
1 23

Graphs and Combinatorics
 
ISSN 0911-0119
Volume 30
Number 6
 
Graphs and Combinatorics (2014)
30:1453-1461
DOI 10.1007/s00373-013-1359-z

Characterizations of Strength Extremal
Graphs

Xiaofeng Gu, Hong-Jian Lai, Ping Li &
Senmei Yao



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Japan. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Graphs and Combinatorics (2014) 30:1453–1461
DOI 10.1007/s00373-013-1359-z

ORIGINAL PAPER

Characterizations of Strength Extremal Graphs

Xiaofeng Gu · Hong-Jian Lai · Ping Li ·
Senmei Yao

Received: 18 November 2012 / Revised: 10 June 2013 / Published online: 4 September 2013
© Springer Japan 2013

Abstract With graphs considered as natural models for many network design prob-
lems, edge connectivity κ ′(G) and maximum number of edge-disjoint spanning trees
τ(G) of a graph G have been used as measures for reliability and strength in com-
munication networks modeled as graph G (see Cunningham, in J ACM 32:549–561,
1985; Matula, in Proceedings of 28th Symposium Foundations of Computer Science,
pp 249–251, 1987, among others). Mader (Math Ann 191:21–28, 1971) and Matula
(J Appl Math 22:459–480, 1972) introduced the maximum subgraph edge connectiv-
ity κ ′(G) = max{κ ′(H) : H is a subgraph of G}. Motivated by their applications in
network design and by the established inequalities

κ ′(G) ≥ κ ′(G) ≥ τ(G),
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we present the following in this paper:

1. For each integer k > 0, a characterization for graphs G with the property that
κ ′(G) ≤ k but for any edge e not in G, κ ′(G + e) ≥ k + 1.

2. For any integer n > 0, a characterization for graphs G with |V (G)| = n such that
κ ′(G) = τ(G) with |E(G)| minimized.

Keywords Edge connectivity · Edge-disjoint spanning trees · k-Maximal graphs ·
Network strength · Network reliability

1 Introduction

With graphs considered as natural models for many network design problems, edge
connectivity and maximum number of edge-disjoint spanning trees of a graph have
been used as measures for reliability and strength in communication networks modeled
as a graph (see [4,13], among others).

We consider finite graphs with possible multiple edges, and follow notations of
Bondy and Murty [2], unless otherwise defined. Thus for a graph G, ω(G) denotes
the number of components of G, and κ ′(G) denotes the edge connectivity of G. For
a connected graph G, τ(G) denotes the maximum number of edge-disjoint spanning
trees in G. A survey on τ(G) can be found in [16]. By definition, τ(K1) = ∞. A
graph G is nontrivial if |E(G)| �= ∅.

For any graph G, we further define κ ′(G) = max{κ ′(H) : H is a subgraph of G}.
The invariant κ ′(G), first introduced by Matula [12], has been studied by Boesch and
McHugh [1], Lai [6], Matula [12,13], Mitchem [14] and implicitly by Mader [11].
In [13], Matula gave a polynomial algorithm to determine κ ′(G).

Throughout the paper, k and n denote positive integers, unless otherwise defined.
Mader [11] first introduced k-maximal graphs. A graph G is k-maximal if κ ′(G) ≤ k

but for any edge e �∈ E(G), κ ′(G + e) ≥ k + 1. The k-maximal graphs have been
studied in [1,6,11–14], among others.

Simple k-maximal graphs have been well studied. In [11], Mader proved that the
maximum number of edges in a simple k-maximal graph with n vertices is (n−k)k+(k

2

)

and characterized all the extremal graphs. In 1990, Lai [6] showed that the minimum
number of edges in a simple k-maximal graph with n vertices is (n − 1)k − (k

2

)	 n
k+2
.

In the same paper, Lai also characterized all extremal graphs and all simple k-maximal
graphs.

In this paper, we mainly focus on multiple k-maximal graphs, and show that the
number of edges in a k-maximal graph with n vertices is k(n −1) and give a complete
characterization of all k-maximal graphs as well as show several equivalent graph
families.

As it is known that for any connected graph G, κ ′(G) ≥ τ(G), it is natural to ask
when the equality holds. Motivated by this question, we characterize all graphs G
satisfying κ ′(G) = τ(G) with minimum number of possible edges for a fixed number
of vertices. We also investigate necessary and sufficient conditions for a graph to have
a spanning subgraph with this property or to be a spanning subgraph of another graph
with this property.
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In Sect. 2, we display some preliminaries. In Sect. 3, we will characterize all k-
maximal graphs. The characterizations of minimal graphs with κ ′ = τ and reinforce-
ment problems will be discussed in Sects. 4 and 5, respectively.

