppose that $r=5$ and G has a semi-bad type vertex v. Let $N_{G}(v)=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ such that u_{5} is the weak 3 -vertex which is adjacent to v with $N_{G}\left(u_{5}\right)=\left\{v, v_{5}, x\right\}$. If $d\left(v_{5}\right)=4$, then v_{5} is adjacent to at most two weak 3-vertices.
Proof. By contradiction, we assume that G, v and v_{5} satisfy the hypothesis of the lemma with $d\left(v_{5}\right)=4$, and v_{5} is adjacent to three weak 3 -vertices y_{1}, y_{2}, u_{5}, (see Fig. 3). Hence H_{6} depicted in Fig. 3 is a subgraph of G. We shall use the notations in Fig. 3 in the proof of this lemma.

By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6, we assume that

$$
\begin{equation*}
c\left(v_{i}\right)=i, \quad(1 \leq i \leq 5), \quad c\left(x_{1}\right)=4 \quad \text { and } \quad c\left(y_{j}\right)=j,(1 \leq j \leq 3) \tag{3}
\end{equation*}
$$

Let c denote the restriction of c itself to $V(G)-\left\{v, t_{1}, t_{2}, x, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. By Lemma 3.6(ii), we may assume (by recoloring) that $c\left(u_{i}\right)=i+5$, for $i=1,2,3,4$. Extend this recolored c with $S(c)=V(G)-\left\{v, t_{1}, t_{2}, x, u_{5}\right\}$ to c_{1} by defining $c_{1}(v)=10$. By Lemma 3.1(3), w_{1}, s_{1} must be 4^{+}-vertices.
Claim 1. $\{4,6,7,8,9,10\} \subseteq c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right) \cap c_{1}\left(N\left[s_{1}\right] \cup\left\{s_{2}\right\}-\left\{y_{2}\right\}\right)$.

By symmetry, it suffices to prove that $\{4,6,7,8,9,10\} \subseteq c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)$. By contradiction, assume that there exists a color $a^{\prime} \in\{4,6,7,8,9,10\}-c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)$. Recall that we have $c_{1}\left(y_{1}\right)=c\left(y_{1}\right)=1$. Define

$$
c_{2}^{\prime}(z)= \begin{cases}c_{1}(z) & \text { if } z \in S\left(c_{1}\right)-\left\{y_{1}\right\} \\ a^{\prime} & \text { if } z=y_{1} \\ 1 & \text { if } z=u_{5}\end{cases}
$$

As $a^{\prime} \in\{4,6,7,8,9,10\}-c_{2}^{\prime}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)$, we note that both $c_{2}^{\prime}\left(y_{1}\right)=a^{\prime} \notin c_{2}^{\prime}\left[w_{1}\right] \cup c_{2}^{\prime}\left[t_{1}\right] \cup c_{2}^{\prime}\left[v_{5}\right]-\left\{c_{2}^{\prime}\left(y_{1}\right)\right\}$ and $c_{2}^{\prime}\left(u_{5}\right)=1 \notin c_{2}^{\prime}\left(N_{G}[v] \cup N_{G}\left[v_{5}\right] \cup\left\{x_{1}\right\}-\left\{u_{5}\right\}\right)$. Therefore by definition, c_{2}^{\prime} is a partial (k, r)-coloring with $S\left(c_{2}^{\prime}\right)=$ $V(G)-\left\{x, t_{1}, t_{2}\right\}$.

As $c_{2}^{\prime}\left(u_{5}\right)=1 \neq 4=c_{2}^{\prime}\left(x_{1}\right), c_{2}^{\prime}\left(y_{1}\right)=a^{\prime} \neq c_{2}^{\prime}\left(w_{2}\right), c_{2}^{\prime}\left(y_{2}\right)=c\left(y_{2}\right) \neq c\left(s_{2}\right)=c_{2}^{\prime}\left(s_{2}\right)$, it follows by Lemma 3.2 that c_{2}^{\prime} can be extended to a (k, r)-coloring of G, contrary to (2). Hence we must have $\{4,6,7,8,9,10\} \subseteq c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)$. By symmetry, we also have $\{4,6,7,8,9,10\} \subseteq c_{1}\left(N\left[s_{1}\right] \cup\left\{s_{2}\right\}-\left\{y_{2}\right\}\right)$. This proves Claim 1.
Claim 2. $c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)=\{4,6,7,8,9,10\}$ and $c_{1}\left(N\left[s_{1}\right] \cup\left\{s_{2}\right\}-\left\{y_{2}\right\}\right)=\{4,6,7,8,9,10\}$.
By contradiction and Claim 1, assume that $c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right) \supset\{4,6,7,8,9,10\}$. Thus $\left|c_{1}\left(N\left(w_{1}\right)-\left\{y_{1}\right\}\right)\right| \geq 5$, and so the forbidden color set of y_{1} is $c_{1}\left(\left\{w_{1}, w_{2}, v_{5}, y_{2}, y_{3}\right\}\right)$. Let $a^{\prime \prime} \in([k]-\{1\})-c_{1}\left(\left\{w_{1}, w_{2}, v_{5}, y_{2}, y_{3}\right\}\right)$. Define

$$
c_{2}^{\prime \prime}(z)= \begin{cases}c_{1}(z) & \text { if } z \in S\left(c_{1}\right)-\left\{y_{1}\right\} \\ a^{\prime \prime} & \text { if } z=y_{1} \\ 1 & \text { if } z=u_{5}\end{cases}
$$

With a similar analysis as in Claim $1, c_{2}^{\prime \prime}$ is a partial (k, r)-coloring with $S\left(c_{2}^{\prime \prime}\right)=V(G)-\left\{x, t_{1}, t_{2}\right\}$. By Lemma 3.2, $c_{2}^{\prime \prime}$ can be extended to (k, r)-coloring of G, contrary to (2). Hence we must have $c_{1}\left(N\left[w_{1}\right] \cup\left\{w_{2}\right\}-\left\{y_{1}\right\}\right)=\{4,6,7,8,9,10\}$. By symmetry, we also have $c_{1}\left(N\left[s_{1}\right] \cup\left\{s_{2}\right\}-\left\{y_{2}\right\}\right)=\{4,6,7,8,9,10\}$. This proves Claim 2 .

