Realizing degree sequences as Z_{3}-connected graphs

Fan Yang ${ }^{\text {a }}$, Xiangwen Li ${ }^{\text {b,* }}$, Hong-Jian Lai ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, China
${ }^{\mathrm{b}}$ Department of Mathematics, Huazhong Normal University, Wuhan 430079, China
${ }^{\text {c }}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

ARTICLE INFO

Article history:

Received 18 March 2013
Received in revised form 14 June 2014
Accepted 17 June 2014

Keywords:

Nowhere-zero 3-flow
Z_{3}-connectivity
Degree sequence

Abstract

An integer-valued sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with degree sequence of π. We say the π has a realization G. Let Z_{3} be a cyclic group of order three. A graph G is Z_{3}-connected if for every mapping $b: V(G) \rightarrow Z_{3}$ such that $\sum_{v \in V(G)} b(v)=0$, there is an orientation of G and a mapping $f: E(G) \rightarrow Z_{3}-\{0\}$ such that for each vertex $v \in V(G)$, the sum of the values of f on all the edges leaving from v minus the sum of the values of f on the all edges coming to v is equal to $b(v)$. If an integer-valued sequence π has a realization G which is Z_{3}-connected, then π has a Z_{3}-connected realization G. Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence with $d_{n} \geq 3$. We prove in this paper that if $d_{1} \geq n-3$, then π has a Z_{3}-connected realization unless the sequence is $\left(n-3,3^{n-1}\right)$ or is $\left(k, 3^{k}\right)$ or $\left(k^{2}, 3^{k-1}\right)$ where $k=n-1$ and n is even; if $d_{n-5} \geq 4$, then π has a Z_{3}-connected realization unless the sequence is $\left(5^{2}, 3^{4}\right)$ or $\left(5,3^{5}\right)$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs here are finite, and may have multiple edges without loops. We follow the notation and terminology in [2] except otherwise stated.

For a given orientation of a graph G, if an edge $e \in E(G)$ is directed from a vertex u to a vertex v, then u is the tail of e and v is the head of e. For a vertex $v \in V(G)$, let $E^{+}(v)$ and $E^{-}(v)$ denote the sets of all edges having tail v or head v, respectively. A graph G is k-flowable if all the edges of G can be oriented and assigned nonzero numbers with absolute value less than k so that for every vertex $v \in V(G)$, the sum of the values on all the edges in $E^{+}(v)$ equals that of the values of all the edges in $E^{-}(v)$. If G is k-flowable we also say that G admits a nowhere-zero k-flow.

Let A be an abelian group with identity 0 , and let $A^{*}=A-\{0\}$. Given an orientation and a mapping $f: E(G) \rightarrow A$, the boundary of f is a function $\partial f: V(G) \rightarrow A$ defined by, for each vertex $v \in V(G)$,

$$
\partial f(v)=\sum_{e \in E^{+}(v)} f(e)-\sum_{e \in E^{-}(v)} f(e),
$$

where " \sum " refers to the addition in A.
A mapping $b: V(G) \rightarrow A$ is a zero-sum function if $\sum_{v \in V(G)} b(v)=0$. A graph G is A-connected if for every zero-sum function $b: V(G) \rightarrow A$, there exist an orientation of G and a mapping $f: E(G) \rightarrow A^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$.

[^0]The concept of k-flowability was first introduced by Tutte [19], and this theory provides an interesting way to investigate the coloring of planar graphs in the sense that Tutte [19] proved a classical theorem: a planar graph is k-colorable if and only if it is k-flowable. Jaeger et al. [10] successfully generalized nowhere-zero flow problems to group connectivity. The purpose of study in group connectivity is to characterize contractible configurations for integer flow problems. Let Z_{3} be a cyclic group of order three. Obviously, if G is Z_{3}-connected, then G is 3-flowable.

An integer-valued sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is graphic if there is a simple graph G with degree sequence π. We say π has a realization G, and we also say G is a realization of π. If an integer-valued sequence π has a realization G which is A-connected, then we say that G is a A-connected realization of π for an abelian group A. In particular, if $A=Z_{3}$, then we say G is a Z_{3}-connected realization (or π has a Z_{3}-connected realization G). In this paper, we write every degree sequence $\left(d_{1}, \ldots, d_{n}\right)$ is in nonincreasing order. For simplicity, we use exponents to denote degree multiplicities, for example, we write $\left(6,5,4^{4}\right.$, 3) for $(6,5,4,4,4,4,3)$.

The problem of realizing degree sequences by graphs that have nowhere-zero flows or are A-connected, where A is an abelian group, has been studied. Luo et al. [17] proved that every bipartite graphic sequence with least element at least 2 has a 4-flowable realization. As a corollary, they confirmed the simultaneous edge-coloring conjecture of Cameron [3]. Fan et al. [6] proved that every degree sequence with least element at least 2 has a realization which contains a spanning Eulerian subgraph; such graphs are 4 -flowable. Let A be an abelian group with $|A|=4$. For a nonincreasing n-element graphic sequence π with least element at least 2 and sum at least $3 n-3$, Luo et al. [15] proved that π has a realization that is A-connected. Yin and Guo [20] determined the smallest degree sum that yields graphic sequences with a Z_{3}-connected realization. For the literature for this topic, the readers can see a survey [13]. In particular, Luo et al. [16] completely answered the question of Archdeacon [1]: Characterize all graphic sequences π realizable by a 3-flowable graph. The natural group connectivity version of Archdeacon's problem is as follows.

Problem 1.1. Characterize all graphic sequences π realizable by a Z_{3}-connected graph.
On this problem, Luo et al. [16] obtained the next two results.
Theorem 1.2. Every nonincreasing graphic sequence $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1}=n-1$ and $d_{n} \geq 3$ has a Z_{3}-connected realization unless n is even and the sequence is $\left(k, 3^{k}\right)$ or $\left(k^{2}, 3^{k-1}\right)$, where $k=n-1$.

Theorem 1.3. Every nonincreasing graphic sequence $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{n} \geq 3$ and $d_{n-3} \geq 4$ has a Z_{3}-connected realization.
Motivated by Problem 1.1 and the results above, we present the following two theorems in this paper. These results extend the results of [16] by extending the characterizations to a large set of sequences.

Theorem 1.4. A nonincreasing graphic sequence $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{1} \geq n-3$ and $d_{n} \geq 3$ has a Z_{3}-connected realization unless the sequence is $\left(n-3,3^{n-1}\right)$ for any n or is $\left(k, 3^{k}\right)$ or $\left(k^{2}, 3^{k-1}\right)$, where $k=n-1$ and n is even.

Theorem 1.5. A nonincreasing graphic sequence $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{n} \geq 3$ and $d_{n-5} \geq 4$ has a Z_{3}-connected realization unless the sequence is $\left(5^{2}, 3^{4}\right)$ or $\left(5,3^{5}\right)$.

We end this section with some notation and terminology. A graph is trivial if $E(G)=\emptyset$ and nontrivial otherwise. A k-vertex denotes a vertex of degree k. Let P_{n} denote the path on n vertices and we call P_{n} a n-path. An n-cycle is a cycle on n vertices. The wheel W_{k} is the graph obtained from a k-cycle by adding a new vertex, the center of the wheel, and joining it to every vertex of the k-cycle. A wheel W_{k} is an odd (even) wheel if k is odd (even). For simplicity, we say W_{1} is a triangle. For a graph G and $X \subseteq V(G)$, denote by $G[X]$ the subgraph of G induced by X. For two vertex-disjoint subsets V_{1}, V_{2} of $V(G)$, denote by $e\left(V_{1}, V_{2}\right)$ the number of edges with one endpoint in V_{1} and the other endpoint in V_{2}.

We organize this paper as follows. In Section 2, we state some results and establish some lemmas that will be used in the following proofs. We will deal with some special degree sequences, each of which has a Z_{3}-connected realization in Section 3. In Sections 4 and 5, we will give the proofs of Theorems 1.4 and 1.5.

2. Lemmas

Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a graphic sequence with $d_{1} \geq \ldots \geq d_{n}$. Throughout this paper, we use $\bar{\pi}$ to represent the sequence ($d_{1}-1, \ldots, d_{d_{n}}-1, d_{d_{n}+1}, \ldots, d_{n-1}$), which is called the residual sequence obtained from π by deleting d_{n}. The following well-known result is due to Hakimi [8,9] and Kleitman and Wang [11].

Theorem 2.1. A graphic sequence has even sum. Furthermore, a sequence π is graphic if and only if $\bar{\pi}$ is graphic.
Some results in $[4,5,7,10,12$] on group connectivity are summarized as follows.
Lemma 2.2. Let A be an abelian group with $|A| \geq 3$. The following results are known:
(1) K_{1} is A-connected;
(2) K_{n} and K_{n}^{-}are A-connected if $n \geq 5$;
(3) An n-cycle is A-connected if and only if $|A| \geq n+1$;

Fig. 1. Realizations of four degree sequences.
(4) $K_{m, n}$ is A-connected if $m \geq n \geq 4$; neither $K_{2, t}(t \geq 2)$ nor $K_{3, s}(s \geq 3)$ is Z_{3}-connected;
(5) Each even wheel is Z_{3}-connected and each odd wheel is not;
(6) Let $H \subseteq G$ and H be A-connected. G is A-connected if and only if G / H is A-connected;
(7) If G is not A-connected, then any spanning subgraph of G is not A-connected.
(8) Let v be not a vertex of G. If G is A-connected and $e(v, G) \geq 2$, then $G \cup\{v\}$ is A-connected.