In this paper, an edge-cut always means a minimal edge-cut.

2 Preliminaries

Let G be a nontrivial graph. The density of G is defined by

d(G) = |E(G)|
|V (G)| − ω(G)

. (1)

Hence, if G is connected, then d(G) = |E(G)|
|V (G)|−1 . Following the terminology in [3],

we define η(G) and γ (G) as follows:

η(G) = min
|X |

ω(G − X) − ω(G)
and γ (G) = max{d(H)},

where the minimum or maximum is taken over all edge subsets X or subgraph H
whenever the denominator is non-zero. From the definitions of d(G), η(G) and γ (G),
we have, for any nontrivial graph G,

η(G) ≤ d(G) ≤ γ (G). (2)

As in [3], a graph G satisfying d(G) = γ (G) is said to be uniformly dense. The
following theorems are well known.

Theorem 2.1 (Nash-Williams [15], Tutte [17])
Let G be a connected graph with E(G) �= ∅, and let k > 0 be an integer. Then

τ(G) ≥ k if and only if for any X ⊆ E(G), |X | ≥ k(ω(G − X) − 1).

Theorem 2.1 indicates that for a connected graph G

τ(G) = 	η(G)
. (3)

Theorem 2.2 (Catlin et al. [3])
Let G be a graph. The following statements are equivalent.

(i) η(G) = d(G).
(ii) d(G) = γ (G).

(iii) η(G) = γ (G).

For a connected graph G with τ(G) ≥ k, we define Ek(G) = {e ∈ E(G) :
τ(G − e) ≥ k}.
Lemma 2.3 (Li et al. [9], Li [8])
Let G be a connected graph with τ(G) ≥ k. Then Ek(G) = ∅ if and only if d(G) = k.
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Lemma 2.4 (Haas [5], Lai et al. [7] and Liu et al. [10])
Let G be a graph, then the following statements are equivalent.

(i) γ (G) ≤ k.
(ii) There exist k(|V (G)| − 1) − |E(G)| edges whose addition to G results in a

graph that can be decomposed into k edge-disjoint spanning trees.

3 Characterizations of k-Maximal Graphs

In this section, we are to present a structural characterization of k-maximal graphs as
well as several equivalent conditions, as shown in Theorem 3.1.

Let F(n, k) be the maximum number of edges in a graph G on n vertices with
κ ′(G) ≤ k. We define F(n, k) = {G : |E(G)| = F(n, k), |V (G)| = n, κ ′(G) ≤ k}.

Let G1 and G2 be connected graphs such that V (G1)∩ V (G2) = ∅. Let K be a set
of k edges each of which has one vertex in V (G1) and the other vertex in V (G2). The
K -edge-join G1 ∗K G2 is defined to be the graph with vertex set V (G1)∪ V (G2) and
edge set E(G1) ∪ E(G2) ∪ K . When the set K is not emphasized, we use G1 ∗k G2
for G1 ∗K G2, and refer to G1 ∗k G2 as a k-edge-join.

Let Gk be a family of graphs such that for any G1, G2 ∈ Gk ∪{K1}, G1 ∗k G2 ∈ Gk .
Let τ(G) = max{τ(H) : H is a subgraph of G}. The main theorem in this section is
stated below.

Theorem 3.1 Let G be a graph on n vertices. The following statements are equivalent.

(i) G ∈ F(n, k);
(ii) G is k-maximal;

(iii) η(G) = κ ′(G) = k;
(iv) τ(G) = κ ′(G) = k;
(v) τ(G) = τ(G) = κ ′(G) = κ ′(G) = k;

(vi) G ∈ Gk .

In order to prove Theorem 3.1, we need some lemmas.

Lemma 3.2 Let X be a k-edge cut of a graph G. If H is a subgraph of G with
κ ′(H) > k, then E(H) ∩ X = ∅.

Proof If E(H) ∩ X �= ∅, then κ ′(H) ≤ |E(H) ∩ X | ≤ |X | = k < κ ′(H), a
contradiction. ��
Lemma 3.3 If a graph G is k-maximal, then κ ′(G) = κ ′(G) = k.