We now continue the proof of the lemma. Define

$$
c_{2}(z)= \begin{cases}c_{1}(z) & \text { if } z \in S\left(c_{1}\right)-\left\{v, v_{5}, y_{1}\right\} \\ 5 & \text { if } z \in\left\{v, y_{1}\right\}\end{cases}
$$

By Claim 2, (3) and since c_{1} is a partial (k, r)-coloring of G, we conclude that c_{2} is also a partial (k, r)-coloring of G with $S\left(c_{2}\right)=S\left(c_{1}\right)-\left\{v_{5}\right\}=V(G)-\left\{x, t_{1}, t_{2}, u_{5}, v_{5}\right\}$. Since $c_{2}\left[y_{1}\right]=\left\{c_{2}\left(y_{1}\right), c_{2}\left(w_{1}\right)\right\}, c_{2}\left[y_{2}\right]=\left\{c_{2}\left(y_{2}\right), c_{2}\left(s_{1}\right)\right\}, c_{2}\left[u_{5}\right]=$ $\left\{c_{2}(v)\right\}$ and $c_{2}\left(y_{1}\right)=c_{2}(v)$, we have $\left|c_{2}\left[y_{1}\right] \cup c_{2}\left[y_{2}\right] \cup c_{2}\left[u_{5}\right] \cup c_{2}\left[y_{3}\right]\right| \leq 4+r<k$, and so there exists a color $a \in[k]-\left(c_{2}\left[y_{1}\right] \cup c_{2}\left[y_{2}\right] \cup c_{2}\left[u_{5}\right] \cup c_{2}\left[y_{3}\right]\right)$. Extend c_{2} to c_{3} by defining $c_{3}\left(v_{5}\right)=a$. By the choice of a, c_{3} is a partial (k, r)-coloring with $S\left(c_{3}\right)=V(G)-\left\{x, t_{1}, t_{2}, u_{5}\right\}$. Since $c_{3}(v)=c_{3}\left(y_{1}\right) \in c_{3}\left[v_{5}\right] \cap c_{3}[v]$, we have $\mid c_{3}\left[v_{5}\right] \cup c_{3}[v] \cup c_{3}[x] \leq 8+1<k$. Extend c_{3} to c_{4} by defining $c_{4}\left(u_{5}\right) \in[k]-\left(c_{3}\left[v_{5}\right] \cup c_{3}[v] \cup c_{3}[x]\right)$. Thus c_{4} is a partial (k, r)-coloring of G with $S\left(c_{4}\right)=V(G)-\left\{x, t_{1}, t_{2}\right\}$. As $c_{4}\left(u_{5}\right) \neq c_{4}\left(x_{1}\right), c_{4}\left(y_{1}\right)=5 \neq c_{4}\left(w_{2}\right), c_{4}\left(y_{2}\right)=c\left(y_{2}\right) \neq c\left(s_{2}\right)=c_{4}\left(s_{2}\right)$, it follows by Lemma 3.2 that c_{4} can be extended to a (k, r)-coloring of G, contrary to (2). This proves the lemma.

Lemma 3.8. Suppose that $r=5$ (and so $k=10$). Each of the following holds for G.
(i) Any two bad vertices cannot be weak-adjacent.
(ii) Any two semi-bad type vertices cannot be star-adjacent.
(iii) Any two semi-bad type vertices cannot be weak-adjacent.
(iv) A bad vertex cannot be weak-adjacent to a semi-bad type vertex.

Proof. (i) Assume that G has two bad vertices u and v which are weak-adjacent. By definition, G has a 2 -vertex x adjacent to both u and v. Denote $N_{G}(u)=\left\{x, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $N_{G}(v)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where each u_{i} is a 2-vertex and each v_{j} is a 2-vertex. Then G has a subgraph isomorphic to H_{7} as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our arguments below. For $1 \leq i \leq 4$, denote $N_{G}\left(u_{i}\right)=\left\{u, u_{i}^{\prime}\right\}$ and $N_{G}\left(v_{i}\right)=\left\{v, v_{i}^{\prime}\right\}$.

By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6(i), we may assume that,

$$
\begin{equation*}
c(u)=5, \quad \text { for } 1 \leq i \leq 4, \quad c\left(u_{i}\right)=i, \quad c\left(v_{i}^{\prime}\right)=i \quad \text { and } \quad c\left(N\left[v_{i}^{\prime}\right]-\left\{v_{i}\right\}\right)=\{1,2,3,4,5\} . \tag{4}
\end{equation*}
$$

Let c_{0} be the restriction of c to $V(G)-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, x\right\}$. Pick a color $a \in\{6,7,8,9,10\}-c\left(\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$. Denote $\{6,7,8,9,10\}=\left\{a, a^{\prime}, a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a & \text { if } z \in\left\{u, v_{1}\right\} \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

$\operatorname{By}(4), c_{1}$ is a (k, r)-coloring of G, contrary to (2). This justifies (i).

