ON THE DIFFERENCE BETWEEN DYNAMIC CHROMATIC NUMBER AND CHROMATIC NUMBER OF GRAPHS WITHOUT SOME SUBGRAPHS

BO GAO ${ }^{1}$, LEI SUN ${ }^{2}$, HUIMIN SONG ${ }^{3}$ and HONG-JIAN LAI ${ }^{4}$

${ }^{1}$ School of Information Sciences and Engineering
Shandong Normal University
Jinan 250014
P. R. China
e-mail: b.gao@163.com
${ }^{2}$ Department of Mathematics
Shandong Normal University
Jinan 250014
P. R. China
e-mail: lsun89@163.com
${ }^{3}$ School of Mathematics and Statistics
Shandong University at Weihai
Weihai 264209
P. R. China
e-mail: hmsong@sdu.edu
${ }^{4}$ Department of Mathematics
West Virginia University
Morgantown, WV 26506-6310
USA
e-mail: hjlai@wvu.edu
2010 Mathematics Subject Classification: 05C15.
Keywords and phrases: chromatic number, dynamic chromatic number, $K_{1,3}$-free graph,
$K_{1,4}$-free graph, even cycle.
This work is supported by the National Natural Science Foundation of China (Grant No. 11271365).
Received May 9, 2015

Abstract

For integers $k, r>0$, a (k, r)-colouring of a graph G is a proper colouring on the vertices of G by k colours such that every vertex v of degree $d(v)$ is adjacent to vertices with at least $\min \{d(v), r\}$ different colours. The dynamic chromatic number, denoted by $\chi_{2}(G)$, is the smallest integer k for which a graph G has a $(k, 2)$-colouring. In this paper, we prove a sufficient condition for a $K_{1,3}$-free graph G with $\chi_{2}(G)=\chi(G)$. Also, we give some upper bounds for $\chi_{2}(G)-\chi(G)$ of $K_{1,4}$-free graphs and graphs without even cycles.

1. Introduction

All graphs in this paper are finite, undirected, and simple. We follow the notation and terminology of [2]. Thus for a graph $G, \Delta(G)$ and $\chi(G)$ denote the maximum degree and the chromatic number of G. If vertices u and v are connected in G, the distance between u and v in G, denoted by $d_{G}(u, v)$, is the length of a shortest (u, v)-path in G. For $u \in V(G)$, let $N_{i}(u)=\left\{v: v \in V(G), d_{G}(u, v)=i\right.$. We use the symbol $N(v)$ to denote $N_{1}(v)$, and $d(v)=|N(v)|$.

For an integer $k>0$, a proper k-colouring of a graph G is a map $c: V(G) \mapsto\{1,2, \cdots, k\}$ such that if $u, v \in V(G)$ are adjacent vertices in G, then $c(u) \neq c(v)$. The smallest k such that G has a proper k-colouring is the chromatic number of G, denoted by $\chi(G)$. A proper vertex k-colouring of a graph G is called dynamic if for every vertex v with degree at least 2 , the neighbours of v receive at least two different colours. The smallest integer k such that G has a dynamic k-colouring is called the dynamic chromatic number of G and denoted by $\chi_{2}(G)$.

The concept of dynamic colouring of graphs was first introduced in [9] and [6]. Later in [5], it is called conditional colouring. Lately, it has been studied extensively by several authors in [3, 4, 6, 7]. Obviously, $\chi(G) \leq \chi_{2}(G)$. It was shown in [8] that the difference between the
chromatic number and the dynamic chromatic number can be arbitrarily large. However, it was conjectured in [9] that for regular graphs the difference is at most 2 . In [7], it has been proved that the computational complexity of $\chi_{2}(G)$ for a 3-regular graphs is an NP-complete problem. It is an interesting problem to investigate the optimal upper bound for $\chi_{2}(G)-\chi(G)$. In this paper, we present some bounds for $\chi_{2}(G)-\chi(G)$ of graphs without some subgraphs.

2. $K_{1,3}$-free Graphs and $K_{1,4}$-free Graphs

A graph G is $K_{1, r}$-free if G does not have an induced subgraphs isomorphic to $K_{1, r}$. In [5], it was proved that if G is a connected and $K_{1,3}$-free, then $\chi_{2}(G) \leq \chi(G)+2$, and the equality holds if and only if G is a cycle of length 5 or of even length not a multiple of 3 . We will prove a sufficient condition for a $K_{1,3}$-free graph G with $\chi_{2}(G)=\chi(G)$.