Let G be a graph having an induced path with three vertices v, u, w in order. Let $G_{[u v, u w]}$ be the graph by deleting $u v$ and $u w$ and adding a new edge $v w$. The following lemma was first proved by Lai in [12] and reformulated by Chen et al. in [4].

Lemma 2.3. Let G be a graph with $u \in V(G), u v, u w \in E(G)$ and $d(u) \geq 4$, and let A be an abelian group with $|A| \geq 3$. If $G_{[u v, u w]}$ is A-connected, then so is G.

A graph G is triangularly connected if for every edge $e, f \in E$ there exists a sequence of cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $e \in E\left(C_{1}\right), f \in E\left(C_{k}\right)$, and $\left|E\left(C_{i}\right)\right| \leq 3$ for $1 \leq i \leq k$, and $\left|E\left(C_{j}\right) \cap E\left(C_{j+1}\right)\right| \neq \emptyset$ for $1 \leq j \leq k-1$.

Lemma 2.4 ([5]). A triangularly connected graph G is Z_{3}-connected if G has minimum degree at least 4 or has a nontrivial Z_{3}-connected subgraph.

An orientation D of G is a modular 3-orientation if $\left|E^{+}(v)\right|-\left|E^{-}(v)\right| \equiv 0(\bmod 3)$ for every vertex $v \in V(G)$. Steinberg and Younger [18] established the following relationship.

Lemma 2.5. A graph G is 3-flowable if and only if G admits a modular 3-orientation.
Let v be a 3 -vertex in a graph G, and let $N(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$. Denote by $G_{\left(v, v_{1}\right)}$ the graph obtained from G by deleting vertex v and adding a new edge $v_{2} v_{3}$. The following lemma is due to Luo et al. [14].

Lemma 2.6. Let A be an abelian group with $|A| \geq 3$, and let $b: V(G) \mapsto A$ be a zero-sum function with $b(v) \neq 0$. If $G_{\left(v, v_{1}\right)}$ is Z_{3}-connected, then there exist an orientation D of G and a nowhere-zero mapping $f^{\prime}: E(G) \mapsto A$ such that $\partial f^{\prime}=b$ under the orientation D of G.

For any odd integer k, Luo et al. [16] proved that no realization of the graphic sequence $\left(k, 3^{k}\right)$ and $\left(k^{2}, 3^{k-1}\right)$ is 3-flowable. This yields the following lemma.

Lemma 2.7. If k is odd, then neither $\left(k, 3^{k}\right)$ nor $\left(k^{2}, 3^{k-1}\right)$ has a Z_{3}-connected realization.
Next we provide Z_{3}-connected realizations for some degree sequences.
Lemma 2.8. Each of the graphs in Fig. 1 is Z_{3}-connected.
Proof. If G is the graph (a) in Fig. 1, then G is Z_{3}-connected by Lemma 2.2 of [14]. Thus, we may assume that G is one of the graphs (b), (c) and (d) shown in Fig. 1.

We only prove here that the graph (b) in Fig. 1 is Z_{3}-connected. The proofs for the graphs (c) and (d) in Fig. 1 are similar. (For more details, the readers can see http://arXiv.org.) Assume that G is the graph (b) shown in Fig. 1. Let $b: V(G) \rightarrow Z_{3}$ be a zero-sum function. If $b\left(v_{3}\right) \neq 0$, then $G_{\left(v_{3}, v_{4}\right)}$ contains a 2-cycle (v_{1}, v_{2}). Contracting this 2-cycle and repeatedly contracting all 2-cycles generated in the process, we obtain K_{1}. By parts (1) and (6) of Lemma 2.2, $G_{\left(v_{3}, v_{4}\right)}$ is Z_{3}-connected. It follows by Lemma 2.6 that there exists a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ with $\partial f=b$. Thus, we may assume that $b\left(v_{3}\right)=0$. Similarly, we may assume that $b\left(v_{4}\right)=b\left(v_{5}\right)=b\left(v_{6}\right)=b\left(v_{7}\right)=0$. This means that for such b, there are only three possibilities to be considered: $\left(b\left(v_{1}\right), b\left(v_{2}\right)\right) \in\{(0,0),(1,2),(2,1)\}$.

If $\left(b\left(v_{1}\right), b\left(v_{2}\right)\right)=(0,0)$, we show that G is 3 -flowable. Note that each vertex of $v_{3}, v_{4}, v_{5}, v_{6}$ and v_{7} is of degree 3 . The edges of G are oriented as follows: $\left|E^{+}\left(v_{3}\right)\right|=3,\left|E^{-}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=3,\left|E^{-}\left(v_{6}\right)\right|=3,\left|E^{+}\left(v_{7}\right)\right|=3$, and $v_{2} v_{1}$ is oriented from v_{2} to v_{1}. It is easy to verify that $\left|E^{+}(v)\right|-\left|E^{-}(v)\right|=0(\bmod 3)$ for each vertex $v \in V(G)$. By Lemma $2.5, G$ is 3-flowable. Thus, there is an $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$.

If $\left(b\left(v_{1}\right), b\left(v_{2}\right)\right)=(1,2)$, note that $b(v)=0$ for each $v \in V(G)-\left\{v_{1}, v_{2}\right\}$. The edges of G are oriented as follows: $\left|E^{-}\left(v_{3}\right)\right|=3,\left|E^{+}\left(v_{4}\right)\right|=3,\left|E^{-}\left(v_{5}\right)\right|=3,\left|E^{+}\left(v_{6}\right)\right|=3,\left|E^{-}\left(v_{7}\right)\right|=3$ and edge $v_{2} v_{1}$ is oriented from v_{2} to v_{1}. If

Fig. 2. Realizations of three degree sequences.
$\left(b\left(v_{1}\right), b\left(v_{2}\right)\right)=(2,1)$, then the edges of G are oriented as follows: $\left|E^{+}\left(v_{3}\right)\right|=3,\left|E^{-}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=3,\left|E^{-}\left(v_{6}\right)\right|=$ $3,\left|E^{+}\left(v_{7}\right)\right|=3$ and edge $v_{1} v_{2}$ is oriented from v_{1} to v_{2}. In each case, for each $e \in E(G)$, define $f(e)=1$. It is easy to see that for $v \in\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}, \partial f(v)=0=b(v), \partial f\left(v_{1}\right)=b\left(v_{1}\right)$ and $\partial f\left(v_{2}\right)=b\left(v_{2}\right)$.

Thus, for any zero-sum function b, there exist an orientation of G and a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ such that $\partial f=b$. Therefore, G is Z_{3}-connected.

Lemma 2.9. Each graph in Fig. 2 is Z_{3}-connected.
Proof. We only prove here that the graph (a) in Fig. 2 is Z_{3}-connected. The proofs for the graphs (b) and (c) are similar (For more details, the readers can see http://arXiv.org). Denote by G the graph (a) in Fig. 2. We claim that G is 3-flowable. Assume that the edges of the graph are oriented as follows: $\left|E^{+}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=0,\left|E^{+}\left(v_{6}\right)\right|=3,\left|E^{+}\left(v_{7}\right)\right|=0$ and $v_{2} v_{3}$ from v_{2} to v_{3}. Define $f(e)=1$ for all $e \in E(G)$. It is easy to verify that $\partial f(v)=0$ for each $v \in V(G)$. By Lemma 2.5 , the graph (a) is 3-flowable.

Let $b: V(G) \rightarrow Z_{3}$ be a zero-sum function. If $b\left(v_{4}\right) \neq 0$, then $G_{\left(v_{4}, v_{2}\right)}$ contains a 2-cycle $\left(v_{1}, v_{5}\right)$. Contracting the 2-cycle, we obtain an even wheel W_{4} induced by $\left\{v_{1}, v_{2}, v_{3}, v_{6}, v_{7}\right\}$ with the center at v_{3}. By parts (3), (5) and (6) of Lemma 2.2, $G_{\left(v_{4}, v_{2}\right)}$ is Z_{3}-connected. By Lemma 2.6, there exists a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ with $\partial f=b$. Thus, we assume $b\left(v_{4}\right)=0$. By symmetry, we may assume $b\left(v_{5}\right)=0$. If $b\left(v_{6}\right) \neq 0$, then $G_{\left(v_{6}, v_{3}\right)}$ is a graph isomorphic to Fig. $1(\mathrm{a})$ which is Z_{3}-connected by Lemma 2.8. By Lemma 2.6, there exists a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ with $\partial f=b$. We thus assume $b\left(v_{6}\right)=0$. By symmetry, we assume $b\left(v_{7}\right)=0$.

