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Let Gn denote the set of all graphs obtained from Kn by removing five or fewer
edges. Cámara and Haemers proved that graphs in Gn are uniquely determined
by their adjacency spectra with the exception for graphs K7 − E(K4 − E(K2))
and K7 − E(K1,4 + K2). In this paper, we show that all graphs in Gn are uniquely
determined by their permanental spectra. We further extend our findings by inves-
tigating when a complete graph with a few edges removed is uniquely determined
by its permanental spectrum. More precisely, we prove that if
X ⊆ E(Kn) induces a star, or a matching, or a disjoint union of a matching
and a path P3, then Kn − X is uniquely determined by its permanental spectrum.

Keywords: permanental polynomial; permanental spectrum; permanental
cospectral

AMS Subject Classifications: 05C31; 05C50; 15A15

1. Introduction

The permanent of an n × n matrix M with entries mi j (i, j = 1, 2, . . . , n) is defined by

per(M) =
∑
σ

n∏
i=1

miσ(i),

where the sum is taken over all permutations σ of {1, 2, . . . , n}. The permanent plays an
important role in combinatorics. For example, the permanent of a (0,1)-matrix can enumerate
perfect matchings in the corresponding bipartite graphs.[1] However, Valiant [2] has shown
that computing the permanent is #P-complete even when restricted to (0, 1)-matrices. Up
to now, no efficient algorithm for computing the permanent is known.

We use G to denote a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
set E(G) = {e1, e2, . . . , em}. For convenience, the complete graph, path, cycle and star on
n vertices are denoted by Kn , Pn , Cn and K1,n−1, respectively. For a subgraph H of G, let
G − E(H) denote the subgraph obtained from G by deleting the edges of H . The degree

∗Corresponding author. Email: zhanghp@lzu.edu.cn
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398 H. Zhang et al.

of a vertex v ∈ V (G) is denoted by d(v). Let ci (G) and pi (G) denote, respectively, the
numbers of i-cycles and i-vertex paths in G. Let G ∪ H be the union of two graphs G and
H which have no common vertices. For any positive integer l, let lG denote be the union
of l disjoint copies of graph G. Let A(G) be the adjacency matrix of G. The characteristic
polynomial of graph G, denoted by φ(G, x), is det(x I − A(G)), where I is the identity
matrix of order n. The adjacency spectrum of graph G consists of the eigenvalues together
with their multiplicities of A(G). The polynomial π(G, x) = per(x I − A(G)) is called the
permanental polynomial of G. The per-spectrum of graph G, denoted by ps(G), is the set
of all roots (together with their multiplicities) of π(G, x).

Turner [3] first considered a graph polynomial which generalizes both permanental and
characteristic polynomials. The permanental polynomials of graphs were first systematically
studied by Merris et al. [4], and the study of analogous objects in the chemical literature was
started by Kasum et al. [5]. Borowiecki and Jóźwiak [6] posed a problem of characterizing
all graphs whose permanental roots are pure imaginary or zeros. Yan and Zhang [7] gave
a partial solution to this problem. They proved that if G is a bipartite graph containing no
subgraphs which are even subdivisions of K2,3, then the permanental roots of G are pure
imaginary or zeros. Zhang and Li [8] gave a characterization of bipartite graphs containing
no even subdivision of K2,3, and presented an approach to compute the permanental poly-
nomials of such graphs by Pfaffian orientation. In addition, Gutman and Cash [9] and Chen
[10] obtained some relations between the coefficients of the permanental and characteristic
polynomials of some chemical graphs, such as benzenoid hydrocarbons, fullerenes, toroidal
fullerenes and coronoid hydrocarbons. Cash [11,12] developed a computer-aided method
for the calculation of the permanental polynomials of molecular graphs and applied it
to a variety of benzenoid hydrocarbons and fullerenes. Belardo et al. [13,14] gave some
formulas for the permanental polynomial of any square matrix (over any field) in terms
of the permanental polynomial of weighted digraphs. For more studies on permanental
polynomials, see [15–19], among others.

Two graphs with the same adjacency spectrum are called cospectral. A graph G is
determined by its adjacency spectrum (DAS for short) if every graph cospectral with G
is isomorphic to G. van Dam and Haemers in [20] proposed the question to determine
DAS graphs. This seems difficult in the theory of graph spectrum. By now, only a few
types of graphs are proved to be determined by their spectra, such as the complement of
the path,[21] T-shape trees,[22] lollipop graphs,[23,24] θ -graphs,[25] graphs with index at
most

√
2 + √

5,[26] graphs K m
n (see the definition in [27]) and their complements [27] and

so on.
Two graphs are per-cospectral if they share the same per-spectrum. A graph G is said to

be determined by its per-spectrum (DPS for short) if for any graph H , π(G, x) = π(H, x)

implies that H is isomorphic to G. Merris et al. [4] indicated that the permanental polynomial
seems a little better than the characteristic polynomial when it comes to distinguishing
graphs which are not trees, since the permanental polynomial can distinguish the five pairs
of cospectral graphs of [28]. Motivated by the statement of Merris et al., Liu and Zhang
[29,30] showed that complete graphs, stars, regular complete bipartite graphs, odd cycles
and odd lollipop graphs are DPS. They also showed that when restricted to connected
graphs, the paths, even cycles C4l+2 (l ≥ 1), lollipop graphs Ln,2k+1 (k ≥ 1) and Ln,4 are
DPS. Meanwhile, they found that graphs characterized by the characteristic polynomial are
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Linear and Multilinear Algebra 399

not necessarily characterized by the permanental polynomial. In this paper, we focus on
investigating what other graphs are DPS.