Fig. 4. Four cases of weak-adjacency and star-adjacency.
(ii) Assume that G has two semi-bad type vertices u and v which are star-adjacent. By definition, G has a 3-vertex x adjacent to a 2-vertex as well as to both u and v. Denote $N_{G}(x)=\left\{u, v, x^{\prime}\right\}, N_{G}\left(x^{\prime}\right)=\left\{u_{5}, x\right\}, N_{G}(u)=\left\{x, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $N_{G}(v)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where for $1 \leq i, j \leq 4$, each u_{i} is a 2 -vertex and each v_{j} is a 2 -vertex. Then G has a subgraph isomorphic to H_{7} as depicted in Fig. 4. We shall adopt the notation in Fig. 4 in our argument below. For $1 \leq i \leq 4$, let $u_{i}^{\prime}\left(v_{i}^{\prime}\right.$, respectively) denote the other neighbor of u_{i} (v_{i}, respectively).

By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6(ii), we may assume that,

$$
\begin{equation*}
c(u)=5, \quad \text { for } 1 \leq i \leq 4, \quad c\left(v_{i}^{\prime}\right)=i, \quad c\left(N\left[v_{i}^{\prime}\right]-\left\{v_{i}\right\}\right)=\{1,2,3,4,5\} \tag{5}
\end{equation*}
$$

and $\{1,2,3,4\} \subseteq c\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}\right)$.
Let c_{0} be the restriction of c to $V(G)-\left\{u, v, x, x^{\prime}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
Case (ii)-1. $c\left(u_{5}\right) \geq 5$, and so by (5) $c\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)=\{1,2,3,4\}$.
Choose colors $a \in\{6,7,8,9,10\}-c\left(\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$ and $a^{\prime} \in\{6,7,8,9,10\}-\left\{a, c\left(u_{5}\right)\right\}$. Denote $\{6,7,8,9,10\}-$ $\left\{a^{\prime}, a\right\}=\left\{a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=v \\ a & \text { if } z \in\left\{u, v_{1}\right\} \\ a^{\prime} & \text { if } z=x \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

By (5), c_{1} is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{x^{\prime}\right\}$ such that $c_{1}(x) \neq c_{1}\left(u_{5}\right)$. By Lemma 3.2, c_{1} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-1.

Case (ii)-2. $c\left(u_{5}\right) \in\{1,2,3,4\}$. By symmetry, we assume that $c\left(u_{5}\right)=1$.
By Lemma 3.6(ii), $\{2,3,4\} \subseteq c\left(\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)$, and so we may assume that $c\left(u_{i}\right)=i,(2 \leq i \leq 4)$, and $c\left(u_{1}\right) \in$ $\{1,6,7,8,9,10\}$.

Case (ii)-2.1. $c\left(u_{1}\right)=1$.
Choose $a \in\{6,7,8,9,10\}-c\left(\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$ and $a^{\prime} \in\{6,7,8,9,10\}-\{a\}$. Denote $\{6,7,8,9,10\}-\left\{a^{\prime}, a\right\}=$ $\left\{a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a & \text { if } z \in\left\{u, v_{1}\right\} \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

By (5), c_{1} is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{x^{\prime}\right\}$, such that $c_{1}(x)=5 \neq 1=c_{1}\left(u_{5}\right)$. By Lemma 3.2, c_{1} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-2.1.
Case (ii)-2.2. $c\left(u_{1}\right) \in\{6,7,8,9,10\}$.
Choose a color $a \in\{1,6,7,8,9,10\}-c\left(\left\{u_{1}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$. If $a=1$, denote $\{6,7,8,9,10\}=\left\{a^{\prime}, a_{1}, a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a & \text { if } z=u \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{1,2,3,4\}\end{cases}
$$

If $a \in\{6,7,8,9,10\}$, denote $\{6,7,8,9,10\}=\left\{a, a^{\prime}, a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a & \text { if } z \in\left\{u, v_{1}\right\} \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

$\operatorname{By}(5), c_{1}$ is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{x^{\prime}\right\}$ such that $c_{1}(x) \neq c_{1}\left(u_{5}\right)$. By Lemma 3.2, c_{1} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-2.2, and completes the proof of (ii).
(iii) By contradiction, assume that G has two semi-bad type vertices u and v which are weak-adjacent. By definition, G has a 2-vertex x adjacent to both u and v. Denote $N_{G}(u)=\left\{x, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $N_{G}(v)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By definition, we assume that u_{1}, u_{2}, u_{3} and v_{1}, v_{2}, v_{3} are 2-vertices, u_{4} is a 3-vertex with $N_{G}\left(u_{4}\right)=\left\{u, u_{4}^{\prime}, t_{2}\right\}$, and v_{4} is a 3-vertex with $N_{G}\left(v_{4}\right)=\left\{v, v_{4}^{\prime}, t_{1}\right\}$. Also denote $N_{G}\left(t_{1}\right)=\left\{v_{4}, t_{1}^{\prime}\right\}$ and $N_{G}\left(t_{2}\right)=\left\{u_{4}, t_{2}^{\prime}\right\}$. For each $1 \leq i \leq 3$, let $N_{G}\left(u_{i}\right)=\left\{u\right.$, $\left.u_{i}^{\prime}\right\}$ and $N_{G}\left(v_{i}\right)=\left\{v, v_{i}^{\prime}\right\}$. Then G has a subgraph isomorphic to H_{9} as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our argument below.