Proof Since G is k-maximal, κ ′(G) ≤ κ ′(G) ≤ k. It suffices to show that κ ′(G) = k.
We assume that κ ′(G) < k and prove it by contradiction. Let X be an edge cut with
|X | < k and suppose that G = G1 ∗X G2. Let e �∈ E(G) be an edge with one
end in V (G1) and the other end in V (G2). By the definition of k-maximal graphs,
κ ′(G + e) ≥ k + 1. Thus G + e has a subgraph H with κ ′(H) ≥ k + 1. Then it must
be the case that e ∈ E(H), otherwise H is a subgraph of G, contrary to κ ′(G) ≤ k.
Since X ∪{e} is an edge cut of G + e with |X ∪{e}| ≤ k and H is a subgraph of G + e
with κ ′(H) ≥ k + 1, by Lemma 3.2, E(H) ∩ (X ∪ {e}) = ∅, contrary to e ∈ E(H).

��
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Lemma 3.4 If a graph G is k-maximal, then G = G1 ∗k G2 where either Gi = K1
or Gi is k-maximal for i = 1, 2.

Proof By Lemma 3.3, G has a k-edge cut X , and so G = G1 ∗k G2. For i = 1, 2,
suppose that Gi �= K1, we want to prove that Gi is k-maximal. Since G is k-maximal,
κ ′(G) ≤ k, whence κ ′(Gi ) ≤ k. For any edge e �∈ E(Gi ), κ ′(G + e) ≥ k + 1. Thus
G +e has a subgraph H with κ ′(H) ≥ k +1. Since κ ′(G) ≤ k, H is not a subgraph of
G, and so e ∈ E(H). Since X is a k-edge cut of G +e, by Lemma 3.2, E(H)∩ X = ∅.
Hence H is a subgraph of Gi + e with κ ′(H) ≥ k + 1, whence κ ′(Gi ) ≥ k + 1. Thus
Gi is k-maximal. ��
Lemma 3.5 Let G be a graph on n vertices. Then G ∈ F(n, k) if and only if G is
k-maximal.

Proof By the definition of F(n, k), if G ∈ F(n, k), then |E(G)| = F(n, k) and
κ ′(G) ≤ k. Then for any edge e �∈ E(G), |E(G + e)| = |E(G)| + 1 > F(n, k), and
so κ ′(G + e) ≥ k + 1. By the definition of k-maximal graphs, G is k-maximal.

Now we assume that G is k-maximal to prove that G ∈ F(n, k). It suffices to show
that any k-maximal graph G has the property κ ′(G) ≤ k with the maximum number of
edges. We will prove that for any k-maximal graph G, |E(G)| = F(n, k) = k(n − 1).
We use induction on n. When n = 2, G is kK2, which is the graph with 2 vertices and
k multiple edges, and so |E(G)| = k. We assume that |E(G)| = F(n, k) = k(n − 1)

holds for smaller values of n > 2. By Lemma 3.4, G = G1 ∗k G2 where Gi is k-
maximal or k1 for i = 1, 2. Let |V (Gi )| = ni . By inductive hypothesis, |E(Gi )| =
k(ni − 1). Thus |E(G)| = k(n1 − 1) + k(n2 − 1) + k = k(n − 1). ��
Corollary 3.6 F(n, k) = k(n − 1).

Lemma 3.7 Suppose τ(G) = τ(G) = κ ′(G) = κ ′(G) = k. Then G = G1 ∗k G2
where either Gi = K1 or Gi satisfies τ(Gi ) = τ(Gi ) = κ ′(Gi ) = κ ′(Gi ) = k for
i = 1, 2.

Proof Since κ ′(G) = k, there must be an edge-cut of size k. Hence there exist graphs
G1 and G2 such that G = G1 ∗k G2. If Gi �= K1, we will prove τ(Gi ) = τ(Gi ) =
κ ′(Gi ) = κ ′(Gi ) = k, for i = 1, 2. First, by the definition of τ , τ(Gi ) ≤ τ(Gi ) ≤
τ(G) = k for i = 1, 2. Since G has k disjoint spanning trees, we have τ(Gi ) ≥ k for
i = 1, 2. Thus τ(Gi ) = τ(Gi ) = k for i = 1, 2. Now we prove κ ′(Gi ) = κ ′(Gi ) = k
for i = 1, 2. Since κ ′(G) = k, κ ′(Gi ) ≤ κ ′(Gi ) ≤ k. But κ ′(Gi ) ≥ τ(Gi ) = k for
i = 1, 2. Hence we have τ(Gi ) = τ(Gi ) = κ ′(Gi ) = κ ′(Gi ) = k for i = 1, 2. ��
Lemma 3.8 Let G = G1 ∗k G2 where Gi = K1 or Gi satisfies τ(Gi ) = τ(Gi ) =
κ ′(Gi ) = κ ′(Gi ) = k for i = 1, 2. Then τ(G) = τ(G) = κ ′(G) = κ ′(G) = k.