Let Gn denote the set of graphs each of which is obtained from Kn by removing five or
fewer edges. Cámara and Haemers [31] determined all DAS graphs in Gn , and obtained the
following result.

Theorem 1.1 [31] A graph G ∈ Gn is DAS if and only if G /∈ {K7 − E(K4 − E(K2)),

K7 − E(K1,4 + K2)}.

In this paper, we consider which graphs in Gn are DPS. Surprisingly, we find that all
graphs in Gn are DPS without exceptions. We will prove the following main theorem in
Section 3,

Theorem 1.2 All graphs in Gn are DPS.

As extensions, we investigate when a complete graph Kn with some edges of special
structure deleted is DPS. Let H be an edge induced subgraph of Kn with |E(H)| =
l. We will show that Kn − E(H) is DPS, where (i) H ∼= K1,l , (i i) H ∼= l P2 and
(i i i) H ∼= (l − 2)P2 ∪ P3.

The rest of this paper is organized as follows. In Section 2, we present some character-
izing properties of the per-spectrum of graphs, and give formulae to compute the numbers
of i-cycles (i = 3, 4, 5) in Kn − E(H), where H is a subgraph of Kn with l edges. In
Section 3, we give the proof of Theorem 1.2. In the final section, we prove that Kn −E(K1,l),
Kn − E(l P2) and Kn − E((l − 2)P2 ∪ P3) are DPS.

2. Some preliminaries

It can be seen that there exist 45 non-isomorphic graphs with at most five edges and no
isolated vertices; for detail, see Appendix I in [32]. Thus, up to isomorphism there exist
exactly 45 graphs in Gn for n ≥ 10, which are labelled by Gi j , 1 ≤ i ≤ 5, 0 ≤ j ≤ 25, and
illustrated in Figure 1.

A subgraph H of a graph G is said to be a Sachs subgraph if each component of H is
either a single edge or a cycle.

Lemma 2.1 [4] Let G be a graph with π(G, x) = ∑n
k=0bk(G)xn−k . Then

bk(G) = (−1)k
∑

H

2c(H), 1 ≤ k ≤ n,

where the sum is taken over all Sachs subgraphs H of G on k vertices and c(H) is the
number of cycles in H.

Lemma 2.2 Two graphs G and H are per-cospectral if and only if they have the same
permanental polynomials.
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400 H. Zhang et al.

Lemma 2.3 [29] Let G be a graph with n vertices and m edges, and let (d1, d2, . . . , dn)

be the degree sequence of G. Then

b0(G) = 1, b1(G) = 0, b2(G) = m, b3(G) = −2c3(G),

b4(G) = (m
2

) −
n∑

i=1

(di
2

) + 2c4(G).

Lemma 2.4 Let G be a graph with n vertices and m edges, and let t j (G) denote the
degree sum of the three vertices on j th triangle in G. Then

b5(G) = −2

⎛
⎝c3(G)∑

j=1

(
m + 3 − t j (G)

) + c5(G)

⎞
⎠ . (1)

Proof By definition, C3 ∪ P2 and C5 are the only Sachs subgraphs with five vertices. There
exist m + 3 − t j (G) Sachs subgraphs of five vertices containing the j th triangle in G. By
Lemma 2.1, we obtain Equation (1). �

Lemma 2.5 [29] The following can be deduced from the permanental polynomial of a
graph G:

(i) The number of vertices.
(ii) The number of edges.

(iii) The number of triangles.
(iv) The length of a shortest odd cycle.
(v) The number of shortest odd cycles.

(vi) Whether G is bipartite.

Lemma 2.6 [21] Let H ⊆ Kn be a graph with l edges and let G = Kn − E(H). Then

c3(G) =
(

n

3

)
− l(n − 2) +

∑
v∈V (H)

(
d(v)

2

)
− c3(H). (2)

Using (2), we can calculate the number of triangles of all G ∈ Gn ; see Table 1. By
examining Table 1, we observe that some graphs in Gn have the same number of triangles.

The following results can be derived from the Principle of Inclusion–Exclusion.

Lemma 2.7 Let H ⊆ Kn be a graph with l edges and let G = Kn − E(H). Then

c4(G) = 3

(
n

4

)
−2l

(
n − 2

2

)
+

⎡
⎣2

(
l

2

)
+ (n − 5)

∑
v∈V (H)

(
d(v)

2

)⎤
⎦− p4(H)+c4(H). (3)

Proof Let E(H) = {e1, e2, . . . , el}. Let Si denote the set of quadrangles of Kn containing
ei (i = 1, 2, . . . , l). For any four vertices in Kn , there exist exactly three quadrangles
containing them. So, Kn contains 3

(n
4

)
quadrangles. By the Inclusion–Exclusion Principle,

we have
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Linear and Multilinear Algebra 401

Figure 1. The collection of graphs in Gn obtained from Kn by deleting five or fewer edges drawn as
lines in a disk.

c4(G) = 3

(
n

4

)
−

l∑
i=1

|Si | +
∑
i< j

|Si ∩ S j | −
∑

i< j<k

|Si ∩ S j ∩ Sk |

+
∑

i< j<k<s

|Si ∩ S j ∩ Sk ∩ Ss |.

