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Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell [The spanning subgraphs of
Eulerian graphs, J. Graph Theory 1 (1977), pp. 79–84] proposed the supereulerian graph problem which
seeks the characterization of graphs with a spanning Eulerian subgraph. Pulleyblank [A note on graphs
spanned by Eulerian graphs, J. Graph Theory 3 (1979), pp. 309–310] showed that the supereulerian
problem, even within planar graphs, is NP-complete. In this paper, we settle an open problem raised
by An and Xiong on characterization of supereulerian graphs with small matching numbers. A well-
known theorem by Chvátal and Erdös [A note on Hamilton circuits, Discrete Math. 2 (1972), pp. 111–
135] states that if G satisfies α(G) ≤ κ(G), then G is hamiltonian. Flandrin and Li in 1989 showed that
every 3-connected claw-free graph G with α(G) ≤ 2κ(G) is hamiltonian. Our characterization is also
applied to show that every 2-connected claw-free graph G with α(G) ≤ 3 is hamiltonian, with only one
well-characterized exceptional class.

Keywords: supereulerian graphs; collapsible graphs; reductions; contraction characterizations

2010 AMS Subject Classifications: 05C45; 05C38; 05C70

1. Introduction

Graphs in this paper are finite and may have multiple edges or loops. Terms and notations not
defined here are referred to [4]. In particular, for an integer k > 0, we use Ck to denote a cycle of
length k. As in [4], a stable set of G is a vertex subset S ⊆ V(G) such that no two vertices in S are
joined by an edge in G; a matching of G is an edge subset M ⊆ E(G) such that no two edges in
M are adjacent in G. Furthermore, κ(G), κ ′(G), α(G) and α′(G) represent the connectivity, the
edge connectivity, the stability number and the matching number of a graph G, respectively. A
graph is trivial if it contains no edges. The circumference of G, denoted by c(G), is the length of a
longest cycle of G. If X ⊆ E(G) is an edge subset, then V(X) denotes the set of vertices of G that
are incident with an edge in X . For a vertex v ∈ V(G), EG(v) denotes the set of edges incident
with v in G, and NG(v) denotes the set of vertices adjacent to v in G. For a subset W ⊆ V(G),
define NG(W) to be the set of vertices in V(G) − W that are adjacent to a vertex in W . For an
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2 J. Xu et al.

edge subset X, NG(X) = NG(V(X)). For any integer i ≥ 1, define

Di(G) = {v ∈ V(G) : dG(v) = i}.
Let X ⊆ E(G) be an edge subset. The contraction G/X is the graph obtained from G by

identifying the two ends of each edge in X and then deleting the resulting loops. When X = {e},
we use G/e for G/{e}. If H is a subgraph of G, then we write G/H for G/E(H).

For a graph G, O(G) denotes the set of all odd degree vertices in G. A graph G is Eulerian if
G is connected with O(G) = ∅, and G is supereulerian if G has a spanning Eulerian subgraph. In
1977, Boesch et al. [3] raised a problem to determine if a graph is supereulerian. They commented
in [3] that such a problem would be difficult. In 1979, Pulleyblank [19] confirmed this remark by
showing that the problem of determining if a graph is supereulerian, even within planar graphs,
is NP-complete. There have been lots of researches on supereulerian graphs, as documented in
Catlin’s [8] excellent survey and its supplement [11].

Catlin [7] discovered collapsible graphs and the related reduction method.A graph G is collapsi-
ble if for any vertex subset W with |W | even, G has a spanning connected subgraph �W such that
O(�W ) = W . A graph is reduced if it contains no nontrivial collapsible subgraphs. Catlin showed
that every graph G has a unique collection of maximal collapsible subgraphs H1, H2, . . . , Hc. and
the contraction G/(H1 ∪ H2 ∪ · · · ∪ Hc) is the reduction of G.

Characterizations of supereulerian graphs for certain classes of graphs have been widely inves-
tigated. See [5,9,16,18], among others. For graphs G with α′(G) small, the following have been
proved.

Theorem 1.1 Let G be a graph with κ ′(G) ≥ 2 and α′(G) ≤ 2. Each of the following holds.

(i) (Lai and Yan [17]) The graph G is supereulerian if and only if G is not contractible to a K2,t

for some odd integer t ≥ 3.
(ii) (An and Xiong [1]) Either G is collapsible, or G has a nontrivial collapsible subgraph H such

that for some integer t ≥ 2, G/H ∼= K2,t .
(iii) (An and Xiong [1]) If κ ′(G) ≥ 3 and α′(G) ≤ 5, then G is supereulerian if and only if G is

not contractible to the Petersen graph.