Proof Since G = G1 ∗k G2 and κ ′(G1) = κ ′(G2) = k, we have τ(G) ≤ κ ′(G) =
k and there exists an edge-cut X = {x1, x2, . . . , xk} such that G = G1 ∗X G2.
Let T1,i , T2,i , . . . , Tk,i be edge-disjoint spanning trees of Gi , for i = 1, 2. Then
T1,1 + x1 + T1,2, T2,1 + x2 + T2,2, . . . , Tk,1 + xk + Tk,2 are k edge-disjoint spanning
trees of G. Thus τ(G) = κ ′(G) = k. Now we need to prove that for any subgraph H
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of G, τ(H) ≤ k and κ ′(H) ≤ k. If E(H) ∩ X �= ∅, then E(H) ∩ X is an edge cut of
H and thus τ(H) ≤ κ ′(H) ≤ k. If E(H) ∩ X = ∅, then H is a spanning subgraph of
either G1 or G2, whence τ(H) ≤ κ ′(H) ≤ k. ��

Now we present the proof of Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.5, (i) and (ii) are equivalent. By (3), (iii)⇒(iv).

(i)⇒(iii): By Corollary 3.6, |E(G)| = k(n−1). By the definition of d(G), d(G) = k.
Since κ ′(G) ≤ k, for any subgraph H of G, κ ′(H) ≤ k. By Corollary 3.6,
|E(H)| ≤ k(|V (H)| − 1), whence d(H) ≤ k. By the definition of γ (G),
we have γ (G) ≤ k. Thus d(G) = γ (G) = k. By Theorem 2.2, η(G) = k.
Hence k = η(G) = τ(G) ≤ κ ′(G) ≤ k, i.e., η(G) = κ ′(G) = k.

(iv)⇒(i): Since κ ′(G) = k, by Corollary 3.6, |E(G)| ≤ k(n − 1). Since τ(G) = k,
G has k edge-disjoint spanning trees, and so |E(G)| ≥ k(n − 1). Thus
|E(G)| = k(n − 1), and so G ∈ F(n, k).

(iv)⇔(v): By definition, τ(G) ≤ τ(G) ≤ κ ′(G) and τ(G) ≤ κ ′(G) ≤ κ ′(G). The
equivalence between (iv) and (v) now follows from these inequalities.

(v)⇒(vi): We argue by induction on |V (G)|. When |V (G)| = 2, a graph G with
τ(G) = τ(G) = κ ′(G) = κ ′(G) = k must be K1 ∗k K1, and so by
definition, G ∈ Gk . We assume that (v)⇒(vi) holds for smaller values of
|V (G)|. By Lemma 3.7, G = G1 ∗k G2 with τ(Gi ) = τ(Gi ) = κ ′(Gi ) =
κ ′(Gi ) = k or Gi = K1, for i = 1, 2. If Gi �= K1, then by the inductive
hypothesis, Gi ∈ Gk . By definition, G ∈ Gk .

(vi)⇒(v): We show it by induction on |V (G)|. When |V (G)| = 2, by the definition
of Gk , G = K1 ∗k K1, and then τ(G) = τ(G) = κ ′(G) = κ ′(G) = k.
We assume that it holds for smaller values of |V (G)|. By the definition of
Gk , G = G1 ∗k K1 or G = G1 ∗k G2 where G1, G2 ∈ Gk . By inductive
hypothesis, τ(Gi ) = τ(Gi ) = κ ′(Gi ) = κ ′(Gi ) = k for i = 1, 2, and by
Lemma 3.8, τ(G) = τ(G) = κ ′(G) = κ ′(G) = k. ��

4 Characterizations of Minimal Graphs with κ ′ = τ

We define

Fk,n = {G : κ ′(G) = τ(G) = k, |V (G)| = n and |E(G)| is minimized}

and Fk = ∪n>1Fk,n .
In this section, we will give characterizations of graphs in Fk . In addition, we use

Fk,n to characterize graphs G with κ ′(G) = τ(G).

Theorem 4.1 Let G be a graph, then G ∈ Fk if and only if G satisfies

(i) G has an edge-cut of size k, and
(ii) G is uniformly dense with density k.