Since any edge ei is contained in 2
(n−2

2

)
quadrangles of Kn , we have

∑l
i=1|Si | =

2l
(n−2

2

)
. For any given ei and e j , if ei is adjacent to e j , then there exist n − 3 quadrangles

in Kn containing them. Otherwise, there exist two quadrangles containing them in Kn .
For the graph H , it contains exactly

∑
v∈V (H)

(d(v)
2

)
pairs of adjacent edges and

(l
2

) −∑
v∈V (H)

(d(v)
2

)
pairs of disjoint edges. Thus

∑
i< j |Si ∩ S j | = 2

((l
2

) − ∑
v∈V (H)

(d(v)
2

)) +
(n−3)

∑
v∈V (H)

(d(v)
2

)
. Since any three edges in a quadrangle induce a P4,

∑
i< j<k |Si ∩S j ∩

Sk | = p4(H). Similarly,
∑

i< j<k<s |Si ∩ S j ∩ Sk ∩ Ss | = c4(H). By the above arguments,
we arrive in Equation (3). �

We calculate the number of quadrangles of some graphs in Gn by applying Equation (3)
as shown in Table 2.

For a graph G, let P3(G) denote the set of all subgraph of G isomorphic to a path P3.
For a subgraph H of G, and for each P3 ∈ P3(G), define,

xH (P3) =
{

1, if P3 is contained in a triangle in H ,

0, otherwise.
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402 H. Zhang et al.

Table 1. The numbers of triangles of graphs in Gn .

Graph c3(G) Graph c3(G)

3 G10
(n
3
) − n + 2 G521

(n
3
) − 5n + 10

G20
(n
3
) − 2n + 5 G32,G33

(n
3
) − 3n + 8

G21
(n
3
) − 2n + 4 G41,G47

(n
3
) − 4n + 11

G30
(n
3
) − 3n + 9 G59,G524

(n
3
) − 5n + 17

G31
(n
3
) − 3n + 7 G42,G45,G48

(n
3
) − 4n + 10

G34
(n
3
) − 3n + 6 G44,G46,G410

(n
3
) − 4n + 12

G40
(n
3
) − 4n + 14 G50,G51,G514

(n
3
) − 5n + 12

G43
(n
3
) − 4n + 9 G55,G512,G520,G523

(n
3
) − 5n + 15

G49
(n
3
) − 4n + 8 G58,G511,G513,G517

(n
3
) − 5n + 13

G52
(n
3
) − 5n + 11 G53,G57,G518,G519,G522

(n
3
) − 5n + 14

G54
(n
3
) − 5n + 20 G56,G510,G515,G516,G525

(n
3
) − 5n + 16

Lemma 2.8 Let H ⊆ Kn have l edges and let G = Kn − E(H). Let d j (P3) denote the
degree sum of three vertices on the j th P3 in H, and q = ∑

v∈V (H)

(d(v)
2

)
. Then

c5(G) = 12

(
n

5

)
− 6l

(
n − 2

3

)
+ 4(n − 4)

((
l

2

)
− q

)
+ 2q

(
n − 3

2

)
− (n − 4)p4(H)

−2

( q∑
i=1

(l + 2 − di (P3) + xH (P3))

)
+ p5(H) − c5(H). (4)

Proof Let E(H) = {e1, e2, . . . , el}. For each i = 1, 2, . . . , l, let Qi denote the set of
pentagons (5-cycles) of Kn containing ei .As Kn contains 12

(n
5

)
pentagons, by the Inclusion–

Exclusion Principle, we obtain a formula enumerating pentagons in G as follows,

c5(G) = 12

(
n

5

)
−

l∑
i=1

|Qi | +
∑
i< j

|Qi ∩ Q j | −
∑

i< j<k

|Qi ∩ Q j ∩ Qk |

+
∑

i< j<k<s

|Qi ∩ Q j ∩ Qk ∩ Qs | −
∑

i< j<k<s<t

|Qi ∩ Q j ∩ Qk ∩ Qs ∩ Qt |.

Since any edge of Kn is contained in 6
(n−2

3

)
pentagons, we have

∑l
i=1|Qi | = 6l

(n−2
3

)
.

For i �= j ,

|Qi ∩ Q j | =
{

2
(n−3

2

)
, if ei is adjacent to e j ,

4(n − 4), otherwise.

For any graph H , it contains exactly
(l

2

)−∑
v∈V (H)

(d(v)
2

)
pairs of disjoint edges. On the other

hand, the number of P3 in H equals q = ∑
v∈V (H)

(d(v)
2

)
. It follows that

∑
i< j |Qi ∩ Q j | =

4(n − 4)(
(l

2

) − q) + 2q
(n−3

2

)
.
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Linear and Multilinear Algebra 403

Table 2. The number of quadrangles of some graphs in Gn .

