Contents lists available at ScienceDirect

# **Discrete Applied Mathematics**

journal homepage: www.elsevier.com/locate/dam

# On *r*-hued coloring of planar graphs with girth at least 6

Huimin Song<sup>a,b</sup>, Hong-Jian Lai<sup>C,\*</sup>, Jian-Liang Wu<sup>a</sup>

<sup>a</sup> School of Mathematics, Shandong University, Jinan 250100, China

<sup>b</sup> School of Mathematics and Statistics, Shandong University, Weihai 264209, China

<sup>c</sup> Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA

#### ARTICLE INFO

Article history: Received 27 January 2015 Received in revised form 5 May 2015 Accepted 10 May 2015 Available online 9 July 2015

Keywords: (k, r)-coloring r-hued coloring Girth Planar graph

### ABSTRACT

For integers k, r > 0, a (k, r)-coloring of a graph G is a proper k-coloring c such that for any vertex v with degree d(v), v is adjacent to at least min $\{d(v), r\}$  different colors. Such coloring is also called as an r-hued coloring. The r-hued chromatic number of G,  $\chi_r(G)$ , is the least integer k such that a (k, r)-coloring of G exists. In this paper, we proved that if G is a planar graph with girth at least 6, then  $\chi_r(G) \le r + 5$ . This extends a former result in Bu and Zhu (2012). It also implies that a conjecture on r-hued coloring of planar graphs is true for planar graphs with girth at least 6.

© 2015 Elsevier B.V. All rights reserved.

### 1. Introduction

Graphs in this paper are simple and finite. Undefined terminologies and notations are referred to [1]. Thus  $\Delta(G)$ ,  $\delta(G)$ , g(G) and  $\chi(G)$  denote the maximum degree, the minimum degree, the girth and the chromatic number of a graph G, respectively. When no confusion on G arises, we often use  $\Delta$  for  $\Delta(G)$ . For  $v \in V(G)$ , let  $N_G(v)$  be the set of vertices adjacent to v in G,  $N_G[v] = N_G(v) \cup \{v\}$ , and  $d_G(v) = |N_G(v)|$ . When G is understood from the context, the subscript G is often omitted in these notations.

Let k, r be integers with k > 0 and r > 0, and let  $[k] = \{1, 2, ..., k\}$ . If  $c : V(G) \mapsto [k]$  is a mapping, and if  $V' \subseteq V(G)$ , then define  $c(V') = \{c(v) | v \in V'\}$ . A (k, r)-coloring of a graph G is a mapping  $c : V(G) \mapsto [k]$  satisfying both the following.

(C1)  $c(u) \neq c(v)$  for every edge  $uv \in E(G)$ ;

(C2)  $|c(N_G(v))| \ge \min\{d_G(v), r\}$  for any  $v \in V(G)$ .

The condition (C2) is often referred to as the *r*-hued condition. Such coloring is also called as an *r*-hued coloring. For a fixed integer r > 0, the *r*-hued chromatic number of *G*, denoted by  $\chi_r(G)$ , is the smallest integer *k* such that *G* has a (k, r)-coloring. The concept was first introduced in [10] and [6], where  $\chi_2(G)$  was called *the dynamic chromatic number* of *G*. The study of *r*-hued-colorings can be traced a bit earlier, as the square coloring of a graph is the special case when  $r = \Delta$ .

By the definition of  $\chi_r(G)$ , it follows immediately that  $\chi(G) = \chi_1(G)$ , and  $\chi_{\Delta}(G) = \chi(G^2)$ , where  $G^2$  is the square graph of *G*. Thus *r*-hued coloring is a generalization of the classical vertex coloring. For any integer i > j > 0, any (k, i)-coloring of *G* is also a (k, j)-coloring of *G*, and so

 $\chi(G) \leq \chi_2(G) \leq \cdots \leq \chi_r(G) \leq \cdots \leq \chi_\Delta(G) = \chi_{\Delta+1}(G) = \cdots = \chi(G^2).$ 

\* Corresponding author.

http://dx.doi.org/10.1016/j.dam.2015.05.015 0166-218X/© 2015 Elsevier B.V. All rights reserved.





E-mail addresses: hmsong@sdu.edu.cn (H. Song), hongjianlai@gmail.com (H.-J. Lai).

In [9], it was shown that (3, 2)-colorability remains NP-complete even when restricted to planar bipartite graphs with maximum degree at most 3 and with arbitrarily high girth. This differs considerably from the well-known result that the classical 3-colorability is polynomially solvable for graphs with maximum degree at most 3.

The *r*-hued chromatic numbers of some classes of graphs are known. For example, the *r*-hued chromatic numbers of complete graphs, cycles, trees and complete bipartite graphs have been determined in [5]. In [6], an analogue of Brooks Theorem for  $\chi_2$  was proved. It was shown in [3] that  $\chi_2(G) \leq 5$  holds for any planar graph *G*. A *Moore graph* is a regular graph with diameter *d* and girth 2d + 1. Ding et al. [4] proved that  $\chi_r(G) \leq \Delta^2 + 1$ , where equality holds if and only if *G* is a Moore graph, which was improved to  $r\Delta + 1$  in [8]. Wegner [12] conjectured that if *G* is a planar graph, then

$$\chi_{\Delta}(G) = \begin{cases} \Delta(G) + 5, & \text{if } 4 \le \Delta(G) \le 7\\ \lfloor 3\Delta(G)/2 \rfloor + 1, & \text{if } \Delta(G) \ge 8. \end{cases}$$

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by edge contraction, and G is called H-minor free if G does not have H as a minor.

Define

$$K(r) = \begin{cases} r+3, & \text{if } 2 \le r \le 3; \\ \lfloor 3r/2 \rfloor + 1, & \text{if } r \ge 4. \end{cases}$$

Lih et al. proved the following towards Wegner's conjecture.

**Theorem 1.1** (*Lih et al.* [7]). Let G be a  $K_4$ -minor free graph. Then

 $\chi_{\Delta}(G) \leq K(\Delta(G)).$ 

Song et al. extended this result by proving the following theorem. Theorem 1.1 is the special case when  $r = \Delta$  of Theorem 1.2.

**Theorem 1.2** (Song et al. [11]). Let G be a K<sub>4</sub>-minor free graph. Then  $\chi_r(G) \leq K(r)$ .

A conjecture similar to the above-mentioned Wegner's conjecture is proposed in [11].

Conjecture 1.3. Let G be a planar graph. Then

$$\chi_r(G) \leq \begin{cases} r+3, & \text{if } 1 \leq r \leq 2\\ r+5, & \text{if } 3 \leq r \leq 7;\\ \lfloor 3r/2 \rfloor + 1, & \text{if } r \geq 8. \end{cases}$$

In this paper, we prove the following theorem.

**Theorem 1.4.** If  $r \ge 3$  and *G* is a planar graph with  $g(G) \ge 6$ , then  $\chi_r(G) \le r + 5$ .

When  $r \ge 8$ , we have  $r + 5 \le \lfloor 3r/2 \rfloor + 1$ . Thus Theorem 1.4, together with Theorem 1.1 of [3] with  $1 \le r \le 2$ , justifies Conjecture 1.3 for all planar graphs with girth at least 6. Bu and Zhu in [2] proved the special case when  $r = \Delta$  of Theorem 1.4, and so Theorem 1.4 is a generalization of this former result in [2].

## 2. Notations and terminology

Let *G* denote a planar graph embedded on the plane and k > 0 be an integer. We use F(G) to denote the set of all faces of this plane graph *G*. For a face  $f \in F(G)$ , if *v* is a vertex on *f* (or if *e* is an edge on *f*, respectively), then we say that *v* (or *e*, respectively) is incident with *f*. The number of edges incident with *f* is denoted by  $d_G(f)$ , where each cut edge counts twice. A face *f* of *G* is called a *k*-face (or a  $k^+$ -face, respectively) if  $d_G(f) = k$  (or  $d_G(f) \ge k$ , respectively). A vertex of degree *k* (at least *k*, at most *k*, respectively) in *G* is called a *k*-vertex ( $k^+$ -vertex,  $k^-$ -vertex, respectively). We use  $n_i(v)$  to denote the number of *i*-vertices adjacent to *v*.

For two vertices  $u, w \in V(G)$ , we say that u and w are *weak-adjacent* if there is a 2-vertex v such that  $u, w \in N_G(v)$ . A 3-vertex v is a *weak* 3-vertex if v is adjacent to a 2-vertex. The neighbors of a weak 3-vertex are called *star-adjacent*. If a 5-vertex is weak-adjacent to five 5-vertices, we call it a *bad vertex*. (As an example, see the vertex v in  $H_4$  of Fig. 2). If a 5-vertex is adjacent to one weak 3-vertex and is weak-adjacent to four other 5-vertices, we call it a *semi-bad* type vertex. As Fig. 2 demonstrates, the vertex v in  $H_5$  is a semi-bad type vertex.

Let *G* be a graph with V = V(G), and let  $V' \subseteq V$  be a vertex subset. As in [1], *G*[*V'*] is the subgraph of *G* induced by *V'*. A mapping  $c : V' \to [k]$  is a *partial* (k, r)-coloring of *G* if *c* is a (k, r)-coloring of *G*[*V'*]. The subset *V'* is the *support* of the partial (k, r)-coloring *c*. The support of *c* is denoted by *S*(*c*). If  $c_1, c_2$  are two partial (k, r)-colorings of *G* such that  $S(c_1) \subseteq S(c_2)$  and such that for any  $v \in S(c_1), c_1(v) = c_2(v)$ , then we say that  $c_2$  is an *extension* of  $c_1$ . Given a partial (k, r)-coloring *c* on  $V' \subset V(G)$ , for each  $v \in V - V'$ , define  $\{c(v)\} = \emptyset$ ; and for every vertex  $v \in V$ , we extend the definition of  $c(N_G(v))$  by setting  $c(N_G(v)) = \bigcup_{z \in N_G(v)} \{c(z)\}$ , and define

$$c[v] = \begin{cases} \{c(v)\}, & \text{if } |c(N_G(v))| \ge r; \\ \{c(v)\} \cup c(N_G(v)), & \text{otherwise.} \end{cases}$$
(1)

By (1),  $|c[v]| \le r$ . We have the following observation.

**Observation 2.1.** Let c be a partial (k, r)-coloring of G with support S(c). For any  $u \notin S(c)$ , and for any  $v \in N_G(u)$ , by the definition of c[v], we have  $|c[v]| \le \min\{d(v), r\}$  and c[v] represents the colors that cannot be used as c(u) if one wants to extend the support of c to include u. In other words, the colors in  $[k] - \bigcup_{v \in N(u)} c[v]$  are available colors to define c(u) in extending the support of c from S(c) to  $S(c) \cup \{u\}$ .

### 3. Proof of Theorem 1.4

Theorem 1.1 of [3] proved Theorem 1.4 for  $r \in \{1, 2\}$ . So we assume that  $r \ge 3$ . Let k = r + 5. Then  $k \ge 8$ . We shall argue by contradiction to prove Theorem 1.4, and assume that there exists a planar graph with girth at least 6 and without any (k, r)-coloring. Throughout the rest of this section, we assume that

*G* is a counterexample to Theorem 1.4 such that |V(G)| is minimized.

(2)

By (2), for any non-empty proper subset  $S \subset V(G)$ , G - S has a (k, r)-coloring. In the following two subsections, we first investigate the structure of this minimum counterexample G, and then use charge and discharge method to obtain a contradiction to complete the proof.

