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a b s t r a c t

Designing networks in which every processor has a given number of connections often
leads to graphic degree sequence realization models. A nonincreasing sequence d =

(d1, d2, . . . , dn) is graphic if there is a simple graphGwith degree sequence d. The spanning
tree packing number of graphG, denoted by τ(G), is themaximumnumber of edge-disjoint
spanning trees in G. The arboricity of graph G, denoted by a(G), is the minimum number
of spanning trees whose union covers E(G). In this paper, it is proved that, given a graphic
sequence d = d1 ≥ d2 ≥ · · · ≥ dn and integers k2 ≥ k1 > 0, there exists a simple
graph G with degree sequence d satisfying k1 ≤ τ(G) ≤ a(G) ≤ k2 if and only if dn ≥ k1
and 2k1(n − 1) ≤

n
i=1 di ≤ 2k2(n − |I| − 1) + 2


i∈I di, where I = {i : di < k2}. As

corollaries, for any integer k > 0, we obtain a characterization of graphic sequences with
at least one realization G satisfying a(G) ≤ k, and a characterization of graphic sequences
with at least one realization G satisfying τ(G) = a(G) = k.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple and finite graphs. Undefined terms and notationswill follow [1]. For a graphG and a vertex v ∈ V (G),
dG(v) denotes the degree of v in G and NG(v) denotes the vertices in G that are adjacent to v. If U ⊂ V (G), then NG(U) =

v∈U NG(v) − U . If K is a subgraph of G, then we also write NG(K) for NG(V (K)). When the graph G is understood from the
context, we often omit the subscript G in these notations. Following [1], c(G) denotes the number of components of a graph
G. An integral sequence d = (d1, d2, . . . , dn) is graphic if there is a simple graph G with degree sequence d. Let (d) denote
the set of all simple graphs with degree sequence d. Any graph G ∈ (d) is called a realization of d, or simply a d-realization.

The problem of designing networks with n processors each of which has a given number of connections and with a cer-
tain level of expected network strength is often modeled as a problem of finding graph realizations with certain graphical
properties for a given degree sequence. For more on the literature on the degree sequence realization with given properties,
see a resourceful survey by Li [6].

The spanning tree packing number of G (see [12]), denoted by τ(G), is the maximum number of edge-disjoint spanning
trees in G. There have been many studies on the behavior of τ(G), see [3,4,9,10,13], among others. In a recent paper [5], the
authors characterized the degree sequences d for which there exists a graph G ∈ (d) with τ(G) ≥ k.

Theorem 1.1 (Theorem1.1 in [5]). Let k > 0 be an integer. For a graphic sequence d = (d1, d2, . . . , dn)with d1 ≥ d2 ≥ · · · ≥ dn
with n ≥ 2, there exists G ∈ (d) such that τ(G) ≥ k if and only if both dn ≥ k and

n
i=1 di ≥ 2k(n − 1).
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The arboricity of G, denoted by a(G), is the minimum number of spanning trees whose union equals E(G). By definition,
τ(G) ≤ a(G). The main result of this paper is the following. (Any empty summation is considered to have value zero.)

Theorem 1.2. Let k2 ≥ k1 ≥ 0 and n > 1 be integers. Let d = (d1, d2, · · · , dn) with d1 ≥ d2 ≥ . . . ≥ dn be a graphic sequence
and let I = {i : di < k2}. Then there exists a graph G ∈ (d) such that k2 ≥ a(G) ≥ τ(G) ≥ k1 if and only if each of the following
holds.
(i) dn ≥ k1.
(ii) 2k2(n − |I| − 1) + 2


i∈I di ≥

n
i=1 di ≥ 2k1(n − 1).

Theorem 1.2 has two immediate corollaries, as stated below, by letting k1 = 0 and k2 = k in Corollary 1.3 and let
k1 = k2 = k in Corollary 1.4.