Graph c4(G) Graph c4(G)

G32 3
(n

4
) − 3n2 + 18n − 27 G510 3

(n
4
) − 5n2 + 32n − 50

G33 3
(n

4
) − 3n2 + 17n − 23 G511 3

(n
4
) − 5n2 + 28n − 26

G42 3
(n

4
) − 4n2 + 22n − 22 G515 3

(n
4
) − 5n2 + 31n − 45

G44 3
(n

4
) − 4n2 + 24n − 35 G516 3

(n
4
) − 5n2 + 33n − 55

G46 3
(n

4
) − 4n2 + 25n − 39 G517 3

(n
4
) − 5n2 + 28n − 27

G47 3
(n

4
) − 4n2 + 23n − 29 G518 3

(n
4
) − 5n2 + 30n − 37

G48 3
(n

4
) − 4n2 + 22n − 23 G520 3

(n
4
) − 5n2 + 30n − 40

G410 3
(n

4
) − 4n2 + 24n − 34 G523 3

(n
4
) − 5n2 + 30n − 39

G50 3
(n

4
) − 5n2 + 27n − 21 G524 3

(n
4
) − 5n2 + 32n − 48

G51 3
(n

4
) − 5n2 + 27n − 20 G41,G45 3

(n
4
) − 4n2 + 23n − 27

G53 3
(n

4
) − 5n2 + 29n − 32 G57,G513 3

(n
4
) − 5n2 + 29n − 30

G55 3
(n

4
) − 5n2 + 30n − 38 G58,G514 3

(n
4
) − 5n2 + 28n − 25

G56 3
(n

4
) − 5n2 + 31n − 40 G512,G525 3

(n
4
) − 5n2 + 31n − 44

G59 3
(n

4
) − 5n2 + 33n − 54 G519,G522 3

(n
4
) − 5n2 + 29n − 33

Note that any three edges in a C5 induce either a P4, or the disjoint union of a P3 and a
P2. Observe that any P3 in H is contained in l + 2 − d(P3) + xH (P3) disjoint unions of P3
and P2 in H . Further exactly 2(l+2−di (P3)+xH (P3)) pentagons in Kn contain the disjoint
union of the i-th P3 and P2 in H , and any P4 is contained in n −4 5-cycles in Kn . It follows
that

∑
i< j<k |Qi ∩ Q j ∩ Qk | = p4(H)(n − 4)+ 2(

∑q
i=1(l + 2− di (P3)+ xH (P3))). Since

every four edges in a C5 induce a P5, we have
∑

i< j<k<s |Qi ∩ Q j ∩ Qk ∩ Ss | = p5(H).
Similarly,

∑
i< j<k<s<t |Qi ∩ Q j ∩ Qk ∩ Qs ∩ Qt | = c5(H). Substituting such equations

into the expression of c5(G), we obtain Equation (4). �

Let K3(G) be the set of all 3-cycles of G. For each K ∈ K3(G), define dG(K ) =∑
v∈V (K ) dG(v) and D(G) = ∑

K∈K3
(G)dG(K ).

Lemma 2.9 Let G519 ∼= Kn − E(C4 ∪ K2) with n ≥ 6. Then

D(G519) =
(

n

3

)
(3n − 3) − 20n2 + 90n − 80. (5)

Proof We use the notation in Figure 1 for G519 and let H = C4 ∪ K2 denote a subgraph
of Kn . Let e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v1 and e5 = v5v6 denote the edges H .
Direct computation yields D(Kn) = (n

3

)
(3n − 3). We will compute D(G519) by deleting

the edges e1, . . . , e5 one edge at a time.
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404 H. Zhang et al.

Step 1 We observe that Kn has n − 2 triangles containing e1, and these triangles will be
destroyed in Kn − e1. We also note that Kn − e1 has 2

(n−2
2

)
triangles containing exactly

one endpoint of e1. For each of such 3-cycles, its degree sum in Kn − e1 will decrease by
1. As each triangle in Kn has degree sum 3n − 3, it follows that

D(Kn) − D(Kn − e1) = (n − 2)(3n − 3) + 2

(
n − 2

2

)
= 4n2 − 14n + 12. (6)

Step 2 Note that Kn − e1 has n − 3 triangles containing e2, and these triangles will be
destroyed in Kn − {e1, e2}, and that the degree sum of each such triangle in Kn − e1 is
3n − 4. We also note that Kn − e1 has 2

(n−3
2

)
triangles containing exactly one endpoint of

e2 but not v1, and for each of such 3-cycles, its degree sum in Kn − {e1, e2} will decrease
by 1 from its degree sum in Kn − e1. Moreover, Kn − e1 has

(n−3
1

)
triangles containing

edge v1v3, and for each of such 3-cycles, its degree sum in Kn − {e1, e2} will decrease by
1 from its degree sum in Kn − e1. Thus, after deleting e2 in Kn − e1, we have

D(Kn−e1)−D(Kn−e1−e2) = (n−3)(3n−4)+2

(
n − 3

2

)
+(n−3) = 4n2−19n+21. (7)