### 3.1. Structure and properties of G

Since  $\chi_r(G) = \chi_{\Delta}(G)$  for all  $r \ge \Delta(G)$ , we shall always assume that  $r \le \Delta(G)$ . We investigate the structure of this minimum counterexample *G* via a sequence of lemmas.

## Lemma 3.1. Each of the following holds.

- (i) G is 2-connected.
- (ii) G has no adjacent 2-vertices.
- (iii) *G* has no path  $v_0v_1v_2v_3$  such that in *G*,  $d(v_1) = 2$ ,  $d(v_2) = 3$ ,  $d(v_3) \le 3$ .

**Proof.** (i) If *G* is disconnected, then by (2), every component of *G* has a (k, r)-coloring, and so *G* has a (k, r)-coloring, contrary to (2). Hence *G* is connected. Assume that *G* has a cut-vertex *v* and so *G* has two nontrivial connected subgraphs  $G_1$  and  $G_2$  satisfying  $V(G_1) \cap V(G_2) = \{v\}$  and  $G = G_1 \cup G_2$ . As for  $i \in \{1, 2\}$ ,  $|V(G_i)| < |V(G)|$ , it follows by (2) that  $G_i$  has a (k, r)-coloring  $c_i$ . Permuting the colors in  $c_2(V(G_2))$  such that  $c_1(v) = c_2(v)$  and such that  $|c_1(N_{G_1}(v)) \cup c_2(N_{G_2}(v))| \ge \min\{d_G(v), r\}$ . Since  $r \le \Delta(G)$ , the permutation of colors in  $G_2$  can be done to satisfy the requirements. Now define  $c : V(G) \to [k]$  by  $c(x) = c_i(x)$  if  $v \in V(G_i)$ , for  $1 \le i \le 2$ . It follows that *c* is a (k, r)-coloring of *G*, contrary to (2). This justifies (i).

(ii) By contradiction, we assume that *G* has a path *wuvx* such that  $d_G(v) = d_G(u) = 2$ . By (2),  $G - \{u, v\}$  has a (k, r)-coloring *c*. As  $|c[w] \bigcup \{c(x)\}| \le r + 1 < k$ , we can extend *c* to  $c_1$  by letting  $c_1(u) \in [k] - c[w] \bigcup \{c(x)\}$ . Thus  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{v\}$  and  $c_1(u) \ne c_1(x)$ . As d(u) = 2, we have  $|c_1[u] \bigcup c_1[x]| \le r + 2 < k$ , which allows  $c_1$  be further extended to a (k, r)-coloring  $c_2$  of *G* by choosing  $c_2(v) \in [k] - (c_1[u] \bigcup c_1[x])$ , contrary to (2). This proves (ii).

(iii) By contradiction, we assume *G* contains a path  $P = v_0 v_1 v_2 v_3$  with  $d_G(v_1) = 2$ ,  $d_G(v_2) = 3$  and  $d_G(v_3) \le 3$ . Let  $N(v_2) = \{v_1, v_3, v_4\}$ . By (2),  $G - \{v_1\}$  has a (k, r)-coloring *c*. Let  $c_0$  denote the restriction of *c* to  $V(G) - \{v_1, v_2\}$ . Since  $d_G(v_3) \le 3$ , we have  $|c_0[v_3] \cup c_0[v_4] \cup \{c_0(v_0)\}| \le 3 + r + 1 < k$ , and so we can extend  $c_0$  to  $c_1$  by taking  $c_1(v_2) \in [k] - \{c_0(v_0)\} \bigcup c_0[v_4] \bigcup c_0[v_3]$ . This results in a (k, r)-coloring  $c_1$  of  $G - \{v_1\}$  satisfying  $c_1(v_0) \ne c_1(v_2)$ . Since  $d_G(v_2) = 3$ , we have  $|c_1[v_0] \bigcup c_1[v_2]| \le r + 3 < k$ , and so  $c_1$  can be extended to a (k, r)-coloring  $c_2$  of *G* by defining  $c_2(v_1) \in [k] - c_1[v_0] \bigcup c_1[v_2]$ , contrary to (2). This completes the proof of the lemma.  $\Box$ 

**Lemma 3.2.** Suppose v is a 2-vertex of G with  $N_G(v) = \{u, w\}$ . Let c be a partial (k, r)-coloring of G with  $v \notin S(c)$ ,  $u, w \in S(c)$  such that  $c(u) \neq c(w)$ . If  $|c[u] \bigcup c[w]| < k$ , then G has a partial (k, r)-coloring c' such that  $S(c) \cup \{v\} \subseteq S(c')$  and such that for any  $z \in S(c)$ , c(z) = c'(z). (We call that c' is a partial (k, r)-coloring extending c, or an extension of c.)

**Proof.** Since  $|c[u] \bigcup c[w]| < k$ , one can define  $c'(v) \in [k] - c[u] \bigcup c[w]$ , and c'(z) = c(z) for all  $z \in S(c)$ .  $\Box$ 

Lemma 3.3. Each of the following holds.

- (i) Any 4-vertex v of G is adjacent to at most two 2-vertices.
- (ii) If a 4-vertex v of G is adjacent to two 2-vertices, then v cannot be adjacent to any weak 3-vertex.
- (iii) If a 4-vertex v of G is adjacent to one 2-vertex, then v cannot be adjacent to three weak 3-vertices.

**Proof.** (i) By contradiction, we assume that *G* has a 4-vertex *v* adjacent to at least three 2-vertices. Thus *G* has  $H_1$  (as depicted in Fig. 1) as a subgraph. The neighbors of *v* are  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$  with  $d(v_1) = d(v_2) = d(v_3) = 2$ . By (2),  $G - v_1$  has a (k, r)-coloring. Choose a (k, r)-coloring *c* of  $G - v_1$  such that  $|\{c(v), c(x)\}|$  is maximized. We claim that  $c(v) \neq c(x)$ . Assume that, to the contrary, we have c(v) = c(x). Since *c* is a (k, r)-coloring with  $S(c) = V(G) - \{v_1\}$ , the *r*-hued condition (C2) holds



Fig. 1. A vertex is represented by a solid point if all of its incident edges are drawn, otherwise it is represented by a hollow point.



**Fig. 2.** A bad vertex v in  $H_4$  (left); a semi-bad type vertex v in  $H_5$  (right).

for each of  $v_2$ ,  $v_3$  and v if r = 3; and if  $r \ge 4$ , then  $|c(N_{G-v_1}(v))| = 3$ . Let  $c_0$  be the restriction of c to  $V(G) - \{v_1, v_2, v_3, v\}$ . Then  $c_0$  is a partial (k, r)-coloring with  $S(c_0) = V(G) - \{v_1, v_2, v_3, v\}$ . We first extend  $c_0$  by recoloring v. By Observation 2.1, the colors in  $[k] - \bigcup_{1 \le i \le 4} c_0[v_i]$  can be used to color v. Since  $c_0[v_1] = \{c_0(x)\}$  and  $|c_0[v_i]| = 1$  for  $2 \le i \le 3$ , we have  $|\bigcup_{1 \le i \le 4} c_0[v_i]| \le r + 3 < k$ . We define  $c_1(v) \in [k] - \bigcup_{1 \le i \le 4} c_0[v_i]$  and  $c_1(z) = c_0(z)$  for all  $z \in V(G) - \{v_1, v_2, v_3, v\}$ . Hence  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{v_1, v_2, v_3\}$ . Let v and  $w_j$  be the two neighbors of  $v_j$  in G, for  $2 \le j \le 3$ . With a similar argument, since  $|c_1[w_3] \cup c_1[v]| \le r + 2 < k$ , it follows by Lemma 3.2 that there exists a (k, r)-coloring  $c_3$  of  $G - \{v_1, v_2\}$ , extending  $c_2$ . But  $c_3(x) = c_1(x) \ne c_1(v) = c_3(v)$ , this leads to a contradiction to the maximality of  $|\{c(v), c(x)\}|$ . Hence we must have  $c(v) \ne c(x)$ . Since  $|c[x] \cup c[v]| \le r + 4 < k$ , it follows by Lemma 3.2 that there exists a (k, r)-coloring  $c_4$  of G, contrary to (2). This proves (i).

(ii) By contradiction, we assume that *G* has a 4-vertex *v* adjacent to two 2-vertices and at least a weak 3-vertex. Thus *G* has  $H_2$  (as depicted in Fig. 1) as a subgraph. We shall adopt the notation of  $H_2$  in Fig. 1, and let  $v_1, v_2, v_3, x$  denote the neighbors of *v* in *G* such that  $v_1, v_2$  are 2-vertices and *x* is a weak 3-vertex with  $N_G(x) = \{v, w, t\}$ . By the definition of weak 3-vertices, we may assume that  $N_G(w) = \{w', x\}$ . By (2), G - x has a (k, r)-coloring *c*. Let  $c_0$  be the restriction of *c* to  $V(G) - \{v_1, v_2, v, w, x\}$ . Thus each of  $v_1, v_2, v, w$  satisfies the *r*-hued condition (C2) under the coloring  $c_0$ . As  $|c_0[v_i]| = 1$  for  $1 \le i \le 2$  and  $c_0[x] = \{c(t)\}, |\cup_{1 \le i \le 3} c_0[v_i] \cup \{c_0(t)\}| \le r + 3 < k$ , we can extend  $c_0$  to  $c_1$  by setting  $c_1(v) \in [k] - (\bigcup_{1 \le i \le 3} c_0[v_i] \cup \{c_0(t)\})$  with  $S(c_1) = V(G) - \{v_1, v_2, w, x\}$ . Let  $\{v, w_i\}$  be the neighbor set of  $v_i$  for  $1 \le i \le 2$ . As  $|c_1[v] \cup c_1[w_1]| \le 2 + r < k$ , by Lemma 3.2,  $c_1$  can be extended to  $c_2$  with  $c_2(v_1) \in [k] - (c_1[v] \cup c_1[w_1])$  and  $S(c_2) = V(G) - \{v_2, w, x\}$ . As *w* is

a 2-vertex of *G* and as  $w, v_2 \notin S(c_2)$ , we have  $|c_2[v] \cup c_2[w] \cup c_2[t]| \leq 3 + 1 + r < k$ . Thus  $c_2$  can be extended to  $c_3$  with  $c_3(x) \in [k] - (c_2[v] \cup c_2[w] \cup c_2[t])$  and  $S(c_3) = V(G) - \{w, v_2\}$ . As  $|c_3[v] \cup c_3[w_2]| \leq 4 + r < k$ , it follows by Lemma 3.2 that  $c_3$  can be extended to  $c_4$  with  $c_4(v_2) \in [k] - (c_3[v] \cup c_3[w_2])$  and  $S(c_4) = V(G) - \{w\}$ . As  $N_G(w) = \{w', x\}$ , we have  $|c_4[x] \cup c_4[w']| \leq 3 + r < k$ . By Lemma 3.2,  $c_4$  can be extended to a (k, r)-coloring  $c_5$  of *G* by defining  $c_5(w) \in [k] - (c_4[x] \cup c_4[w'])$ , contrary to (2).

(iii) By contradiction, we assume that *G* has a 4-vertex *v* adjacent to one 2-vertex *w* and three weak 3-vertices  $v_1$ ,  $v_2$ ,  $v_3$ . Thus *G* has  $H_3$  (as depicted in Fig. 1) as a subgraph. We will adopt the notations in  $H_3$  of Fig. 1. By (2), G - w has a (k, r)-coloring *c*. Let  $c_0$  be the restriction of *c* to  $V(G) - \{v, u_1, u_2, u_3, w\}$ . For i = 1, 2, 3, let  $\{v, u_i, u'_i\}$  denote the neighbor set of  $v_i$ , and  $\{u''_i, v_i\}$  denote the neighbor set of  $u_i$ , and let  $\{v, w'\}$  be the neighbor set of w.

