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conjecture of Liu, Hong and Lai, and also implies a conjecture 
of Cioabă and Wong.
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1. Introduction

In this note, we only consider finite and simple graphs. Undefined notations will 
follow Bondy and Murty [1]. Let G be a graph. We use τ(G) to represent the maximum 
number of edge-disjoint spanning trees of G. See Palmer’s survey [12] for a literature 
review on τ(G).

Let G be a simple graph of vertex set {v1, . . . , vn}. The adjacency matrix of G is the 
n ×n matrix A(G) := (aij), where aij = 1 if vi and vj are adjacent and otherwise aij = 0. 
As G is simple and undirected, A(G) is a symmetric (0, 1)-matrix. The eigenvalues of G
are the eigenvalues of A(G). We use λi(G) to denote the i-th largest eigenvalue of G. 
Let D(G) be the degree diagonal matrix of G. The matrices L(G) = D(G) − A(G)
and Q(G) = D(G) + A(G) are the Laplacian matrix and the signless Laplacian matrix 
of G, respectively. We use μi(G) and ρi(G) to denote the i-th largest eigenvalue of L(G)
and Q(G), respectively. It is not difficult to see that μn(G) = 0. Also, the second smallest 
eigenvalue of L(G), μn−1(G), is known as the algebraic connectivity of G.

Motivated by Kirchhoff’s matrix tree theorem [8] and by a problem of Seymour (see 
Ref. [19] of [3]), Cioabă and Wong [3] considered the following problem.

Problem 1.1. (See [3].) Let G be a connected graph. Determine the relationship between 
τ(G) and eigenvalues of G.

Cioabă and Wong proposed the following conjecture.

Conjecture 1.2. (See Cioabă and Wong [3].) Let k and d be two integers with d ≥ 2k ≥ 4. 
If G is a d-regular graph with λ2(G) < d − 2k−1

d+1 , then τ(G) ≥ k.

A fundamental theorem of Nash-Williams and Tutte characterizes graphs with at least 
k edge-disjoint spanning trees. Let (V1, . . . , Vt) be a sequence of disjoint vertex subsets 
of V (G) and e(V1, . . . , Vt) means the number of edges whose ends lie in different Vi’s. 
For a vertex set U , we write d(U) = e(U, V (G) \ U).

Theorem 1.3. (See Nash-Williams [11] and Tutte [13].) Let G be a connected graph and 
let k > 0 be an integer. Then τ(G) ≥ k if and only if for any partition (V1, . . . , Vt)
of V (G), e(V1, . . . , Vt) ≥ k(t − 1).

Using this theorem, Cioabă and Wong [3] proved Conjecture 1.2 for k = 2, 3 and also 
constructed some examples to show the bound is essentially best possible. For general k, 
using the following result of Cioabă [4], Cioabă and Wong [3] obtained the following 
theorem.

Theorem 1.4. (See Cioabă and Wang [3].) Let k and d be two integers with d ≥ 2k ≥ 4. 
If G is a d-regular graph with λ2(G) < d − 2(2k−1) , then τ(G) ≥ k.
d+1
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Later, Gu [6] and Li, Shi [9] and Liu, Hong, Lai [10] independently generalized this 
investigation into general simple graph and proposed the following conjecture.

Conjecture 1.5. (See [6,9,10].) Let k be an integer with k ≥ 2 and G be a graph with 
minimum degree δ ≥ 2k. If λ2(G) < δ − 2k−1

δ+1 , then τ(G) ≥ k.

In [5,6], Gu, Lai, Li and Yao proved the conjecture holds for the cases k = 2 and 
k = 3 and proved that if λ2(G) < δ − 3k−1

δ+1 then τ(G) ≥ k. In [9], Li and Shi proved 
that if λ2(G) < δ − 2k−1

δ+1 − O(1/n) then τ(G) ≥ k. In [10], Liu, Hong and Lai proved 

if λ2(G) ≤ δ − 2k−2/k
δ+1 or λ2 ≤ δ − 2k−1

δ+1 and n ≥ (2k − 1)(δ + 1), then τ(G) ≥ k. The 
purpose of this note is to confirm Conjecture 1.5 which also implies Conjecture 1.2, and 
to prove similar results on Laplace and signless Laplace eigenvalues instead of adjacency 
eigenvalues. The following results are obtained.