Step 3 Again Kn − e1 − e2 has n − 3 triangles containing e3. Among these triangles,
v1v3v4 has degree sum 3n − 5 in Kn − e1 − e2, and each of the other 3-cycles has degree
sum 3n − 4 in Kn − e1 − e2. All these 3-cycles will be destroyed in Kn − {e1, e2, e3, e4}.
Moreover, Kn −e1 −e2 has 2

(n−4
2

)
3-cycles each of which contains exactly one endpoint of

e3 and two vertices in V (Kn)−{v1, v2, v3, v4}; and 3
(n−4

1

)
3-cycles each of which contains

exactly one of edges in {v1v3, v1v4, v2v4}. The degree sum of each of these 2
(n−4

2

)+3
(n−4

1

)
triangles in Kn − {e1, e2} will be decreased by 1 in Kn − {e1, e2, e3}. Thus,

D(Kn − e1 − e2) − D(Kn − e1 − e2 − e3) (8)

= (3n − 5) + (n − 4)(3n − 4) + 2

(
n − 4

2

)
+ 3

(
n − 4

1

)
= 4n2 − 19n + 19.

Step 4 We again note that Kn − e1 − e2 − e3 has n − 4 triangles containing e4, and the
degree sum of each of these triangle in Kn −e1 −e2 −e3 is 3n −5. All these 3-cycles will be
destroyed in Kn −{e1, e2, e3, e4}. Furthermore, Kn − e1 − e2 − e3 has 2

(n−4
2

)
3-cycles each

of which contains exactly one endpoint of e4 and two vertices in V (Kn) − {v1, v2, v3, v4};
and has 2

(n−4
1

)
3-cycles each of which contain exactly edge in {v1v3, v2v4}. The degree

sum of each of these 2
(n−4

2

) + 2
(n−4

1

)
triangles in Kn − {e1, e2, e3} will be decreased by 1

in Kn − {e1, e2, e3, e4}. Thus, after deleting e4 in Kn − e1 − e2 − e3, we have

D(Kn − e1 − e2 − e3) − D(Kn − e1 − e2 − e3 − e4) (9)

= (n − 4)(3n − 5) + 2

(
n − 4

2

)
+ 2

(
n − 4

1

)
= 4n2 − 24n + 32.

Step 5 We observe that Kn − e1 − e2 − e3 − e4 has n − 2 triangles containing e5. Among
these triangles, each of v1v5v6, v2v5v6, v3v5v6 and v4v5v6 has degree sum 3n −5, and each
of the n − 6 others has degree sum 3n − 3 in Kn − e1 − e2 − e3 − e4. All these 3-cycles
will be destroyed in Kn − {e1, e2, e3, e4, e5}.

Moreover, Kn − e1 − e2 − e3 − e4 has 2
(n−6

2

)
3-cycles each of which contains exactly

one endpoint of e5 and two vertices in V (Kn)−{v1, v2, v3, v4, v5, v6}, has 8
(n−6

1

)
triangles

each of which contains one of edges in {v1v5, v2v5, v3v5, v4v5, v1v6, v2v6, v3v6, v4v6} and
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Linear and Multilinear Algebra 405

a vertex in V (Kn) − {v1, v2, v3, v4, v5, v6}, and the four other 3-cycles in {v5v1v3, v5v2v4,
v6v1v3, v6v2v4}. By direct computation, the degree sum of each of these 2

(n−6
2

)+8
(n−6

1

)+4
triangles in Kn − {e1, e2, e3, e4} will be decreased by 1 in Kn − {e1, e2, e3, e4, e5}. Thus,
after deleting e5 in Kn − e1 − e2 − e3 − e4, we have

D(Kn − e1 − e2 − e3 − e4) − D(Kn − e1 − e2 − e3 − e4 − e5) (10)

= 4(3n − 5) + (n − 6)(3n − 3) + 2

(
n − 6

2

)
+ 8

(
n − 6

1

)
+ 4 = 4n2 − 14n − 4.

Combining (6)–(10), we obtain Equation (5). �

Lemma 2.10 Let G522 ∼= Kn − E(P6) with n ≥ 6. Then

D(G522) =
(

n

3

)
(3n − 3) − 20n2 + 90n − 78. (11)

Proof The proof of Lemma 2.10 is similar to that of Lemma 2.9. Let H = P6 denote a
subgraph of Kn . Then G522 = Kn −E(H). Let e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v5
and e5 = v5v6 denote the edges H . With the same Steps 1–3 in the proof of Lemma 2.9
and the similar arguments, we obtain (6)–(8). We only need to modify the proofs in Steps
4 and 5.
Step 4 Note that Kn − e1 − e2 − e3 has n − 3 triangles containing e4, and that among
these triangles (as subgraphs in Kn − e1 − e2 − e3), v1v4v5 has degree sum 3n − 5,
v2v4v5 has degree sum 3n − 6 and each of the other (n − 5) 3-cycles has degree sum
3n − 4 in Kn − e1 − e2 − e3. All these 3-cycles will be destroyed in Kn − {e1, e2, e3, e4}.
Moreover, Kn − e1 − e2 − e3 has 2