Proof Suppose that G ∈ Fk , then τ(G) = κ ′(G) = k. Hence G has an edge-cut of
size k. Since |E(G)| is minimized, we have Ek(G) = ∅. By Lemma 2.3, d(G) = k.
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Since τ(G) = k, by Theorem 2.1 and the definition of η(G), we have η(G) ≥ k. By
(2), η(G) ≤ d(G) = k, whence η(G) = d(G) = k. By Theorem 2.2, G is uniformly
dense with density k.

On the other hand, suppose that G satisfies (i) and (ii). By (2) and Theorem 2.2,
η(G) = d(G) = k. By (3), τ(G) = k. Then κ ′(G) ≥ τ(G) = k. But G has an edge-
cut of size k, thus κ ′(G) = τ(G) = k. Since d(G) = k, by Lemma 2.3, Ek(G) = ∅,
i.e. |E(G)| is minimized. Thus G ∈ Fk . ��
Theorem 4.2 A graph G ∈ Fk if and only if G = G1 ∗k G2 where either Gi = K1
or Gi is uniformly dense with density k for i = 1, 2.

Proof Suppose that G ∈ Fk . By Theorem 4.1, G has an edge-cut of size k, whence
there exist graphs G1 and G2 such that G = G1 ∗k G2. Now we will prove that Gi

is uniformly dense with density k if it is not isomorphic to K1, for i = 1, 2. Since
τ(G) = k, we have τ(Gi ) ≥ k, and thus d(Gi ) ≥ k, for i = 1, 2. By (2), (3) and
Theorem 2.2, it suffices to prove that d(Gi ) = k for i = 1, 2. If not, then either
d(G1) > k or d(G2) > k. By (1), |E(G)| = |E(G1)| + |E(G2)| + k > k(|V (G1)| −
1) + k(|V (G2)| − 1) + k = k(|V (G)| − 1), and thus d(G) = |E(G)|

|V (G)|−1 > k, contrary
to the fact that d(G) = k. Hence d(Gi ) = k, and k ≤ τ(Gi ) ≤ η(Gi ) ≤ d(Gi ) = k.
By Theorem 2.2, Gi is uniformly dense with density k for i = 1, 2. This proves the
necessity.

To prove the sufficiency, first notice that G must have an edge-cut of size k, by the
definition of the k-edge-join. In order to prove G ∈ Fk , by Theorem 4.1, it suffices
to show that G is uniformly dense with density k. Without loss of generality, we may
assume that Gi is not isomorphic to K1 for i = 1, 2. Then η(Gi ) = d(Gi ) = k for
i = 1, 2. By (3), τ(Gi ) = 	η(Gi )
 = k. Also we have d(Gi ) = |E(Gi )||V (Gi )|−1 = k for i =
1, 2. Hence E(G) = |E(G1)|+|E(G2)|+k = k(|V (G1)|−1)+k(|V (G2)|−1)+k =
k(|V (G)| − 1), whence d(G) = |E(G)|

|V (G)|−1 = k. Thus k = τ(G) ≤ η(G) ≤ d(G) = k,
i.e., η(G) = d(G) = k, and by Theorem 2.2, G is uniformly dense with density k. By
Theorem 4.1, G ∈ Fk . ��

Theorem 4.2 has the following corollary, presenting a recursive structural charac-
terization of graphs in Fk .

Corollary 4.3 Let K(k) = {G : κ ′(G) > η(G) = d(G) = k}. Then a graph G ∈ Fk

if and only if G = ((G1∗k G2)∗k . . .)∗k Gt for some integer t ≥ 2 and Gi ∈ K(k)∪{K1}
for i = 1, 2, . . . , t .

Now we can characterize all the graphs G with κ ′(G) = τ(G) = k.

Theorem 4.4 A graph G with n vertices satisfies κ ′(G) = τ(G) = k if and only if G
has an edge-cut of size k and a spanning subgraph in Fk,n.

Proof First, suppose that G satisfies κ ′(G) = τ(G) = k. Then G must have an edge-
cut C of size k since κ ′(G) = k. Hence, G = G1 ∗C G2 where τ(Gi ) ≥ k or Gi = K1
for i = 1, 2. If Gi = K1, then let G ′

i = K1. Otherwise, Gi must have k edge-disjoint
spanning trees T1, T2, . . . , Tk , and let G ′

i be the graph with V (G ′
i ) = V (Gi ) and

E(G ′
i ) = ∪k

j=1 E(Tj ). Let G ′ = G ′
1 ∗C G ′

2. Then G ′ is a spanning subgraph of G with
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κ ′(G ′) = k and k = τ(G ′) ≤ η(G ′) ≤ d(G ′) = k. By Theorem 4.1, G ′ ∈ Fk . Since
|V (G ′)| = n, G ′ ∈ Fk,n , completing the proof of necessity.