An and Xiong proposed a conjecture (Conjecture 12 in [1]), which can be restated as the
following open problem. This research is motivated by their conjecture.

Problem 1.2 (An and Xiong [1]). If κ ′(G) ≥ 2 and α′(G) ≤ 3, determine the collection of graphs
such that G is supereulerian if and only if G is not contractible to a member in this collection.

In this paper, we have determined a graph family F ′ (see Definition 2.2 in Section 2) and prove
the following main result.

Theorem 1.3 Let G be a graph with κ ′(G) ≥ 2 and α′(G) ≤ 3. Then G is supereulerian if and
only if the reduction of G is not a member in F ′.

Theorem 1.3 has an application to hamiltonian line graphs and hamiltonian claw-free graphs.
For a graph G, the line graph of G, denoted by L(G) has vertex set E(G), where two vertices are
adjacent in L(G) if and only if the corresponding edges are adjacent in G. Let K2,3 be the complete
bipartite graph with vertex bipartition X = {x1, x2} and Y = {y1, y2, y3}. For integers s1, s2, s3 ≥ 1,
the graph Ks1,s2,s3

2,3 is obtained from K2,3 by attaching si pendant vertices adjacent to yi, (1 ≤ i ≤ 3).
Theorem 1.3 implies the following.

Corollary 1.4 Let G be a connected simple graph. If κ(L(G)) ≥ 2 and α(L(G)) ≤ 3, then
L(G) is hamiltonian if and only if G is not a member in {Ks1,s2,s3

2,3 : s1 ≥ s2 ≥ s3 > 0}.
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International Journal of Computer Mathematics 3

A graph G is claw-free if it does not have an induced subgraph isomorphic to K1,3. It has
been known (Beinike [2], and Robertson, see [14, p. 74]) that every line graph is claw-free. A
well-known theorem by Chvátal and Erdös [12] states that if G satisfies α(G) ≤ κ(G), then G is
hamiltonian. Flandrin and Li showed that for 3-connected claw-free graphs, this assumption can
be relaxed.

Theorem 1.5 (Flandrin and Li [13]). Every claw-free graph G with connectivity κ(G) ≥ 3 and
independence number α(G) ≤ 2κ(G) is hamiltonian.

It has been a question whether Theorem 1.5 holds for 2-connected line graphs. A consequence
of Theorem 1.3 answers this question.

Corollary 1.6 Let G be a claw-free graph with κ(G) ≥ 2 and α(G) ≤ 3. Then G is hamiltonian
if and only if the Ryjácěk closure of G is not isomorphic to L(H), for some H ∈ {Ks1,s2,s3

2,3 : s1 ≥
s2 ≥ s3 > 0}.

The concept of Ryjácěk closure and the proofs for the corollaries will be given in the last
section. In Section 2, we will present a brief introduction to Catlin’s reduction method and some
useful results needed for our arguments. The proof of our main theorem will be given in Section 3.

2. Preliminaries

The purpose of this section is to introduce collapsible graphs and to describe some families of
reduced graphs that are useful in our proofs. Throughout the rest of this paper, F(G) denotes the
minimum number of additional edges that must be added to a graph G to result in a graph with two
edge-disjoint spanning trees. The following theorem summarizes the useful results on collapsible
graphs and reduced graphs needed in our arguments.

Theorem 2.1 Let G be a connected graph. Then each of the following holds.

(i) (Catlin, Theorem 3 of [7]) Let H be a collapsible subgraph of G. Then G is collapsible if and
only if G/H is collapsible; G is supereulerian if and only if G/H is supereulerian.

(ii) (Lemma 2.3 of Catlin et al. [10]) If G �= K1 is reduced, then F(G) = 2|V(G)| − |E(G)| − 2.
(iii) (Catlin et al., Theorem 1.3 of [10]) If F(G) ≤ 2, then G is collapsible if and only if the

reduction of G is not isomorphic to a K2 or to a K2,t for some integer t ≥ 1.
(iv) (Catlin [7]) The reduction of G is reduced. In particular, the reduction of G is simple and

contains no cycles of length 3.
(v) (Catlin, Lemma 3 of [7]) If G is collapsible, then any contraction of G is also collapsible.

