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Abstract 

For integers ,0, >rk  a ( ) colouring-, rk  of a graph G is a proper colouring on 

the vertices of G by k  colours such that every vertex v of degree ( )vd  is 

adjacent to vertices with at least ( ){ }rvd ,min  different colours. The dynamic 

chromatic number, denoted by ( ) ,2 Gχ  is the smallest integer k  for which a 

graph G has a ( ) colouring.-2,k  In this paper, we prove a sufficient condition for 

a free-3,1K  graph G with ( ) ( ).2 GG χ=χ  Also, we give some upper bounds for 

( ) ( )GG χ−χ2  of free-4,1K  graphs and graphs without even cycles. 

1. Introduction 

All graphs in this paper are finite, undirected, and simple. We follow 
the notation and terminology of [2]. Thus for a graph ( )GG ∆,  and ( )Gχ  

denote the maximum degree and the chromatic number of G. If vertices u 
and v are connected in G, the distance between u and v in G, denoted by 

( ),, vudG  is the length of a shortest ( ) path-, vu  in G. For ( ),GVu ∈  let 

( ) { ( ) ( ) .,,: ivudGVvvuN Gi =∈=  We use the symbol ( )vN  to denote 

( ),1 vN  and ( ) ( ) .vNvd =  

For an integer ,0>k  a proper colouring-k  of a graph G is a map 

( ) { }k,,2,1: GVc  such that if ( )GVvu ∈,  are adjacent vertices in G, 

then ( ) ( ).vcuc ≠  The smallest k  such that G has a proper colouring-k  is 

the chromatic number of G, denoted by ( ).Gχ  A proper vertex 

colouring-k  of a graph G is called dynamic if for every vertex v with 

degree at least 2, the neighbours of v receive at least two different 
colours. The smallest integer k  such that G has a dynamic colouring-k  is 

called the dynamic chromatic number of G and denoted by ( ).2 Gχ  

The concept of dynamic colouring of graphs was first introduced in [9] 
and [6]. Later in [5], it is called conditional colouring. Lately, it has been 
studied extensively by several authors in [3, 4, 6, 7]. Obviously, 
( ) ( ).2 GG χ≤χ  It was shown in [8] that the difference between the 
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chromatic number and the dynamic chromatic number can be arbitrarily 
large. However, it was conjectured in [9] that for regular graphs the 
difference is at most 2. In [7], it has been proved that the computational 
complexity of ( )G2χ  for a 3-regular graphs is an NP-complete problem. It 

is an interesting problem to investigate the optimal upper bound for 
( ) ( ).2 GG χ−χ  In this paper, we present some bounds for ( ) ( )GG χ−χ2  of 

graphs without some subgraphs. 

2. free31, -K  Graphs and free41, -K  Graphs 

A graph G is free-,1 rK  if G does not have an induced subgraphs 

isomorphic to .,1 rK  In [5], it was proved that if G is a connected and 

free,-3,1K  then ( ) ( ) ,22 +χ≤χ GG  and the equality holds if and only if G 

is a cycle of length 5 or of even length not a multiple of 3. We will prove a 
sufficient condition for a free-3,1K  graph G with ( ) ( ).2 GG χ=χ  

Let c be a proper vertex colouring of a graph G, we denote the vertex 

set which receives the colour i by ( ).1 ic−  We denote the set of colours 

which appear in the vertex set V by ( ).Vc  If for a vertex v with degree at 

least ( )( ) ,1,2 =vNc  then v is called a bad vertex, otherwise, it is called a 

good vertex. If a vertex v satisfies ( ) ( ) { }21,,2 vvuNud ==  and 

( ) ,31 ≥vd  ( ) ,32 ≥vd  we call u the unique middle vertex. 

Lemma 2.1. Let G be a graph. 

(i) If ( )[ ]uNG  has an edge, then u is good. 

(ii) If G is ,-,1 freeK r  then every vertices of degree at least r is good. 

The proof of Lemma 2.1 is trivial. 
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Theorem 2.2. Let G be a freeK -3,1  graph with ( ) ,4≥χ G  and there is 

no unique middle vertex in G, then ( ) ( ).2 GG χ=χ  

Proof. Let G be a free-3,1K  graph with ( ) ,4≥χ G  and there is no 

unique middle vertex in G. Suppose G has a proper vertex colouring 
( ) ( ){ }.,,2,1: GGVc χ…  

Because G is a free-3,1K  graph, then by Lemma 2.1 all the vertices 

we should consider are the vertices with degree 2. 