As  $k \ge 8$ ,  $c_0$  can be extended to a (k, r)-coloring  $c_1$  by defining

 $c_1(v) \in [k] - \{c_0(v_1), c_0(v_2), c_0(v_3), c_0(u'_1), c_0(u'_2), c_0(u'_3), c_0(w')\}$  with  $S(c_1) = V(G) - \{u_1, u_2, u_3, w\}$ .

For i = 1, 2, 3, as  $|c_1[u_i''] \cup c_1[v_i]| \le r + 3 < k$ , by Lemma 3.2,  $c_1$  can be extended to a (k, r)-coloring  $c_2$  such that  $c_2(u_i) \in [k] - (c_1[u_i''] \cup c_1[v_i])$  and  $S(c_2) = V(G) - \{w\}$ . As  $|c_2[v] \cup c_2[w']| \le 4 + r < k$ , by Lemma 3.2,  $c_2$  can be extended to a (k, r)-coloring  $c_3$  of G such that  $c_3(w) \in [k] - (c_2[v] \cup c_2[w'])$ , contrary to (2). This completes the proof of the lemma.  $\Box$ 

# **Lemma 3.4.** If $r \neq 5$ , any 5-vertex of G is adjacent to at most four 2-vertices; Furthermore, if it is adjacent to four 2-vertices, then it is not adjacent to a weak 3-vertex.

**Proof.** We argue by contradiction and assume that  $r \neq 5$  and *G* has a 5-vertex v with  $N_G(v) = \{u_1, u_2, u_3, u_4, u_5\}$ , such that  $u_1, u_2, u_3, u_4$  are 2-vertices and  $u_5$  is either a 2-vertex or a weak 3-vertex. For each i with  $1 \le i \le 4$ , let  $N_G(u_i) = \{v, v_i\}$ ; and let  $v, v_5$  be two vertices adjacent to  $u_5$ . By Lemma 3.1(ii),  $d(v_i) \ge 3$  for  $1 \le i \le 4$ . If  $u_5$  is a weak 3-vertex, then denoting  $N_G(u_5) = \{v, v_5, x\}$  where d(x) = 2, we apply Lemma 3.1(iii) to the path  $xu_5v_5$  to conclude that  $d(v_5) \ge 4$ .

If  $3 \le r \le 4$ , we have  $2r \le r + 4$ . By (2),  $G - \{v, u_1, u_2, u_3, u_4\}$  has a (k, r)-coloring  $c_1$ . Since  $|c_1[u_5] \cup \{c_1(v_1), c_1(v_2), c_1(v_3), c_1(v_4)\}| \le r + 4 < k$ , we extend  $c_1$  to a (k, r)-coloring  $c_2$  with  $S(c_2) = V(G) - \{u_1, u_2, u_3, u_4\}$  by defining  $c_2(v) \in [k] - (c_1[u_5] \cup \{c_1(v_1), c_1(v_2), c_1(v_3), c_1(v_4)\})$ . For  $1 \le i \le 4$ , as  $|c[v_i] \cup c[v]| \le 2r \le r + 4 < k$ , it follows by Lemma 3.2 that  $c_2$  can be extended to a (k, r)-coloring c of G, contrary to (2).

Therefore, we assume that  $r \ge 6$ , and so  $k = r + 5 \ge 11$ . If  $u_5$  is 2-vertex, then by (2), G - v has a (k, r)-coloring c. Let  $c_1$  be the restriction of c to  $V(G) - \{v, u_2, u_3, u_4, u_5\}$ . As  $|c_1[v_2] \cup \{c_1(u_1)\}| \le r + 1 < k$ , we extend  $c_1$  to  $c_2$  by defining  $c_2(u_2) \in [k] - (c_1[v_2] \cup \{c_1(u_1)\})$ . For i = 2, 3, 4, as  $|c_i[v_{i+1}] \cup \{c_i(u_1), \ldots, c_i(u_i)\}| \le r + 4 < k$ , the coloring  $c_i$  can be extended to  $c_{i+1}$  by defining  $c_{i+1}(u_{i+1}) \in [k] - (c_i[v_{i+1}] \cup \{c_i(u_1), \ldots, c_i(u_i)\})$ . Hence  $S(c_5) = V(G) - \{v\}$ , and  $c_5(u_1), c_5(u_2), c_5(u_3), c_5(u_4), c_5(u_5)$  are mutually distinct. Since every  $u_i$  is a 2-vertex,  $|\bigcup_{i=1}^{5} c_5[u_i]| \le 10 < 6 + 5 \le k$ , this coloring  $c_5$  can be extended to a (k, r)-coloring  $c_6$  by defining  $c_6(v) \in [k] - |\bigcup_{i=1}^{5} c_5[u_i]$ . As  $S(c_6) = V(G)$ , this is a contradiction to (2).

 $(k, r) - \text{coloring } c_6 \text{ by defining } c_6(v) \in [k] - \bigcup_{i=1}^5 c_5[u_i]. \text{ As } S(c_6) = V(G), \text{ this is a contradiction to } (2). \\ \text{Hence } u_5 \text{ must be a weak } 3 - \text{vertex, By } (2), G - v \text{ has a } (k, r) - \text{coloring } c. \text{ Let } c_1 \text{ be the restriction of } c \text{ to } V(G) - \{v, u_1, u_2, u_3, u_4, x\}. \text{ As } |c_1[v_1] \cup \{c_1(u_5)\}| \leq r+1 < k, \text{ one can extend } c_1 \text{ to } c_2 \text{ by defining } c_2(u_1) \in [k] - (c_1[v_1] \cup \{c_1(u_5)\}). \\ \text{For } i = 2, 3, 4, \text{ as } |c_i[v_i] \cup \{c_i(u_5), c_i(u_1), \dots, c_i(u_{i-1})\}| \leq r+4 < k, \text{ one can extend } c_i \text{ to } c_{i+1} \text{ by defining } c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup \{c_i(u_5), c_i(u_1), \dots, c_i(u_{i-1})\}). \\ \text{Hence } S(c_5) = V(G) - \{v, x\}, \text{ and } c_5(u_1), c_5(u_2), c_5(u_3), c_5(u_4), c_5(u_5) \text{ are mutually distinct. Note that in } G[S(c_5) \cup \{v\}], \text{ each } u_i, (1 \leq i \leq 5), \text{ is a } 2 - \text{vertex. Therefore, } |\bigcup_{i=1}^5 c_5[u_i]| \leq 10 < 6 + 5 \leq k, \\ \text{ and so } c_5 \text{ can be extended to a } (k, r) - \text{coloring } c_6 \text{ by defining } c_6(v) \in [k] - \bigcup_{i=1}^5 c_5[u_i] \text{ with } S(c_6) = V(G) - \{x\}. \\ \text{Denote } N_G(x) = \{u_5, x_1\}. \text{ Since } |c_6[u_5] \cup c_6[x_1]| \leq 3 + r < k, \text{ this coloring } c_6 \text{ can be extended to a } (k, r) - \text{coloring } c_7 \text{ of } G \text{ by defining } c_7(x) \in [k] - (c_6[u_5] \cup c_6[x_1]), \text{ contrary to } (2). \\ \text{This justifies (iii) and proves the lemma. } \square$ 

**Lemma 3.5.** If a 5-vertex v of G is adjacent to at least four 2-vertices, then any one of its weak-adjacent neighbors must be an r-vertex.

**Proof.** Denote  $N_G(v) = \{u_1, u_2, u_3, u_4, u_5\}$ . We assume that  $u_1, u_2, u_3, u_4$  are 2-vertices. Let  $N_G(u_i) = \{v, v_i\}, 1 \le i \le 4$ . By definition, each  $v_i$  is a weak-adjacent neighbor of v. By contradiction, we assume that  $v_4$  is not an r-vertex. By (2),  $G - u_4$  has a (k, r)-coloring c.

Let  $G_0 = G - \{u_1, u_2, u_3, u_4, v\}$ , and  $c_0$  be the restriction of c to  $V(G_0)$ . Since  $|\bigcup_{i=1}^{5} c_0[u_i]| \le r + 4 < k$ , we extend  $c_0$  to a (k, r)-coloring  $c_1$  with  $S(c_1) = S(c_0) \cup \{v\} = V(G_0) \cup \{v\}$  by defining  $c_1(v) \in [k] - (\bigcup_{i=1}^{5} c_0[u_i])$ . Let  $G_1 = G - \{u_1, u_2, u_3, u_4\}$ . For each i = 1, 2, 3, 4, we inductively define  $G_{i+1} = G[V(G_i) \cup \{u_i\}]$ , and extend  $c_i$  to  $c_{i+1}$  with  $S(c_{i+1}) = V(G_{i+1})$  as follows.

For  $i = 1, 2, 3, |c_i[v] \cup c_i[v_i]| \le i + 1 + r < r + 5$ . Recall that  $d_G(v_4) \ne r$ . If  $d_G(v_4) \ge r + 1$ , then by the definition of (k, r)-coloring,  $|c_4(N_{G_4}(v_4))| = |c(N_{G_4}(v_4))| \ge r$ , and so by (1),  $|c_4[v_4]| = 1$ . If  $d_G(v_4) \le r - 1$ , then  $d_{G_4}(v_4) \le r - 2$ , and so by (1),  $|c_4[v_4]| \le d_{G_4}(v_4) + 1 \le r - 1$ . Hence we always have  $|c_4[v_4] \cup c_4[v_1]| \le r - 1 + 5 < r + 5$ . For all i = 1, 2, 3, 4, the discussion above implies that  $|c_i[v] \cup c_i[v_i]| < r + 5$ , and so  $c_i(v) \ne c_i(v_i)$ . By Lemma 3.2,  $c_i$  can be extended to  $c_{i+1}$  with  $S(c_{i+1}) = V(G_i) \cup \{u_i\} = V(G_{i+1})$ . Since  $G_5 = G$ ,  $c_5$  is a (k, r)-coloring of G, contrary to (2).

**Lemma 3.6.** Suppose that r = 5 and G has a bad vertex or a semi-bad type vertex v, with  $N_G(v) = \{u_1, u_2, u_3, u_4, u_5\}$  as depicted in Fig. 2. (We shall adopt the notations in Fig. 2.) Then G - v has a (k, r)-coloring c satisfying each of the following.

(i) If v is a bad vertex, then for each i with  $1 \le i \le 5$ , we have

 $c(N[v_i] - \{u_i\}) = \{c(v_1), c(v_2), c(v_3), c(v_4), c(v_5)\} \text{ and } |\{c(v_1), c(v_2), c(v_3), c(v_4), c(v_5)\}| = 5.$ 

(ii) If v is a semi-bad type vertex, then for each i with  $1 \le i \le 4$ , we have

 $c(N[v_i] - \{u_i\}) = \{c(v_1), c(v_2), c(v_3), c(v_4), c(v_5)\}$  and  $|\{c(v_1), c(v_2), c(v_3), c(v_4), c(v_5)\}| = 5$ .

(Thus we may assume that  $c(v_5) = 5$ ,  $c(v_i) = i$  and  $c(N[v_i] - \{u_i\}) = \{1, 2, 3, 4, 5\}$ ,  $1 \le i \le 4$ .) Moreover, we have  $4 \le d(v_5) \le 5$  and one of the following must hold.