To answer the question in Problem 1.2, we first describe the graph families F and F ′, where
F ′ is the excluded graph family stated in Theorem 1.3.

Definition 2.2 (The families F and F ′). Let i, s1, s2, s3, m, l, t be natural numbers with t ≥ 2
and i, m, l ≥ 1. Let Ci denote the cycle of length i. Let M ∼= K1,3 with centre a and ends a1, a2, a3.
Define K1,3(s1, s2, s3) to be the graph obtained from M by adding si vertices with neighbours
{ai, ai+1}, where i ≡ 1, 2, 3 (mod 3). Define C6(s1, s2, s3) = K1,3(s1, s2, s3) − a. Let K2,t(u, u′) be
a K2,t with u, u′ being the nonadjacent vertices of degree t. Let K ′

2,t(u, u′, u′′) be the graph obtained
from a K2,t(u, u′) by adding a new vertex u′′ that joins to u′ only. Hence u′′ has degree 1 and u
has degree t in K ′

2,t(u, u′′). Let K ′′
2,t(u, u′, u′′) be the graph obtained from a K2,t(u, u′) by adding
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4 J. Xu et al.

Figure 1. Some graphs in F with small parameters.

Figure 2. Some collapsible graphs: K3,3 − e, L1 and L2.

a new vertex u′′ that joins to a vertex of degree 2 of K2,t . Hence u′′ has degree 1 and both u and
u′ have degree t in K ′′

2,t(u, u′′). We shall use K ′
2,t and K ′′

2,t for a K ′
2,t(u, u′, u′′) and a K ′′

2,t(u, u′, u′′),
respectively. Let Sm,l be the graph obtained from a K2,m(u, u′) and a K ′

2,l(w, w′, w′′) by identifying
u with w, and w′′ with u′. Let J(m, l) denote the graph obtained from a K2,m+1 and a K ′

2,l(w, w′, w′′)
by identifying w, w′′ with the two ends of an edge in K2,m+1, respectively; and J ′(m, l) = J(m, l) −
ww′′. Let K2,3(1, 2, 2) be the union of three internally disjoint (u, w)-paths of lengths 2, 3 and 3,
respectively; and let K∗

2,3(1, 2, 2) be obtained from K2,3(1, 2, 2) by adding a chord e to the 6-cycle
joining two vertices of degree 2 so that no three-cycle is resulted. Let C7 = v1v2v3v4v5v6v7v1

denote a cycle of length 7. Define J7
1 = C7 + v1v4 and J7

2 = J7
1 + v2v5 = C7 + {v1v4, v2v5}. See

Figure 1 for examples of these graphs. Let

F = {K1}
⋃ (

{C7, J7
1 , J7

2 , K2,3(1, 2, 2), K∗
2,3(1, 2, 2)}

⋃
{K2,t|t ≥ 1}

⋃
{K1,3(s, s′, s′′), C6(s, s′, s′′)|s, s′, s′′ ≥ 0}

⋃
{Sm,l : m, l ≥ 1}

)⋂
{G|κ(G) ≥ 2},

and define

F ′ = {G ∈ F : G is non supereulerian.}

Define the following graphs as depicted in Figure 2, and define L3 = K∗
2,3(1, 2, 2) + {a1b2}.

The graph K3,3 − e is proved to be collapsible in Lemma 1 of [6]. Using the same argument in
the proof of Lemma 1 of [6], it is routine to verify that L1, L2 and L3 are also collapsible. We put
this observation in the following lemma.
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International Journal of Computer Mathematics 5

Figure 3. The graph J(3, 2, 4).

Lemma 2.3 The graphs K3,3 − e, L1, L2 and L3 are collapsible.

An edge cut Y of a graph G is essential if G − Y has at least two nontrivial components. For
an integer k > 0, a graph G is essentially k-edge-connected if G does not have an essential edge
cut Y with |Y | < k.

Definition 2.4 (Families F1 and F2). Define

F1 = {C7, K2,3(1, 2, 2)} ∪ {C6(s, s′, s′′), K1,3(s, s′, s′′)|s ≥ s′ > 0, s′′ ≥ 0} ∪ {Sm,l|m ≥ l ≥ 1}.
For integers s1, s2, s3 ≥ 2, Let K2,s1(x1, y1), K2,s2(x2, y2), K2,s3(x3, y3) be three disjoint graphs

such that for i ∈ {1, 2, 3}, K2,si(xi, yi) is isomorphic to K2,si with xi and yi being the two nonadjacent
vertices of degree si. The graph J(s1, s2, s3) is obtained by identifying y1 with y2 and x2 with x3,
and by adding new edges e1 = x1x3 and e2 = y1y3 (see Figure 3 for an example). Note that
J(m, 0, l) = J ′(m, l).