Suppose ( ) .2=ud  

Case 1. u is contained in a triangle. Then by Lemma 2.1, it is a good 
vertex. 

Case 2. u is not in any triangle of G, then u is in a deduced subgraph 
P of G which is a path, and the degree of the end point of P is not 2. 

Suppose the endpoint of P is ( ) ( ) .,,, 221121 cvccvcvv ==  Because 

there is no unique middle point vertex in G, the inner vertices of P are 
more than two. 

Subcase 2.1. There are two inner vertices in P since ( ) ,4≥χ G  then 

there are two colours ,, 43 cc  which are different from 21, cc  can be used 

at these vertices, then we have done. 

Subcase 2.2. There are ( )+∈ Nnn3  inner vertices in P, we can 

colour the vertices in P as 

.2
3

4324324321 ccccccccccc
n

 

Subcase 2.3. There are ( )+∈+ Nnn 13  inner vertices in P, we can 

colour the vertices in P as 

.21
3

4324324321 cccccccccccc
n
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Subcase 2.4. There are ( )+∈+ Nnn 23  inner vertices in P, we can 
colour the vertices in P as 

.231
3

4324324321 ccccccccccccc
n

 

Finally, we keep the colours of all the other vertices, then we have a 
dynamic colouring of G with ( )Gχ  colours. 

 

The condition that there is no unique middle vertex in G is necessary. 
In fact, we can find a graph with ( ) ,4≥χ G  which contains a unique 
middle vertex satisfying ( ) ( ) ,12 +χ=χ GG  see Figure 1. 

 

Figure 1. Graph for the note of Theorem 2.2. 

Lemma 2.3 ([6]). For a connected graph G if ( ) ,3≤∆ G  then 

( ) 42 ≤χ G  unless ,5CG =  in which case ( ) ,552 =χ C  and if ( ) ,4≥∆ G  

then ( ) ( ) .12 +∆≤χ GG  
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Theorem 2.4. Let G be a freeK -4,1 graph, then ( ) ( ).22 GG χ≤χ  

Proof. Let G be a counterexample with fewest number of vertices. 

If ( ) ,1=χ G  it is trivial. If ( ) GG ,2=χ  is free,-4,1K  then ( ) .3≤∆ G  

By Lemma 2.3, ( ) .412 =+∆≤χ G  

Let ( ) .3≥χ G  Let ( ) ( ){ }GGVc χ′ ,,2,1:  is a proper colouring of G. 
Because G is a counterexample and free,-4,1K  then there is a bad vertex 

u in G and ( ) .3≤ud  

Let v is a neighbour of u, then every colour received by vertices in 
( ) { }uvN \  can not appears more than twice. Otherwise, there will be a 

,4,1K  so ( ) ( )( ) ( ) .12121 −χ=+×−χ≤ GGvd  

Let ( ) { } ( ){ }GuGVc χ2,,2,1\:  is a dynamic colouring of 
.uG −  Because G is a counterexample, then ( )( ) .1=uNc  Without loss of 

generality, let this colour to be 1. Let v to be a neighbour of u. Because 
( ) ( ) ,12 −χ≤ Gvd  then there is at least one colour missing in ( ) { }.\ uvN  

Without loss of generality, let this colour to be ( ).2 Gχ  

Case 1. For any vertex w in ( ) { },\ uvN  there is only one colour 
assigned to vertices in ( ) { }.\ vwN  

Because ( ) { } ( ) ,22\ −χ≤ GuvN  then there is one colour ( )1≠ii  
missing in ( ).2 vN  If i does not appear in ( ) { },\ uvN  let ( ) .~ ivc =  If i 
appears in ( ) { },\ uvN  suppose ( ) .0 iwc =  Because c is a 2-hued 
colouring of ,uG −  then the colour 1 does not appear in ( ).2 vN  Let 
( ) ( ) .~,1~