Corollary 1.3. Let n ≥ 2 and k > 0 be integers. For a graphic sequence d = (d1, d2, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn, the
following is equivalent.
(i) There exists a d-realization G such that a(G) ≤ k.
(ii)

n
i=1 di ≤ 2k(n − |I| − 1) + 2


i∈I di, where I = {i : di < k}.

Corollary 1.4. Let n ≥ 2 and k > 0 be integers. For a graphic sequence d = (d1, d2, . . . , dn) with d1 ≥ d2 ≥ · · · ≥ dn, there
exists G ∈ (d) such that a(G) = τ(G) = k if and only if dn ≥ k and

n
i=1 di = 2k(n − 1).

We shall utilize the properties related to uniformly dense graphs (see [2]) together with a decomposition (introduced
in [9]) based on subgraph densities in the proofs of the main result. In the next section, we present the preliminaries on
uniformly dense graphs and the related decomposition, which will be deployed in the proof arguments of our main result.
The proof of Theorem 1.2 and the corollaries will be given in the last section.

2. Preliminaries

In this section, we introduce some notations and results that will be needed in the proofs of ourmain results. For a simple
connected graph G, let V1, V2 be two subsets of V (G). Following [1], define EG[V1, V2] = {uv ∈ E(G) : u ∈ V1, v ∈ V2}. When
H and H ′ are two subgraphs of G, we also use EG[H,H ′

] for EG[V (H), V (H ′)]. When the graph G is understood from the
context, we often omit the subscript G. For a vertex subset V1 ⊆ V (G), define E[V1] = {uv ∈ E(G) : u, v ∈ V1}. If X ⊆ E(G),
then G[X] is the subgraph of G induced by the edge subset X . For an edge subset X , the contraction of G by contracting edges
in X , denoted by G/X , is the graph obtained first from G by identifying the two ends of each edge in X , and then by deleting
all the resulting loops.

Recall that τ(G) is the maximum number of edge-disjoint spanning trees of G. For an integer r ≥ 1, let Tr denote the
family of all graphs G with τ(G) ≥ r . Let G be a connected graph. For any natural number r ∈ N, a subgraph H of G is
called r-maximal if H ∈ Tr and if there is no subgraph K of G, such that K contains H properly and K ∈ Tr . An r-maximal
subgraph H of G is called an r-region if τ(H) = r . A subgraph H of G is a region if H is an r-region for some integer r . Define
ξ(G) = max{r| G has a subgraph as an r-region}.

Let H be a graph with |V (H)| > 1. The density of H is

d(H) =
|E(H)|

|V (H)| − 1
.

It should be indicated that when H is a graph, d(H) denotes the density of H , but when v ∈ V (G) is a vertex of a graph G,
dG(v) denotes the degree of v in G. In the following, we list some known results which will be used in Section 3.

Theorem 2.1 (Nash-Williams [11]). Let G be a graph. Then

a(G) = max
H⊆G

⌈d(H)⌉,

where the maximum is taken over all induced subgraphs H of G with |V (H)| ≥ 2.

By definition and by Theorem 2.1, for a connected graph,

a(G) ≥ d(G) =
|E(G)|

|V (G)| − 1
≥ τ(G). (1)

Theorem 2.2 (Theorem 6 of [2]). If a(G) > τ(G), then d(G) > τ(G).

Theorem 2.3 (Liu et al. [9]). Let G be a nontrivial connected graph. Then
(i) there exist an integer m ∈ N, and an m-tuple (i1, i2, . . . , im) of integers in N with τ(G) = i1 < i2 < · · · < im = ξ(G), and a
sequence of edge subsets Em ⊂ · · · ⊂ E2 ⊂ E1 = E(G) such that each component of the spanning subgraph of G induced by Ej is
an r-region of G for some r ∈ N with r ≥ ij (1 ≤ j ≤ m), and such that at least one component H in G[Ej] is an ij-region of G;
(ii) if H is a subgraph of G with τ(H) ≥ ij, then E(H) ⊆ Ej;
(iii) the integer m and the sequences in (i) are uniquely determined by G.
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Theorem 2.4 (Liu et al., Corollary 3.2 of [9]). a(G) ≥ ξ(G) ≥ a(G) − 1.