Define

F2 = {K1} ∪ (F ∩ {� : � is essentially 4-edge-connected})
∪ {J(s1, s2, s3)|s1 ≥ s3 ≥ 3, s2 ≥ 2}.

Lemma 2.5 below is a key lemma in the proof of Theorem 1.3. It indicates that once a certain
type of subgraph appears in G, then G must be in F . The family F2 will be needed in Theorem 3.2
of the next section.

Lemma 2.5 Let G be a reduced graph with κ ′(G) ≥ 2 and α′(G) ≤ 3. If G has a subgraph
H ∈ F1 − {K1}, then G ∈ F .

Proof We first observe that if H ∈ F1 − {K1, S1,1}, then α′(H) ≥ 3. By contradiction, we assume
that G is a counterexample to the lemma such that |V(G)| is minimized.

Claim 1 κ(G) ≥ 2.

By contradiction, assume that G has a cut vertex z. Then G has nontrivial connected subgraphs
G1 and G2 such that G = G1 ∪ G2 and V(G1) ∩ V(G2) = {z}. Since κ ′(G) ≥ 2 and α′(G) ≤ 3,
both κ ′(G1) ≥ 2 and κ ′(G2) ≥ 2, and both α′(G1) ≤ 3 and α′(G2) ≤ 3. Since every graph in F1

is 2-connected, we may assume that H is a subgraph of G1. If H = S1,1, which is a five-cycle,
then H has a matching M1 of size 2 such that M1 is not incident with the vertex z. Since G2 is a
2-edge-connected nontrivial reduced graph, G2 has a cycle of length at least 4, and so G2 has a
matching M2 of size at least 2. As M1 is not incident with z, it follows that M1 ∪ M2 is a matching
of size at least 4, contrary to α′(G) ≤ 3. This contradiction proves Claim 1. �
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6 J. Xu et al.

Since G is a counterexample, G has a subgraph H ∈ F1 − {K1}, but G /∈ F . We assume that
H is maximal, in the sense that H is not properly contained in another subgraph of G in F1. We
have the following observations.

Observation 2.6 Let H be a subgraph of G.

(i) If H ∈ {C7, K2,3(1, 2, 2)} ∪ {K1,3(s, s′, s′′)|s ≥ s′ ≥ s′′ > 0}, and if G has an edge with exactly
one end in H , then α′(G) ≥ 4.

(ii) If H = K1,3(s, s′, s′′) with s ≥ s′ ≥ s′′ > 0, then adding any additional edge to join two distinct
vertices in H will result in a collapsible graph. Since G is reduced, we conclude that in this
case G = K1,3(s, s′, s′′).

(iii) If G is spanned by H = K2,3(1, 2, 2), then by Lemma 2.3 and by the assumption that G is
reduced, G cannot have L3 or a three-cycle as a subgraph. By inspection, G ∈ {K2,3(1, 2, 2),
K∗

2,3(1, 2, 2)}.
(iv) If G is spanned by C7, then as G is reduced, C7 can have at most two chords in G.

(This is because, if C7 with three chords, F(G[V(C7)]) ≤ 2(7) − 10 − 2 = 2, and so by
Theorem 2.1(iii), G[V(C7)] is not reduced.) As G has no cycles of length at most 3,
G ∈ {C7, J7

1 , J7
2 }.

Only Observation 2.6(i) when H = K1,3(s, s′, s′′) needs an explanation. We use the notations in
Figure 1. Let xy denote an edge incident with a vertex x ∈ V(H) and y /∈ V(H). If x has degree 2
in H or if x = a, then G[E(H) ∪ {xy}] has four independent edges. Therefore, we assume that any
edges in G incident with exactly one vertex in H must be incident with one in {a1, a2, a3}. Since
κ(G) ≥ 2, and since y ∈ V(G) − V(H), we may assume that G has a path P with y ∈ V(P) such
that V(P) ∩ V(H) = {ai, aj} for some i �= j and 1 ≤ i, j ≤ 3. Since H is maximal, |E(P)| ≥ 3, and
so G[E(H) ∪ E(P)] has four independent edges. This verifies the observation.