Let c be a proper vertex colouring of a graph G, we denote the vertex set which receives the colour i by $c^{-1}(i)$. We denote the set of colours which appear in the vertex set V by $c(V)$. If for a vertex v with degree at least $2,|c(N(v))|=1$, then v is called a bad vertex, otherwise, it is called a good vertex. If a vertex v satisfies $d(u)=2, N(u)=\left\{v_{1}, v_{2}\right\}$ and $d\left(v_{1}\right) \geq 3, d\left(v_{2}\right) \geq 3$, we call u the unique middle vertex.

Lemma 2.1. Let G be a graph.
(i) If $G[N(u)]$ has an edge, then u is good.
(ii) If G is $K_{1, r}$-free, then every vertices of degree at least r is good.

The proof of Lemma 2.1 is trivial.

Theorem 2.2. Let G be a $K_{1,3}$-free graph with $\chi(G) \geq 4$, and there is no unique middle vertex in G, then $\chi_{2}(G)=\chi(G)$.

Proof. Let G be a $K_{1,3}$-free graph with $\chi(G) \geq 4$, and there is no unique middle vertex in G. Suppose G has a proper vertex colouring $c: V(G) \mapsto\{1,2, \ldots, \chi(G)\}$.

Because G is a $K_{1,3}$-free graph, then by Lemma 2.1 all the vertices we should consider are the vertices with degree 2 .

Suppose $d(u)=2$.
Case 1. u is contained in a triangle. Then by Lemma 2.1, it is a good vertex.

Case 2. u is not in any triangle of G, then u is in a deduced subgraph P of G which is a path, and the degree of the end point of P is not 2 .

Suppose the endpoint of P is $v_{1}, v_{2}, c\left(v_{1}\right)=c_{1}, c\left(v_{2}\right)=c_{2}$. Because there is no unique middle point vertex in G, the inner vertices of P are more than two.

Subcase 2.1. There are two inner vertices in P since $\chi(G) \geq 4$, then there are two colours c_{3}, c_{4}, which are different from c_{1}, c_{2} can be used at these vertices, then we have done.

Subcase 2.2. There are $3 n\left(n \in N^{+}\right)$inner vertices in P, we can colour the vertices in P as

$$
c_{1} \underbrace{c_{2} c_{3} c_{4} c_{2} c_{3} c_{4} \cdots c_{2} c_{3} c_{4}}_{3 n} c_{2} .
$$

Subcase 2.3. There are $3 n+1\left(n \in N^{+}\right)$inner vertices in P, we can colour the vertices in P as

$$
c_{1} \underbrace{c_{2} c_{3} c_{4} c_{2} c_{3} c_{4} \cdots c_{2} c_{3} c_{4}}_{3 n} c_{1} c_{2}
$$

Subcase 2.4. There are $3 n+2\left(n \in N^{+}\right)$inner vertices in P, we can colour the vertices in P as

$$
c_{1} \underbrace{c_{2} c_{3} c_{4} c_{2} c_{3} c_{4} \cdots c_{2} c_{3} c_{4}}_{3 n} c_{1} c_{3} c_{2}
$$

Finally, we keep the colours of all the other vertices, then we have a dynamic colouring of G with $\chi(G)$ colours.

The condition that there is no unique middle vertex in G is necessary. In fact, we can find a graph with $\chi(G) \geq 4$, which contains a unique middle vertex satisfying $\chi_{2}(G)=\chi(G)+1$, see Figure 1 .

Figure 1. Graph for the note of Theorem 2.2.
Lemma 2.3 ([6]). For a connected graph G if $\Delta(G) \leq 3$, then $\chi_{2}(G) \leq 4$ unless $G=C_{5}$, in which case $\chi_{2}\left(C_{5}\right)=5$, and if $\Delta(G) \geq 4$, then $\chi_{2}(G) \leq \Delta(G)+1$.

Theorem 2.4. Let G be a $K_{1,4}$-free graph, then $\chi_{2}(G) \leq 2 \chi(G)$.

Proof. Let G be a counterexample with fewest number of vertices.
If $\chi(G)=1$, it is trivial. If $\chi(G)=2, G$ is $K_{1,4}$-free, then $\Delta(G) \leq 3$.
By Lemma 2.3, $\chi_{2}(G) \leq \Delta+1=4$.
Let $\chi(G) \geq 3$. Let $c^{\prime}: V(G) \mapsto\{1,2, \cdots, \chi(G)\}$ is a proper colouring of G. Because G is a counterexample and $K_{1,4}$-free, then there is a bad vertex u in G and $d(u) \leq 3$.

