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a b s t r a c t

An integer-valued sequence π = (d1, . . . , dn) is graphic if there is a simple graph G
with degree sequence of π . We say the π has a realization G. Let Z3 be a cyclic group of
order three. A graph G is Z3-connected if for every mapping b : V (G) → Z3 such that

v∈V (G) b(v) = 0, there is an orientation of G and amapping f : E(G) → Z3 −{0} such that
for each vertex v ∈ V (G), the sum of the values of f on all the edges leaving from v minus
the sum of the values of f on the all edges coming to v is equal to b(v). If an integer-valued
sequenceπ has a realization Gwhich is Z3-connected, thenπ has a Z3-connected realization
G. Let π = (d1, . . . , dn) be a nonincreasing graphic sequence with dn ≥ 3.We prove in this
paper that if d1 ≥ n − 3, then π has a Z3-connected realization unless the sequence is
(n − 3, 3n−1) or is (k, 3k) or (k2, 3k−1) where k = n − 1 and n is even; if dn−5 ≥ 4, then π
has a Z3-connected realization unless the sequence is (52, 34) or (5, 35).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs here are finite, andmay havemultiple edges without loops.We follow the notation and terminology in [2] except
otherwise stated.

For a given orientation of a graph G, if an edge e ∈ E(G) is directed from a vertex u to a vertex v, then u is the tail of e and
v is the head of e. For a vertex v ∈ V (G), let E+(v) and E−(v) denote the sets of all edges having tail v or head v, respectively.
A graph G is k-flowable if all the edges of G can be oriented and assigned nonzero numbers with absolute value less than k
so that for every vertex v ∈ V (G), the sum of the values on all the edges in E+(v) equals that of the values of all the edges
in E−(v). If G is k-flowable we also say that G admits a nowhere-zero k-flow.

Let A be an abelian group with identity 0, and let A∗
= A − {0}. Given an orientation and a mapping f : E(G) → A, the

boundary of f is a function ∂ f : V (G) → A defined by, for each vertex v ∈ V (G),

∂ f (v) =


e∈E+(v)

f (e) −


e∈E−(v)

f (e),

where ‘‘


’’ refers to the addition in A.
A mapping b : V (G) → A is a zero-sum function if


v∈V (G) b(v) = 0. A graph G is A-connected if for every zero-sum

function b : V (G) → A, there exist an orientation of G and a mapping f : E(G) → A∗ such that ∂ f (v) = b(v) for each
v ∈ V (G).
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The concept of k-flowability was first introduced by Tutte [19], and this theory provides an interesting way to investigate
the coloring of planar graphs in the sense that Tutte [19] proved a classical theorem: a planar graph is k-colorable if and
only if it is k-flowable. Jaeger et al. [10] successfully generalized nowhere-zero flow problems to group connectivity. The
purpose of study in group connectivity is to characterize contractible configurations for integer flow problems. Let Z3 be a
cyclic group of order three. Obviously, if G is Z3-connected, then G is 3-flowable.

An integer-valued sequence π = (d1, . . . , dn) is graphic if there is a simple graph G with degree sequence π . We say
π has a realization G, and we also say G is a realization of π . If an integer-valued sequence π has a realization G which is
A-connected, then we say that G is a A-connected realization of π for an abelian group A. In particular, if A = Z3, then we
say G is a Z3-connected realization (or π has a Z3-connected realization G). In this paper, we write every degree sequence
(d1, . . . , dn) is in nonincreasing order. For simplicity, we use exponents to denote degree multiplicities, for example, we
write (6, 5, 44, 3) for (6, 5, 4, 4, 4, 4, 3).