Recall that c(G) is the length of a longest cycle in G. By Observation 2.6, and since any cycle
of length at least eight has four independent edges, we may assume that

G has no subgraph in {C7, K2,3(1, 2, 2)} ∪ {K1,3(s, s′, s′′) : s ≥ s′ ≥ s′′ > 0} and c(G) ≤ 6. (1)

By Equation (1), we only need to examine the cases when H ∈ {C6(s, s′, s′′)|s ≥ s′ ≥ s′′ ≥
0} ∪ {K1,3(s, s′, 0)|s ≥ s′ > 0} ∪ {Sm,l, |m ≥ l ≥ 1}. We make another observation.

Observation 2.7 Let e′ be an edge in E(G) − E(H) joining two distinct vertices in H. Let
H ′ = G[E(H) ∪ {e′}] be the edge induced subgraph of G. Each of the following holds.

(i) If H ∈ {K1,3(s, s′, 0) : s ≥ s′ > 0} ∪ {Sm,l, |m ≥ l ≥ 1}, then H ′ has a K3 or a K3,3 − e, and so
G is not reduced.

(ii) If H = C6(s, s′, s′′) for some s ≥ s′ ≥ s′′ ≥ 0 either with s′′ > 0, or with s′′ = 0 and s′ ≥ 2,
then either H ′ has a K3, or H ′ is a K1,3(t, t′, t′′) with t ≥ t′ > 0 and t′′ ≥ 0, or is an Sm,l, with
m ≥ l ≥ 2, contrary to the maximality of H.

By Equation (1) and by Observation 2.7, we proceed the proof of the lemma by examining the
following cases.

Case 1 H = K1,3(s, s′, 0) with s ≥ s′ > 0.
Since G �= H and by Observation 2.7(i), V(G) − V(H) has a vertex z. By κ(G) ≥ 2 and by

α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V(H). Since u, v ∈ NG(z), the
edge induced subgraph H ′ = G[E(H) ∪ {uz, vz}] of G either has one of {K3, K3,3 − e, L2} as a
subgraph, contrary to the assumption that G is reduced; or is a K1,3(t, t′, t′′) with t ≥ t′ > 0 and
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International Journal of Computer Mathematics 7

t′′ ≥ 0 properly containing H, contrary to the maximality of H; or α′(G) ≥ α′(H ′) ≥ 4. These
contradictions complete the proof for Case 1.

Case 2 H = Sm,l for some m ≥ l ≥ 1 and with m + l ≥ 3 maximized.
Since G �= H and by Observation 2.7(i), V(G) − V(H) has a vertex z. By κ(G) ≥ 2 and by

α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V(H). Since u, v ∈ NG(z), the edge
induced subgraph H ′ = G[E(H) ∪ {uz, vz}] of G either has one of {C7, K3, L1, L2} as a subgraph,
contrary to Equation (1) or the assumption that G is reduced; or is an Sm′,l′ with m ≥ l′ > 0
properly containing H, contrary to the maximality of H. These contradictions complete the proof
for Case 2.

Case 3 H = C6(s, s′, s′′) is a subgraph of G for some s ≥ s′ ≥ s′′ ≥ 0 with either s′′ > 0 or s′′ = 0
and s′ ≥ 2.

Since G �= H and by Observation 2.7(i), V(G) − V(H) has a vertex z. By κ(G) ≥ 2 and by
α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V(H). Since u, v ∈ NG(z), the
edge induced subgraph H ′ = G[E(H) ∪ {uz, vz}] of G either has one of {C7, K2,3(1, 2, 2), K3} as
a subgraph, contrary to Equation (1) or the assumption that G is reduced; or is a C6(t, t′, t′′)
with t ≥ t′ ≥ t′′ ≥ 0 and with either t′′ > 0 or both t′′ = 0 and t′ ≥ 2, properly containing H,
contrary to the maximality of H; or α′(G) ≥ α(H ′) ≥ 4. These contradictions complete the proof
for Case 3.

Case 4 H = C6(s, 1, 0) is a subgraph of G with either s > 0, and G does not have a subgraph in
Cases 1, 2 or 3.