(n−5
2

)
3-cycles each of which contains exactly one

endpoint of e4 and two vertices in V (Kn) − {v1, v2, v3, v4, v5}, and has 5
(n−5

1

)
3-cycles

each of which contains exactly one of the edges in {v1v4, v2v4, v1v5, v2v5, v3v5} and a
vertex in V (Kn)−{v1, v2, v3, v4, v5}, plus the 3-cycles v1v3v5. By direct computation, the
degree sum of each of these 2

(n−5
2

) + 5
(n−5

1

) + 1 triangles in Kn − e1 − e2 − e3 will be
reduced by 1 in Kn − {e1, e2, e3, e4}. It follows that

D(Kn − e1 − e2 − e3) − D(Kn − e1 − e2 − e3 − e4)

= (3n − 5) + (3n − 6) + (n − 5)(3n − 4) + 2

(
n − 5

2

)

+ 5

(
n − 5

1

)
+ 1 = 4n2 − 19n + 15. (12)

Step 5 We observe that Kn − e1 − e2 − e3 − e4 has n − 3 triangles containing e5. Among
these triangles, v1v5v6 has degree sum 3n − 5, both v2v5v6 and v3v5v6 have degree sum
3n − 6, and each of the n − 6 others has degree sum 3n − 4 in Kn − e1 − e2 − e3 − e4. All
these 3-cycles will be destroyed in Kn − {e1, e2, e3, e4, e5}.

Moreover, Kn −{e1, e2, e3, e4} has 2
(n−6

2

)
3-cycles each of which contains exactly one

endpoint of e5 and two vertices in V (Kn)−{v1, v2, v3, v4, v5, v6}, and has 7
(n−6

1

)
triangles

each of which contains exactly one of edges in {v1v5, v2v5, v3v5, v1v6, v2v6, v3v6, v4v6} and
a vertex in V (Kn) − {v1, v2, v3, v4, v5, v6}, plus the 3-cycles in {v5v1v3, v6v2v4, v6v1v3,
v6v1v4}. By direct computation, the degree sum of each of these 2

(n−6
2

) + 7
(n−6

1

) + 4
triangles in Kn − {e1, e2, e3, e4} will be reduced by 1 in Kn − {e1, e2, e3, e4, e5}. It follows
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406 H. Zhang et al.

that

D(Kn − e1 − e2 − e3 − e4) − D(Kn − e1 − e2 − e3 − e4 − e5)

= (3n − 5) + 2(3n − 6) + (n − 6)(3n − 4) + 2

(
n − 6

2

)

+ 7

(
n − 6

1

)
+ 4 = 4n2 − 19n + 11. (13)

We now combine (6)–(8), (12) and (13) to conclude that D(G522) = (n
3

)
(3n − 3) −

20n2 + 90n − 78. �

3. Proof of theorem 1.2

We first present the main idea in the proof of Theorem 1.2. By Table 1, Gn is partitioned
into different groups according to the number of triangles a graph in Gn will have. From
Lemmas 2.2 and 2.3, we can see that any two graphs in different groups are not per-
cospectral since they have either different number of edges or different number of triangles.
Further, by Lemmas 2.3 and 2.4 and Table 2, we calculate the fourth and fifth coefficients
of the permanental polynomial of graphs in each group above, respectively, and compare
the coefficients to determine whether such graphs are per-cospectral or not. So, to prove
Theorem 1.2 is sufficient to verify the following lemma.

Lemma 3.1 Each of the following holds.

(i) Graphs G32 and G33 are not per-cospectral.
(ii) Graphs G41 and G47 are not per-cospectral.

(iii) Graphs G44, G46 and G410 are not pairwise per-cospectral.
(iv) Graphs G42, G45 and G48 are not pairwise per-cospectral.
(v) Graphs G50, G51 and G514 are not pairwise per-cospectral.

(vi) Graphs G55, G512, G520 and G523 are not pairwise per-cospectral.
(vii) Graphs G58, G511, G513 and G517 are not pairwise per-cospectral.

(viii) Graphs G59 and G524 are not per-cospectral.
(ix) Graphs G53, G57, G518, G519 and G522 are not pairwise per-cospectral.
(x) Graphs G56, G510, G515, G516 and G525 are not pairwise per-cospectral.

Proof

(i) By Table 2, we have c4(G32) − c4(G33) = n − 4. By Lemma 2.3,
b4(G32) − b4(G33) = ∑n

i=1

((di (G33)
2

) − (di (G32)
2

)) + 2(c4(G32) − c4(G33)) =
2n − 9 �= 0. Hence by Lemma 2.2, G32 and G33 are not per-cospectral.

(ii) By Lemma 2.3 andTable 2, we have b4(G41)−b4(G47)=∑n
i=1

((di (G47)
2

)−(di (G41)
2

))
+ 2(c4(G41) − c4(G47)) = 4 �= 0. Hence by Lemma 2.2, G41 and G47 are not
per-cospectral.