Lemma 2.5 (Lemma 2.5 of [5]). Let k ≥ 1 be an integer, G be a graph with ξ(G) ≥ k. Then each of the following statements holds.
(i) The graph G has a unique edge subset Xk ⊆ E(G), such that every component H of G[Xk] is amaximal subgraphwith τ(H) ≥ k.
In particular, G ∉ Tk if and only if E(G) ≠ Xk.
(ii) If G ∉ Tk, then G/Xk contains no nontrivial subgraph H ′ with τ(H ′) ≥ k.
(iii) If G ∉ Tk, then d(H ′) < k for any nontrivial subgraph H ′ of G/Xk.

Remark 2.6. By Theorem2.4 and by ξ(G) = im, we deduce that the same conclusions of Lemma 2.5 also hold if the condition
ξ(G) ≥ k in Lemma 2.5 is replaced by the condition a(G) > k.

Lemma 2.7 (Lemma 2.6 of [5]). Let G be a graph with d(G) ≥ k and let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5 (i). If
G[Xk] has at least two components, then for any nontrivial component H of G[Xk], d(H) ≥ k, and G[Xk] has at least one component
H with d(H) > k.

Next, we shall show that the same conclusions of Lemma 2.7 hold if we replace the condition d(G) ≥ k in Lemma 2.7 by
the condition a(G) > k. For this purpose, the following result is needed.

Theorem 2.8 (Liu et al., Lemma 2.1 of [9]). Let G be a connected graph, and let r, r ′ be integers with r ′
≥ r > 0. Each of the

following holds.
(i) If τ(G) ≥ r, then for any e ∈ E(G), τ(G/e) ≥ r.
(ii) If H is a subgraph of G with τ(H) ≥ r ′, then τ(G/H) ≥ r if and only if τ(G) ≥ r.

Theorem 2.9. Let G be a graph with a(G) > k and let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5(i). Then G[Xk] has at
least one component H with d(H) > k.

Proof. Since a(G) > k, by Theorem 2.1, there exists G0 ⊆ G with d(G0) > k.
Let X ′

k ⊂ E(G0) be the edge subset defined in Lemma 2.5(i). If G0[X ′

k] has only one component, then G0[X ′

k] = G0 and
d(G0[X ′

k]) = d(G0) > k. If G0[X ′

k] has at least two components, then by Lemma 2.7, G0[X ′

k] has at least one component K
with d(K) > k. In both cases, we use K to denote a component of G0[X ′

k] with τ(K) ≥ k and d(K) > k.
Let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5(i). Then X ′

k ⊆ Xk, and there exists a component H of G[Xk] such
that K ⊆ H and τ(H) ≥ k. By Theorem 2.8, we have τ(H/K) ≥ k, and so |E(H/K)| ≥ k(|V (H/K)| − 1). Since d(K) > k,
|E(K)| > k(|V (K)| − 1). By |V (H)| = |V (H/K)| + |V (K)| − 1, |E(H)| = |E(H/K)| + |E(K)|, we have

d(H) =
|E(H)|

|V (H)| − 1
=

|E(H/K)| + |E(K)|

|V (H/K)| + |V (K)| − 2

>
k(|V (H/K)| − 1) + k(|V (K)| − 1)

|V (H/K)| + |V (K)| − 2
= k.

This completes the proof. �

The following lemma is useful in the proof of the main result. The related matroidal extensions can be found in [7,8].