Let P = v1v2v3v4v5 be a path of length 4 in H such that dH(v1) = 1, and NH(v3) ∩ NH(5) has
s vertices of degree 2 in H. Since κ(G) ≥ 2, NG(v1) − {v2} has a vertex z. Since G does not have
a subgraph in Cases 1, 2 or 3, and by Equation (1), z �∈ V(H). Since κ(G) ≥ 2, the edges v1z
and v3v4 are in a cycle of G, and so G − v1 has a path Q from z to a vertex w ∈ V(H) − {v1, v2}
such that V(H) ∩ V(Q) = {w}. If |E(Q)| ≥ 3, then G has a cycle of length at least 6, contrary
to Equation (1) or to the assumption that G does not have subgraph in Cases 1, 2 or 3. Hence
|E(Q)| = 2 and so we must have s = 1, dH(v5) = 1, H = P and w = v4. By Symmetry, there
must be a vertex z′ ∈ V(G) − V(H) such that z′v5, z′v2 ∈ E(G). Thus G[V(P) ∪ {z, z′}] contains
a K2,3(1, 2, 2), contrary to Equation (1). These contradictions prove Case 4, and the proof for the
lemma is done.

3. Proof of Theorem 1.3

We in this section will prove the following theorem, which, together with Theorem 2.1(i), implies
Theorem 1.3.

Theorem 3.1 Let G be a graph with κ ′(G) ≥ 2 and α′(G) ≤ 3. Then the reduction of G is in F .

The proof of Theorem 3.1 needs a useful tool stated as Theorem 3.2 below. We shall need
the graphs introduced in Definitions 2.2 and 2.4. By Definition 2.4, F2 = {K1} ∪ {K2,t : t ≥ 3} ∪
K1,3(s, s′, s′′)|s ≥ s′ ≥ 2, s′′ ≥ 0} ∪ {Sm,l|m ≥ l ≥ 2} ∪ {C6(s, s′, s′′)| either s ≥ s′ ≥ 2 and s′′ ≥ 1
or s ≥ s′ ≥ 3 and s′′ = 0} ∪ {K∗

2,3(1, 2, 2)} ∪ {J(s1, s2, s3)| s1 ≥ s3 ≥ 3, s2 ≥ 2}.

Theorem 3.2 Let G be a 2-edge-connected graph. Each of the following holds.

(i) Suppose that c(G) ≤ 5. Then G is collapsible if and only if the reduction of G is not a member
in {K2,t , Sm,l}, where l, m ≥ 1 and t ≥ 2 are integers.
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(ii) Suppose that G is essentially 4-edge-connected graph with c(G) ≤ 6. Then G is collapsible
if and only if the reduction of G is not in F2.

Proof Since any graph in {K2,t , Sm,l} is not collapsible, by Theorem 2.1(v), if the reduction of G
is in {K2,t , Sm,l}, then G is not collapsible.

To prove the necessity, we argue by contradiction to assume that G �= K1 is reduced, but
G /∈ {K2,t , Sm,l}. By Theorem 2.1(iv), G has no cycles of length at most 3. Suppose first that
c(G) = 4. Then G contains a K2,2 as a subgraph. Let t ≥ 2 be the maximum number such that
G has K2,t as a subgraph. Since G �= K2,t , V(G) − V(K2,t) has a vertex v. Since κ(G) ≥ 2, G
has a path P from a vertex x to a vertex y with v ∈ V(P) such that V(P) ∩ V(K2,t) = {x, y}. As
v ∈ V(P) − V(K2,t), |E(P)| ≥ 2. If x and y are adjacent in K2,t , then G has a five-cycle, contrary to
c(G) = 4. Therefore, we must have x, y ∈ NG(v), and x and y are of distance 2 in K2,t . It then follows
that either c(G) ≥ 5, contrary to c(G) = 4; or G has a K2,t+1, contrary to the maximality of t.

Hence c(G) = 5, and so G contains a C5 = S1,1 as a subgraph. Thus G has Sm,l as a subgraph
with m ≥ l ≥ 1 such that m + l is maximized. Since G �= Sm,l, V(G) − V(Sm,l) has a vertex
v′. By κ(G) ≥ 2, G has a path P′ from a vertex x′ to a vertex y′ with v′ ∈ V(P′) such that
V(P′) ∩ V(Sm,l) = {x′, y′}.

If x′y′ ∈ E(Sm,l), then G has a cycle of length at least 6, contrary to c(G) = 5. Therefore, the
distance between x′ and y′ in Sm,l is 2. It follows that G[V(Sm,l) ∪ {v′}] either has a cycle of
length at least 6, contrary to c(G) = 5; or is isomorphic to an Sm+1,l or an Sm,l+1, contrary to the
maximality of m + l. This completes the proof for Theorem 3.2(i).