The problem of realizing degree sequences by graphs that have nowhere-zero flows or are A-connected, where A is an
abelian group, has been studied. Luo et al. [17] proved that every bipartite graphic sequence with least element at least
2 has a 4-flowable realization. As a corollary, they confirmed the simultaneous edge-coloring conjecture of Cameron [3].
Fan et al. [6] proved that every degree sequence with least element at least 2 has a realization which contains a spanning
Eulerian subgraph; such graphs are 4-flowable. Let A be an abelian group with |A| = 4. For a nonincreasing n-element
graphic sequence π with least element at least 2 and sum at least 3n− 3, Luo et al. [15] proved that π has a realization that
is A-connected. Yin and Guo [20] determined the smallest degree sum that yields graphic sequences with a Z3-connected
realization. For the literature for this topic, the readers can see a survey [13]. In particular, Luo et al. [16] completely answered
the question of Archdeacon [1]: Characterize all graphic sequences π realizable by a 3-flowable graph. The natural group
connectivity version of Archdeacon’s problem is as follows.

Problem 1.1. Characterize all graphic sequences π realizable by a Z3-connected graph.

On this problem, Luo et al. [16] obtained the next two results.

Theorem 1.2. Every nonincreasing graphic sequence (d1, . . . , dn) with d1 = n − 1 and dn ≥ 3 has a Z3-connected realization
unless n is even and the sequence is (k, 3k) or (k2, 3k−1), where k = n − 1.

Theorem 1.3. Every nonincreasing graphic sequence (d1, . . . , dn) with dn ≥ 3 and dn−3 ≥ 4 has a Z3-connected realization.

Motivated by Problem 1.1 and the results above, we present the following two theorems in this paper. These results
extend the results of [16] by extending the characterizations to a large set of sequences.

Theorem 1.4. A nonincreasing graphic sequence (d1, . . . , dn)with d1 ≥ n−3 and dn ≥ 3 has a Z3-connected realization unless
the sequence is (n − 3, 3n−1) for any n or is (k, 3k) or (k2, 3k−1), where k = n − 1 and n is even.

Theorem 1.5. A nonincreasing graphic sequence (d1, . . . , dn) with dn ≥ 3 and dn−5 ≥ 4 has a Z3-connected realization unless
the sequence is (52, 34) or (5, 35).

We end this section with some notation and terminology. A graph is trivial if E(G) = ∅ and nontrivial otherwise. A
k-vertex denotes a vertex of degree k. Let Pn denote the path on n vertices and we call Pn a n-path. An n-cycle is a cycle on n
vertices. The wheel Wk is the graph obtained from a k-cycle by adding a new vertex, the center of the wheel, and joining it
to every vertex of the k-cycle. A wheel Wk is an odd (even) wheel if k is odd (even). For simplicity, we say W1 is a triangle.
For a graph G and X ⊆ V (G), denote by G[X] the subgraph of G induced by X . For two vertex-disjoint subsets V1, V2 of V (G),
denote by e(V1, V2) the number of edges with one endpoint in V1 and the other endpoint in V2.

We organize this paper as follows. In Section 2, we state some results and establish some lemmas that will be used in
the following proofs. We will deal with some special degree sequences, each of which has a Z3-connected realization in
Section 3. In Sections 4 and 5, we will give the proofs of Theorems 1.4 and 1.5.

2. Lemmas

Let π = (d1, . . . , dn) be a graphic sequence with d1 ≥ · · · ≥ dn. Throughout this paper, we use π̄ to represent the
sequence (d1 − 1, . . . , ddn − 1, ddn+1, . . . , dn−1), which is called the residual sequence obtained from π by deleting dn. The
following well-known result is due to Hakimi [8,9] and Kleitman and Wang [11].

Theorem 2.1. A graphic sequence has even sum. Furthermore, a sequence π is graphic if and only if π̄ is graphic.

Some results in [4,5,7,10,12] on group connectivity are summarized as follows.

Lemma 2.2. Let A be an abelian group with |A| ≥ 3. The following results are known:
(1) K1 is A-connected;
(2) Kn and K−

n are A-connected if n ≥ 5;
(3) An n-cycle is A-connected if and only if |A| ≥ n + 1;
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(a) π = (42, 34). (b) π = (5, 4, 35). (c) π = (6, 4, 36). (d) π = (52, 36).

Fig. 1. Realizations of four degree sequences.