By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6(ii), we may assume that, for some color a with $1 \leq a \leq 10$,

$$
\begin{align*}
& c(u)=5, \quad \text { and for } 1 \leq i \leq 4, \quad c\left(u_{i}\right)=i, \quad \text { for } 1 \leq j \leq 3, \quad c\left(N\left[v_{j}^{\prime}\right]-\left\{v_{j}\right\}\right)=\{1,2,3,4,5\}, \\
& \quad \text { and } \quad c\left(\left(N\left(v_{4}^{\prime}\right)-\left\{v_{4}\right\}\right) \bigcup\left\{t_{1}^{\prime}\right\}\right)=\{1,2,3,4, a\} . \tag{6}
\end{align*}
$$

Let c_{0} be the restriction of c to $V(G)-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, x, t_{1}, t_{2}\right\}$. Choose $a_{1} \in\{6,7,8,9,10\}-c\left(\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$. Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a_{1} & \text { if } z \in\left\{u, v_{1}\right\}\end{cases}
$$

$\operatorname{By}(6), c_{1}$ is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{v, v_{2}, v_{3}, v_{4}, t_{1}, t_{2}\right\}$.
Case (iii)-1. $a \in\{1,2,3,4,5\}$. Thus by (6), $c_{1}\left(t_{1}^{\prime}\right) \in\{1,2,3,4,5\}$.
Denote $\{6,7,8,9,10\}=\left\{a_{1}, a^{\prime}, a_{2}, a_{3}, a_{4}\right\}$. Define

$$
c_{2}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{1}\right) \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

Case (iii)-2. $a \in\{6,7,8,9,10\}$
Choose $a_{4} \in\{6,7,8,9,10\}-\left\{a, a_{1}\right\}$. Denote $\{6,7,8,9,10\}-\left\{a_{1}, a_{4}\right\}=\left\{a^{\prime}, a_{2}, a_{3}\right\}$. Define

$$
c_{2}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{1}\right) \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

$\operatorname{By}(5), c_{2}$ is a partial (k, r)-coloring with $S\left(c_{2}\right)=V(G)-\left\{t_{1}, t_{2}\right\}$ such that $c_{2}\left(t_{1}^{\prime}\right) \neq c_{2}\left(v_{4}\right)$ and $c_{2}\left(t_{2}^{\prime}\right) \neq c_{2}\left(u_{4}\right)$. By Lemma 3.2, c_{2} can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (iii).
(iv) By Contradiction, we assume that a semi-bad type vertex u is weak-adjacent to a bad vertex v in G. Denote $N_{G}(u)=$ $\left\{x, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $N_{G}(v)=\left\{x, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. By definition, we assume that u_{1}, u_{2}, u_{3} and $v_{1}, v_{2}, v_{3}, v_{4}$ are 2-vertices, u_{4} is a 3-vertex with $N_{G}\left(u_{4}\right)=\left\{u, u_{4}^{\prime}, t_{1}\right\}$, and $N_{G}\left(t_{1}\right)=\left\{u_{4}, t_{1}^{\prime}\right\}$. Then G has a subgraph isomorphic to H_{10} as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our arguments below. For $1 \leq i \leq 3$, denote $N_{G}\left(u_{i}\right)=\left\{u, u_{i}^{\prime}\right\}$; and for $1 \leq j \leq 4$, denote $N_{G}\left(v_{j}\right)=\left\{v, v_{j}^{\prime}\right\}$.

By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6(i), we may assume that

$$
\begin{equation*}
c(u)=5, \quad \text { for } 1 \leq i \leq 4, \quad c\left(u_{i}\right)=c\left(v_{i}^{\prime}\right)=i \quad \text { and } \quad c\left(N\left[v_{i}^{\prime}\right]-\left\{v_{i}\right\}\right)=\{1,2,3,4,5\} . \tag{7}
\end{equation*}
$$

Let c_{0} be the restriction of c to $V(G)-\left\{u, v, v_{1}, v_{2}, v_{3}, v_{4}, x, t_{1}\right\}$. Choose $a \in\{6,7,8,9,10\}-c\left(\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}\right\}\right)$, and let $\{6,7,8,9,10\}=\left\{a, a^{\prime}, a_{2}, a_{3}, a_{4}\right\}$.

Define

$$
c_{1}(z)= \begin{cases}c_{0}(z) & \text { if } z \in S\left(c_{0}\right) \\ 5 & \text { if } z=x \\ a & \text { if } z=u, v_{1} \\ a^{\prime} & \text { if } z=v \\ a_{i} & \text { if } z=v_{i}, i \in\{2,3,4\}\end{cases}
$$

By (7), c_{1} is a partial (k, r)-coloring with $S\left(c_{1}\right)=V(G)-\left\{t_{1}\right\}$ such that $c_{1}\left(t_{1}^{\prime}\right) \neq c_{1}\left(u_{4}\right)$. By Lemma 3.2, c_{1} can be extended to a (k, r)-coloring of G, contrary to (2). This completes the proof of (iv).