(ii-1) If  $d(v_5) = 4$ , then  $c(\{x_1, y_1, y_2, y_3\}) = \{1, 2, 3, 4\}$ , and for any  $i \in \{1, 2, 3\}$ ,  $y_i$  is not a 2-vertex. (ii-2) If  $d(v_5) = 5$ , then  $\{1, 2, 3, 4\} \subseteq c(\{x_1, y_1, y_2, y_3, y_4\})$ .

**Proof.** (i) By (2), G - v has a (k, r)-coloring c. Let  $A = \{c(v_1), c(v_2), c(v_3), c(v_4), c(v_5)\}$ . Choose  $a \in [k] - A$  such that if  $c[v_5] - A \neq \emptyset$ , then  $a \in c[v_5] - A$ . Let  $c_0$  be the restriction of c with  $S(c_0) = V(G) - \{u_1, u_2, u_3, u_4, u_5, v\}$ . **Claim 1.** |A| = 5.

By contradiction, we assume that there exist  $i, j \in \{1, 2, 3, 4, 5\}$  such that i < j and  $c_0(v_i) = c_0(v_j)$ . Then we first extend  $c_0$  to a partial (k, r)-coloring  $c_1$  by letting  $c_1(v) = a$ . Next apply Lemma 3.2 to extend  $c_1$  to a partial (k, r)-coloring  $c_2$  by coloring  $u_1$  with  $c_2(u_1) \in [k] - (c_1[v_1] \cup \{c_1(v)\})$  and  $S(c_2) = V(G) - \{u_2, u_3, u_4, u_5\}$ . For  $2 \le i \le 4$ , apply Lemma 3.2 repeatedly to extend  $c_i$  to a partial (k, r)-coloring  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup \{c_i(v), c_i(u_1), \dots, c_i(u_{i-1})\})$  with  $S(c_{i+1}) = S(c_i) \cup \{u_i\}$ . Hence  $S(c_5) = V(G) - \{u_5\}$ . If  $c[v_5] \subseteq A$ , then  $|c_5[v_5] \cup c_5[v]| \le 4 + 5 < 10$ , and so  $c_5$  can be extended to a (k, r)-coloring  $c_6$  of G by letting  $c_6(u_5) \in [k] - (c_5[v_5] \cup c_5[v])$ . If  $c[v_5] - A \ne \emptyset$ , then as  $c_5(v) = c_1(v) = a \in c_5[v_5]$ , we again have  $|c_5[v_5] \cup c_5[v]| < 10$ , and so  $c_5$  can always be extended to a (k, r)-coloring  $c_6$  of G, contrary to (2). This proves Claim 1.

By Claim 1, we have |A| = 5. By permuting the colors, we assume that in G - v has a (k, r)-coloring c such that  $c(v_i) = i$  for  $1 \le i \le 5$ . Thus  $A = \{1, 2, 3, 4, 5\}$ . Again let  $c_0$  be the restriction of c with  $S(c_0) = V(G) - \{u_1, u_2, u_3, u_4, u_5, v\}$ . Note that  $|c(N[v_i] - \{u_i\})| \le d_G(v_i)$  for all i = 1, ..., 5. If v is a bad vertex,  $d_G(v_i) = 5$  for all i = 1, ..., 5. Thus to prove (i), it suffices to justify the claim below.

**Claim 2.** For any *i* with  $1 \le i \le 5$ ,  $A \subseteq c(N[v_i] - \{u_i\})$ .

By contradiction and by symmetry, we assume that there exists a color  $a' \in A - c(N[v_1] - \{u_1\})$ . Then we extend  $c_0$  to a (k, r)-coloring  $c_1$  by choosing  $c_1(u_1) = a'$  with  $S(c_1) = S(c_0) \cup \{u_1\}$ . For each i = 2, 3, 4, 5, as  $|c_{i-1}[v_i] \cup \{c_{i-1}(u_1), \dots, c_{i-1}(u_{i-1})\}| \leq r + i - 1 < k$ , we can extend  $c_{i-1}$  to a (k, r)-coloring  $c_i$  by defining  $c_i(u_i) \in [k] - (c_{i-1}[v_i] \cup \{c_{i-1}(u_1), \dots, c_{i-1}(u_{i-1})\})$  with  $S(c_i) = S(c_{i-1}) \cup \{u_i\}$ . Since  $c_5(u_1) = c_1(u_1) = a' \in A$ , it follows that  $|\{c_5(u_1), \dots, c_5(u_5)\} \cup A| < 10 = k$ . Since  $S(c_5) = V(G) - \{v\}$ , we can extend  $c_5$  to a (k, r)-coloring  $c_6$  of G by letting  $c_6(v) \in [k] - (\{c_5(u_1), \dots, c_5(u_5)\} \cup A)$ , contrary to (2). This proves Claim 2. Now Lemma 3.6(i) follows from Claims 1 and 2. (ii) Assume that v is a semi-bad type vertex. Then  $d_G(v_5) > 4$  by Lemma 3.1(iii). We make the following claims.

**Claim 3.**  $4 \le d_G(v_5) \le 5$ .

By contradiction, we assume that  $d_G(v_5) \ge 6$ . By (2),  $G - \{u_5, x\}$  has a (k, r)-coloring c. As  $d_{G-\{u_5, x\}}(v_5) \ge 5 = r, v_5$  satisfies the r-hued condition (C2) under this coloring c, and so  $c[v_5] = \{c(v_5)\}$ . Let  $c_0$  be the restriction of c to  $S(c) - \{v\}$ . Extend  $c_0$  to  $c_1$  by letting  $c_1(v) \in [k] - (\bigcup_{i=1}^4 \{c_0(u_i)\}) \cup (\bigcup_{i=1}^5 \{c_0(v_j)\})$ . Thus  $c_1(v) \neq c_1(v_5)$  and

$$|c_1[v] \cup c_1[v_5] \cup c_1[x]| = |\{c_1(u_1), c_1(u_2), c_1(u_3), c_1(u_4), c_1(v), c_1(v_5), c_1(x_1)\}| \le 7 < k,$$

and so we can extend  $c_1$  to  $c_2$  by defining  $c_2(u_5) \in [k] - (c_1[v] \cup c_1[v_5] \cup c_1[x])$ , with  $S(c_2) = V(G) - \{x\}$ . Since  $|c_2[x_1] \cup c_2[u_5]| \le r + 3 < k$ , we can further extend  $c_2$  to a (k, r)-coloring  $c_3$  of G by letting  $c_3(x) \in [k] - (c_2[x_1] \cup c_2[u_5])$ , contrary to (2). This justifies Claim 3.

By (2), G - v has a (k, r)-coloring c. In the rest of the proof of this lemma, we let  $c_0$  denote the restriction of c to  $V(G) - \{u_1, u_2, u_3, u_4, u_5, x, v\}$ , and let  $A = c(\{v_1, v_2, v_3, v_4, v_5\})$ .

**Claim 4.** |A| = 5. (Thus we shall assume that  $A = \{1, 2, 3, 4, 5\}$  in the rest of the proof of this lemma.)

Suppose that |A| < 5. As  $S(c_0) = V(G) - \{u_1, u_2, u_3, u_4, u_5, x, v\}$ , we have  $|c_0[v_5] \cup \{c_0(x_1)\}| < k$  and so  $c_0$  can be extended to  $c_1$  by defining  $c_1(u_5) \in [k] - (c_0[v_5] \cup \{c_0(x_1)\})$ . Define  $u_0 = u_5$ . For i = 1, 2, 3, 4, as  $|c_i[v_i] \cup \{c_i(u_0), c_i(u_1), \dots, c_i(u_{i-1})\}| \leq r + 4 < k$ ,  $c_i$  can be extended to  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup \{c_i(u_0), c_i(u_1), \dots, c_i(u_{i-1})\}| \leq r + 4 < k$ ,  $c_i$  can be extended to  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup \{c_i(u_0), c_i(u_1), \dots, c_i(u_{i-1})\})$ . Now  $S(c_5) = V(G) - \{v, x\}$ . Since  $|A| \leq 4$ ,  $|c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A| \leq 5 + 4 = 9 < k$ , we extend  $c_5$  to  $c_6$  by defining  $c_6(v) \in [k] - (c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A)$ . Since  $c_6(u_5) = c_1(u_5) \neq c_0(x_1) = c_6(x_1)$ , and since  $|c_6[x_1] \cup c_6[u_5]| \leq r + 3 < k$ , it follows by Lemma 3.2,  $c_6$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Claim 4.

**Claim 5.** For  $1 \le i \le 4$ , we have  $c(N[v_i] - \{u_i\}) = A = \{1, 2, 3, 4, 5\}$ .

By contradiction, we may assume that there exists a  $j \in A - c(N[v_1] - \{u_1\})$ . First extend  $c_0$  to  $c_1$  by defining  $c_1(u_1) = j$ . As  $|c_1[v_5] \cup c_1(\{u_1, x_1\})| \leq 5 + 2 < k$ , we extend  $c_1$  to  $c_2$  by defining  $c_2(u_5) \in [k] - (c_1[v_5] \cup c_1(\{u_1, x_1\}))$ . For i = 2, 3, 4, as  $|c_i[v_i] \cup \{c_i(u_5), c_i(u_1), \dots, c_i(u_{i-1})\}| \leq r + 4 < k$ ,  $c_i$  can be extended to  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup \{c_i(u_5), c_i(u_1), \dots, c_i(u_{i-1})\}|$ . Now  $S(c_5) = V(G) - \{v, x\}$ . Since  $c_5(u_1) = c_1(u_1) = j \in A$ , we have  $|c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A| < 10 = k$ . Hence  $c_5$  can be extended to  $c_6$  by defining  $c_6(v) \in [k] - (c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A)$ . Since  $c_6(u_5) = c_2(u_5) \neq c_1(x_1) = c_6(x_1)$  and since  $|c_6[x_1] \cup c_6[u_5]| \leq r + 3 < k$ , it follows by Lemma 3.2 that  $c_6$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Claim 5.

By Claim 3,  $d_G(v_5) \in \{4, 5\}$ . Thus we will proceed our proof by discussing each of these two possibilities. As noted before, we have a (k, r)-coloring of G - v with  $c(v_i) = i$ ,  $(1 \le i \le 5)$ ,  $A = c(\{v_1, v_2, v_3, v_4, v_5\})$  and  $c_0$  is its restriction with



**Fig. 3.** v is a semi-bad type vertex and  $v_5$  is adjacent to three weak-3-vertices.

 $S(c_0) = V(G) - \{u_1, u_2, u_3, u_4, u_5, x, v\}$ . We will continue using the notations of  $H_5$  in Fig. 2 for our discussions below, except that  $y_4$  will be removed in the proof of Case 1.