Let v is a neighbour of u, then every colour received by vertices in $N(v) \backslash\{u\}$ can not appears more than twice. Otherwise, there will be a $K_{1,4}$, so $d(v) \leq(\chi(G)-1) \times 2+1=2 \chi(G)-1$.

Let $c: V(G) \backslash\{u\} \mapsto\{1,2, \cdots, 2 \chi(G)\}$ is a dynamic colouring of $G-u$. Because G is a counterexample, then $|c(N(u))|=1$. Without loss of generality, let this colour to be 1 . Let v to be a neighbour of u. Because $d(v) \leq 2 \chi(G)-1$, then there is at least one colour missing in $N(v) \backslash\{u\}$. Without loss of generality, let this colour to be $2 \chi(G)$.

Case 1. For any vertex w in $N(v) \backslash\{u\}$, there is only one colour assigned to vertices in $N(w) \backslash\{v\}$.

Because $|N(v) \backslash\{u\}| \leq 2 \chi(G)-2$, then there is one colour $i(i \neq 1)$ missing in $N_{2}(v)$. If i does not appear in $N(v) \backslash\{u\}$, let $\widetilde{c}(v)=i$. If i appears in $N(v) \backslash\{u\}$, suppose $c\left(w_{0}\right)=i$. Because c is a 2 -hued colouring of $G-u$, then the colour 1 does not appear in $N_{2}(v)$. Let $\widetilde{c}\left(w_{0}\right)=1, \widetilde{c}(v)=i$.

Case 2. There is a vertex $w_{i_{0}}$ in $N(v) \backslash\{u\}$ so that there are at least two colours appearing in $N\left(w_{i_{0}}\right) \backslash\{v\}$.

Because G is a counterexample and the colour $2 \chi(G)$ does not appear in $N(v) \backslash\{u\}$, then there is a vertex $w_{i_{1}}$ in $N(v)$ so that the vertex in $N\left(w_{i_{1}}\right) \backslash\{v\}$ receive only one colour $2 \chi(G)$. If there is no vertex $w_{i_{2}}$ in
$N(v) \backslash\{u\}$ so that there is only one colour $c\left(w_{i_{1}}\right)$ in $c\left(N\left(w_{i_{2}}\right) \backslash\{v\}\right)$. Let $\widetilde{c}\left(w_{i_{1}}\right)=1, \widetilde{c}(v)=c\left(w_{i_{1}}\right)$. If such vertex $w_{i_{2}}$ exists, we can get a vertex $w_{i_{3}}$ so that there is only one colour $c\left(w_{i_{2}}\right)$ appears in $c\left(N\left(w_{i_{3}}\right) \backslash\{v\}\right)$. Continuing this procedure, we can stop at a vertex $w_{i_{j}} \in N(v) \backslash\{u\}$ such that there is no vertex $w_{i_{j+1}}$ in $N(v) \backslash\{u\}$ having the property that there is only one colour $c\left(w_{i_{j}}\right)$ in $c\left(N\left(w_{i_{j+1}}\right) \backslash\{v\}\right)$. Let $\widetilde{c}\left(w_{i_{j}}\right)=1, \widetilde{c}(v)=c\left(w_{i_{j}}\right)$. For any vertex $w \in N(v) \backslash\{u\}$ satisfying $c(w)=c\left(w_{i_{j}}\right)$, let $\widetilde{c}(w)=1$.

At last, let $\tilde{c}(v)=c(v)$ for all the other vertices in $G-u$. Because $d(u) \leq 3$, we can easily colour the vertex u and get \tilde{c}, which is a dynamic colouring of G with $2 \chi(G)$ colours, a contradiction.

The upper bound in the Theorem 2.4 is best impossible. We can construct a $K_{1,4}$-free graph G with $\chi_{2}(G)=2 \chi(G)$ as following. Let G^{\prime} be a complete r-partite graph, G^{\prime} has 2 nonadjacent vertices in i-th $(1 \leq i \leq r)$ vertex class and contains all edges joining vertices in distinct class. At last, we get G from G^{\prime} by joining the two vertices in i-th $(1 \leq i \leq r)$ vertex class by a path of length two. It is easy to see that $\chi(G)=r$ and $\chi_{2}(G)=2 r$. An example graph G with $\chi(G)=4$ and $\chi_{2}(G)=8$ is shown in Figure 2.