Lemma 2.10 (Lemma 2.12 of [5]). Let G be a graph and let Xk ⊂ E(G) be the edge subset defined in Lemma 2.5(i). If H ′ and H ′′

are two components of G[Xk], then each of the following holds.
(i) |E(H ′,H ′′)| < k.
(ii) If d(H ′) > k, then H ′ has a subgraph K such that d(K) > k and τ(K − e) ≥ k for any e ∈ E(K).
(iii) If d(H ′) > k, then H ′ has an edge e′ such that τ(H ′

− e′) ≥ k, and E(G) − Xk has at most one edge joining the ends of e′ to
H ′′.

3. The proofs

Throughout this section, we assume that k1, k2 > 0 and n > 1 are integers and that d = (d1, d2, . . . , dn) is a nonin-
creasing graphic sequence. For this degree sequence d, define I = {i : di < k2} and t = |I|. For a graph G ∈ (d), define
VI = {v ∈ V (G) : d(v) < k2} and VII = {v ∈ V (G) : d(v) ≥ k2}. Thus |VI | = t and |VII | = n − t .

Lemma 3.1. If some G ∈ (d) has a(G) ≤ k2, then
n

i=1

di ≤ 2k2(n − |I| − 1) + 2

i∈I

di.

Proof. Since a(G[VII ]) ≤ a(G) ≤ k2, so by (1), |E[VII ]| ≤ k2((n − t) − 1). By counting the incidences of vertices in VI , we
have |E[VI , VII ] ∪ E[VI ]| ≤


i∈I di. It follows that

n
i=1 di = 2|E[VII ]| + 2|E[VI , VII ] ∪ E[VI ]| ≤ 2k2(n − t − 1) + 2


i∈I di,

and so the lemma follows. �
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Together with Theorem 1.1, Lemma 3.1 justifies the necessity of Theorem 1.2. In the following, we assume that d =

(d1, d2, . . . , dn) satisfies Theorem 1.2(i) and (ii).
Since d satisfies Theorem 1.2(ii), by the definition of I , we have


i∈I di <


i∈I k2. As

n
i=1 di ≤ 2k2(n − |I| − 1) +

2


i∈I di = 2k2(n − 1) − 2(k2|I| −


i∈I di), it follows that
n

i=1

di ≤ 2k2(n − 1). (2)

The next lemma will be needed in the proof of Theorem 1.2.

Lemma 3.2. Let k′ > k > 0 and r ≥ k be integers. Let G be a graph with a(G) ≥ k′ and τ(G) ≥ k, and let H be an r-region of
G such that for some e = uv ∈ E(H) with τ(H − e) ≥ r. For any edge e′

= xy ∈ E(G − H), if f = ux, f ′
= vy ∉ E(G), then

τ((G − {e, e′
}) ∪ {f , f ′

}) ≥ k.

Proof. Let G′
= G/H and G′′

= (G − {e, e′
}) ∪ {f , f ′

}. Since τ(G) ≥ k, by Theorem 2.8(i), τ(G′) ≥ k. Let T ′

1, T
′

2, . . . , T
′

k be k
edge-disjoint spanning trees of G′. Since τ(H − e) ≥ r ≥ k, H − e has k edge-disjoint spanning trees L1, L2, . . . , Lk. Since
G′

= G/H and since e ∈ E(H), e ∉ E(G′). For each i with 1 ≤ i ≤ k, if e′
∉ E(T ′

i ), then E(Li) ∪ E(T ′

i ) ⊆ E(G′′). Let

Ti = G′′
[E(Li) ∪ E(T ′

i )].

Then, Ti is a spanning tree of G′′. In particular, if e′
∉

k
i=1 E(T ′

i ), then T1, T2, . . . , Tk are k edge-disjoint spanning trees of G′′,
and so G′′

∈ Tk.
Thus we assume that e′

∈ E(T ′

1). Let T
′

11 and T ′

12 be the two components of T ′

1 − e′ in G′. Wemay assume that T ′

11 contains
the vertex vH in G′ onto which the subgraph H is contracted. Since e′

= xy, we may also assume that x ∈ V (T ′

11) and
y ∈ V (T ′

12). Let T
′′

1 = G′′
[E(L1) ∪ E(T ′

1 − e′) ∪ {f ′
}]. Then T ′′

1 is a spanning tree of G′′. It follows that T ′′

1 , T2, . . . , Tk are k
edge-disjoint spanning trees of G′′, and so G′′

∈ Tk. �

Proof of Theorem 1.2. By Theorem 1.1 and Lemma 3.1, the necessity of Theorem 1.2 follows immediately. It remains to
prove the sufficiency.