# **Case 1.** $d(v_5) = 4$ .

We shall show that (ii-1) holds. As  $c(v_5) = 5$ , we first claim that  $c(\{x_1, y_1, y_2, y_3\}) = \{1, 2, 3, 4\}$ . Assume that the claim is false and there exists a color  $a \in \{1, 2, 3, 4\} - c(\{x_1, y_1, y_2, y_3\})$ . Then we extend  $c_0$  to  $c_1$  by assigning  $c_1(u_5) = a$ . Let  $u_0 = u_5$ . For  $1 \le i \le 4$ , as  $|c_i[v_i] \cup c_i(\{u_0, u_1, \dots, u_{i-1}\})| \le r + 4 < k$ , we can extend  $c_i$  to  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup c_i(\{u_0, u_1, \dots, u_{i-1}\}))$ . Note that  $S(c_5) = V(G) - \{v, x\}$ . As  $c_5(u_5) = c_1(u_5) = a \in A$ , we have  $|c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A| < 10 = k$ . Hence we can extend  $c_5$  to  $c_6$  by letting  $c_6(v) \in [k] - c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A$ . As  $|c_6[x_1] \cup c_6[u_5]| \le r+3 < k$  and  $c_6(u_5) = c_1(u_5) = a \ne c_0(x_1) = c_6(x_1)$ , by Lemma 3.2,  $c_6$  can be extended to a (k, r)-coloring  $c_7$  of G by letting  $c_7(x) \in [k] - (c_6[x_1] \cup c_6[u_5])$ , contrary to (2). This justifies the claim that  $c(\{x_1, y_1, y_2, y_3\}) = \{1, 2, 3, 4\}$ .

We claim next that for any *i* with  $1 \le i \le 3$ ,  $y_i$  cannot be a 2-vertex. If not, we may assume that  $y_1$  is a 2-vertex. Let  $a' = c(y_1)$ . Let  $c'_0$  be the restriction of  $c_0$  with  $S(c'_0) = S(c_0) - \{y_1\} = V(G) - \{u_1, u_2, u_3, u_4, u_5, y_1, v, x\}$ . Extend  $c'_0$  to  $c'_1$  by defining  $c'_1(u_5) = a' \in \{1, 2, 3, 4\}$ . Similar to the arguments above,  $c'_1$  can be extended to  $c'_5$  with  $S(c'_5) = V(G) - \{v, x, y_1\}$ . Since  $c(N[v_i] - \{u_i\}) = A$  for  $1 \le i \le 4$ ,  $c'_5(\{u_1, u_2, u_3, u_4\}) \subset \{6, 7, 8, 9, 10\}$ . As  $c'_5(u_5) = c'_1(u_5) \in A$ , we have  $|c'_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A| < 10 = k$ . Hence we can extend  $c'_5$  to  $c'_6$  by letting  $c'_6(v) \in [k] - (c'_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A)$ . Let  $N_G(y_1) = \{w, v_5\}$ . For  $|c'_6[w] \cup c'_6[v_5]| \le r + 4 < k$  and  $|c'_6[x_1] \cup c'_6[u_5]| \le r + 3 < k$ , we extend  $c'_6$  to a (k, r)-coloring  $c'_7$  of G by letting  $c'_7(y_1) \in [k] - (c'_6[w] \cup c'_6[v_5])$  and  $c'_7(x) \in [k] - (c'_6[u_1] \cup c'_6[u_5])$ , contrary to (2). Thus by symmetry, for any  $1 \le i \le 3$ ,  $y_i$  is not a 2-vertex.

### **Case 2.** $d(v_5) = 5$ .

We shall show that (ii-2) holds. By contradiction, we assume that there exists a color  $a \in \{1, 2, 3, 4\} - c(\{x_1, y_1, y_2, y_3, y_4\})$ . Then we extend  $c_0$  to  $c_1$  by assigning  $c_1(u_5) = a$ . Let  $u_0 = u_5$ . For  $1 \le i \le 4$ , as  $|c_i[v_i] \cup c_i(\{u_0, u_1, \dots, u_{i-1}\})| \le r + 4 < k$ , we can extend  $c_i$  to  $c_{i+1}$  by defining  $c_{i+1}(u_i) \in [k] - (c_i[v_i] \cup c_i(\{u_0, u_1, \dots, u_{i-1}\}))$ . Note that  $S(c_5) = V(G) - \{v, x\}$ . As  $c_5(u_5) = c_1(u_5) = a \in A$ , we have  $|c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A| < 10 = k$ . Hence we can extend  $c_5$  to  $c_6$  by letting  $c_6(v) \in [k] - c_5(\{u_1, u_2, u_3, u_4, u_5\}) \cup A$ . As  $|c_6[x_1] \cup c_6[u_5]| \le r + 3 < k$  and  $c_6(u_5) \ne c_6(x_1)$ , we finally extend  $c_6$  to a (k, r)-coloring  $c_7$  of G by letting  $c_7(x) \in [k] - (c_6[x_1] \cup c_6[u_5])$ , contrary to (2). This completes the proof for Case 2, as well as the proof for the lemma.  $\Box$ 

**Lemma 3.7.** Suppose that r = 5 and *G* has a semi-bad type vertex *v*. Let  $N_G(v) = \{u_1, u_2, u_3, u_4, u_5\}$  such that  $u_5$  is the weak 3-vertex which is adjacent to *v* with  $N_G(u_5) = \{v, v_5, x\}$ . If  $d(v_5) = 4$ , then  $v_5$  is adjacent to at most two weak 3-vertices.

**Proof.** By contradiction, we assume that G, v and  $v_5$  satisfy the hypothesis of the lemma with  $d(v_5) = 4$ , and  $v_5$  is adjacent to three weak 3-vertices  $y_1$ ,  $y_2$ ,  $u_5$ , (see Fig. 3). Hence  $H_6$  depicted in Fig. 3 is a subgraph of G. We shall use the notations in Fig. 3 in the proof of this lemma.

By (2), G - v has a (k, r)-coloring c. By Lemma 3.6, we assume that

$$c(v_i) = i, \quad (1 \le i \le 5), \qquad c(x_1) = 4 \text{ and } c(y_j) = j, \ (1 \le j \le 3).$$
 (3)

Let *c* denote the restriction of *c* itself to  $V(G) - \{v, t_1, t_2, x, u_1, u_2, u_3, u_4, u_5\}$ . By Lemma 3.6(ii), we may assume (by recoloring) that  $c(u_i) = i + 5$ , for i = 1, 2, 3, 4. Extend this recolored *c* with  $S(c) = V(G) - \{v, t_1, t_2, x, u_5\}$  to  $c_1$  by defining  $c_1(v) = 10$ . By Lemma 3.1(3),  $w_1$ ,  $s_1$  must be 4<sup>+</sup>-vertices.

**Claim 1.**  $\{4, 6, 7, 8, 9, 10\} \subseteq c_1(N[w_1] \cup \{w_2\} - \{y_1\}) \cap c_1(N[s_1] \cup \{s_2\} - \{y_2\}).$ 

By symmetry, it suffices to prove that  $\{4, 6, 7, 8, 9, 10\} \subseteq c_1(N[w_1] \cup \{w_2\} - \{y_1\})$ . By contradiction, assume that there exists a color  $a' \in \{4, 6, 7, 8, 9, 10\} - c_1(N[w_1] \cup \{w_2\} - \{y_1\})$ . Recall that we have  $c_1(y_1) = c(y_1) = 1$ . Define

$$c_{2}'(z) = \begin{cases} c_{1}(z) & \text{if } z \in S(c_{1}) - \{y_{1}\} \\ a' & \text{if } z = y_{1} \\ 1 & \text{if } z = u_{5}. \end{cases}$$

As  $a' \in \{4, 6, 7, 8, 9, 10\} - c'_2(N[w_1] \cup \{w_2\} - \{y_1\})$ , we note that both  $c'_2(y_1) = a' \notin c'_2[w_1] \cup c'_2[t_1] \cup c'_2[v_5] - \{c'_2(y_1)\}$ and  $c'_2(u_5) = 1 \notin c'_2(N_G[v] \cup N_G[v_5] \cup \{x_1\} - \{u_5\})$ . Therefore by definition,  $c'_2$  is a partial (k, r)-coloring with  $S(c'_2) = V(G) - \{x, t_1, t_2\}$ .

As  $c'_{2}(u_{5}) = 1 \neq 4 = c'_{2}(x_{1}), c'_{2}(y_{1}) = a' \neq c'_{2}(w_{2}), c'_{2}(y_{2}) = c(y_{2}) \neq c(s_{2}) = c'_{2}(s_{2})$ , it follows by Lemma 3.2 that  $c'_{2}$  can be extended to a (k, r)-coloring of G, contrary to (2). Hence we must have  $\{4, 6, 7, 8, 9, 10\} \subseteq c_{1}(N[w_{1}] \cup \{w_{2}\} - \{y_{1}\})$ . By symmetry, we also have  $\{4, 6, 7, 8, 9, 10\} \subseteq c_{1}(N[s_{1}] \cup \{s_{2}\} - \{y_{2}\})$ . This proves Claim 1.

**Claim 2.**  $c_1(N[w_1] \cup \{w_2\} - \{y_1\}) = \{4, 6, 7, 8, 9, 10\}$  and  $c_1(N[s_1] \cup \{s_2\} - \{y_2\}) = \{4, 6, 7, 8, 9, 10\}$ .

By contradiction and Claim 1, assume that  $c_1(N[w_1] \cup \{w_2\} - \{y_1\}) \supset \{4, 6, 7, 8, 9, 10\}$ . Thus  $|c_1(N(w_1) - \{y_1\})| \ge 5$ , and so the forbidden color set of  $y_1$  is  $c_1(\{w_1, w_2, v_5, y_2, y_3\})$ . Let  $a'' \in ([k] - \{1\}) - c_1(\{w_1, w_2, v_5, y_2, y_3\})$ . Define

$$c_2''(z) = \begin{cases} c_1(z) & \text{if } z \in S(c_1) - \{y_1 \\ a'' & \text{if } z = y_1 \\ 1 & \text{if } z = u_5. \end{cases}$$

With a similar analysis as in Claim 1,  $c_2''$  is a partial (k, r)-coloring with  $S(c_2'') = V(G) - \{x, t_1, t_2\}$ . By Lemma 3.2,  $c_2''$  can be extended to (k, r)-coloring of *G*, contrary to (2). Hence we must have  $c_1(N[w_1] \cup \{w_2\} - \{y_1\}) = \{4, 6, 7, 8, 9, 10\}$ . By symmetry, we also have  $c_1(N[s_1] \cup \{s_2\} - \{y_2\}) = \{4, 6, 7, 8, 9, 10\}$ . This proves Claim 2.

We now continue the proof of the lemma. Define

$$c_2(z) = \begin{cases} c_1(z) & \text{if } z \in S(c_1) - \{v, v_5, y_1\} \\ 5 & \text{if } z \in \{v, y_1\}. \end{cases}$$

By Claim 2, (3) and since  $c_1$  is a partial (k, r)-coloring of G, we conclude that  $c_2$  is also a partial (k, r)-coloring of G with  $S(c_2) = S(c_1) - \{v_5\} = V(G) - \{x, t_1, t_2, u_5, v_5\}$ . Since  $c_2[y_1] = \{c_2(y_1), c_2(w_1)\}, c_2[y_2] = \{c_2(y_2), c_2(s_1)\}, c_2[u_5] = \{c_2(v)\}$  and  $c_2(y_1) = c_2(v)$ , we have  $|c_2[y_1] \cup c_2[y_2] \cup c_2[u_5] \cup c_2[y_3]| \le 4 + r < k$ , and so there exists a color  $a \in [k] - (c_2[y_1] \cup c_2[y_2] \cup c_2[u_5] \cup c_2(y_3)]$ . Extend  $c_2$  to  $c_3$  by defining  $c_3(v_5) = a$ . By the choice of  $a, c_3$  is a partial (k, r)-coloring with  $S(c_3) = V(G) - \{x, t_1, t_2, u_5\}$ . Since  $c_3(v) = c_3(y_1) \in c_3[v_5] \cap c_3[v]$ , we have  $|c_3[v_5] \cup c_3[v] \cup c_3[x] \le 8 + 1 < k$ . Extend  $c_3$  to  $c_4$  by defining  $c_4(u_5) \in [k] - (c_3[v_5] \cup c_3[v] \cup c_3[x])$ . Thus  $c_4$  is a partial (k, r)-coloring of G with  $S(c_4) = V(G) - \{x, t_1, t_2\}$ . As  $c_4(u_5) \neq c_4(x_1), c_4(y_1) = 5 \neq c_4(w_2), c_4(y_2) = c(y_2) \neq c(s_2) = c_4(s_2)$ , it follows by Lemma 3.2 that  $c_4$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves the lemma.  $\Box$ 

**Lemma 3.8.** Suppose that r = 5 (and so k = 10). Each of the following holds for G.

(i) Any two bad vertices cannot be weak-adjacent.