Figure 2. Graph for the note of Theorem 2.4.

3. The Graphs Without Subgraphs $C_{2 n}\left(n \geq 2, n \in N^{+}\right)$

Theorem 3.1. If G does not have a subgraph $C_{2 n}\left(n \geq 2, n \in N^{+}\right)$, then $\chi_{2}(G) \leq 2 \chi(G)$.

Proof. Let $c: V(G) \mapsto\{1,2, \cdots, \chi(G)\}$ to be a proper colouring of G such that every vertex of colour i has at least a neighbour of colour j, for every $j<i$. Clearly, all the bad vertices must be in $c^{-1}(1)$ and $c^{-1}(2)$.

Let F_{1} to be a subgraph of G induced by V^{1} and the neighbours of $V^{1}, V^{1}=\{v \mid c(v)=1, v$ is a bad vertex and the neighbours of v are all in $\left.c^{-1}(2)\right\}$. Let F_{2} to be a subgraph of G induced by V^{2} and the neighbours of $V^{2}, V^{2}=\{v \mid c(v)=2, v$ is a bad vertex and the neighbours of v are all in $\left.c^{-1}(1)\right\}$. Let $F=F_{1} \bigcup F_{2}$, then F is a bipartite graph. We call the vertex set of F which have the colour $1 V_{1}$, and we call the other vertex
set of $F V_{2}$. Denote $V_{i}=\left\{v \mid v \in c^{-1}(1), v\right.$ is a bad vertex, the neighbour of v is in $\left.c^{-1}(i)\right\}, 3 \leq i \leq \chi(G)$. We call the bipartite graph induced by V_{i} and the neighbours of $V_{i} F_{i}, 3 \leq i \leq \chi(G)$.

We construct graphs $G_{i}\left(V_{i}, E_{i}\right), 1 \leq i \leq \chi(G)$ by the algorithm as following:

Step 0. Let $V:=V_{i}, E_{i}:=\varnothing$.
Step 1. Choose a vertex v from V, then choose two vertices $v^{\prime}, v^{\prime \prime}$ from $N(v)$. Let $e:=\left(v^{\prime}, v^{\prime \prime}\right)$.

Step 2. Let $E_{i}:=E_{i} \cup\{e\}, V:=V \backslash\{v\}$. If $V \neq \varnothing$, return Step 1 .
Step 3. Let $G_{i}:=G\left(N\left(V_{i}\right), E_{i}\right)$.
For every $1 \leq i \leq \chi(G), G_{i}\left(N\left(V_{i}\right), E_{i}\right)$ is a bipartite graph. Otherwise, there is an odd cycle in G_{i} and there is an even cycle in G by the denote of E_{i}. We change the colour of one part of G_{i} to a new colour $\chi(G)+i(1 \leq i \leq \chi(G))$ and keep the colours of all the other vertices. We eventually get a dynamic colouring of G with $2 \chi(G)$ colours.

References

[1] Meysam Alishahi, On the dynamic coloring of graphs, Discrete Applied Mathematics 159 (2011), 152-156.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier North Holland, 1981.
[3] C. Ding, S. Fan and H.-J. Lai, Upper bound on conditional chromatic number of graphs, J. of Jinan University 29 (2008), 7-14.
[4] Louis Esperet, Dynamic list coloring of bipartite graphs, Discrete Applied Mathematics 158 (2010), 1963-1965.
[5] H.-J. Lai, J. Lin, B. Montgomery, Z. Tao and S. Fan, Conditional colorings of graphs, Discrete Mathematics 306 (2006), 1997-2004.
[6] H.-J. Lai, B. Montgomery and H. Poon, Upper bounds of dynamic chromatic number, Ars Combinatoria 68 (2003), 193-201.
[7] Xueliang Li, Xiangmei Yao, Wenli Zhou and Hajo Broersma, Complexity of conditional colorability of graphs, Applied Mathematics Letter 22 (2009), 320-324.
[8] Yue Lin, Upper Bounds of Conditional Chromatics Number, Master Thesis, Jinan University, 2008.
[9] B. Montgomery, Dynamic Coloring of Graphs, Ph.D. Thesis, West Virginia University, 2001.