(iii) For graphs G44 and G46, by Lemma 2.3 and Table 2, we have b4(G44)−b4(G46) =∑n
i=1

((di (G46)
2

) − (di (G44)
2

)) + 2(c4(G44) − c4(G46)) = 9 − 2n �= 0. Hence by
Lemma 2.2, G44 and G46 are not per-cospectral. Similarly, we have that
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Linear and Multilinear Algebra 407

b4(G44) − b4(G410) = −2 and b4(G46) − b4(G410) = 2n − 11 �= 0, which
imply that G410 is not per-cospectral with G44 or G46.

(iv) We argue similarly to get b4(G42) − b4(G45) = 11 − 2n, b4(G42) − b4(G48) = 1
and b4(G45) − b4(G48) = 2n − 9. These imply, by Lemma 2.2, that none of pairs
G42 and G45, G42 and G48 and G45 and G48 are per-cospectral.

(v) By Lemma 2.3 and Table 2, we have b4(G50) − b4(G51) = −1,
b4(G50) − b4(G514) = 9 − 2n and b4(G51) − b4(G514) = 11 − 2n. By Lemma
2.2, we conclude that any two graphs in {G50, G51, G514} are not per-cospectral.

(vi) By Lemma 2.3 and Table 2, we have b4(G55) − b4(G512) = 13 − 2n,
b4(G55)−b4(G520) = 4, b4(G55)−b4(G523) = 1, b4(G512)−b4(G520) = 2n−9,
b4(G512) − b4(G523) = 2n − 11 and b4(G520) − b4(G523) = −2. By Lemma 2.2,
we conclude that any two graphs in {G55, G512, G520, G523} are not per-cospectral.

(vii) By Lemma 2.3 and Table 2, we have b4(G58)−b4(G511) = 2, b4(G58)−b4(G513) =
11−2n, b4(G58)−b4(G517) = 4, b4(G511)−b4(G517) = 2, b4(G511)−b4(G513) =
9 − 2n and b4(G513) − b4(G517) = 2n − 7. These imply, by Lemma 2.2, that G58,
G511, G513 and G517 are not pairwise per-cospectral.

(viii) Assume, by contradiction, that G59 and G524 are per-cospectral. By Lemma 2.2,
we have b4(G59) − b4(G524) = 0. However, by Lemma 2.3 and Table 2, we have
b4(G59) − b4(G524) = 4n − 26 �= 0, a contradiction.

(ix) By Lemma 2.3 and Table 2, we observe that b4(G519) = b4(G522). By (4), we have
c5(G519) = 12

(n
5

) − 30
(n−2

3

) + 8
(n−3

2

) + 20
(n−4

1

) − 8 and c5(G522) = 12
(n

5

) −
30

(n−2
3

)+8
(n−3

2

)+21
(n−4

1

)−10. We assume that G519 and G522 are per-cospectral.
By Lemmas 2.2 and Equations (1), (5) and (11), we have 0 = b5(G519)−b5(G522) =
2n − 16, forcing n = 8.

Using Maple 12.0 with n = 8, we compute the permanental polynomials of G519
and G522, respectively. We found thatπ(G519, x) = π(K8−(E(C4)∪E(K2)), x) =
x8 + 23x6 − 60x5 + 319x4 − 936x3 + 2309x2 − 3628x + 2812 and π(G522, x) =
π(K8− E(P6), x) = x8+23x6−60x5+319x4−936x3+2286x2−3620x +2909.
So π(G519, x) �= π(G522, x), a contradiction, which indicates that G519 and G522
are not per-cospectral.

Similarly, by Lemma 2.3 and Table 2, we have b4(G53) − b4(G57) = 2,
b4(G53)−b4(G518) = 11−2n, b4(G53)−b4(G519) = −2, b4(G53)−b4(G522) =
−2, b4(G57)−b4(G518) = 15−2n, b4(G57)−b4(G519) = 6, b4(G57)−b4(G522) =
6, b4(G518)−b4(G519) = 2n−13 and b4(G518)−b4(G522) = 2n−13. These imply,
by Lemma 2.2, that G53, G57, G518, G519 and G522 are not pairwise per-cospectral.

(x) Suppose that G56 and G516 are per-cospectral, by Lemma 2.3 and Table 2, we have
0 = b4(G56) − b4(G516) = 32 − 4n, and so n = 8.

Using Maple 12.0 with n = 8, we obtain that π(G56, x) = π(K8−E(K1,4∪P2), x) =
x8 + 23x6 − 64x5 + 335x4 − 980x3 + 2293x2 − 3316x + 2252, π(G516, x) = π(K8 −
E(K4 − E(P2)), x) = x8 + 23x6 − 64x5 + 335x4 − 952x3 + 2161x2 − 2872x + 1608.
So π(G56, x) �= π(G516, x), a contradiction, which shows that G56 and G516 are not
per-cospectral.

Similarly, suppose that π(G516, x) = π(G525, x). We have 0 = b4(G516)−b4(G525) =
4n − 24, and so n = 6. Let W6 be a graph obtained from the path P2 by adding two pendant
edges at every vertex. By Maple 12.0, we obtain that π(G516, x) = π(K6 − E(K4 −

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 0
8:

01
 0

6 
N

ov
em

be
r 

20
14

 



408 H. Zhang et al.

E(P2)), x) = x6 + 10x4 − 12x3 + 33x2 − 20x + 4, π(G525, x) = π(K6 − E(W6), x) =
x6 + 10x4 − 12x3 + 33x2 − 28x + 20. So G516 and G525 are not per-cospectral.