(ii) Any two semi-bad type vertices cannot be star-adjacent.

(iii) Any two semi-bad type vertices cannot be weak-adjacent.

(iv) A bad vertex cannot be weak-adjacent to a semi-bad type vertex.

**Proof.** (i) Assume that *G* has two bad vertices *u* and *v* which are weak-adjacent. By definition, *G* has a 2-vertex *x* adjacent to both *u* and *v*. Denote  $N_G(u) = \{x, u_1, u_2, u_3, u_4\}$  and  $N_G(v) = \{x, v_1, v_2, v_3, v_4\}$ , where each  $u_i$  is a 2-vertex and each  $v_j$  is a 2-vertex. Then *G* has a subgraph isomorphic to  $H_7$  as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our arguments below. For  $1 \le i \le 4$ , denote  $N_G(u_i) = \{u, u_i'\}$  and  $N_G(v_i) = \{v, v_i'\}$ .

By (2), G - v has a (k, r)-coloring c. By Lemma 3.6(i), we may assume that,

$$c(u) = 5$$
, for  $1 \le i \le 4$ ,  $c(u_i) = i$ ,  $c(v'_i) = i$  and  $c(N[v'_i] - \{v_i\}) = \{1, 2, 3, 4, 5\}.$  (4)

Let  $c_0$  be the restriction of c to  $V(G) - \{u, v, v_1, v_2, v_3, v_4, x\}$ . Pick a color  $a \in \{6, 7, 8, 9, 10\} - c(\{u'_1, u'_2, u'_3, u'_4\})$ . Denote  $\{6, 7, 8, 9, 10\} = \{a, a', a_2, a_3, a_4\}$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a & \text{if } z \in \{u, v_{1}\} \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, 4\}. \end{cases}$$

By (4),  $c_1$  is a (k, r)-coloring of *G*, contrary to (2). This justifies (i).



Fig. 4. Four cases of weak-adjacency and star-adjacency.

(ii) Assume that *G* has two semi-bad type vertices *u* and *v* which are star-adjacent. By definition, *G* has a 3-vertex *x* adjacent to a 2-vertex as well as to both *u* and *v*. Denote  $N_G(x) = \{u, v, x'\}$ ,  $N_G(x') = \{u_5, x\}$ ,  $N_G(u) = \{x, u_1, u_2, u_3, u_4\}$  and  $N_G(v) = \{x, v_1, v_2, v_3, v_4\}$ , where for  $1 \le i, j \le 4$ , each  $u_i$  is a 2-vertex and each  $v_j$  is a 2-vertex. Then *G* has a subgraph isomorphic to  $H_7$  as depicted in Fig. 4. We shall adopt the notation in Fig. 4 in our argument below. For  $1 \le i \le 4$ , let  $u'_i(v'_i, respectively)$  denote the other neighbor of  $u_i(v_i, respectively)$ .

By (2), G - v has a (k, r)-coloring c. By Lemma 3.6(ii), we may assume that,

$$c(u) = 5, \text{ for } 1 \le i \le 4, \quad c(v'_i) = i, \quad c(N[v'_i] - \{v_i\}) = \{1, 2, 3, 4, 5\}$$
  
and  $\{1, 2, 3, 4\} \subseteq c(\{u_1, u_2, u_3, u_4, u_5\}).$  (5)

Let  $c_0$  be the restriction of c to  $V(G) - \{u, v, x, x', v_1, v_2, v_3, v_4\}$ .

**Case (ii)-1.**  $c(u_5) \ge 5$ , and so by (5)  $c(\{u_1, u_2, u_3, u_4\}) = \{1, 2, 3, 4\}$ . Choose colors  $a \in \{6, 7, 8, 9, 10\} - c(\{u'_1, u'_2, u'_3, u'_4\})$  and  $a' \in \{6, 7, 8, 9, 10\} - \{a, c(u_5)\}$ . Denote  $\{6, 7, 8, 9, 10\} - \{a', a\} = \{a_2, a_3, a_4\}$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = v \\ a & \text{if } z \in \{u, v_{1}\} \\ a' & \text{if } z = x \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, 4\} \end{cases}$$

By (5),  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{x'\}$  such that  $c_1(x) \neq c_1(u_5)$ . By Lemma 3.2,  $c_1$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-1.

**Case (ii)-2.**  $c(u_5) \in \{1, 2, 3, 4\}$ . By symmetry, we assume that  $c(u_5) = 1$ .

By Lemma 3.6(ii),  $\{2, 3, 4\} \subseteq c(\{u_1, u_2, u_3, u_4\})$ , and so we may assume that  $c(u_i) = i$ ,  $(2 \le i \le 4)$ , and  $c(u_1) \in \{1, 6, 7, 8, 9, 10\}$ .

**Case (ii)-2.1.**  $c(u_1) = 1$ .

Choose  $a \in \{6, 7, 8, 9, 10\} - c(\{u'_1, u'_2, u'_3, u'_4\})$  and  $a' \in \{6, 7, 8, 9, 10\} - \{a\}$ . Denote  $\{6, 7, 8, 9, 10\} - \{a', a\} = \{a_2, a_3, a_4\}$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a & \text{if } z \in \{u, v_{1}\} \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, 4\}. \end{cases}$$

By (5),  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{x'\}$ , such that  $c_1(x) = 5 \neq 1 = c_1(u_5)$ . By Lemma 3.2,  $c_1$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-2.1.

# **Case (ii)-2.2.** $c(u_1) \in \{6, 7, 8, 9, 10\}.$

Choose a color  $a \in \{1, 6, 7, 8, 9, 10\} - c(\{u_1, u'_1, u'_2, u'_3, u'_4\})$ . If a = 1, denote  $\{6, 7, 8, 9, 10\} = \{a', a_1, a_2, a_3, a_4\}$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a & \text{if } z = u \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{1, 2, 3, 4\} \end{cases}$$

If  $a \in \{6, 7, 8, 9, 10\}$ , denote  $\{6, 7, 8, 9, 10\} = \{a, a', a_2, a_3, a_4\}$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a & \text{if } z \in \{u, v_{1}\} \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, 4\}. \end{cases}$$

By (5),  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{x'\}$  such that  $c_1(x) \neq c_1(u_5)$ . By Lemma 3.2,  $c_1$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (ii)-2.2, and completes the proof of (ii).

(iii) By contradiction, assume that *G* has two semi-bad type vertices *u* and *v* which are weak-adjacent. By definition, *G* has a 2-vertex *x* adjacent to both *u* and *v*. Denote  $N_G(u) = \{x, u_1, u_2, u_3, u_4\}$  and  $N_G(v) = \{x, v_1, v_2, v_3, v_4\}$ . By definition, we assume that  $u_1, u_2, u_3$  and  $v_1, v_2, v_3$  are 2-vertices,  $u_4$  is a 3-vertex with  $N_G(u_4) = \{u, u'_4, t_2\}$ , and  $v_4$  is a 3-vertex with  $N_G(v_4) = \{v, v'_4, t_1\}$ . Also denote  $N_G(t_1) = \{v_4, t'_1\}$  and  $N_G(t_2) = \{u_4, t'_2\}$ . For each  $1 \le i \le 3$ , let  $N_G(u_i) = \{u, u'_i\}$  and  $N_G(v_i) = \{v, v'_4\}$ . Then *G* has a subgraph isomorphic to  $H_9$  as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our argument below.

By (2), G - v has a (k, r)-coloring c. By Lemma 3.6(ii), we may assume that, for some color a with  $1 \le a \le 10$ ,

$$c(u) = 5, \text{ and for } 1 \le i \le 4, \ c(u_i) = i, \text{ for } 1 \le j \le 3, \qquad c(N[v_j'] - \{v_j\}) = \{1, 2, 3, 4, 5\},$$
  
and  $c((N(v_4') - \{v_4\}) \bigcup \{t_1'\}) = \{1, 2, 3, 4, a\}.$  (6)

Let  $c_0$  be the restriction of c to  $V(G) - \{u, v, v_1, v_2, v_3, v_4, x, t_1, t_2\}$ . Choose  $a_1 \in \{6, 7, 8, 9, 10\} - c(\{u'_1, u'_2, u'_3, u'_4\})$ . Define

$$c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a_{1} & \text{if } z \in \{u, v_{1}\} \end{cases}$$

By (6),  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{v, v_2, v_3, v_4, t_1, t_2\}$ .

**Case (iii)-1.**  $a \in \{1, 2, 3, 4, 5\}$ . Thus by (6),  $c_1(t'_1) \in \{1, 2, 3, 4, 5\}$ .

Denote  $\{6, 7, 8, 9, 10\} = \{a_1, a', a_2, a_3, a_4\}$ . Define

$$c_2(z) = \begin{cases} c_0(z) & \text{if } z \in S(c_1) \\ a' & \text{if } z = v \\ a_i & \text{if } z = v_i, i \in \{2, 3, 4\}. \end{cases}$$

**Case (iii)-2.** *a* ∈ {6, 7, 8, 9, 10}

Choose  $a_4 \in \{6, 7, 8, 9, 10\} - \{a, a_1\}$ . Denote  $\{6, 7, 8, 9, 10\} - \{a_1, a_4\} = \{a', a_2, a_3\}$ . Define

4}.

$$c_{2}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{1}) \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, \} \end{cases}$$

261

By (5),  $c_2$  is a partial (k, r)-coloring with  $S(c_2) = V(G) - \{t_1, t_2\}$  such that  $c_2(t'_1) \neq c_2(v_4)$  and  $c_2(t'_2) \neq c_2(u_4)$ . By Lemma 3.2,  $c_2$  can be extended to a (k, r)-coloring of G, contrary to (2). This proves Case (iii).

(iv) By Contradiction, we assume that a semi-bad type vertex u is weak-adjacent to a bad vertex v in G. Denote  $N_G(u) = \{x, u_1, u_2, u_3, u_4\}$  and  $N_G(v) = \{x, v_1, v_2, v_3, v_4\}$ . By definition, we assume that  $u_1, u_2, u_3$  and  $v_1, v_2, v_3, v_4$  are 2-vertices,  $u_4$  is a 3-vertex with  $N_G(u_4) = \{u, u'_4, t_1\}$ , and  $N_G(t_1) = \{u_4, t'_1\}$ . Then G has a subgraph isomorphic to  $H_{10}$  as depicted in Fig. 4. We shall adopt the notations in Fig. 4 in our arguments below. For  $1 \le i \le 3$ , denote  $N_G(u_i) = \{u, u'_i\}$ ; and for  $1 \le j \le 4$ , denote  $N_G(v_i) = \{v, v'_i\}$ .