To prove the sufficiency, first notice that κ ′(G) ≤ k, since G has an edge-cut of size
k. Graph G has a spanning subgraph G ′ ∈ Fk,n , so τ(G ′) = k, whence τ(G) ≥ k.
Thus k ≤ τ(G) ≤ κ ′(G) ≤ k, and we have κ ′(G) = τ(G) = k. ��

5 Extensions and Restrictions with Respect to F k,n

Let G be a connected graph with n vertices and H ∈ Fk,n . If G is a spanning subgraph
of H , then H is an Fk,n-extension of G. If H is a spanning subgraph of G, then H is
an Fk,n-restriction of G.

Theorem 5.1 Let G be a connected graph with n vertices. Then each of the following
holds.

(i) G has an Fk,n-restriction if and only if G = G1 ∗k′ G2 for some k′ ≥ k and
graph Gi with η(Gi ) ≥ k or Gi = K1, for i = 1, 2.

(ii) G has an Fk,n-extension if and only if κ ′(G) ≤ k and γ (G) ≤ k.

Proof (i) Suppose that G has an F k,n-restriction H , by Theorem 4.2, H = H1∗k H2
where τ(Hi ) = η(Hi ) = d(Hi ) = k or Hi = K1 for i = 1, 2. Since H is a
spanning subgraph of G, we have G = G1 ∗k′ G2 for some k′ ≥ k such that Hi is
a spanning subgraph of Gi for i = 1, 2. If Hi = K1, then Gi = K1, otherwise,
η(Gi ) ≥ τ(Gi ) ≥ τ(Hi ) = k for i = 1, 2, by (3).
To prove the sufficiency, it suffices to show that G has a spanning subgraph
H ∈ Fk,n . Since G = G1 ∗k′ G2, there exists an edge-cut X of size k′ such that
G = G1 ∗X G2. Let Y be a subset of size k of X . For i = 1, 2, if Gi = K1,
then let Hi = K1. Otherwise, η(Gi ) ≥ k, and by (3), τ(Gi ) = 	η(Gi )
 ≥ k,
and then Gi has k edge-disjoint spanning trees T1,i , T2,i , . . . , Tk,i . Let Hi be
the graph with V (Hi ) = V (Gi ) and E(Hi ) = ∪k

j=1 E(Tj,i ), for i = 1, 2. Let
H = H1 ∗Y H2. Then H is a spanning subgraph of G and κ ′(H) = τ(H) = k.
Since d(H) = k, by Lemma 2.3, H has the minimum number of edges with
τ(H) = k. Thus H ∈ Fk,n .

(ii) If G has an Fk,n-extension H , then G is a spanning subgraph of H and κ ′(H) =
τ(H) = k with minimum number of edges. Then κ ′(G) ≤ k. By Theorem 4.1,
d(H) = k, i.e. |E(H)| = k(|V (H)| − 1) = k(|V (G)| − 1). Thus |E(H)| −
|E(G)| = k(|V (G)| − 1) − |E(G)|, and by Lemma 2.4, γ (G) ≤ k.
To prove the sufficiency, it suffices to show that there is a graph H ∈ Fk,n with
a spanning subgraph G. Let κ ′(G) = k′, then k′ ≤ k, and G has an edge-cut X
of size k′. Hence, G = G1 ∗X G2. For i = 1, 2, if Gi = K1, then let Hi = K1.
Otherwise, since γ (G) ≤ k, by the definition of γ (G), we have γ (Gi ) ≤ k. By
Lemma 2.4, Gi can be reinforcing to a graph Hi which can be decomposed into k
edge-disjoint spanning trees. Then |E(Hi )| = k(|V (Hi )|−1) = k(|V (Gi )|−1),
whence d(Hi ) = k. Since k = τ(Hi ) ≤ η(Hi ) ≤ d(Hi ) = k, we have η(Hi ) =
d(Hi ) = k, and by Theorem 2.2, Hi is uniformly dense, for i = 1, 2. Let
H = H1 ∗Y H2 where Y is an edge subset of size k with X ⊆ Y . Then G is a
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spanning subgraph of H . By Theorem 4.2, H ∈ Fk,n , and this completes the
proof of the theorem. ��
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