Let (d)1 = {G ∈ (d) : τ(G) ≥ k1}. By Theorem 1.1, (d)1 ≠ ∅. To prove the sufficiency, we argue by contradiction and
assume that

for any G ∈ (d)1, a(G) > k2. (3)

Thus by (2), for any G ∈ (d)1,

n
i=1

di ≤ 2k2(n − 1) < 2a(G)(n − 1). (4)

By Theorem 2.3, there exists a sequence of positive integers τ(G) = i1 < i2 < · · · < im = ξ(G).

Claim 1. For any G ∈ (d)1, m ≥ 2.
By contradiction,we assume that for someG ∈ (d)1, m = 1. By Theorem2.4, τ(G) = a(G) or τ(G) = a(G)−1. If τ(G) = a(G),

then by (1), 2a(G) = 2|E(G)|/(n−1), and so 2a(G)(n−1) =
n

i=1 di ≤ 2k2(n−1), contrary to (4). Thus wemust have τ(G) =

a(G)−1. By Theorem 2.2, 2τ(G) < 2d(G) = 2|E(G)|/(n−1), and so by (2), 2τ(G)(n−1) < 2|E(G)| =
n

i=1 di ≤ 2k2(n−1).
It follows that τ(G) ≤ k2 − 1, and so a(G) = τ(G) + 1 ≤ k2, contrary to (3). This proves Claim 1.

By Claim 1,m ≥ 2. By (3) and by Theorem 2.3, there exists anm-tuple (i1, i2, . . . , im) of integers as stated in Theorem 2.3
with k2 ≤ a(G)− 1 ≤ im ≤ a(G). Thus there exists a smallest index ij such that ij ≥ k2. By Theorem 2.3, G has a unique edge
subset Eij ⊆ E(G) such that each component of G[Eij ] is a k2-maximal subgraph of G.

Claim 2. For any G ∈ (d)1, Eij ≠ E(G).
By contradiction, assume that for some G ∈ (d)1, Eij = E(G). By Theorem 2.3, E(G) has ij edge-disjoint spanning trees, and so

2k2(n− 1) ≤ 2ij(n− 1) ≤ 2|E(G)| =
n

i=1 di. By (2), we have ij = k2 and |E(G)| = k2(n− 1). It follows that E(G) is a disjoint
union of k2 spanning trees, and so by definition, a(G) = k2, contrary to (3). This proves Claim 2.

By Theorem 2.3 with a given value k2, for any G ∈ (d)1, Eij is uniquely determined by G. Throughout this paper, we define
X(G) = E(G) − Eij , and when G is understood from the context, we also use X for X(G). By Claim 2, X ≠ ∅. Let c = c(G− X).
(Thus c = c(G[Eij ]) as well.) Label the components of G − X as H1,H2, . . . ,Hc so that

d(H1) ≥ d(H2) ≥ · · · ≥ d(Hs) ≥ ij, and Hs+1 = · · · = Hc = K1. (5)
Notice that H1,H2, . . . ,Hs are all the nontrivial k2-maximal subgraphs of G. Since X = X(G) is uniquely determined by G,
it follows that the components of G − X and the value of s = s(G) satisfying (5) are also uniquely determined by G. Since
G − X is spanning in G and by Claim 2, we have c ≥ 2. By (3) and by Theorem 2.9,

for any G ∈ (d)1,we always have d(H1) ≥ k2. (6)
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Throughout the rest of the proof in this section, we choose G ∈ (d)1 such that

c = c(G[Eij ]) is minimized, (7)

and subject to (7),

|X(G)| is maximized. (8)