By (2), G - v has a (k, r)-coloring c. By Lemma 3.6(i), we may assume that

$$c(u) = 5$$
, for  $1 \le i \le 4$ ,  $c(u_i) = c(v'_i) = i$  and  $c(N[v'_i] - \{v_i\}) = \{1, 2, 3, 4, 5\}.$  (7)

Let  $c_0$  be the restriction of c to  $V(G) - \{u, v, v_1, v_2, v_3, v_4, x, t_1\}$ . Choose  $a \in \{6, 7, 8, 9, 10\} - c(\{u'_1, u'_2, u'_3, u'_4\})$ , and let  $\{6, 7, 8, 9, 10\} = \{a, a', a_2, a_3, a_4\}$ .

Define

 $c_{1}(z) = \begin{cases} c_{0}(z) & \text{if } z \in S(c_{0}) \\ 5 & \text{if } z = x \\ a & \text{if } z = u, v_{1} \\ a' & \text{if } z = v \\ a_{i} & \text{if } z = v_{i}, i \in \{2, 3, 4\}. \end{cases}$ 

By (7),  $c_1$  is a partial (k, r)-coloring with  $S(c_1) = V(G) - \{t_1\}$  such that  $c_1(t'_1) \neq c_1(u_4)$ . By Lemma 3.2,  $c_1$  can be extended to a (k, r)-coloring of G, contrary to (2). This completes the proof of (iv).

**Lemma 3.9.** Suppose that r = 5. Let  $F_1 = \{f_1, f_2, f_3, f_4, f_5\}$  be the set of faces incident with a bad vertex v of G, as shown in the graph  $H_4$  depicted in Fig. 2; and  $F_2 = \{f_1, f_2, f_3\}$  be the subset set of faces incident with a semi-bad type vertex v of G, as shown in the graph  $H_5$  depicted in Fig. 2. Let s and t be the vertices as shown in  $H_4$  or in  $H_5$  in Fig. 2. Suppose that  $f = v_2 u_2 v u_3 v_3 s$  is a 6-face which is in  $F_1$  or in  $F_2$ . Then each of the following holds.

(i) 
$$d_G(s) \geq 3$$
, and

(ii) if  $d_G(s) = 3$ , then  $d_G(t) \ge 3$ .

**Proof.** We shall argue using the notations in Fig. 2. By (2), G - v has a (k, r)-coloring c. By Lemma 3.6, we may assume that  $c(v_i) = i$  for  $1 \le i \le 5$ ,  $c(s) \in \{1, 2, 3, 4, 5\}$ , and for  $1 \le j \le 4$ ,  $c(N[v_j] - \{u_j\}) = \{1, 2, 3, 4, 5\}$ . Furthermore, if v is a bad vertex, then  $c(N[v_5] - \{u_5\}) = \{1, 2, 3, 4, 5\}$ , and if v is a semi-bad type vertex, then  $\{1, 2, 3, 4\} \subseteq c(N(v_5) - \{u_5\}) \cup \{x_1\}$ . Thus  $c(u_5) \in \{6, 7, 8, 9, 10\}$ .

(i) Assume first by contradiction that  $d_G(s) = 2$  and  $N_G(s) = \{v_2, v_3\}$ . Let  $c_1$  be the restriction of c to  $V(G) - \{s, u_1, u_2, u_3, u_4, v\}$ . Denote  $\{6, 7, 8, 9, 10\} = \{a, c(u_5), a_1, a_3, a_4\}$ . Extend  $c_1$  to a (k, r)-coloring  $c_2$  by defining  $c_2(u_2) = c(s), c_2(v) = a$ , and  $c_2(u_i) = a_i$  for i = 1, 3, 4. Now  $S(c_2) = V(G) - \{s\}, c_2(v_2) \neq c_2(v_3)$  and  $c_2[v_2] \cup c_2[v_3] = \{1, 2, 3, 4, 5, a_3\}$ . By Lemma 3.2,  $c_2$  can be extended to a (k, r)-coloring of G by coloring s, contrary to (2).

(ii) Now assume that  $d_G(s) = 3$  and  $N_G(s) = \{t, v_2, v_3\}$ . By contradiction, assume that  $d_G(t) = 2$ , let  $t' \neq s$  be another neighbor of t. Let  $c_1$  be the restriction of c to  $V(G) - \{s, t, u_1, u_2, u_3, u_4, v\}$ . Denote  $\{6, 7, 8, 9, 10\} = \{a, c(u_5), a_1, a_3, a_4\}$ . Extend  $c_1$  to a (k, r)-coloring  $c_2$  by defining  $c_2(u_2) = c(s)$ ,  $c_2(v) = a$ , and  $c_2(u_i) = a_i$  for i = 1, 3, 4. Now  $S(c_2) = V(G) - \{s, t\}$ . As  $c_2(v_2) \neq c_2(v_3)$ ,  $\{c_2(t)\} = \phi$  and as  $|c_2[v_2] \cup c_2[v_3] \cup c_2[t]| \leq 7$ , we conclude that  $c_2$  can be extended to a partial (k, r)-coloring  $c_3$  by defining  $c_3(s) \in [k] - (c_2[v_2] \cup c_2[v_3] \cup c_2[t])$ , with  $S(c_3) = V(G) - \{t\}$ . Since  $c_3(s) \neq c_3(t')$  and since  $|c_3[t'] \cup c_3[s]| \leq r+3 < k$ , by Lemma 3.2,  $c_3$  can be extended to a (k, r)-coloring of G by coloring t, contrary to (2).

#### 3.2. Discharging

We will complete the proof of Theorem 1.4 in this subsection. Throughout this section, *G* always denotes a 2-connected plane graph embedded on the plane with girth at least 6. Let F = F(G) denote the set of all faces of *G*. We will use V = V(G) and E = E(G). We assign the initial charges to the vertices and faces of *G* as a weight function *w* defined as follows

$$w(x) = \begin{cases} 2d_G(x) - 6 & \text{if } x \in V \\ d_G(x) - 6 & \text{if } x \in F. \end{cases}$$

By Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 and by the relation  $\sum_{v \in V} d(v) = \sum_{f \in F} d(f) = 2|E|$  (Theorem 10.10 of [1]), it follows that

$$\sum_{x \in V(G) \cup F(G)} w(x) = \sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -12.$$
(8)

**Discharging Rules** We will recharge the vertices and faces of *G* with certain charge and discharge rules. The resulting new charge will be denoted as a new weight function w'. A contradiction to (8) will then be obtained if the new charge w'

satisfies  $w'(x) \ge 0$  for all  $x \in V \bigcup F$ . This contradiction then will establish Theorem 1.4. In the following, we will describe our recharge and discharging rules based on the different cases. Depending whether r = 5 or not, we use different rules. In the discharge rules (R1) and (R2) defined below, for all unmentioned vertex or face  $x \in V \cup F$ , we do not charge the charge of x. That is, w'(x) = w(x).

(R1) Suppose that  $r \neq 5$ . For a vertex v, and for each i > 0, let  $n_i(v)$  be the number of *i*-vertices in  $N_c(v)$ , and define  $n_{i^+}(v) = \sum_{i>i} n_j(v).$ 

(i) If a 2-vertex v is adjacent to two 4<sup>+</sup>-vertices  $v_1$ ,  $v_2$ , then increase the charge of v by 2, and for i = 1, 2, reduced the charge of  $v_i$  by 1.

(ii) If a 2-vertex v is adjacent to one 4<sup>+</sup>-vertex  $v_1$ , and one 3-vertex  $v_2$  such that  $N_G(v_2) = \{v, v_2^1, v_2^2\}$ , then increase the charge of v by 2, reduced the charge of  $v_1$  by 1, and for i = 1, 2, reduced the charge of  $v_2^i$  by  $\frac{1}{2}$ .

(iii) If a 2-vertex v is adjacent to two 3-vertices  $v_1, v_2$  such that for  $1 \le j \le 2$ ,  $N_G(v_j) = \{v, v_j^1, v_j^2\}$ , (as girth of G is at least 6,  $N_G(v_1) \cap N_G(v_2) = \{v\}$ , then increase the charge of v by 2, and for 1 < i, j < 2, decrease the charge of  $v_i^i$  by  $\frac{1}{2}$ .

**Claim 1.** Let w'(x) denote the new charge of each  $x \in V \cup F$  after the applications of (R1). Then for any  $x \in V \cup F$ , we have w'(x) > 0.

**Proof of Claim 1.** Since the girth of G is at least 6, if follows that for any  $f \in F$ , we have w'(f) = w(f) = d(f) - 6 > 0. Let  $v \in V$  be a *d*-vertex and  $N_G(v) = \{v_1, v_2, \cdots, v_d\}$ .

**Case 1.1**  $d_G(v) = 2$ . By Lemma 3.1,  $n_2(v) = 0$  and each 3-vertex incident with v must be adjacent to two other 4<sup>+</sup>vertices. Thus either  $n_{4+}(v) = 2$ , whence by (R1)(i),  $w'(v) = 2 \times 2 - 6 + 2 = 0$ ; or  $n_{4+}(v) = 1$ , whence by (R1)(ii),  $w'(v) = 2 \times 2 - 6 + 2 = 0$ ; or  $n_{4+}(v) = 0$ , whence by (R1)(iii),  $w'(v) = 2 \times 2 - 6 + 2 = 0$ .

**Case 1.2**  $d_G(v) = 3$ . By (R1), we conclude that  $w'(v) = w(v) = 2 \times 3 - 6 = 0$ .

**Case 1.3**  $d_G(v) = 4$ . By Lemma 3.3(i),  $n_2(v) \le 2$ . If  $n_2(v) = 0$ , then by (R1), for each weak-3-neighbor of v, v will discharge  $\frac{1}{2}$  through this weak-3-neighbor to a 2-vertex. Since  $d_G(v) = 4$ , we have  $w'(v) \ge 2 \times 4 - 6 - 4 \times \frac{1}{2} = 0$ . Now we assume that  $n_2(v) > 0$ . Thus by (R1), if  $n_2(v) = 2$ , then by Lemma 3.3(ii) v cannot be adjacent to any weak 3-vertex, and so  $w'(v) = 2 \times 4 - 6 - 2 \times 1 = 0$ ; and if  $n_2(v) = 1$ , then by Lemma 3.3(iii) v is adjacent to at most two weak-3-vertices, and so  $w'(v) \ge 2 \times 4 - 6 - 1 - 2 \times \frac{1}{2} = 0.$ 

**Case 1.4**  $d_G(v) = 5$ . By Lemma 3.4, either  $n_2(v) = 4$  and  $n_{4+}(v) = 1$ , whence by (R1),  $w'(v) \ge 2 \times 5 - 6 - 4 \times 1 = 0$ ; or  $n_2(v) \le 3$ , whence by (R1),  $w'(v) \ge 2 \times 5 - 6 - n_2(v) - \frac{1}{2} \times (5 - n_2(v)) = \frac{3}{2} - \frac{n_2(v)}{2} \ge 0$ . **Case 1.5**  $d_G(v) \ge 6$ . Then  $n_2(v) + n_3(v) \le d_G(v)$ , and so  $w'(v) \ge 2 \times d(v) - 6 - d(v) = d(v) - 6 \ge 0$ . This completes the

proof of Claim 1.

(R2) Suppose that r = 5. For a vertex v, let  $n_2^*(v)$  be the number of 2-vertices star-adjacent to v and  $n_2^*(v)$  be the number of semi-bad type vertices star-adjacent to v.

(i) If a 4<sup>+</sup>-vertex v is adjacent to 2-vertices  $v_1, v_2, \ldots, v_{d_1}$ , then reduce the charge of v by  $d_1$ , and for  $1 \le i \le d_1$ , increase the charge of  $v_i$  by 1.