So far, we may assume $b\left(v_{4}\right)=b\left(v_{5}\right)=b\left(v_{6}\right)=b\left(v_{7}\right)=0$. We claim that $b\left(v_{2}\right) \neq 0$. If $b\left(v_{2}\right)=0$, then denote by $G\left(v_{2}\right)$ the graph obtained from G by deleting v_{2} and adding edges $v_{3} v_{7}$ and $v_{4} v_{6}$. Contracting all 2-cycles, we finally get an even wheel W_{4} with the center at v_{1}. By Lemma 2.2, $G\left(v_{2}\right)$ is Z_{3}-connected. Thus, there exists a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ with $\partial f=b$. By symmetry, we assume that $b\left(v_{3}\right) \neq 0$. Thus, we are left to discuss three cases $\left(b\left(v_{1}\right), b\left(v_{2}\right), b\left(v_{3}\right)\right) \in\{(1,1,1),(0,1,2),(2,2,2)\}$.

If $\left(b\left(v_{1}\right), b\left(v_{2}\right), b\left(v_{3}\right)\right)=(1,1,1)$, then we orient the edges of G as follows: $\left|E^{+}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=0,\left|E^{+}\left(v_{6}\right)\right|=$ $3,\left|E^{+}\left(v_{7}\right)\right|=3$, and $v_{2} v_{3}$ from v_{2} to v_{3}; if $\left(b\left(v_{1}\right), b\left(v_{2}\right), b\left(v_{3}\right)\right)=(0,1,2)$, then we orient edges of G as follows: $\left|E^{+}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=0,\left|E^{+}\left(v_{6}\right)\right|=3,\left|E^{+}\left(v_{7}\right)\right|=0$, and $v_{3} v_{2}$ from v_{3} to v_{2}; if $\left(b\left(v_{1}\right), b\left(v_{2}\right), b\left(v_{3}\right)\right)=(2,2,2)$, then we orient edges of G as follows: $\left|E^{+}\left(v_{4}\right)\right|=3,\left|E^{+}\left(v_{5}\right)\right|=0,\left|E^{+}\left(v_{6}\right)\right|=0,\left|E^{+}\left(v_{7}\right)\right|=0$, and $v_{2} v_{3}$ from v_{2} to v_{3}. In each case, for each $e \in E(G)$ define $f(e)=1$. It is easy to verify that $\partial f(v)=b(v)$ for each $v \in V(G)$.

In each case, there exist an orientation of G and a nowhere-zero mapping $f: E(G) \rightarrow Z_{3}$ such that $\partial f=b$. Therefore, G is Z_{3}-connected.

3. Some special cases

Throughout this section, all sequences are graphic sequences. We provide Z_{3}-connected realizations for some graphic sequences.

Lemma 3.1. Suppose that one of the following holds,
(i) $n \geq 6$ and $\pi=\left(n-2,4,3^{n-2}\right)$;
(ii) $n \geq 5$ and $\pi=\left(4^{n-4}, 3^{4}\right)$;
(iii) $n \geq 7$ and $\pi=\left(5,4^{n-6}, 3^{5}\right)$.

Then π has a Z_{3}-connected realization.
Proof. (i) If $n=6$, then by Lemma $2.8, \pi$ has a Z_{3}-connected realization G in Fig. 1(a). Thus, we assume that $n \geq 7$.
If $n=7,8$, then by Lemma $2.8, \pi$ has a Z_{3}-connected realization G in Fig. 1 (b) (c). Thus, we assume that $n \geq 9$.
Assume that n is odd. Let W_{n-5} be an even wheel with the center at v_{1} and K_{4}^{-}on vertex set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ with $d_{K_{4}^{-}}\left(u_{1}\right)=d_{K_{4}^{-}}\left(u_{3}\right)=2$. Denote by G the graph obtained from W_{n-5} and K_{4}^{-}by adding edges $u_{i} v_{1}$ for each $i \in\{1,2,3\}$. Obviously, the graph G has a degree sequence $\left(n-2,4,3^{n-2}\right.$). By part (5) of Lemma $2.2, W_{n-5}$ is Z_{3}-connected. The graph G / W_{n-5} is an even wheel W_{4}. By parts (5) and (6) of Lemma 2.2, G is Z_{3}-connected. This means that π has a Z_{3}-connected realization.

Assume that n is even. Let G_{0} be the graph in Fig. 1(a) and W_{n-6} be an even wheel with the center at u_{1}. Denote by G the graph obtained from W_{n-6} and G_{0} by identifying u_{1} and v_{1}. Clearly, G has a degree sequence ($n-2,4,3^{n-2}$). Since $n \geq 10$ is even, W_{n-6} is Z_{3}-connected by (5) of Lemma 2.2. By Lemma 2.8, G_{0} is Z_{3}-connected. This shows that G is Z_{3}-connected.
(ii) If $n=5$, then an even wheel W_{4} is a Z_{3}-connected realization of π; if $n=6$, then by Lemma $2.8, \pi$ has a Z_{3}-connected realization G in Fig. 1(a); if $n=7$, then by Lemma $2.9, \pi$ has a Z_{3}-connected realization shown in Fig. 2(a); if $n=8$, then by Lemma 2.9, the graph (c) in Fig. 2 is Z_{3}-connected realization of π. If $n=9$, then let G_{1} be an even wheel W_{4} induced by $\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ with the center at u_{0} and G_{2} be a K_{4}^{-}induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ with $d_{G_{2}}\left(v_{1}\right)=d_{G_{2}}\left(v_{3}\right)=3$. We construct a graph G from W_{4} and K_{4}^{-}by adding three edges $u_{1} v_{2}, u_{2} v_{4}$ and $u_{3} v_{1}$. Then G is a Z_{3}-connected realization of $\left(4^{5}, 3^{4}\right)$. Thus, we assume that $n \geq 10$.

Assume that $n=2 k$, where $k \geq 5$. By induction of hypothesis, let G_{i} be a Z_{3}-connected realization of the degree sequence $\left(4^{k-4}, 3^{4}\right)$ for $i \in\{1,2\}$. Assume that $n=2 k+1$, where $k \geq 5$. By induction hypothesis, let G_{1} be a Z_{3}-connected realization of the degree sequence $\left(4^{k-4}, 3^{4}\right)$ and G_{2} be a Z_{3}-connected realization of the degree sequence $\left(4^{k-3}, 3^{4}\right)$. In each case, we construct a graph G from G_{1} and G_{2} by connecting a pair of 3-vertices of G_{1} to a pair of 3-vertices of G_{2} one by one. It is easy to verify that G is a Z_{3}-connected realization of the degree sequence $\left(4^{n-4}, 3^{4}\right)$.
(iii) If $n=7$, then by Lemma 2.8, the graph (b) in Fig. 1 is a Z_{3}-connected realization of π; if $n=8$, then by Lemma 2.9 , the graph (b) in Fig. 2 is a Z_{3}-connected realization of π. If $n=9$, then $\pi=\left(5,4^{3}, 3^{5}\right)$. Let G_{1} be an even wheel W_{4} induced by $\left\{u_{0}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ with the center at u_{0} and G_{2} be a K_{4}^{-}induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ with $d_{G_{2}}\left(v_{1}\right)=d_{G_{2}}\left(v_{3}\right)=3$. We construct a graph G from W_{4} and K_{4}^{-}by adding three edges $u_{0} v_{2}, u_{1} v_{1}, u_{2} v_{4}$. We conclude that G is a Z_{3}-connected realization of degree sequence $\left(5,4^{3}, 3^{5}\right)$. Thus, $n \geq 10$.

Assume that $n=2 k$, where $k \geq 5$. By (ii), let G_{1} and G_{2} be Z_{3}-connected realizations of degree sequence $\left(4^{k-4}, 3^{4}\right)$. Assume that $n=2 k+1$, where $k \geq 5$. By (ii), let G_{1} be a Z_{3}-connected realization of degree sequence $\left(4^{k-4}, 3^{4}\right)$ and G_{2} be a Z_{3}-connected realization of degree sequence $\left(4^{k-3}, 3^{4}\right)$. In each case, choose one 4 -vertex u_{1} and one 3 -vertex u_{2} of G_{1}; choose two 3 -vertices v_{1}, v_{2} of G_{2}. We construct a graph G from G_{1} and G_{2} by adding $u_{1} v_{1}$ and $u_{2} v_{2}$. Thus, G is a Z_{3}-connected realization of degree sequence $\left(5,4^{n-6}, 3^{5}\right)$.