To prove Theorem 3.2(ii), we argue by contradiction to assume that

G is a counterexample with |V(G)| minimized. (2)

By Equation (2), by the assumption that G is essentially 4-edge-connected, and by
Theorem 3.2(i), we further assume that

G is reduced, κ(G) ≥ 2, D2(G) is an independent set, and c(G) = 6. (3)

Let C6 = v1v2v3v4v5v6v1 be a longest cycle of G. Since G is reduced and by Lemma 2.3, G
contains no K3 or K3,3 − e as a subgraph. Thus if C6 has chords, then C6 has exactly one chord,
isomorphic to a J(1, 1) = K1,3(1, 1, 0). Note that C6 = J ′(1, 1). Hence G has a subgraph H ∈
{J(m, l)|m ≥ l ≥ 1} ∪{J ′(m, l)|m ≥ l ≥ 1} ∪ {C6(s, s′, s′′) |s ≥ s′ ≥ s′′ > 0} ∪{K1,3(s, s′, s′′)|s ≥
s′ > 0, s′′ ≥ 0}. Choose such an H so that

|V(H)| + |E(H)| is maximized. (4)

If G = H , then as G is essentially 4-edge-connected, G �= J ′(m, l) with m ≥ l ≥ 1. Since
α′(G) ≤ 3, G �= J(m, l) for m ≥ l ≥ 2. As J(m, 1) = K1,3(m, 1, 0), we conclude that if G = H,
then G ∈ F2, contrary to Equation (2).

Hence G �= H . By Equation (4), V(G) − V(H) has a vertex z. As κ(G) ≥ 2, G has a path Q
with z ∈ V(Q), and V(Q) ∩ V(H) = {u, v} for some distinct u and v. Since α′(H) = 3 = α′(G)

and since G is reduced, u, v ∈ NG(z) and u and v are not adjacent in H. In the arguments below,
we will use the notation in Figure 1.

If H ∈ {K1,3(s, s′, s′′)|s ≥ s′ > 0, s′′ ≥ 0} ∪ {C6(s, s′, s′′)|s ≥ s′ ≥ s′′ > 0}, then either u, v ∈
{a1, a2, a3}, whence Equation (4) is violated; or (by symmetry) H = K1,3(s, 1, 0), u = a and
v ∈ D2(H), whence Equation (4) is violated; or {u, v} − {a1, a2, a3} �= ∅, and G[V(H) ∪ {z}]
contains a cycle of length at least 7, contrary to Equation (3).

Assume that H ∈ {J(m, l)|m ≥ l ≥ 1}. Since J(m, 1) = K1,3(m, 1, 0), we assume that
m ≥ l ≥ 2. If u, v ∈ D2(H), then G[V(H) ∪ {z}] contains a cycle of length at least 7, contrary
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to Equation (3). Hence we assume that u /∈ D2(H). Then G[V(H) ∪ {z}] either violates Equation
(4), or contains a cycle of length at least 7, contrary to Equation (3).

Finally we assume that H ∈ {J ′(m, l)|m ≥ l ≥ 1}. As J ′(m, 1) = C6(m, 1, 1), we may assume
m ≥ l ≥ 2. Since J ′(m, l) = J(m, 0, l), we may assume that H = J(s, s′, s′′) with s ≥ s′′ ≥ 2 and
s′ ≥ 0, and s + s′ + s′′ maximized. If {u, v} ∩ D2(H) �= ∅, then G[V(H) ∪ {z}] also contains a
cycle of length at least 7, contrary to Equation (3). Hence u, v ∈ V(H) − D2(H). It follows that
G[V(H) ∪ {z}] contains a J(t, t′, t′′) with t + t′ + t′′ = s + s′ + s′′ + 1, contrary to the maximality
of H. This completes the proof of Theorem 3.2(ii). �

Proof of Theorem 3.1 By contradiction, we assume that

G is a counterexample to Theorem 3.1 with |V(G)| minimized. (5)

By Theorem 1.1 and by Equation (5), G is reduced. By the assumption α′(G) ≤ 3, c(G) ≤ 7.
If G has a C7 or a C6 as a subgraph, then by Lemma 2.5, G ∈ F , contrary to (5). Therefore, we
must have c(G) ≤ 5. By Theorem 3.2(i), G ∈ F , contrary to Equation (5). This completes the
proof. �

4. Proofs of Corollaries 1.4 and 1.6

To prove Corollary 1.4, we also need the following theorem of Harary and Nash-Williams, which
reveals a close relationship between Eulerian subgraphs in G and Hamilton cycles in L(G).