Lemma 3.9. Suppose that $r=5$. Let $F_{1}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$ be the set of faces incident with a bad vertex v of G, as shown in the graph H_{4} depicted in Fig. 2; and $F_{2}=\left\{f_{1}, f_{2}, f_{3}\right\}$ be the subset set of faces incident with a semi-bad type vertex v of G, as shown in the graph H_{5} depicted in Fig. 2. Let s and t be the vertices as shown in H_{4} or in H_{5} in Fig. 2. Suppose that $f=v_{2} u_{2} v u_{3} v_{3} s$ is a 6 -face which is in F_{1} or in F_{2}. Then each of the following holds.
(i) $d_{G}(s) \geq 3$, and
(ii) if $d_{G}(s)=3$, then $d_{G}(t) \geq 3$.

Proof. We shall argue using the notations in Fig. 2. By (2), $G-v$ has a (k, r)-coloring c. By Lemma 3.6, we may assume that $c\left(v_{i}\right)=i$ for $1 \leq i \leq 5, c(s) \in\{1,2,3,4,5\}$, and for $1 \leq j \leq 4, c\left(N\left[v_{j}\right]-\left\{u_{j}\right\}\right)=\{1,2,3,4,5\}$. Furthermore, if v is a bad vertex, then $c\left(N\left[v_{5}\right]-\left\{u_{5}\right\}\right)=\{1,2,3,4,5\}$, and if v is a semi-bad type vertex, then $\{1,2,3,4\} \subseteq c\left(N\left(v_{5}\right)-\left\{u_{5}\right\}\right) \cup\left\{x_{1}\right\}$. Thus $c\left(u_{5}\right) \in\{6,7,8,9,10\}$.
(i) Assume first by contradiction that $d_{G}(s)=2$ and $N_{G}(s)=\left\{v_{2}, v_{3}\right\}$. Let c_{1} be the restriction of c to $V(G)-$ $\left\{s, u_{1}, u_{2}, u_{3}, u_{4}, v\right\}$. Denote $\{6,7,8,9,10\}=\left\{a, c\left(u_{5}\right), a_{1}, a_{3}, a_{4}\right\}$. Extend c_{1} to a (k, r)-coloring c_{2} by defining $c_{2}\left(u_{2}\right)=$ $c(s), c_{2}(v)=a$, and $c_{2}\left(u_{i}\right)=a_{i}$ for $i=1,3,4$. Now $S\left(c_{2}\right)=V(G)-\{s\}, c_{2}\left(v_{2}\right) \neq c_{2}\left(v_{3}\right)$ and $c_{2}\left[v_{2}\right] \cup c_{2}\left[v_{3}\right]=$ $\left\{1,2,3,4,5, a_{3}\right\}$. By Lemma 3.2, c_{2} can be extended to a (k, r)-coloring of G by coloring s, contrary to (2).
(ii) Now assume that $d_{G}(s)=3$ and $N_{G}(s)=\left\{t, v_{2}, v_{3}\right\}$. By contradiction, assume that $d_{G}(t)=2$, let $t^{\prime} \neq s$ be another neighbor of t. Let c_{1} be the restriction of c to $V(G)-\left\{s, t, u_{1}, u_{2}, u_{3}, u_{4}, v\right\}$. Denote $\{6,7,8,9,10\}=\left\{a, c\left(u_{5}\right), a_{1}, a_{3}, a_{4}\right\}$. Extend c_{1} to a (k, r)-coloring c_{2} by defining $c_{2}\left(u_{2}\right)=c(s), c_{2}(v)=a$, and $c_{2}\left(u_{i}\right)=a_{i}$ for $i=1$, 3, 4. Now $S\left(c_{2}\right)=$ $V(G)-\{s, t\}$. As $c_{2}\left(v_{2}\right) \neq c_{2}\left(v_{3}\right),\left\{c_{2}(t)\right\}=\phi$ and as $\left|c_{2}\left[v_{2}\right] \cup c_{2}\left[v_{3}\right] \cup c_{2}[t]\right| \leq 7$, we conclude that c_{2} can be extended to a partial (k, r)-coloring c_{3} by defining $c_{3}(s) \in[k]-\left(c_{2}\left[v_{2}\right] \cup c_{2}\left[v_{3}\right] \cup c_{2}[t]\right)$, with $S\left(c_{3}\right)=V(G)-\{t\}$. Since $c_{3}(s) \neq c_{3}\left(t^{\prime}\right)$ and since $\left|c_{3}\left[t^{\prime}\right] \cup c_{3}[s]\right| \leq r+3<k$, by Lemma 3.2, c_{3} can be extended to a (k, r)-coloring of G by coloring t, contrary to (2).

3.2. Discharging

We will complete the proof of Theorem 1.4 in this subsection. Throughout this section, G always denotes a 2-connected plane graph embedded on the plane with girth at least 6. Let $F=F(G)$ denote the set of all faces of G. We will use $V=V(G)$ and $E=E(G)$. We assign the initial charges to the vertices and faces of G as a weight function w defined as follows

$$
w(x)= \begin{cases}2 d_{G}(x)-6 & \text { if } x \in V \\ d_{G}(x)-6 & \text { if } x \in F\end{cases}
$$

By Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ and by the relation $\sum_{v \in V} d(v)=\sum_{f \in F} d(f)=2|E|$ (Theorem 10.10 of [1]), it follows that

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} w(x)=\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-12 . \tag{8}
\end{equation*}
$$