Lemma 3.2. If $\pi=\left(n-3,3^{n-1}\right)$, then π has not a Z_{3}-connected realization.
Proof. Suppose otherwise that G has a Z_{3}-connected realization of degree sequence $\left(n-3,3^{n-1}\right.$). Let $V(G)=\left\{u\right.$, u_{1}, $\left.\ldots, u_{n-3}, x_{1}, x_{2}\right\}, N_{G}(u)=\left\{u_{1}, \ldots, u_{n-3}\right\}$ (N for short), and $X=\left\{x_{1}, x_{2}\right\}$. We now consider the following two cases.
Case 1. $x_{1} x_{2} \in E(G)$.
Since G is Z_{3}-connected, G is 3 -flowable. By Lemma 2.5 and symmetry, we may assume that $\left|E^{+}\left(x_{1}\right)\right|=3$ and $\left|E^{-}\left(x_{2}\right)\right|=$ 3. Since $d\left(u_{i}\right)=3$ for $i \in\{1, \ldots, n-3\}$, by Lemma 2.5 , either $\left|E^{+}\left(u_{i}\right)\right|=3$ or $\left|E^{-}\left(u_{i}\right)\right|=3$. This implies that there exists no vertex u_{i} in N such that $u_{i} x_{1}, u_{i} x_{2} \in E(G)$. Thus, $G[N]$ is the union of two paths P_{1} and P_{2}. We relabel the vertices of N such that $P_{1}=u_{1} \ldots u_{k}$ and $P_{2}=u_{k+1} \ldots u_{n-3}$.

Suppose first that $x_{1} u_{1}, x_{1} u_{k} \in E(G)$ and $x_{2} u_{k+1}, x_{2} u_{n-3} \in E(G)$. Since G is 3-flowable, by Lemma $2.5, P_{i}$ contains odd number of vertices for each $i \in\{1,2\}$. Define $b(u)=b\left(x_{1}\right)=b\left(x_{2}\right)=1$ and $b\left(u_{i}\right)=0$ for each $i \in\{1, \ldots, n-3\}$. It is easy to verify that there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.

Next, suppose that $x_{1} u_{1}, x_{1} u_{k+1} \in E(G)$ and $x_{2} u_{k}, x_{2} u_{n-3} \in E(G)$. Since G is 3-flowable, by Lemma $2.5 P_{i}$ contains even number of vertices for each $i \in\{1,2\}$. Define $b(u)=1, b\left(x_{2}\right)=2$ and $b\left(u_{i}\right)=b\left(x_{1}\right)=0$ for each $i \in\{1, \ldots, n-3\}$. It is easy to verify that there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.
Case 2. $x_{1} x_{2} \notin E(G)$.
Since $d\left(x_{i}\right)=3$ for each $i=1,2,0 \leq\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right| \leq 3$. Assume first that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right|=3$. We assume, without loss of generality, that $u_{1}, u_{2}, u_{3} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. The subgraph induced by $\left\{u, x_{1}, x_{2}, u_{1}, u_{2}, u_{3}\right\}$ is $K_{3,3}$ which is not Z_{3}-connected by part (4) of Lemma 2.2. By part (6) of Lemma 2.2, G is not Z_{3}-connected, a contradiction.

Assume that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right|=2$. We assume, without loss of generality, that $u_{1}, u_{2} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. Since G is 3 -flowable, the graph H induced by $N \backslash\left\{u_{1}, u_{2}\right\}$ consists of even cycles and a path of length even. This means that n is even. If $n=6$, then this case cannot occur. Thus $n \geq 8$. Define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=2$ and $b\left(u_{i}\right)=b(u)=0$ for each $i \in\{1, \ldots, n-3\}$. It is easy to verify that there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.

Next, assume that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right|=1$. We assume, without loss of generality, that $u_{1} \in N\left(x_{1}\right) \cap N\left(x_{2}\right)$. The graph induced by $N \backslash\left\{u_{1}\right\}$ consists of even cycles and two paths P_{1} and P_{2}. Since G is 3-flowable, P_{i} contains odd vertices for each $i \in\{1,2\}$. Then n is even. If $n=6,8$, then this case cannot occur. Thus, we assume that $n \geq 10$. Define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=2$ and $b\left(u_{i}\right)=b(u)=0$ for each $i \in\{1, \ldots, n-3\}$. In this case, there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.

Finally, assume that $\left|N\left(x_{1}\right) \cap N\left(x_{2}\right)\right|=0$. Then the graph induced by the vertices of N consists of three paths P_{1}, P_{2} and P_{3}, together with even cycles. We relabel the vertices of N such that $P_{1}=u_{1} \ldots u_{s}, P_{2}=u_{s+1} \ldots u_{t}$ and $P_{3}=u_{t+1} \ldots u_{n-3}$. By symmetry, we consider two cases: x_{1} is adjacent to both the end vertices of some $P_{i} ; x_{1}$ is adjacent to one of each P_{j} for $j \in\{1,2,3\}$.

In the former case, we may assume that $u_{1} x_{1}, u_{s} x_{1} \in E(G)$ and $x_{2} u_{s+1}, x_{2} u_{t}$. Since G is 3 -flowable, by Lemma 2.5 , both $\left|V\left(P_{1}\right)\right|$ and $\left|V\left(P_{2}\right)\right|$ are odd. If $\left|V\left(P_{3}\right)\right|$ is odd, then define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=2$ and $b\left(u_{i}\right)=b(u)=0$ for each $i \in\{1, \ldots, n-3\}$. If $\left|V\left(P_{3}\right)\right|$ is even, then define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=1, b(u)=1$ and $b\left(u_{i}\right)=0$ for each $i \in\{1, \ldots, n-3\}$. In either case, there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.

In the latter case, $x_{1} u_{1}, x_{1} u_{s+1}, x_{1} u_{t+1}, x_{2} u_{s}, x_{2} u_{t}, x_{2} u_{n-3} \in E(G)$. It follows that $\left|V\left(P_{1}\right)\right|,\left|V\left(P_{2}\right)\right|$ and $\left|V\left(P_{3}\right)\right|$ have the same parity. If each of $\left|V\left(P_{i}\right)\right|$ for $i \in\{1,2,3\}$ is even, then define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=1, b(u)=1$ and $b\left(u_{i}\right)=0$ for each $i \in\{1, \ldots, n-3\}$. If each of $\left|V\left(P_{i}\right)\right|$ for $i \in\{1,2,3\}$ is odd, then define $b\left(x_{1}\right)=1, b\left(x_{2}\right)=2, b(u)=b\left(u_{i}\right)=0$ for each $i \in\{1, \ldots, n-3\}$. In either case, there exists no $f: E(G) \rightarrow Z_{3}^{*}$ such that $\partial f(v)=b(v)$ for each $v \in V(G)$, contrary to that G is Z_{3}-connected.

4. Proof of Theorem 1.4

In order to prove Theorem 1.4, we establish the following lemma.
Lemma 4.1. Suppose that $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{n} \geq 3$. If $d_{1}=n-2$, then π has a Z_{3}-connected realization.

Proof. Suppose, to the contrary, that $\pi=\left(d_{1}, \ldots, d_{n}\right)$ has no Z_{3}-connected realization with n minimized, where $d_{1}=n-2$. By Theorem 1.3, we may assume that $d_{n-3} \leq 3$. In order to prove our lemma, we need the following claim.
Claim 1. Each of the following holds.
(i) $d_{n-3}=d_{n-2}=d_{n-1}=d_{n}=3$;
(ii) $n \geq 6$.

Proof of Claim 1. (i) follows since $d_{n} \geq 3$.
(ii) Since $d_{n}=3, n \geq 4$. If $n=4$, then $d_{1}=3=n-1$, contrary to that $d_{1}=n-2$. If $n=5$, then $\pi=\left(3^{5}\right)$ is not graphic by Theorem 2.1. This proves Claim 1 .

If $n=6$, then $d_{1}=4$ and $d_{3}=d_{4}=d_{5}=d_{6}=3$. By Theorem 2.1, $d_{2}=4$. By Lemma $2.8, \pi=\left(4^{2}, 3^{4}\right)$ has a Z_{3}-realization, a contradiction. Thus, we may assume that $n \geq 7$.
Claim 2. $d_{3}=3$.
Proof of Claim 2. Suppose otherwise that $d_{3} \geq 4$ and G is a counterexample with $\mid V(G) \underline{\square}=n$ minimized. Then $d_{2} \geq d_{3} \geq 4$. Hence, $\bar{\pi}=\left(n-3, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-1}\right)=\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$ with $\bar{d}_{1} \geq \cdots \geq \bar{d}_{n-1}$. This implies that $\bar{d}_{n-1} \geq 3$ and $\bar{d}_{1}=(n-1)-2$ or $\bar{d}_{1}=d_{4}$. In the former case, since $\bar{d}_{1}=n-3=(n-1)-2$, by the minimality of $n, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. In the latter case, $\bar{d}_{1} \neq n-3$ and hence $\bar{d}_{1}=d_{4}>n-3$. Since $d_{1}=n-2 \geq d_{4}, d_{4}=n-2$. This means that $\bar{d}_{1}=d_{4}=(n-1)-1$. By Theorem 1.2, either $\bar{\pi}$ has a Z_{3}-connected realization \bar{G} or $\bar{\pi}=\left(k, 3^{k}\right),\left(k^{2}, 3^{k-1}\right)$, where k is odd. If $\bar{\pi}=\left(k, 3^{k}\right)$, then $d_{1}=k+1=n-2$ and $d_{2}=d_{3}=4$. On the other hand, $n=k+\underline{1}+1=k+2$. This contradiction proves that $\pi \neq\left(k, 3^{k}\right)$. Similarly, $\bar{\pi} \neq\left(k^{2}, 3^{k-1}\right)$. If $\bar{\pi}$ has a Z_{3}-connected realization \bar{G}, then π has a realization G of π from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. By part (8) of Lemma $2.2, G$ is Z_{3}-connected, a contradiction. Thus $d_{3} \leq 3$. Clearly, $d_{3} \geq 3$. Then $d_{3}=3$. This proves Claim 2 .