Claim 3. If s ≥ 2, then d(H2) ≤ k2.
Suppose that s ≥ 2 and d(H2) > k2. By Lemma 2.10(iii), there exist e1 = u1v1 ∈ E(H1) and e2 = u2v2 ∈ E(H2) such that

τ(H1 − e1) ≥ k2 and τ(H2 − e2) ≥ k2, and there exists at most one edge in X joining the ends of e1 and e2. Without loss of
generality, assume u1u2, v1v2 ∉ E(G) and let

G′

1 = (G − {u1v1, u2v2}) ∪ {u1u2, v1v2} and X1 = X ∪ {u1u2, v1v2}. (9)

It follows from Lemma 3.2 that G′

1 ∈ (d)1. For each i ∈ {1, 2}, by the choice of ei = uivi, Hi − uivi is contained in a k2-maximal
subgraph of G′

1. It follows by (7) that G′

1 − X(G′

1) = (H1 − u1v1) ∪ (H2 − u2v2) ∪ H3 ∪ · · · ∪ Hc , and so |X(G′

1)| = |X(G)| + 2,
contrary to (8). This proves Claim 3.

By Claim 3 and by Lemma 2.9, there exists G ∈ (d)1 such that

G has a unique k2 -maximal subgraph H1 with d(H1) > k2. (10)

Among all such graphs in (d)1 satisfying (10), choose G so that

|V (H1)| is maximized, (11)

and subject to (11),

|X(G)| is maximized. (12)

Throughout the rest of the proof, we shall assume that G ∈ (d)1 satisfies (10), as well as (11) and (12).

Claim 4. s = 1.
Suppose s ≥ 2. By Lemma 2.10, H1 has an edge e1 = uv ∈ E(H1) with

d(H1 − e1) ≥ τ(H1 − e1) ≥ ij and |E[H1[{e1}],H2]| ≤ 1. (13)

By (13), H2 has an edge e2 = xy such that xu, yv ∉ E(G). Let G1 = (G − {xy, uv}) ∪ {xu, yv}. By Lemma 3.2, G1 ∈ (d)1.
By Claim 3, d(H2) = k2 and so τ(H2 − e2) < k2. Let H2,1, . . . ,H2,l be the k2-maximal subgraphs of H2 − e2. Thus for each

z ∈ {1, 2, . . . , l}, either d(H2,z) = k2 or H2,z = K1. By the choice of e1, τ(H1 − e1) ≥ k2. If τ(H1 − e1) = k2, then by Claim 3,
and by the fact that either d(H2,z) = k2 or H2,z = K1, we must have a(G1) ≤ k2, contrary to (3). Hence d(H1 − e1) > k2, and so
H1 − e1,H2,1, . . . ,H2,l are the k2-maximal subgraphs of G1[(H1 − e1) ∪ (H2 − e2)]. It follows that X ⊆ X ′

− {xu, yv}, and so
|X ′

| ≥ |X | + 2, contrary to (12). This proves Claim 4.

By Claim 4, s = 1. If c = 2, then |V (H1)| = n − 1. Let V (H2) = {x}. By the definition of X(G) and ij, τ(H1) ≥ ij ≥ k2. By
Theorem 2.9, we have

n
i=1

di = 2|E(H1)| + 2|E(x,H1)| > 2k2(n − 2) + 2dG(x). (14)

If dG(x) ≥ k2, then
n

i=1 di > 2k2(n − 1), contrary to (4). Hence dn ≤ dG(x) < k2. For any v ∈ V (H1), we have
dG(v) ≥ dH1(v) ≥ τ(H1) ≥ k2. It follows that t = 1, that is, there is a unique vertex whose degree is smaller than k2. By
(14), we have

n
i=1 di =

n−1
i=1 di + dn > 2k2(n − t − 1) + 2


i∈I di, contrary to Theorem 1.2(ii).