(4) Km,n is A-connected if m ≥ n ≥ 4; neither K2,t (t ≥ 2) nor K3,s (s ≥ 3) is Z3-connected;
(5) Each even wheel is Z3-connected and each odd wheel is not;
(6) Let H ⊆ G and H be A-connected. G is A-connected if and only if G/H is A-connected;
(7) If G is not A-connected, then any spanning subgraph of G is not A-connected.
(8) Let v be not a vertex of G. If G is A-connected and e(v,G) ≥ 2, then G ∪ {v} is A-connected.

Let G be a graph having an induced path with three vertices v, u, w in order. Let G[uv,uw] be the graph by deleting uv and
uw and adding a new edge vw. The following lemma was first proved by Lai in [12] and reformulated by Chen et al. in [4].

Lemma 2.3. Let G be a graph with u ∈ V (G), uv, uw ∈ E(G) and d(u) ≥ 4, and let A be an abelian group with |A| ≥ 3. If
G[uv,uw] is A-connected, then so is G.

A graph G is triangularly connected if for every edge e, f ∈ E there exists a sequence of cycles C1, C2, . . . , Ck such that
e ∈ E(C1), f ∈ E(Ck), and |E(Ci)| ≤ 3 for 1 ≤ i ≤ k, and |E(Cj) ∩ E(Cj+1)| ≠ ∅ for 1 ≤ j ≤ k − 1.

Lemma 2.4 ([5]). A triangularly connected graph G is Z3-connected if G has minimum degree at least 4 or has a nontrivial
Z3-connected subgraph.

An orientation D of G is a modular 3-orientation if |E+(v)| − |E−(v)| ≡ 0 (mod 3) for every vertex v ∈ V (G). Steinberg
and Younger [18] established the following relationship.

Lemma 2.5. A graph G is 3-flowable if and only if G admits a modular 3-orientation.

Let v be a 3-vertex in a graph G, and let N(v) = {v1, v2, v3}. Denote by G(v,v1) the graph obtained from G by deleting
vertex v and adding a new edge v2v3. The following lemma is due to Luo et al. [14].

Lemma 2.6. Let A be an abelian group with |A| ≥ 3, and let b : V (G) → A be a zero-sum function with b(v) ≠ 0. If G(v,v1) is
Z3-connected, then there exist an orientation D of G and a nowhere-zero mapping f ′

: E(G) → A such that ∂ f ′
= b under the

orientation D of G.

For any odd integer k, Luo et al. [16] proved that no realization of the graphic sequence (k, 3k) and (k2, 3k−1) is 3-flowable.
This yields the following lemma.

Lemma 2.7. If k is odd, then neither (k, 3k) nor (k2, 3k−1) has a Z3-connected realization.

Next we provide Z3-connected realizations for some degree sequences.

Lemma 2.8. Each of the graphs in Fig. 1 is Z3-connected.

Proof. If G is the graph (a) in Fig. 1, then G is Z3-connected by Lemma 2.2 of [14]. Thus, we may assume that G is one of the
graphs (b), (c) and (d) shown in Fig. 1.

We only prove here that the graph (b) in Fig. 1 is Z3-connected. The proofs for the graphs (c) and (d) in Fig. 1 are similar.
(Formore details, the readers can see http://arXiv.org.) Assume that G is the graph (b) shown in Fig. 1. Let b : V (G) → Z3 be a
zero-sum function. If b(v3) ≠ 0, then G(v3,v4) contains a 2-cycle (v1, v2). Contracting this 2-cycle and repeatedly contracting
all 2-cycles generated in the process, we obtain K1. By parts (1) and (6) of Lemma 2.2, G(v3,v4) is Z3-connected. It follows by
Lemma 2.6 that there exists a nowhere-zero mapping f : E(G) → Z3 with ∂ f = b. Thus, we may assume that b(v3) = 0.
Similarly, we may assume that b(v4) = b(v5) = b(v6) = b(v7) = 0. This means that for such b, there are only three
possibilities to be considered: (b(v1), b(v2)) ∈ {(0, 0), (1, 2), (2, 1)}.