By Claims 1 and $2, \pi=\left(n-2, d_{2}, 3^{n-2}\right)$. Since π is graphic, d_{2} is even whenever n is even or odd. Moreover, $d_{2} \geq 4$. Recall that $n \geq 7$. In this case, $\pi=\left(n-2,4,3^{n-2}\right.$). By (i) of Lemma 3.1, π has a Z_{3}-connected realization G, a contradiction. Thus, we may assume that $d_{2} \geq 6$. Since $n-2=d_{1} \geq d_{2} \geq 6, n \geq d_{2}+2 \geq 8$.

Consider the case that n is even. Denote by $W_{n-d_{2}+2}$ an even wheel with the center at v_{1} and by S a vertex set such that $|S|=d_{2}-4$ and $V\left(W_{n-d_{2}+2}\right) \cap S=\emptyset$. Note that $|S|$ is even. We construct a graph G from $W_{n-d_{2}+2}$ and S as follows: First, pick two vertices s_{1}, s_{2} of S and add $\left(d_{2}-6\right) / 2$ edges such that the subgraph induced by $S \backslash\left\{s_{1}, s_{2}\right\}$ is a perfect matching. Second, let v_{1} connect to each vertex of S. Third, pick a vertex v_{2} in $W_{n-d_{2}+2}$ and let v_{2} join to each vertex of S. Finally, add one new vertex x adjacent to v_{2}, s_{1} and s_{2}.

We claim that G has a degree sequence $\left(n-2, d_{2}, 3^{n-2}\right)$. Since $d_{W_{n-d_{2}+2}}\left(v_{1}\right)=n-d_{2}+2 \geq 4, d\left(v_{1}\right)=n-d_{2}+2+d_{2}-4=$ $n-2, d\left(v_{2}\right)=3+d_{2}-4+1=d_{2}$, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a 3-vertex. Since $W_{n-d_{2}+2}$ is an even wheel, by part (5) of Lemma 2.2, this wheel is Z_{3}-connected. By part (8) of Lemma 2.2, G is Z_{3}-connected, a contradiction.

Consider the case that n is odd. Denote by $W_{n-d_{2}+1}$ an even wheel with the center at v_{1} and by S a vertex set with $|S|=d_{2}-3$ and $V\left(W_{n-d_{2}+1}\right) \cap S=\emptyset$. We construct a graph G from $W_{n-d_{2}+1}$ and S as follows: First, let v_{1} connect to each vertex of S. Second, pick one vertex v_{2} in $W_{n-d_{2}+1}$ and let v_{2} join to each vertex of S. Third, add one vertex x adjacent to three vertices of S. Finally, add $\left(d_{2}-6\right) / 2$ edges in S so that the subgraph induced by vertices of S, each of which is not adjacent to x, is a perfect matching. We claim that G is a realization of degree sequence $\left(n-2, d_{2}, 3^{n-2}\right)$. Since $d_{W_{n-d_{2}+1}}\left(v_{1}\right)=n-d_{2}+1 \geq 4, d\left(v_{1}\right)=n-d_{2}+1+d_{2}-3=n-2$. Note that $d\left(v_{2}\right)=3+d_{2}-3=d_{2}$, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a 3-vertex. Similarly, it can be verified that G is a Z_{3}-connected realization of π, a contradiction.

Proof of Theorem 1.4. Assume that $\pi=\left(d_{1}, \ldots, d_{n}\right)$ is a nonincreasing graphic sequence with $d_{1} \geq n-3$. If π is one of $\left(n-3,3^{n-1}\right),\left(k, 3^{k}\right)$ and $\left(k^{2}, 3^{k-1}\right)$, then by Lemmas 2.7 and $3.2, \pi$ has no Z_{3}-connected realization.

Conversely, assume that $\pi \notin\left\{\left(n-3,3^{n-1}\right),\left(k, 3^{k}\right),\left(k^{2}, 3^{k-1}\right)\right\}$. Since $d_{1} \geq n-3$ and $d_{n} \geq 3, n \geq 6$. In the case that $n=6$, by Theorem 1.2, $d_{1}=3$, 4. If $d_{1}=3$, then $\pi=\left(3^{6}\right)$. Since $n=6,\left(3^{6}\right)=\left(n-3,3^{n-1}\right)$, contrary to our assumption. If $d_{1}=4$, then by (ii) of Lemma 3.1π has a Z_{3}-connected realization. In the case that $n=7$, by Theorems 1.2 and 2.1 , $4 \leq d_{1} \leq 5$. If $d_{1}=5$, then any realization of π contains the graph (b) of Fig. 1. By Lemma $2.8, \pi$ has a Z_{3}-connected realization. Assume that $d_{1}=4$. Since $n=7,\left(4,3^{6}\right)=\left(n-3,3^{n-1}\right)$. Thus, by our assumption, $\pi \neq\left(4,3^{6}\right)$. In this case, any realization of π contains the graph (a) in Fig. 2. By Lemma $2.9, \pi$ has a Z_{3}-connected realization. Thus, assume that $n \geq 8$.

By Theorem 1.2 and by Lemmas 3.2 and 4.1, we are left to prove that if $d_{1}=n-3, d_{n} \geq 3$ and $d_{2} \neq 3$, then π has a Z_{3}-connected realization. Suppose otherwise that $\pi=\left(d_{1}, \ldots, d_{n}\right)$ satisfying

$$
\begin{equation*}
d_{1}=n-3, \quad d_{2} \neq 3, \quad d_{n} \geq 3 . \tag{1}
\end{equation*}
$$

Subject to (1),
π has no Z_{3}-realization with n minimized.
We establish the following claim first.
Claim 1. (i) $d_{n-3}=d_{n-2}=d_{n-1}=d_{n}=3$.
(ii) $3 \leq d_{3} \leq 4$.

Proof of Claim 1. By Theorem 1.3, $d_{n-3} \leq 3$. (i) follows since $d_{n} \geq 3$.
(ii) Suppose otherwise that subject to (1) and (2), π satisfies $d_{3} \geq 5$. Since $d_{2} \geq d_{3}, d_{2} \geq 5$. Define $\bar{\pi}=\left(n-4, d_{2}-\right.$ $\left.1, d_{3}-1, d_{4}, \ldots, \underline{d}_{n-1}\right)=\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$ with $\bar{d}_{1} \geq \cdots \geq \bar{d}_{n-1}$. Since $d_{3} \geq 5, \bar{d}_{2}-1 \geq d_{3}-1 \geq 4$. This means that $\bar{d}_{1} \geq \bar{d}_{2} \geq 4$, and $\bar{d}_{n-1} \geq 3$. If $\underline{d}_{1}>d_{4}$, then $\bar{d}_{1}=(\bar{n}-1)-3$. In this case, by the minimality of n, $\overline{\bar{\pi}}$ has a Z_{3}-connected realization \bar{G}. If $d_{1}=d_{4}$, then $\bar{d}_{1}=d_{4}$. It follows that $d_{4}>n-4$. This implies that $\underline{d}_{1}=d_{2}=d_{3}=d_{4}=n-3$. Thus, $\bar{d}_{1}=d_{4}=n-3=(n-1)-2$. By Lemma $4.1, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. In either case, π has a realization G obtained from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. By part (8) of Lemma 2.2, G is Z_{3}-connected, a contradiction. Thus $d_{3} \leq 4$. Since $d_{3} \geq 3,3 \leq d_{3} \leq 4$. This proves Claim 1 .

By Claim 1, we may assume that $\pi=\left(n-3, d_{2}, d_{3}, \ldots, d_{n-4}, 3^{4}\right)$ with $d_{3} \in\{3,4\}$. We consider the following two cases. Case 1. $d_{3}=3$.

In this case, $\pi=\left(n-3, d_{2}, 3^{n-2}\right)$. Since π is graphic, d_{2} is odd. Since $d_{2} \neq 3, d_{2} \geq 5$. We first assume that $d_{2}=5$. In this case, $\pi=\left(n-3,5,3^{n-2}\right)$. If $n=8$, by Lemma 2.8, the graph (d) in Fig. 1 is a Z_{3}-connected realization of $\pi=\left(5^{2}, 3^{6}\right)$. Thus, assume that $n \geq 9$.

Assume that n is odd. Denote by W_{n-5} an even wheel with the center at v_{1} and by S a vertex set with $|S|=2$. We construct graph G from W_{n-5} and S as follows: First, connect v_{1} to each vertex of S. Second, choose one vertex v_{2} in W_{n-5} and add two vertices x_{1}, x_{2} such that x_{i} is adjacent to v_{2} and each vertex of S for each $i \in\{1,2\}$.