Discharging Rules We will recharge the vertices and faces of G with certain charge and discharge rules. The resulting new charge will be denoted as a new weight function w^{\prime}. A contradiction to (8) will then be obtained if the new charge w^{\prime}
satisfies $w^{\prime}(x) \geq 0$ for all $x \in V \bigcup F$. This contradiction then will establish Theorem 1.4. In the following, we will describe our recharge and discharging rules based on the different cases. Depending whether $r=5$ or not, we use different rules. In the discharge rules (R1) and (R2) defined below, for all unmentioned vertex or face $x \in V \cup F$, we do not change the charge of x. That is, $w^{\prime}(x)=w(x)$.
(R1) Suppose that $r \neq 5$. For a vertex v, and for each $i \geq 0$, let $n_{i}(v)$ be the number of i-vertices in $N_{G}(v)$, and define $n_{i^{+}}(v)=\sum_{j \geq i} n_{j}(v)$.
(i) If a 2-vertex v is adjacent to two 4^{+}-vertices v_{1}, v_{2}, then increase the charge of v by 2 , and for $i=1,2$, reduced the charge of v_{i} by 1 .
(ii) If a 2-vertex v is adjacent to one 4^{+}-vertex v_{1}, and one 3-vertex v_{2} such that $N_{G}\left(v_{2}\right)=\left\{v, v_{2}^{1}, v_{2}^{2}\right\}$, then increase the charge of v by 2 , reduced the charge of v_{1} by 1 , and for $i=1$, 2 , reduced the charge of v_{2}^{i} by $\frac{1}{2}$.
(iii) If a 2-vertex v is adjacent to two 3-vertices v_{1}, v_{2} such that for $1 \leq j \leq 2, N_{G}\left(v_{j}\right)=\left\{v, v_{j}^{1}, v_{j}^{2}\right\}$, (as girth of G is at least $6, N_{G}\left(v_{1}\right) \cap N_{G}\left(v_{2}\right)=\{v\}$,) then increase the charge of v by 2 , and for $1 \leq i, j \leq 2$, decrease the charge of v_{j}^{i} by $\frac{1}{2}$.

Claim 1. Let $w^{\prime}(x)$ denote the new charge of each $x \in V \cup F$ after the applications of (R1). Then for any $x \in V \cup F$, we have $w^{\prime}(x) \geq 0$.

Proof of Claim 1. Since the girth of G is at least 6 , if follows that for any $f \in F$, we have $w^{\prime}(f)=w(f)=d(f)-6 \geq 0$. Let $v \in V$ be a d-vertex and $N_{G}(v)=\left\{v_{1}, v_{2}, \cdots, v_{d}\right\}$.
Case 1.1 $d_{G}(v)=2$. By Lemma 3.1, $n_{2}(v)=0$ and each 3-vertex incident with v must be adjacent to two other $4^{+}-$ vertices. Thus either $n_{4^{+}}(v)=2$, whence by (R1)(i), $w^{\prime}(v)=2 \times 2-6+2=0$; or $n_{4^{+}}(v)=1$, whence by (R1)(ii), $w^{\prime}(v)=2 \times 2-6+2=0$; or $n_{4^{+}}(v)=0$, whence by (R1)(iii), $w^{\prime}(v)=2 \times 2-6+2=0$.
Case 1.2 $d_{G}(v)=3$. By (R1), we conclude that $w^{\prime}(v)=w(v)=2 \times 3-6=0$.
Case $1.3 d_{G}(v)=4$. By Lemma 3.3(i), $n_{2}(v) \leq 2$. If $n_{2}(v)=0$, then by (R1), for each weak-3-neighbor of v, v will discharge $\frac{1}{2}$ through this weak-3-neighbor to a 2-vertex. Since $d_{G}(v)=4$, we have $w^{\prime}(v) \geq 2 \times 4-6-4 \times \frac{1}{2}=0$. Now we assume that $n_{2}(v)>0$. Thus by (R1), if $n_{2}(v)=2$, then by Lemma 3.3(ii) v cannot be adjacent to any weak 3-vertex, and so $w^{\prime}(v)=2 \times 4-6-2 \times 1=0$; and if $n_{2}(v)=1$, then by Lemma 3.3(iii) v is adjacent to at most two weak-3-vertices, and so $w^{\prime}(v) \geq 2 \times 4-6-1-2 \times \frac{1}{2}=0$.
Case $1.4 d_{G}(v)=5$. By Lemma 3.4, either $n_{2}(v)=4$ and $n_{4^{+}}(v)=1$, whence by (R1), $w^{\prime}(v) \geq 2 \times 5-6-4 \times 1=0$; or $n_{2}(v) \leq 3$, whence by (R1), $w^{\prime}(v) \geq 2 \times 5-6-n_{2}(v)-\frac{1}{2} \times\left(5-n_{2}(v)\right)=\frac{3}{2}-\frac{n_{2}(v)}{2} \geq 0$.
Case $1.5 d_{G}(v) \geq 6$. Then $n_{2}(v)+n_{3}(v) \leq d_{G}(v)$, and so $w^{\prime}(v) \geq 2 \times d(v)-6-d(v)=d(v)-6 \geq 0$. This completes the proof of Claim 1.
(R2) Suppose that $r=5$. For a vertex v, let $n_{2}^{*}(v)$ be the number of 2-vertices star-adjacent to v and $n_{3}^{*}(v)$ be the number of semi-bad type vertices star-adjacent to v.
(i) If a 4^{+}-vertex v is adjacent to 2 -vertices $v_{1}, v_{2}, \ldots, v_{d_{1}}$, then reduce the charge of v by d_{1}, and for $1 \leq i \leq d_{1}$, increase the charge of v_{i} by 1 .
(ii) If a 4^{+}-vertex v is star-adjacent to 2 -vertices $v_{1}, v_{2}, \ldots, v_{d_{2}}$, then reduce the charge of v by $\frac{d_{2}}{2}$, and for $1 \leq i \leq d_{2}$, increase the charge of v_{i} by $\frac{1}{2}$.
(iii) If a 4 -vertex v is star-adjacent to semi-bad type vertices $v_{1}, v_{2}, \ldots, v_{d_{3}}$, then reduce the charge of v by $\frac{d_{3}}{2}$, and for $1 \leq i \leq d_{3}$, increase the charge of v_{i} by $\frac{1}{2}$.
(iv) If a 7^{+}-face f is incident with bad or semi-bad type vertices $v_{1}, v_{2}, \ldots, v_{d_{4}}$, then reduce the charge of f by $\frac{4 d_{4}}{7}$, and for $1 \leq i \leq d_{4}$, increase the charge of v_{i} by $\frac{4}{7}$.
(v) If a 5 -vertex v is weak-adjacent to bad or semi-bad type vertices $v_{1}, v_{2}, \ldots, v_{d_{5}}$, then reduce the charge of v by $\frac{d_{5} \times\left(2 \times 5-6-n_{2}(v)-\frac{1}{2} n_{2}^{*}(v)\right)}{n_{2}(v)}$, and for $1 \leq i \leq d_{5}$, increase the charge of v_{i} by $\frac{2 \times 5-6-n_{2}(v)-\frac{1}{2} n_{2}^{*}(v)}{n_{2}(v)}$.