Theorem 1.6. Let G be a graph of minimum degree δ ≥ 2k ≥ 4 and λ2(G), ρ2(G), 
μn−1(G) be the second largest adjacency eigenvalue, the second largest signless Laplace 
eigenvalue and the algebraic connectivity of G, respectively.

(1) If λ2(G) < δ − 2k−1
δ+1 , then τ(G) ≥ k.

(2) If ρ2(G) < 2δ − 2k−1
δ+1 , then τ(G) ≥ k.

(3) If μn−1(G) > 2k−1
δ+1 , then τ(G) ≥ k.

The main tool of this paper is eigenvalue interlacing property of symmetric matrices. In 
Section 2, some preliminaries about eigenvalue interlacing and quotient matrices, which 
will be used in this paper, are displayed. In Section 3, a spectral condition on aD + A

for the existence of a certain number of edge-disjoint spanning trees. Theorem 1.6 will 
be proved in Section 4.

2. Preliminaries

Given two non-increasing real sequences λ1 ≥ λ2 ≥ . . . ≥ λn and μ1 ≥ μ2 ≥ . . . ≥ μm

with n > m, the second sequence is said to interlace the first one if λi ≥ μi ≥ λn−m+i for 
i = 1, . . . , m. The following result is known as the Cauchy Interlacing Theorem. A proof 
of this theorem can be found on page 27 of [2].

Theorem 2.1 (Cauchy Interlacing). Let B be a principal submatrix of a symmetric ma-
trix A, then the eigenvalues of B interlace the eigenvalues of A.

Let A be a symmetric matrix of order n and V1, . . . , Vt be a partition of {1, . . . , n}. 
For any 1 ≤ i, j ≤ t, let bij denote the average number of neighbors in Vj of the vertices 
in Vi. The quotient matrix of this partition is the t × t matrix B whose (i, j)-th entry 
equals bij . Haemers [7] showed the eigenvalues of the quotient matrix B in fact interlace 
the eigenvalues of A.
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Theorem 2.2. (See Haemers [7].) Let A be a symmetric matrix. Then the eigenvalues of 
every quotient matrix of A interlace the ones of A.

3. Eigenvalues of aD + A and edge disjoint trees

For any graph G, let D be the degree diagonal matrix and A be the adjacency matrix. 
In this section, we consider the eigenvalues of aD+A of G, where a ∈ R. For convenience, 
we may use λ1(G, a) ≥ λ2(G, a) ≥ . . . ≥ λn(G, a) to denote the eigenvalues of aD + A

of G.

Lemma 3.1. Let G be a graph of minimum degree δ and A be a vertex subset of G. 
If d(A) < δ, then |A| ≥ δ + 1.

Proof. If there exists a vertex u ∈ A such that N(u) ⊆ A then |A| ≥ |N(u) ∪ {u}| ≥
δ + 1. So, we may assume N(u) − A �= ∅ for any u ∈ A. Let v ∈ A and thus d(A) =
e({v}, V (G) \A) +e(A −{v}, V (G) \A) ≥ e({v}, V (G) \A) +|A \{v}| ≥ e(v, V (G) \{v}) =
d(v) ≥ δ, a contradiction. �
Lemma 3.2. Let G be a graph with minimum degree δ and a ∈ R be a real number. 
For any two disjoint vertex sets X, Y , if λ2(G, a) ≤ (a + 1)δ − max{d(X)

|X| , 
d(Y )
|Y | }, then 

[e(X, Y )]2 ≥ ((a + 1)δ − d(X)
|X| − λ2(G, a))((a + 1)δ − d(Y )

|Y | − λ2(G, a))|X||Y |.

Proof. First, let AXY be the principal submatrix of aD+A of G induced by the vertices 
in X ∪ Y . Then by Theorem 2.1

λ2(AXY ) ≤ λ2(G, a).

Now, assume |X| = x, |Y | = y, d(X) = p, d(Y ) = q and e(X, Y ) = r. Let 
x1 = (

∑
u∈X(a +1)d(u) −p)/x and y1 = (

∑
v∈Y (a +1)d(v) −q)/y. Then, by the assump-

tion on λ2(G, a), x1 ≥ (a + 1)δ − p
x ≥ λ2(G, a) and y1 ≥ (a + 1)δ − q

y ≥ λ2(G, a). 
The quotient matrix of the adjacency matrix of AXY with respect to the partition 
(X, Y ) is

A2 =
[
x1

r
x

r
y y1

]
.