Since $d\left(v_{1}\right)=n-5+2=n-3, d\left(v_{2}\right)=3+2=5$ and each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a 3-vertex, this means that G is a realization of degree sequence $\left(n-3,5,3^{n-2}\right.$). By part (5) of Lemma 2.2, W_{n-5} is Z_{3}-connected. Note that G / W_{n-5} is an even wheel W_{4} which is also Z_{3}-connected by Lemma 2.2. It follows by part (6) of Lemma 2.2 that G is Z_{3}-connected, a contradiction.

Thus we may assume that n is even. Denote by W_{n-6} an even wheel with the center at v_{1} and let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ be a vertex set. We construct graph G from W_{n-6} and S as follows: First, connect v_{1} to each vertex of S. Second, choose one vertex v_{2} in W_{n-6} and let v_{2} be adjacent to s_{1}. Finally, add two vertices x_{1}, x_{2} such that x_{1} is adjacent to v_{2} and s_{2}, s_{3}; x_{2} is adjacent to each vertex of S.

It is easy to verify that $d\left(v_{1}\right)=n-6+3=n-3, d\left(v_{2}\right)=3+2=5$ and each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a 3-vertex. This means that G is a realization of degree sequence $\left(n-3,5,3^{n-2}\right.$). By (5) of Lemma 2.2, W_{n-6} is Z_{3}-connected. By part (8) of Lemma 2.2, $W_{n-6} \cup\left\{s_{1}\right\}$ is Z_{3}-connected. Note that $G /\left\{W_{n-6} \cup\left\{s_{1}\right\}\right\}$ is an even wheel W_{4} which is Z_{3}-connected. It follows by (6) of Lemma 2.2 that G is Z_{3}-connected, a contradiction.

From now on, we assume that $d_{2} \geq 7$. In this case, $n \geq d_{2}+3 \geq 10$. Consider the case that n is even. Denote by $W_{n-d_{2}+1}$ an even wheel with the center at v_{1} and by S a vertex set with $|S|=d_{2}-4$. We construct graph G from $W_{n-d_{2}+1}$ and S as follows: First, connect v_{1} to each vertex of S. Second, pick one vertex s of S and let $S_{1}=S \backslash\{s\}$, pick one vertex v_{2} in $W_{n-d_{2}+1}$ and connect v_{2} to each vertex of S_{1}. Third, pick two vertices s_{1}, s_{2} of S_{1}, and add $\left(d_{2}-7\right) / 2$ edges such that the induced subgraph by $S_{1} \backslash\left\{s_{1}, s_{2}\right\}$ is a perfect matching. Finally, we add two vertices x_{1} and x_{2} such that x_{i} is adjacent to v_{2}, x_{i} is adjacent to s_{i} for $i=1,2$ and s is adjacent to each of x_{1} and x_{2}.

Since $d\left(v_{1}\right)=n-d_{2}+1+d_{2}-4=n-3, d\left(v_{2}\right)=3+d_{2}-5+2=d_{2}$ and each vertex of $V(G)-\left\{v_{1}, v_{2}\right\}$ is a 3-vertex, this implies s that G is a realization of degree sequence $\left(n-3, d_{2}, 3^{n-2}\right)$. By (5) of Lemma 2.2, $W_{n-d_{2}+1}$ is Z_{3}-connected. Contracting this even wheel $W_{n-d_{2}+1}$ and contracting all 2-cycles generated in the process, we get K_{1}. By (8) of Lemma 2.2, G is Z_{3}-connected, a contradiction.

Consider the case that n is odd. Denote by $W_{n-d_{2}}$ an even wheel with the center at v_{1} and by S a vertex set with $|S|=d_{2}-3$. We construct a graph from $W_{n-d_{2}}$ and S as follows. First, let v_{1} be adjacent to each vertex of S. Second, pick two vertices s_{3} and s_{4} of S, define $S_{1}=S \backslash\left\{s_{3}, s_{4}\right\}$ and pick one vertex v_{2} in W so that v_{2} is adjacent to each vertex of S_{1}. Third, add two new vertex x_{1}, x_{2} such that x_{i} is adjacent to each of v_{2}, s_{3} and s_{4}. Finally, add $\left(d_{2}-5\right) / 2$ edges in S_{1} so that the subgraph induced by vertices of $S_{1} \backslash\left\{s_{3}, s_{4}\right\}$ is a perfect matching.

Since $d\left(v_{1}\right)=n-d_{2}+d_{2}-3=n-3, d\left(v_{2}\right)=3+d_{2}-5+2=d_{2}$, and each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ is a 3-vertex, G is a realization of degree sequence $\left(n-3, d_{2}, 3^{n-2}\right.$). Similarly, by parts (5) and (8) of Lemma $2.2, G$ is Z_{3}-connected, a contradiction.
Case 2. $d_{3}=4$.
In this case, $d_{2} \geqq 4$ and $\pi_{-}=\left(n-3, d_{2}, 4, d_{4}, \ldots, d_{n-4}, 3^{4}\right)$. Define $\bar{\pi}=\left(n-4, d_{2}-1,3, d_{4}, \ldots, d_{n-4}, 3^{3}\right)=$ $\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$ with $\bar{d}_{1} \geq \cdots \geq \bar{d}_{n-1}$. If $d_{1}=d_{4}$, then $n-3=4$ and hence $n=7$, contrary to assumption that $n \geq 8$. Thus, $d_{1}>d_{4}$. In this case, $\bar{d}_{1}=n-4$.

Claim 2. $d_{2}=4$.
Proof of Claim 2. Suppose otherwise that $d_{2} \geq 5$. Then $\bar{d}_{2} \geq 4$ and $\bar{\pi}$ satisfies (1). By the minimality of $n, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. Thus, we conclude that G is a Z_{3}-connected realization of π obtained from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. This contradiction proves Claim 2.

By Claim 2, $d_{2}=4$. Assume that $i \in\{3, \ldots, n-4\}$ such that $d_{i}=4$ and $d_{i+1}=3$. Thus $\pi=\left(n-3,4^{i-1}, 3^{n-i}\right)$.
Claim 3. $i=3$.
Proof of Claim 3. If i is even, then $n-i$ is odd (even) when n is odd (even). No matter whether n is odd or even, there are odd vertices of odd degree, a contradiction. Thus, i is odd. If $i \geq 5$, then $\bar{\pi}=\left(n-4,4^{i-3}, 3^{n-i+1}\right.$) satisfies (1). Recall that $n \geq 8$, by the minimality of $n, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. In this case, we can obtain a realization G of π from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. By (8) of Lemma $2.2, G$ is Z_{3}-connected, a contradiction. This proves Claim 3.

By Claim 3, $i=3$. This leads to that $\pi=\left(n-3,4^{2}, 3^{n-3}\right)$. Recall that $n \geq 8$. If $n=8$, then by Lemma 2.9 , π has a Z_{3}-connected realization. Thus, we may assume that $n \geq 9$.

In the case that n is odd, denote by W_{n-5} the even wheel with the center at v_{1} and by S a vertex set with $|S|=2$. We construct a graph G from W_{n-5} and S as follows. First, let v_{1} be adjacent to each vertex of S. Second, pick two vertices v_{2}, v_{3} in W_{n-5} and add two vertices x_{1}, x_{2} such that x_{i} is adjacent to v_{i+1} and each vertex of S for each $i \in\{1,2\}$.

It is easy to verify that $d\left(v_{1}\right)=n-5+2=n-3, d\left(v_{i}\right)=3+1=4$ for each $i \in\{2,3\}$, and each vertex of $V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$ is a 3-vertex. Obviously, G has a degree sequence $\left(n-3,4^{2}, 3^{n-3}\right)$. By (5) of Lemma $2.2, W_{n-5}$ is Z_{3}-connected. G / W_{n-5} is an even wheel W_{4} which is Z_{3}-connected. By (6) of Lemma 2.2, G is Z_{3}-connected, a contradiction.

In the case that n is even, denote by W_{n-6} the even wheel with the center at v_{1} and let $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. We construct a graph G from W_{n-6} and S as follows. First, let v_{1} be adjacent to each vertex of S. Second, pick two vertices v_{2}, v_{3} in W_{n-6} so that v_{2} is adjacent to s_{1}. Finally, we add two vertices x_{1}, x_{2} such that x_{1} is adjacent to v_{3} and s_{2}, s_{3} and such that x_{2} is adjacent to each vertex of S.

It is easy to verify that $d\left(v_{1}\right)=n-6+3=n-3, d\left(v_{i}\right)=3+1=4$ for each $i \in\{2,3\}$, and each vertex of $V(G)-\left\{v_{1}, v_{2}, v_{3}\right\}$ is a 3 -vertex. Obviously, G has a degree sequence $\left(n-3,4^{2}, 3^{n-3}\right)$. By (5) Lemma $2.2, W_{n-6}$ is Z_{3}-connected. By (8) of Lemma 2.2, $W_{n-6} \cup\left\{s_{1}\right\}$ is Z_{3}-connected. $G /\left\{W_{n-6} \cup\left\{s_{1}\right\}\right\}$ is an even wheel W_{4} which is Z_{3}-connected. By (6) of Lemma 2.2, G is Z_{3}-connected a contradiction.