(ii) If a 4<sup>+</sup>-vertex v is star-adjacent to 2-vertices  $v_1, v_2, \ldots, v_{d_2}$ , then reduce the charge of v by  $\frac{d_2}{2}$ , and for  $1 \le i \le d_2$ , increase the charge of  $v_i$  by  $\frac{1}{2}$ .

(iii) If a 4-vertex v is star-adjacent to semi-bad type vertices  $v_1, v_2, \ldots, v_{d_3}$ , then reduce the charge of v by  $\frac{d_3}{2}$ , and for  $1 \le i \le d_3$ , increase the charge of  $v_i$  by  $\frac{1}{2}$ .

(iv) If a 7<sup>+</sup>-face f is incident with bad or semi-bad type vertices  $v_1, v_2, \ldots, v_{d_4}$ , then reduce the charge of f by  $\frac{4d_4}{7}$ , and

for  $1 \le i \le d_4$ , increase the charge of  $v_i$  by  $\frac{4}{7}$ . (v) If a 5-vertex v is weak-adjacent to bad or semi-bad type vertices  $v_1, v_2, \ldots, v_{d_5}$ , then reduce the charge of v by  $\frac{d_{5} \times (2 \times 5 - 6 - n_{2}(v) - \frac{1}{2}n_{2}^{*}(v))}{n_{2}(v)}$ , and for  $1 \le i \le d_{5}$ , increase the charge of  $v_{i}$  by  $\frac{2 \times 5 - 6 - n_{2}(v) - \frac{1}{2}n_{2}^{*}(v)}{n_{2}(v)}$ 

**Claim 2.** Let  $F_1$ ,  $F_2$  be the two sets of faces defined in Lemma 3.9, as shown in the graphs  $H_4$  and  $H_5$  in Fig. 2, respectively, and use the notations in Fig. 2. Each of the following holds.

- (i) If  $F_1$  has at least four 6-faces, then there exist at least three vertices in the 5-vertices  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_5$ , each of which is adjacent to at most three 2-vertices.
- (ii) If all faces in  $F_2$  are all 6-faces, then each of the two 5-vertices  $v_2$ ,  $v_3$  is adjacent to at most three 2-vertices.

**Proof of Claim 2.** As defined in Lemma 3.9, the faces in  $F_1$  are all incident with a bad vertex v, with  $N_G(v) =$  $\{u_1, u_2, u_3, u_4, u_5\}$ . By the definition of a bad vertex, for each  $1 \le i \le 5$ ,  $u_i$  is a 2-vertex and  $v_i$  is a 5-vertex adjacent to  $u_i$ . Let  $f_i$  denote the face in  $F_1$  incident with  $v_{i-1}$  and  $v_i$ , for all integer  $i \pmod{5}$ . Let  $N' = \{v_i \mid f_i \text{ and } f_{i+1} \text{ are 6-faces}\}$ . Therefore if  $F_1$  contains four 6-faces, then  $|N'| \ge 3$ , (see  $H_4$  in Fig. 2). Without lose of generality, we assume that  $v_2 \in N'$ , and  $s \in N_G(v_2) \cap N_G(v_3)$ . Since  $v_2 \in N'$ , both  $f_2$  and  $f_3$  are 6-faces. By Lemma 3.9, s must be a 3<sup>+</sup>-vertex, and furthermore, s is not a weak 3-vertex. Thus we conclude that each vertex in N' is adjacent to at most three 2-vertices. This justifies Claim 2(i). The proof for Claim 2(ii) is similar and will be omitted.

**Claim 3.** Let f be a face. Let w'(f) denote the new charge after performing (R2).

(i) *If f is a* 6-*face, then* w'(f) = 0.

(ii) If f is a 7<sup>+</sup>-face, then  $w'(f) \ge 0$ .

**Proof of Claim 3.** By (R2), any 6-face neither receives charges from other vertices, nor does it discharge to other vertices, and so w'(f) = w(f) = d(f) - 6 = 0. Thus (i) follows. If  $d(f) \ge 7$ , then by Lemma 3.8, f is incident with at most  $\lfloor \frac{d(f)}{4} \rfloor$  bad or semi-bad type vertices. It follows by (R2)(iv) that  $w'(f) \ge w(f) - \frac{4}{7} \times \frac{d(f)}{4} = d(f) - 6 - \frac{d(f)}{7} \ge 0$ .  $\Box$ 

**Claim 4.** For any  $v \in V(G)$ , let w'(v) denote the new charge after performing recharge rule (R2). Then  $w'(v) \ge 0$ .

**Proof of Claim 4.** We examine the value of w'(v) based on the degree of v. By Lemma 3.1(i),  $d_G(v) \ge 2$ .

**Case 2.1**  $2 \le d_G(v) \le 3$ . The justification for this case is identical to those of Cases 1.1 and 1.2 in the proof of Claim 1, with (R1) replaced by (R2). Thus it is omitted.

**Case 2.2**  $d_G(v) = 4$ . By Lemma 3.3(i),  $n_2(v) \le 2$ .

Assume first that  $n_3^*(v) = 0$ . If  $n_2(v) = 0$ , then by (R2)(ii), for each weak-3-neighbor of v, v will discharge  $\frac{1}{2}$  through this weak-3-neighbor to a 2-vertex. Since  $d_G(v) = 4$ , we have  $w'(v) \ge 2 \times 4 - 6 - 4 \times \frac{1}{2} = 0$ . Now we assume that  $n_2(v) > 0$ . If  $n_2(v) = 2$ , then by Lemma 3.3(ii) v cannot be adjacent to any weak 3-vertex, and so by (R2)(i)  $w'(v) = 2 \times 4 - 6 - 2 \times 1 = 0$ ; If  $n_2(v) = 1$ , then by Lemma 3.3(iii) v is adjacent to at most two weak 3-vertices, and so by (R2)(i) and (ii),  $w'(v) \ge 2 \times 4 - 6 - 1 - 2 \times \frac{1}{2} = 0$ .

Now assume that  $n_3^*(v) \ge 1$ . By Lemma 3.6(ii-1),  $n_2(v) = 0$ ; and by Lemma 3.7, v is adjacent to at most two weak 3-vertices. Hence by definition,  $n_3^*(v) \le 2$ . It follows that either  $n_3^*(v) = 2$ , and so by (R2)(iii),  $w'(v) = 2 \times 4 - 6 - 2 \times 2 \times \frac{1}{2} = 0$ ; or  $n_3^*(v) = 1 \le n_2^*(v) \le 2$ , and so by (R2)(ii) and (iii),  $w'(v) \ge 2 \times 4 - 6 - 2 \times \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ .

**Case 2.3**  $d_G(v) = 5$ . Let  $F_1$  and  $F_2$  be the sets of faces defined in Lemma 3.9.

Suppose first that v is a bad vertex with  $F_1$  being the set of faces incident with v, such that  $F_1$  has  $t \ge 0.7^+$ -faces and 5-t 6-faces. It follows by (R2)(iv) and (v) that if  $t \ge 2$ , then  $w'(v) \ge 2 \times 5 - 6 - 5 + t \times \frac{4}{7} \ge \frac{1}{7}$ ; and if  $t \le 1$ , then by Claim 2(i), v receives at least  $\frac{1}{3}$  from each weak-adjacent 5-vertex, and so  $w'(v) \ge 2 \times 5 - 6 - 5 + 3 \times \frac{1}{3} = 0$ .

Suppose that v is a semi-bad type vertex with  $F_2$  being a subset of faces incident with v, such that  $F_2$  has  $t \ge 0.7^+$ -faces and 3 - t 6-faces. It follows by (R2)(iv) and (v) that if  $t \ge 1$ , then  $w'(v) \ge 2 \times 5 - 6 - 4 - \frac{1}{2} + t \times \frac{4}{7} > 0$ ; and if t = 0, then by Claim 2(ii), v receives at least  $\frac{1}{3}$  from each weak-adjacent 5-vertex, and so  $w'(v) \ge 2 \times 5 - 6 - 4 - \frac{1}{2} + 2 \times \frac{1}{3} = \frac{1}{6} > 0$ . Finally we assume that v is neither a bad vertex nor a semi-bad type vertex. Then by Lemma 3.5,  $n_2(v) \le 4$ . It follows

Finally we assume that v is neither a bad vertex nor a semi-bad type vertex. Then by Lemma 3.5,  $n_2(v) \le 4$ . It follows by (R2)(i), (ii) and (v) that either  $n_2(v) = 4$ , whence  $w'(v) \ge 2 \times 5 - 6 - 4 \times 1 = 0$ ; or  $n_2(v) \le 3$ , whence  $w'(v) \ge 2 \times 5 - 6 - 3 - 2 \times \frac{1}{2} = 0$ .

# **Case 2.4** $d_G(v) \ge 6$ .

It follows by (R2)(i) and (ii) that  $w'(v) \ge 2 \times d(v) - 6 - d(v) = d(v) - 6 \ge 0$ . This completes the proof of Claim 4.

By (R1) and (R2), after the recharge process, we obtain a new charge w' satisfying  $\sum_{x \in F \cup V} w'(x) = \sum_{x \in F \cup V} w(x)$ . By Claims 1, 3 and 4,  $w'(x) \ge 0$  for any  $x \in V(G) \cup F(G)$ . It follows by (8) that  $0 \le \sum_{x \in F \cup V} w'(x) = \sum_{x \in F \cup V} w(x) = -12 < 0$ . This contradiction establishes Theorem 1.4.

### Acknowledgement

The research of Huiming Song is partially supported by National Natural Science Foundation of China (Nos. 11271230 and 11401346) and the research of Jian-Liang Wu was partially supported by National Natural Science Foundation of China (No.11271006).

### References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
- [2] Y.H. Bu, X.B. Zhu, An optimal square coloring of planar graphs, J. Comb. Optim. 24 (2012) 580–592.

[3] Y. Chen, S.H. Fan, H.J. Lai, H.M. Song, L. Sun, On dynamic coloring for planar graphs and graphs of higher genus, Discrete Appl. Math. 160 (2012) 1064-1071.

- [4] C. Ding, S.H. Fan, H.J. Lai, Upper bound on conditional chromatic number of graphs, J. Jinan Univ. 29 (2008) 7–14.
- [5] H.J. Lai, J. Lin, B. Montgomery, Z. Tao, S.H. Fan, Conditional colorings of graphs, Dircrete Math. 306 (2006) 1997–2004.
- [6] H.J. Lai, B. Montgomery, H. Poon, Upper bounds of dynamic chromatic number, Ars Combin. 68 (2003) 193–201.
- [7] K.W. Lih, W.F. Wang, X. Zhu, Coloring the square of a K<sub>4</sub>-minor free graph, Discrete Math. 269 (2003) 303–309.
- [8] Y. Lin, Upper bounds of conditional chromatics number (Master thesis), Jinan University, 2008.

- [10] B. Montgomery, (PhD Dissertation), West Virginia University, 2001.
- [11] H.M. Song, S.H. Fan, Y. Chen, L. Sun, H.J. Lai, On r-hued coloring of K<sub>4</sub>-minor free graphs, Discrete Math. 315–316 (2014) 47–52.
- [12] G. Wegner, Graphs with given diameter and a coloring problem, Technical Report, University of Dortmund, 1977.

<sup>[9]</sup> X. Li, X. Yao, W. Zhou, H.J. Broersma, Complexity of conditional colorability of graphs, Appl. Math. Lett. 22 (2009) 320-324.