Direct computation yields λ2(A2) = 1
2(x1 + y1 −

√
(x1 − y1)2 + 4r2

xy ). By Theorem 2.1, 
λ2(A2) ≤ λ2(AXY ) ≤ λ2(G, a). Thus

r2 = xy

4
((
x1 + y1 − 2λ2(A2)

)2 − (x1 − y1)2
)

= xy
(
x1 − λ2(A2)

)(
y1 − λ2(A2)

)
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≥ xy
(
x1 − λ2(G, a)

)(
y1 − λ2(G, a)

)
≥

(
(a + 1)δ − p

x
− λ2(G, a)

)(
(a + 1)δ − q

y
− λ2(G, a)

)
xy.

The proof is completed. �
Theorem 3.3. Let k be an integer and G be a graph of order n and minimum degree 
δ ≥ 2k. If λ2(G, a) < (a + 1)δ − 2k−1

δ+1 then τ(G) ≥ k.

Proof. Let V1, V2, . . . , Vt be an arbitrary partition of V (G). By Theorem 1.3, it suffices 
to show that e(V1, . . . , Vt) ≥ k(t −1). Without loss of generality, we may assume d(V1) ≤
d(V2) ≤ . . . ≤ d(Vt). If d(V1) ≥ 2k, then e(V1, . . . , Vt) ≥

∑t
i=1 d(Vi)/2 ≥ kt > k(t − 1). 

So, in the next, we may assume d(V1) ≤ 2k − 1.
Let s ∈ {1, . . . , t} be an integer such that d(Vs) ≤ 2k−1 and d(Vs+1) ≥ 2k (if Vs+1 ex-

ists). Then by Lemma 3.1, |Vi| ≥ δ+1 for 1 ≤ i ≤ s. Moreover, for each i ∈ {2, . . . , s}, by 
Lemma 3.2, [e(V1, Vi)]2 ≥ ((a +1)δ− d(V1)

|V1| −λ2(G, a))((a +1)δ− d(Vi)
|Vi| −λ2(G, a))|V1||Vi| >

(2k−1 −d(V1))(2k−1 −d(Vi)) ≥ (2k−1 −d(Vi))2. It follows that e(V1, Vi) > 2k−1 −d(Vi)
and thus

e(V1, Vi) ≥ 2k − d(Vi).

Hence, d(V1) ≥
∑s

i=2 e(V1, Vi) ≥
∑s

i=2(2k− d(Vi)). So, 
∑s

i=1 d(Vi) ≥ 2k(s − 1) and thus ∑t
i=1 d(Vi) =

∑s
i=1 d(Vi) +

∑t
i=s+1 d(Vi) ≥ 2k(s − 1) + 2k(t − s) = 2k(t − 1). It follows 

that e(V1, . . . , Vt) ≥ k(t − 1) and the proof is completed. �
4. Eigenvalues and edge-disjoint trees

For any graph G, let D and A be the degree diagonal matrix and the adjacency matrix, 
respectively. For any a, b ∈ R, denote by λi(G, a, b) the i-th largest eigenvalue of aD+bA. 
Then λi(G, a, 1) = λi(G, a). In this section, we generalize the result of Theorem 3.3 as 
follows.

Theorem 4.1. Let k be an integer and G be a graph of order n and minimum degree δ ≥ 2k. 
If b > 0 and λ2(G, a, b) < (a +1)δ− b(2k−1)

δ+1 , or b < 0 and λn−1(G, a, b) > (1 −a)δ− b(2k−1)
δ+1 , 

then τ(G) ≥ k.

Proof. Noting that aD + bA = b(abD +A), if b > 0 then λi(G, a, b) = bλi(G, ab ); if b < 0
λn−i(G, a, b) = bλi(G, ab ). Thus, the result follows from Theorem 3.3 clearly. �
Corollary 4.2. Let k ≥ 2 be an integer and G be a graph with minimum degree δ ≥ 2k
and of order n. If one of the following holds then τ(G) ≥ k.
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(1) The second largest adjacency eigenvalue λ2(G) < δ − 2k−1
δ+1 .

(2) The second largest signless-Laplace eigenvalue ρ2(G) < 2δ − 2k−1
δ+1 .

(3) The algebraic connectivity μn−1(G) > 2k−1
δ+1 .
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