5. Proof of Theorem 1.5

We first establish the following lemma which is used in the proof of Theorem 1.5.
Lemma 5.1. Let $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence. If $d_{n} \geq 3$ and $d_{n-4} \geq 4$, then either π has a Z_{3}-connected realization or $\pi=\left(5^{2}, 3^{4}\right)$.
Proof. Since $d_{n-4} \geq 4, n \geq 5$. If $n=5$, then by Theorem $1.3, \pi=\left(4,3^{4}\right)$. In this case, an even wheel W_{4} is a Z_{3}-connected realization of π. If $\bar{n}=6$, then by Theorem $1.3, \pi=\left(4^{2}, 3^{4}\right)$ or $\left(5^{2}, 3^{4}\right)$. If $\pi=\left(4^{2}, 3^{4}\right)$, then by Lemma 2.8 , the graph (a) shown in Fig. 1 is a Z_{3}-connected realization of π. If $n=7$, then by Theorem $1.3, \pi=\left(5^{2}, 4,3^{4}\right)$. Let G be the graph (b) shown in Fig. 1 which has degree sequence $\pi=\left(5,4,3^{5}\right)$. Denote by G^{\prime} the graph obtained from G by adding an edge joining a vertex of degree 3 to a vertex of degree 4. By Lemma $2.8, G$ is a Z_{3}-connected realization of $\left(5,4,3^{4}\right)$ and so G^{\prime} is a Z_{3}-connected realization of $\left(5^{2}, 4,3^{4}\right)$. Thus, assume that $n \geq 8$.

By Theorems 1.3 and 1.4, it is sufficient to prove that if $d_{n-3}=3, d_{n-4} \geq 4$ and $d_{1} \leq n-4$, then π has a Z_{3}-connected realization. In this case, $\pi=\left(d_{1}, \ldots, d_{n-4}, 3^{4}\right)$. Suppose, to the contrary, that $\pi=\left(d_{1}, \ldots, d_{n}\right)$ satisfies

$$
\begin{equation*}
d_{n-3}=3, \quad d_{n-4} \geq 4 \quad \text { and } \quad d_{1} \leq n-4 \tag{3}
\end{equation*}
$$

Subject to (3),
π has no Z_{3}-connected realization with n minimized.
Assume that $d_{n-4} \geq 5$. Define $\bar{\pi}=\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-4}, 3^{3}\right)=\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$. Since $d_{1}, d_{2}, d_{3} \geq 5$ and $n \geq 8, \bar{d}_{n-5} \geq 4$. This implies that $\bar{\pi}$ satisfies (3), by the minimality of $n, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. Thus, we construct a realization G of π from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. It follows by (8) of Lemma 2.2 that G is Z_{3}-connected, a contradiction. Thus, we may assume that $d_{n-4}=4$.

On the other hand, if $d_{1}=4$, then $\pi=\left(4^{n-4}, 3^{4}\right)$. By Lemma $3.1, \pi$ has a Z_{3}-connected realization, a contradiction. Thus, assume $d_{1} \geq 5$. Since $d_{\underline{n}-4}=4$ and $n \geq 8, d_{2} \geq 5$ or $d_{2}=4$.

In the former case, $\bar{d}_{n-5} \geq 4$. In this case, $\bar{\pi}$ satisfies (3), by the minimality of $n, \bar{\pi}$ has a Z_{3}-connected realization \bar{G}. Thus, we can construct a realization G of π from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. By (8) of Lemma 2.2, G is Z_{3}-connected, a contradiction.

In the latter case, $\pi=\left(d_{1}, 4^{n-5}, 3^{4}\right)$. Since π is graphic, d_{1} is even. Since $d_{1} \leq n-4, n-d_{1}-1 \geq 3$. In the case that $n-d_{1}-1=3$, we have $d_{1}=n-4$ and $n \geq 10$ is even. Denote by W_{n-4} an even wheel with the center at v_{1}. We construct a graph G from W_{n-4} as follows. First, choose five vertices $v_{2}, v_{3}, v_{4}, v_{5}, v_{6}$ of W_{n-4}. Second, add three vertices x_{1}, x_{2}, x_{3} and
edges $x_{1} x_{2}, x_{2} x_{3}$. Finally, add edges $v_{2} x_{1}, v_{3} x_{1}, v_{4} x_{2}, v_{5} x_{3}, v_{6} x_{3}$. In this case, for each $i \in\{1,2,3\}, x_{i}$ is a 3 -vertex, and for each $j \in\{2, \ldots, 6\} v_{j}$ is a 4-vertex.

It is easy to see that G is a Z_{3}-connected realization of degree sequence $\left(n-4,4^{5}, 3^{n-6}\right.$). Define $S=V\left(W_{n-4}\right) \backslash$ $\left\{v_{2}, \ldots, v_{6}\right\}=\left\{v_{1}, v_{7}, \ldots, v_{n-3}\right\}$. Then $|S|=n-4-5=n-9 \geq 1$. If $n=10$, then G is a realization of $\left(6,4^{5}, 3^{4}\right)$. If $n \geq 12$, then define G^{\prime} from G by adding $v_{j} v_{n-j+4}$ for $7 \leq j \leq \frac{n}{2}+1$, that is, adding $(n-10) / 2$ edges in S. Obviously, G^{\prime} has a degree sequence $\left(n-4,4^{n-5}, 3^{4}\right)$. We conclude that G^{\prime} is a Z_{3}-connected realization of π.

In the case that $n-d_{1}-1=4$, we have $d_{1}=n-5$ and $n \geq 11$ is odd. Denote by W_{n-5} an even wheel with the center at v_{1}. We construct a graph G from W_{n-5} as follows. First, choose six vertices $v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}$ of W_{n-5}. Second, add four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and edges $x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}$. Third, add edges $x_{1} v_{2}, x_{1} v_{3}, x_{2} v_{4}, x_{3} v_{5}, x_{4} v_{6}, x_{4} v_{7}$. In this case, for each $i \in\{1,2,3,4\}, x_{i}$ is a 3-vertex, and for each $j \in\{2,3, \ldots, 7\} v_{j}$ is a 4 -vertex.

It is easy to see that G is a Z_{3}-connected realization of degree sequence $\left(n-5,4^{6}, 3^{n-7}\right)$. Define $S=V\left(W_{n-5}\right) \backslash$ $\left\{v_{1}, v_{2}, \ldots, v_{7}\right\}=\left\{v_{8}, \ldots, v_{n-4}\right\}$. Then $|S|=n-5-6=n-11 \geq 0$. If $n=11$, then G is a realization of $\left(6,4^{6}, 3^{4}\right)$. If $n \geq 13$, then define G^{\prime} from G by adding edges $v_{j} v_{n-j+4}$ for $8 \leq j \leq \frac{n+3}{2}$, that is, adding $(n-11) / 2$ edges in S. Obviously, G^{\prime} is a Z_{3}-connected realization of degree sequence $\left(n-5,4^{n-5}, 3^{4}\right.$), a contradiction.

In the case that $n-d_{1}-1 \geq 5$, denote by $W_{d_{1}}$ an even wheel with the center at v_{0}. Let $V\left(W_{d_{1}}\right)=\left\{v_{0}, v_{1}, \ldots, v_{d_{1}}\right\}$. Let $C: u_{1} \ldots u_{n-d_{1}-1} u_{1}$ be a cycle of length $n-d_{1}-1$ and define a graph H obtained from C adding edges $u_{i} u_{i+2}$ for each $i \in\left\{1, \ldots, n-d_{1}-1\right\}$, where the subscripts are taken modular $n-d_{1}$. Clearly, H is a 4 -regular and is triangularly connected. Define $H^{\prime}=H-\left\{u_{2} u_{n-d_{1}-1}\right\}$. Now we prove H^{\prime} is Z_{3}-connected. Clearly, $H_{\left[u_{1} u_{2}, u_{1} u_{3}\right]}^{\prime}$ is triangularly connected and contains a 2-circuit $u_{2} u_{3} u_{2}$. By Lemma 2.4 (a) and Lemma 2.2(3), $H_{\left[u_{1} u_{2}, u_{1} u_{3}\right]}^{\prime}$ is Z_{3}-connected, and hence H^{\prime} by Lemma 2.3. We construct a graph G from $W_{d_{1}}$ and H^{\prime} as follows. If $d_{1} \geq 8$, then we add two edges $v_{1} u_{n-d_{1}-1}, v_{2} u_{2}$ and add edges $v_{j} v_{d_{1}-j+3}$ for $3 \leq j \leq \frac{d_{1}}{2}-1$, that is, add $\left(d_{1}-6\right) / 2$ edges between vertices $\left\{v_{3}, \ldots, v_{d_{1}-4}\right\} \backslash\left\{v_{\frac{d_{1}}{2}}, v_{\frac{d_{1}}{2}+1}, v_{\frac{d_{1}}{2}+2}, v_{\frac{d_{1}}{2}+3}\right\}$ such that $d\left(v_{i}\right)=4$ for each vertex of $\left\{v_{3}, \ldots, v_{d_{1}-4}\right\} \backslash\left\{v_{\frac{d_{1}}{2}}, v_{\frac{d_{1}}{2}+1}, v_{\frac{d_{1}+2}{}}, v_{\frac{d_{1}}{2}+3}\right\}$ and the new graph is simple. If $d_{1}=6$, then we add two edges $v_{1} u_{n-d_{1}-1}, v_{2} u_{2}$. In either case, G is a Z_{3}-connected realization of has a degree sequence $\left(d_{1}, 4^{n-5}, 3^{4}\right.$), a contradiction.
Proof of Theorem 1.5. If $\pi=\left(5^{2}, 3^{4}\right)$ or ($5,3^{5}$), then by Lemma $2.7, \pi$ has no Z_{3}-connected realization. Thus, assume that $\pi \neq\left(5^{2}, 3^{4}\right),\left(5,3^{5}\right)$.