Thus for the rest of the proof, we shall assume that s = 1 and c > 2. Since s = 1, for each i with 2 ≤ i ≤ c , denote
V (Hi) = {xi}. Since τ(H1) ≥ k2, if for some i, |NG(xi) ∩ V (H1)| ≥ k2, then G[V (H1) ∪ {xi}] should have been in a k2-maximal
subgraph of G, contrary to the choice of Eij . Hence we have

for any i with 2 ≤ i ≤ c, |NG(xi) ∩ V (H1)| < k2. (15)

Claim 5. For some i ≠ j, xixj ∈ E(G).
By contradiction, we assume that {x2, x3, , . . . , xc} is an independent set of G. Then for any xi with i ≥ 2, NG(xi) ⊆ V (H1).

By (15), dG(xi) < k2. Since for any v ∈ V (H1), dG(v) ≥ dH1(v) ≥ τ(H1) ≥ k2, it follows that t = |I| = c − 1 and
n

i=1

di = 2|E(H1)| + 2
c

i=2

|E{xi}, V (H1)|

> 2k2[n − (c − 1) − 1] + 2

i∈I

di = 2k2(n − t − 1) + 2

i∈I

di,

contrary to the assumption in Theorem 1.2(ii). This proves Claim 5.
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By Claim 5, we may assume e′
= x2x3 ∈ E(G). By Lemma 2.10(ii), H1 has a subgraph K such that d(K) > ij, τ(H) ≥ ij,

and such that τ(K − e) ≥ ij for any e ∈ E(K). As G is a simple graph,

|V (K)| ≥ ij ≥ k2. (16)

Claim 6. For any edge e = uv ∈ E(K), if ux2 ∉ E(G), then vx3 ∈ E(G); if ux3 ∉ E(G), then vx2 ∈ E(G).
By contradiction, suppose for some edge e = uv ∈ V (K) such that ux2, vx3 ∉ E(G). Define G2 = (G−{uv, x2x3})∪{ux2, vx3}.

By Lemma 3.2, G2 ∈ (d)1. Since τ(K − e) ≥ ij ≥ k2, it follows by Theorem 2.8(ii)that τ(H1 − e) ≥ k2, and so H1 − e belongs
to a k2-maximal subgraph H ′′

1 of G2. By Claim 4, H ′′

1 is the only nontrivial k2-maximal subgraph of G2. It follows by (11) that
V (H ′′

1 ) = V (H1) and so H ′′

1 = H1 − e1. Hence X(G) ⊆ X(G2) − {ux2, vx3}, and so |X(G)| < |X(G2), contrary to (12). This
proves Claim 6.

Define

S1 = NG(x2) ∩ NG(x3) ∩ V (K).

S2 = (NG(x2) − NG(x3)) ∩ V (K).

S3 = (NG(x3) − NG(x2)) ∩ V (K).

S4 = V (K) − (S1 ∪ S2 ∪ S3).

Claim 7. S4 ≠ ∅.
By (15) and by (16), we have V (K) − NG(x3) ≠ ∅, and so S2 ∪ S4 ≠ ∅. Assume by contradiction that S4 = ∅. Then S2 ≠ ∅.

By Claim 6, NK (S2) ⊆ S1 ∪ S2, and so |S1 ∪ S2| ≥ |NK (S2)| ≥ δ(K) ≥ ij ≥ k2. On the other hand, it follows by (15) that
|S1 ∪ S2| = |EG(V (K), {x2})| ≤ |NG(x2) ∩ V (H1)| < k2. This contradiction establishes Claim 7.

By Claim 7, S4 ≠ ∅. By Claim 6, NK (S4) ⊆ S1. It follows that |S1| ≥ |NK (S4)| ≥ δ(K) ≥ ij. On the other hand, we have
|S1| ≤ |V (K) ∩ NG(x2)| ≤ |NG(x2) ∩ V (H1)| < ij. This contradiction proves the theorem. �
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