0 ivcwc ==   

Case 2. There is a vertex 0iw  in ( ) { }uvN \  so that there are at least 

two colours appearing in ( ) { }.\0 vwN i  

Because G is a counterexample and the colour ( )Gχ2  does not appear 

in ( ) { },\ uvN  then there is a vertex 1iw  in ( )vN  so that the vertex in 

( ) { }vwN i \1  receive only one colour ( ).2 Gχ  If there is no vertex 2iw  in 
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( ) { }uvN \  so that there is only one colour ( )1iwc  in ( ( ) { }).\2 vwNc i  Let 

( ) ( ) ( ).~,1~
11 ii wcvcwc ==  If such vertex 2iw  exists, we can get a vertex 

3iw  so that there is only one colour ( )2iwc  appears in ( ( ) { }).\3 vwNc i  

Continuing this procedure, we can stop at a vertex ( ) { }uvNw ji \∈  such 

that there is no vertex 1+jiw  in ( ) { }uvN \  having the property that there 

is only one colour ( )jiwc  in ( ( ) { }).\1 vwNc ji +
 Let ( ) ( ) == vcwc ji

~,1~ ( ).jiwc  

For any vertex ( ) { }uvNw \∈  satisfying ( ) ( ),jiwcwc =  let ( )wc~ .1=  

At last, let ( ) ( )vcvc =~  for all the other vertices in .uG −  Because 

( ) ,3≤ud  we can easily colour the vertex u and get ,~c  which is a dynamic 

colouring of G with ( )Gχ2  colours, a contradiction. 

 

The upper bound in the Theorem 2.4 is best impossible. We can 
construct a free-4,1K  graph G with ( ) ( )GG χ=χ 22  as following. Let G′  

be a complete r-partite graph, G′  has 2 nonadjacent vertices in i-th 
( )ri ≤≤1  vertex class and contains all edges joining vertices in distinct 

class. At last, we get G from G′  by joining the two vertices in i-th 
( )ri ≤≤1  vertex class by a path of length two. It is easy to see that 

( ) rG =χ  and ( ) .22 rG =χ  An example graph G with ( ) 4=χ G  and 

( ) 82 =χ G  is shown in Figure 2. 
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Figure 2. Graph for the note of Theorem 2.4. 

3. The Graphs Without Subgraphs ( )+∈≥ Nn,nC n 22  

Theorem 3.1. If G does not have a subgraph ( ),,22
+∈≥ NnnC n  

then ( ) ( ).22 GG χ≤χ  

Proof. Let ( ) ( ){ }GGVc χ,,2,1:  to be a proper colouring of G 

such that every vertex of colour i has at least a neighbour of colour j, for 

every .ij <  Clearly, all the bad vertices must be in ( )11−c  and ( ).21−c  

Let 1F  to be a subgraph of G induced by 1V  and the neighbours of 

{ ( ) vvcvVV ,1, 11 ==  is a bad vertex and the neighbours of v are all in 

( )}.21−c  Let 2F  to be a subgraph of G induced by 2V  and the neighbours 

of { ( ) vvcvVV ,2, 22 ==  is a bad vertex and the neighbours of v are all 

in ( )}.11−c  Let ,21 FFF ∪=  then F is a bipartite graph. We call the 

vertex set of F which have the colour ,1 1V  and we call the other vertex 
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set of .2VF  Denote { ( ) vcvvVi ,11−∈=  is a bad vertex, the neighbour of 

v is in ( )} ( ).3,1 Giic χ≤≤−  We call the bipartite graph induced by iV  

and the neighbours of ( ).3, GiFV ii χ≤≤  

We construct graphs ( ) ( )GiEVG iii χ≤≤1,,  by the algorithm as 

following: 

Step 0. Let .:,: ∅== ii EVV  

Step 1. Choose a vertex v from V, then choose two vertices vv ′′′,  

from ( ).vN  Let ( ).,: vve ′′′=  

Step 2. Let { } { }.\:,: vVVeEE ii == ∪  If ,∅≠V  return Step 1. 

Step 3. Let ( ( ) ).,: iii EVNGG =  

For every ( ) ( ( ) )iii EVNGGi ,,1 χ≤≤  is a bipartite graph. Otherwise, 

there is an odd cycle in iG  and there is an even cycle in G by the denote 

of .iE  We change the colour of one part of iG  to a new colour 

( ) ( )( )GiiG χ≤≤+χ 1  and keep the colours of all the other vertices. We 

eventually get a dynamic colouring of G with ( )Gχ2  colours. 
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