Theorem 4.1 (Harary and Nash-Williams [15]) Let G be a connected graph with |E(G)| ≥
3. Then L(G) is hamiltonian if and only if G has an Eulerian subgraph H such that
E(G − V(H)) = ∅.

Let G be a graph such that κ(L(G)) ≥ 2, E1(G) denote the set of pendant edges (edges incident
with a vertex in D1(G)) of G, and let � = G/E1(G). Let �′ denote the reduction of �, and define
�(�′) = {v ∈ V(�′) such that v is the contraction image of a nontrivial connected subgraph of
G}. Using Theorem 4.1, Shao proved the following.

Proposition 4.2 (Shao, Section 1.4 of [21]). If �′ has an Eulerian subgraph H with �(�′) ⊆
V(H), then L(G) is hamiltonian.

Proof of Corollary 1.4 Let G be a graph with κ(L(G)) ≥ 2 and α(L(G)) ≤ 3. Since κ(L(G)) ≥ 2
and α(L(G)) ≤ 3, κ ′(�) ≥ 2 and α′(�) ≤ 3. Let �′ be the reduction of �. If �′ is supereulerian,
then by Proposition 4.2, L(G) is hamiltonian. Thus by Theorem 1.3, we may assume that �′ ∈ F ′.
By the definition of F ′, we observe that

∀F ∈ F ′, and ∀v ∈ D2(F), F has an Eulerian subgraph H such that V(F) − v ⊆ V(H). (6)

By Equation (6) and Proposition 4.2, if �′ ∈ F ′ such that D2(�
′) − �(�′) �= ∅, then L(G)

is hamiltonian. Thus L(G) is not hamiltonian only if D2(�
′) ⊆ �(�′). Therefore, each vertex in

D2(�
′) contains an edge of G, and these edges are independent. Hence |D2(�

′)| ≤ α′(�) ≤ 3, and
so as �′ ∈ F ′, we conclude that L(G) is not hamiltonian only if �′ = K2,3 with D2(�

′) ⊆ �(�′).
Suppose that one vertex v in D2(�

′) is the contraction image of a nontrivial collapsible graph
H . Let AG(H) denote the vertices of H that are adjacent to vertices in V(G) − V(H) in G. Thus
|AG(H)| ≤ d�′(v) ≤ 3. Since H is a simple collapsible graph, |E(H)| ≥ 3, and so there must be
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10 J. Xu et al.

an edge e1 ∈ E(H) and an edge e2 ∈ E�′(v) such that {e1, e2} is a matching in G. Let e3, e4 be
two edges in the preimages of the two vertices of D2(�

′) − {v}. Then {e1, e2, e3, e4} would be a
matching of G, contrary to α′(G) ≤ 3. With a similar argument, the two vertices of degree 3 in �′
must be trivial, and so G ∼= Ks1,s2,s3

2,3 for some s1, s2, s3 > 0. This proves Corollary 1.4. �

A vertex v ∈ V(G) is locally connected if G[NG(v)] is connected. Following the definition given
by Ryjácěk [20], a graph H is the closure of a claw-free graph G, denoted by H = cl(G), if both
of the following hold.

(A) There is a sequence of graphs G1, . . . , Gt such that G1 = G, Gt = H, V(Gi+1) = V(Gi)

and E(Gi+1) = E(Gi)
⋃{uv|u, v ∈ NGi(xi), uv /∈ E(Gi)} for some xi ∈ V(Gi) with connected

non-complete Gi[NGi(xi)], for i = 1, . . . , t − 1, and
(B) No vertex of H has a connected non-complete neighbourhood.

Theorem 4.3 (Ryjáček [20]). Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined.
(ii) cl(G) is the line graph of a triangle-free graph.

(iii) G is hamiltonian if and only if cl(G) is hamiltonian.

Proof of Corollary 1.6 By Theorem 4.3, we may assume that for some simple graph H,
cl(G) = L(H). As adding edge to a graph does not increase the independence number α and does
not decrease the connectivity κ , both κ(cl(G)) ≥ κ(G) ≥ 2 and α(cl(G)) ≤ α(G) ≤ 3 hold. By
Corollary 1.4, cl(G) = L(H) is hamiltonian if and only if H /∈ {Ks1,s2,s3

2,3 : s1 ≥ s2 ≥ s3 > 0}. �
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