Since $d_{n-5} \geq 4, n \geq 6$. If $n=6$, then by Theorem 1.3, $\pi=\left(d_{1}, d_{2}, 3^{4}\right)$. By Lemma $5.1, \pi=\left(d_{1}, 3^{5}\right)$. By our assumption that $d_{n-5} \geq 4, \pi=\left(5,3^{5}\right)$, a contradiction. If $n=7$, then by Theorem 1.3 and Lemma $5.1, \pi=\left(d_{1}, d_{2}, 3^{5}\right)$. By our assumption that $d_{n-5} \geq 4, \pi=\left(5,4,3^{5}\right)$ or $\left(6,5,3^{5}\right)$. In the former, the graph (b) in Fig. 1 is a Z_{3}-connected realization of π. In the latter case, Theorem 1.4 shows that π has a Z_{3}-connected realization. Thus, we may assume that $n \geq 8$.

By Theorems 1.3 and 1.4, and Lemma 5.1, it is sufficient to prove that if $d_{n-4}=3, d_{n-5} \geq 4$ and $d_{1} \leq n-4$, then π has a Z_{3}-connected realization. Then $\pi=\left(d_{1}, \ldots, d_{n-5}, 3^{5}\right)$. Suppose to the contrary that π satisfies

$$
\begin{equation*}
d_{n-4}=3, \quad d_{n-5} \geq 4 \quad \text { and } \quad d_{1} \leq n-4 \tag{5}
\end{equation*}
$$

Subject to (5),
π has no Z_{3}-connected realization with n minimized.
We claim that $d_{3}=4$. Suppose otherwise that $d_{3} \geq 5$. Define $\bar{\pi}=\left(d_{1}-1, d_{2}-1, d_{3}-1, d_{4}, \ldots, d_{n-5}, 3^{4}\right)=$ $\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$. Since $d_{1}, d_{2}, d_{3} \geq 5, \bar{d}_{n-6} \geq 4$. Thus $\bar{\pi}$ satisfies (5). By the minimality of n, $\bar{\pi}$ has a Z_{3}-connected realization \bar{G}. Denote by G the graph obtained from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices. It follows by (8) of Lemma 2.2 that G is a Z_{3}-connected realization of π, a contradiction. Thus, $d_{3}=4$ and $\pi=\left(d_{1}, d_{2}, 4^{n-7}, 3^{5}\right)$.

We claim that $d_{2}=4$. Suppose otherwise that $d_{2} \geq 5$. In this case, $\bar{\pi}=\left(d_{1}-1, d_{2}-1,4^{n-8}, 3^{6}\right)=\left(\bar{d}_{1}, \ldots, \bar{d}_{n-1}\right)$. Since $d_{2} \geq 5$ and $d_{3}=4, n \geq 3+5=8$. This implies that $\bar{d}_{n-6} \geq 4$. Thus, $\bar{\pi}$ satisfies (5). By the minimality of n, $\bar{\pi}$ has a Z_{3}-connected realization \bar{G}. Denote by G the graph obtained from \bar{G} by adding a new vertex v and three edges joining v to the corresponding vertices of \bar{G}. It follows from (8) of Lemma 2.2 that G is a Z_{3}-connected realization of π, a contradiction. Thus, $d_{2}=4$ and $\pi=\left(d_{1}, 4^{n-6}, 3^{5}\right)$.

Since π is graphic, d_{1} is odd and $d_{1} \geq 5$. If $d_{1}=5$, then by (iii) of Lemma 3.1, π has a Z_{3}-connected realization.
We are left to the case that $d_{1} \geq 7$. Since $d_{1} \leq n-4, n \geq d_{1}+4 \geq 11$. By (iii) of Lemma 3.1, let G^{\prime} be a Z_{3}-connected realization of degree sequence $\left(5,4^{n-6}, 3^{5}\right)$. By the construction of G^{\prime} in (iii) of Lemma 3.1, G^{\prime} has at least $\left|E\left(G^{\prime}\right)\right|-5-14=2 n-21 \geq 2\left(d_{1}+4\right)-21=2 d_{1}-13 \geq\left(d_{1}-5\right) / 2$ edges not incident with the any vertex of $N_{G^{\prime}}(u) \cup\{u\}$, where u is a 5 -vertex in G^{\prime} since G^{\prime} contains a pair of adjacent neighbors of u. Choose $\left(d_{1}-5\right) / 2$ such edges, say $u_{i} v_{i}$ for each $i \in\left\{1, \ldots,\left(d_{1}-5\right) / 2\right\}$. Denote by the graph G from G^{\prime} by deleting edges $u_{i} v_{i}$ and adding edge $u u_{i}, u v_{i}$ for each $i \in\left\{1, \ldots,\left(d_{1}-5\right) / 2\right\}$. It follows by Lemma 2.3 that G is a Z_{3}-connected realization of degree sequence $\left(d_{1}, 4^{n-6}, 3^{5}\right)$, a contradiction. We complete our proof.

Acknowledgments

The first author was supported by the Natural Science Foundation of China (11326215). The second author was supported by the Natural Science Foundation of China (11171129) and by Doctoral Fund of Ministry of Education of China (20130144110001).

References

[1] D. Archdeacon, Realizing degree sequences with graphs having 3-flows, http://www.cems.uvm.edu/archdeac/problems/seqflow.html.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[3] P.J. Cameron, Problems from the 16th British combinatorial conference, Discrete Math. 197-198 (1999) 799-812.
[4] J. Chen, E. Eschen, H.-J. Lai, Group connectivity of certain graphs, Ars Combin. 89 (2008) 141-158.
[5] M. DeVos, R. Xu, G. Yu, Nowhere-zero Z_{3}-flows through Z_{3}-connectivity, Discrete Math. 306 (2006) 26-30.
[6] S. Fan, H.-J. Lai, Y. Shao, T. Zhang, J. Zhou, Degree sequence and supereulerian graphs, Discrete Math. 308 (2008) 6626-6631.
[7] G. Fan, H.-J. Lai, R. Xu, C.-Q. Zhang, C. Zhou, Nowhere-zero 3-flows in triangularly connected graphs, J. Combin. Theory Ser. B 98 (2008) $1325-1336$.
[8] S.L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, SIAM J. Appl. Math. 10 (1962) 496-506.
[9] S.L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. H. Uniqueness, SIAM J. Appl. Math. 11 (1963) 135-147.
[10] F. Jaeger, N. Linial, C. Payan, N. Tarsi, Group connectivity of graphs-a nonhomogeneous analogue of nowhere zero flow properties, J. Combin. Theory Ser. B 56 (1992) 165-182.
[11] D.J. Kleitman, D.L. Wang, Algorithm for constructing graphs and digraphs with given valences and factors, Discrete Math. 6 (1973) 79-88.
[12] H.-J. Lai, Group connectivity of 3-edge-connected chordal graphs, Graphs Combin. 16 (2000) 165-176.
[13] H.-J. Lai, X. Li, Y. Shao, M. Zhan, Group connectivity and group colorings of graphs-a survey, Acta Math. Sinica 27 (2011) $405-434$.
[14] R. Luo, R. Xu, J. Yin, G. Yu, Ore-condition and Z_{3}-connectivity, European J. Combin. 29 (2008) 1587-1595.
[15] R. Luo, R. Xu, X. Yu, An extremal problem on group connectivity of graphs, European J. Combin. 33 (2012) 1078-1085.
[16] R. Luo, R. Xu, W. Zang, C.-Q. Zhang, Realizing degree sequences with graphs having nowhere-zero 3-flows, SIAM J. Discrete Math. 22 (2008) $500-519$.
[17] R. Luo, W. Zang, C.-Q. Zhang, Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial latin squares, Combinatorica 24 (2004) $641-657$.
[18] R. Steinberg, D.H. Younger, Grötzch's theorem for the projectice plane, Ars Combin. 28 (1989) 15-31.
[19] W.T. Tutte, A contribution on the theory of chromatic polynomial, Canad. J. Math. 6 (1954) 80-91.
[20] J. Yin, G. Guo, The smallest degree sum that yields graphic sequences with a Z_{3}-connected realization, European J. Combin. 34 (2013) $806-811$.

[^0]: * Corresponding author.

 E-mail addresses: xwli68@mail.ccnu.edu.cn, xwli2808@yahoo.com (X. Li).