Claim 2. Let F_{1}, F_{2} be the two sets of faces defined in Lemma 3.9, as shown in the graphs H_{4} and H_{5} in Fig. 2, respectively, and use the notations in Fig. 2. Each of the following holds.
(i) If F_{1} has at least four 6-faces, then there exist at least three vertices in the 5-vertices $v_{1}, v_{2}, v_{3}, v_{4}$, v_{5}, each of which is adjacent to at most three 2-vertices.
(ii) If all faces in F_{2} are all 6-faces, then each of the two 5-vertices v_{2}, v_{3} is adjacent to at most three 2-vertices.

Proof of Claim 2. As defined in Lemma 3.9, the faces in F_{1} are all incident with a bad vertex v, with $N_{G}(v)=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$. By the definition of a bad vertex, for each $1 \leq i \leq 5, u_{i}$ is a 2 -vertex and v_{i} is a 5 -vertex adjacent to u_{i}. Let f_{i} denote the face in F_{1} incident with v_{i-1} and v_{i}, for all integer $i(\bmod 5)$. Let $N^{\prime}=\left\{v_{i} \mid f_{i}\right.$ and f_{i+1} are 6 -faces $\}$. Therefore if F_{1} contains four 6-faces, then $\left|N^{\prime}\right| \geq 3$, (see H_{4} in Fig. 2). Without lose of generality, we assume that $v_{2} \in N^{\prime}$, and $s \in N_{G}\left(v_{2}\right) \cap N_{G}\left(v_{3}\right)$. Since $v_{2} \in N^{\prime}$, both f_{2} and f_{3} are 6 -faces. By Lemma $3.9, s$ must be a 3^{+}-vertex, and furthermore, s is not a weak 3-vertex. Thus we conclude that each vertex in N^{\prime} is adjacent to at most three 2 -vertices. This justifies Claim 2(i). The proof for Claim 2(ii) is similar and will be omitted.

Claim 3. Let f be a face. Let $w^{\prime}(f)$ denote the new charge after performing (R2).
(i) If f is a 6 -face, then $w^{\prime}(f)=0$.
(ii) If f is a 7^{+}-face, then $w^{\prime}(f) \geq 0$.

Proof of Claim 3. By (R2), any 6-face neither receives charges from other vertices, nor does it discharge to other vertices, and so $w^{\prime}(f)=w(f)=d(f)-6=0$. Thus (i) follows. If $d(f) \geq 7$, then by Lemma $3.8, f$ is incident with at most $\left\lfloor\frac{d(f)}{4}\right\rfloor$ bad or semi-bad type vertices. It follows by (R2)(iv) that $w^{\prime}(f) \geq w(f)-\frac{4}{7} \times \frac{d(f)}{4}=d(f)-6-\frac{d(f)}{7} \geq 0$.

Claim 4. For any $v \in V(G)$, let $w^{\prime}(v)$ denote the new charge after performing recharge rule (R2). Then $w^{\prime}(v) \geq 0$.
Proof of Claim 4. We examine the value of $w^{\prime}(v)$ based on the degree of v. By Lemma 3.1(i), $d_{G}(v) \geq 2$.
Case $2.12 \leq d_{G}(v) \leq 3$. The justification for this case is identical to those of Cases 1.1 and 1.2 in the proof of Claim 1, with (R1) replaced by (R2). Thus it is omitted.
Case $2.2 d_{G}(v)=4$. By Lemma 3.3(i), $n_{2}(v) \leq 2$.
Assume first that $n_{3}^{*}(v)=0$. If $n_{2}(v)=0$, then by (R2)(ii), for each weak-3-neighbor of v, v will discharge $\frac{1}{2}$ through this weak-3-neighbor to a 2 -vertex. Since $d_{G}(v)=4$, we have $w^{\prime}(v) \geq 2 \times 4-6-4 \times \frac{1}{2}=0$. Now we assume that $n_{2}(v)>0$. If $n_{2}(v)=2$, then by Lemma 3.3(ii) v cannot be adjacent to any weak 3 -vertex, and so by (R2)(i) $w^{\prime}(v)=2 \times 4-6-2 \times 1=0$; If $n_{2}(v)=1$, then by Lemma 3.3(iii) v is adjacent to at most two weak 3-vertices, and so by (R2)(i) and (ii), $w^{\prime}(v) \geq 2 \times 4-6-1-2 \times \frac{1}{2}=0$.