In addition, by Lemma 2.3 and Table 2, we have b4(G56) − b4(G510) = 42 − 4n,
b4(G56) − b4(G515) = 20, b4(G56) − b4(G525) = 16, b4(G510) − b4(G515) = 2n − 11,
b4(G510) − b4(G516) = 2n − 1, b4(G510) − b4(G525) = 2n − 11, b4(G515) − b4(G516) =
22 − 4n and b4(G515) − b4(G525) = −2. By Lemma 2.2, we conclude that no two of G56,
G510, G515, G516 and G525 are per-cospectral. �

4. Further characterizations

In this section, we focus on the induced subgraph structures of an edge subset X in
Kn such that Kn − X is DPS, as an attempt to extend Theorem 1.2. More precisely,
let H be an edge induced subgraph of Kn with |E(H)| = l. We will show that when
H ∈ {K1,l , l P2, (l − 2)P2 ∪ P3}, Kn − E(H) is DPS.

Theorem 4.1 If star K1,l is a subgraph of Kn, then the graph Kn − E(K1,l) is DPS.

Proof Let G be a graph per-cospectral with Kn − E(K1,l). Then G must be isomorphic to
some Kn−E(H) for an edge induced subgraph H of Kn with |E(H)| = l.As

∑
v∈V (H)

(d(v)
2

)
equals the number of P3’s in H ,

∑
v∈V (H)

(d(v)
2

) ≤ (l
2

)
. If H �∼= K1,l , then either there exist

at least two edges in H that are not adjacent or H is just a triangle. Hence
∑

v∈V (H)

(d(v)
2

)−
c3(H) <

(l
2

)
. By Lemma 2.6, we have c3 (Kn − E(H)) = (n

3

)−l(n−2)+∑
v∈V (H)

(d(v)
2

)−
c3(H) <

(n
3

)− l(n − 2)+ (l
2

) = c3
(
Kn − E(K1,l)

)
, contradicting Lemma 2.5 (iii). Hence,

we must have H ∼= K1,l . That is, G ∼= Kn − E
(
K1,l

)
. �

Theorem 4.1 immediately implies the following corollary.

Corollary 4.2 The disjoint union of a complete graph and an isolated vertex is DPS.

Lemma 4.3 Let H be a graph with l edges. Then c3(H) ≤ 1
3

∑
v∈V (H)

(d(v)
2

)
, and equality

holds when H ∼= l1C3 ∪ (l − 3l1)P2 for some integer l1 ≥ 0 and l − 3l1 ≥ 0.

Proof Any vertex v ∈ V (H) is contained at most
(d(v)

2

)
triangles in H . Then

c3(H) ≤ 1
3

∑
v∈V (H)

(d(v)
2

)
. Clearly, the equality holds when H ∼= l1C3 ∪ (l − 3l1)P2

for some integer l1 ≥ 0 and l − 3l1 ≥ 0. �

Theorem 4.4 If l P2 is a subgraph of Kn, then the graph Kn − E(l P2) is DPS.

Proof Let G be a graph per-cospectral with Kn − E(l P2). Then G must be isomorphic to
some Kn − E(H) for a subgraph H of Kn with |E(H)| = l and no isolated vertices. When
n ≤ 2, the result is trivial. Now we may assume that n > 2. Suppose H is not isomorphic
to l P2. Then H has a vertex of degree at least two. By Lemmas 2.6 and 4.3, we have
c3(G) = c3(Kn − E(H)) = (n

3

) − l(n − 2) + ∑
v∈V (H)

(d(v)
2

) − c3(H) >
(n

3

) − l(n − 2) =
c3(Kn − E(l P2)). This is a contradiction with Lemma 2.5 (iii). Thus G ∼= Kn − E(l P2). �
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Linear and Multilinear Algebra 409

Theorem 4.5 If (l−2)P2∪ P3 is a subgraph of Kn, then the graph Kn −E((l−2)P2∪ P3)

is DPS.

Proof Similarly, let G be a graph per-cospectral with Kn − E((l − 2)P2 ∪ P3). Then G
must be isomorphic to some Kn − E(H) for a subgraph H of Kn with |E(H)| = l and no
isolated vertices. By Lemma 2.5(iii), we have c3(G) − c3(Kn − E((l − 2)P2 ∪ P3)) = 0.
By Lemma 2.6, we simplify this equation to have

∑
v∈V (H)

(
d(v)

2

)
− c3(H) = 1. (14)

If H contains at least one triangle, then Lemma 4.3 implies that
∑

v∈V (H)

(d(v)
2

)− c3(H) ≥
2c3(H) ≥ 2, a contradiction. So, we may assume that H contains no triangles. By (14),
we have

∑
v∈V (H)

(d(v)
2

) = 1. This implies that there exists exactly a vertex v ∈ V (H)

such that d(v)=2, and the other vertices have degree one. Thus H ∼= (l − 2)P2 ∪ P3. So
Kn − E((l − 2)P2 ∪ P3) is DPS. �
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