Now assume that $n_{3}^{*}(v) \geq 1$. By Lemma 3.6(ii-1), $n_{2}(v)=0$; and by Lemma 3.7, v is adjacent to at most two weak 3vertices. Hence by definition, $n_{3}^{*}(v) \leq 2$. It follows that either $n_{3}^{*}(v)=2$, and so by (R2)(iii), $w^{\prime}(v)=2 \times 4-6-2 \times 2 \times \frac{1}{2}=0$; or $n_{3}^{*}(v)=1 \leq n_{2}^{*}(v) \leq 2$, and so by (R2)(ii) and (iii), $w^{\prime}(v) \geq 2 \times 4-6-2 \times \frac{1}{2}-\frac{1}{2}=\frac{1}{2}$.
Case 2.3 $d_{G}(v)=5$. Let F_{1} and F_{2} be the sets of faces defined in Lemma 3.9.
Suppose first that v is a bad vertex with F_{1} being the set of faces incident with v, such that F_{1} has $t \geq 07^{+}$-faces and $5-t$ 6-faces. It follows by (R2)(iv) and (v) that if $t \geq 2$, then $w^{\prime}(v) \geq 2 \times 5-6-5+t \times \frac{4}{7} \geq \frac{1}{7}$; and if $t \leq 1$, then by Claim 2(i), v receives at least $\frac{1}{3}$ from each weak-adjacent 5-vertex, and so $w^{\prime}(v) \geq 2 \times 5-6-5+3 \times \frac{1}{3}=0$.

Suppose that v is a semi-bad type vertex with F_{2} being a subset of faces incident with v, such that F_{2} has $t \geq 07^{+}$-faces and $3-t 6$-faces. It follows by (R2)(iv) and (v) that if $t \geq 1$, then $w^{\prime}(v) \geq 2 \times 5-6-4-\frac{1}{2}+t \times \frac{4}{7}>0$; and if $t=0$, then by Claim 2(ii), v receives at least $\frac{1}{3}$ from each weak-adjacent 5 -vertex, and so $w^{\prime}(v) \geq 2 \times 5-6-4-\frac{1}{2}+2 \times \frac{1}{3}=\frac{1}{6}>0$.

Finally we assume that v is neither a bad vertex nor a semi-bad type vertex. Then by Lemma $3.5, n_{2}(v) \leq 4$. It follows by (R2)(i), (ii) and (v) that either $n_{2}(v)=4$, whence $w^{\prime}(v) \geq 2 \times 5-6-4 \times 1=0$; or $n_{2}(v) \leq 3$, whence $w^{\prime}(v) \geq 2 \times 5-6-3-2 \times \frac{1}{2}=0$.
Case $2.4 d_{G}(v) \geq 6$.
It follows by (R2)(i) and (ii) that $w^{\prime}(v) \geq 2 \times d(v)-6-d(v)=d(v)-6 \geq 0$. This completes the proof of Claim 4.
By (R1) and (R2), after the recharge process, we obtain a new charge w^{\prime} satisfying $\sum_{x \in F \cup V} w^{\prime}(x)=\sum_{x \in F \cup V} w(x)$. By Claims 1,3 and $4, w^{\prime}(x) \geq 0$ for any $x \in V(G) \cup F(G)$. It follows by (8) that $0 \leq \sum_{x \in F \cup V} w^{\prime}(x)=\sum_{x \in F \cup V} w(x)=-12<0$. This contradiction establishes Theorem 1.4.

Acknowledgement

The research of Huiming Song is partially supported by National Natural Science Foundation of China (Nos. 11271230 and 11401346) and the research of Jian-Liang Wu was partially supported by National Natural Science Foundation of China (No.11271006).

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[2] Y.H. Bu, X.B. Zhu, An optimal square coloring of planar graphs, J. Comb. Optim. 24 (2012) 580-592.
[3] Y. Chen, S.H. Fan, H.J. Lai, H.M. Song, L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math. 160 (2012) 1064-1071.
[4] C. Ding, S.H. Fan, H.J. Lai, Upper bound on conditional chromatic number of graphs, J. Jinan Univ. 29 (2008) 7-14.
[5] H.J. Lai, J. Lin, B. Montgomery, Z. Tao, S.H. Fan, Conditional colorings of graphs, Dircrete Math. 306 (2006) 1997-2004.
[6] H.J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193-201.
[7] K.W. Lih, W.F. Wang, X. Zhu, Coloring the square of a K4-minor free graph, Discrete Math. 269 (2003) 303-309.
[8] Y. Lin, Upper bounds of conditional chromatics number (Master thesis), Jinan University, 2008.
[9] X. Li, X. Yao, W. Zhou, H.J. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009) 320-324.
[10] B. Montgomery, (PhD Dissertation), West Virginia University, 2001.
[11] H.M. Song, S.H. Fan, Y. Chen, L. Sun, H.J. Lai, On r-hued coloring of K_{4}-minor free graphs, Discrete Math. 315-316 (2014) 47-52.
[12] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report, University of Dortmund, 1977.

[^0]: * Corresponding author.

 E-mail addresses: hmsong@sdu.edu.cn (H. Song), hongjianlai@gmail.com (H.-J. Lai).