If (b(v1), b(v2)) = (0, 0), we show that G is 3-flowable. Note that each vertex of v3, v4, v5, v6 and v7 is of degree 3. The
edges of G are oriented as follows: |E+(v3)| = 3, |E−(v4)| = 3, |E+(v5)| = 3, |E−(v6)| = 3, |E+(v7)| = 3, and v2v1 is
oriented from v2 to v1. It is easy to verify that |E+(v)| − |E−(v)| = 0 (mod 3) for each vertex v ∈ V (G). By Lemma 2.5, G is
3-flowable. Thus, there is an f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G).
If (b(v1), b(v2)) = (1, 2), note that b(v) = 0 for each v ∈ V (G) − {v1, v2}. The edges of G are oriented as follows:

|E−(v3)| = 3, |E+(v4)| = 3, |E−(v5)| = 3, |E+(v6)| = 3, |E−(v7)| = 3 and edge v2v1 is oriented from v2 to v1. If

http://arxiv.org///arXiv.org
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(a) π = (43, 34). (b) π = (5, 42, 35). (c) π = (44, 34).

Fig. 2. Realizations of three degree sequences.

(b(v1), b(v2)) = (2, 1), then the edges of G are oriented as follows: |E+(v3)| = 3, |E−(v4)| = 3, |E+(v5)| = 3, |E−(v6)| =

3, |E+(v7)| = 3 and edge v1v2 is oriented from v1 to v2. In each case, for each e ∈ E(G), define f (e) = 1. It is easy to see that
for v ∈ {v3, v4, v5, v6, v7}, ∂ f (v) = 0 = b(v), ∂ f (v1) = b(v1) and ∂ f (v2) = b(v2).

Thus, for any zero-sum function b, there exist an orientation of G and a nowhere-zero mapping f : E(G) → Z3 such that
∂ f = b. Therefore, G is Z3-connected. �

Lemma 2.9. Each graph in Fig. 2 is Z3-connected.

Proof. We only prove here that the graph (a) in Fig. 2 is Z3-connected. The proofs for the graphs (b) and (c) are similar (For
more details, the readers can see http://arXiv.org). Denote by G the graph (a) in Fig. 2. We claim that G is 3-flowable. Assume
that the edges of the graph are oriented as follows: |E+(v4)| = 3, |E+(v5)| = 0, |E+(v6)| = 3, |E+(v7)| = 0 and v2v3 from
v2 to v3. Define f (e) = 1 for all e ∈ E(G). It is easy to verify that ∂ f (v) = 0 for each v ∈ V (G). By Lemma 2.5, the graph (a)
is 3-flowable.

Let b : V (G) → Z3 be a zero-sum function. If b(v4) ≠ 0, then G(v4,v2) contains a 2-cycle (v1, v5). Contracting the 2-cycle,
we obtain an even wheel W4 induced by {v1, v2, v3, v6, v7} with the center at v3. By parts (3), (5) and (6) of Lemma 2.2,
G(v4,v2) is Z3-connected. By Lemma 2.6, there exists a nowhere-zero mapping f : E(G) → Z3 with ∂ f = b. Thus, we assume
b(v4) = 0. By symmetry, we may assume b(v5) = 0. If b(v6) ≠ 0, then G(v6,v3) is a graph isomorphic to Fig. 1(a) which is
Z3-connected by Lemma 2.8. By Lemma 2.6, there exists a nowhere-zero mapping f : E(G) → Z3 with ∂ f = b. We thus
assume b(v6) = 0. By symmetry, we assume b(v7) = 0.

So far, we may assume b(v4) = b(v5) = b(v6) = b(v7) = 0. We claim that b(v2) ≠ 0. If b(v2) = 0, then denote
by G(v2) the graph obtained from G by deleting v2 and adding edges v3v7 and v4v6. Contracting all 2-cycles, we finally
get an even wheel W4 with the center at v1. By Lemma 2.2, G(v2) is Z3-connected. Thus, there exists a nowhere-zero
mapping f : E(G) → Z3 with ∂ f = b. By symmetry, we assume that b(v3) ≠ 0. Thus, we are left to discuss three cases
(b(v1), b(v2), b(v3)) ∈ {(1, 1, 1), (0, 1, 2), (2, 2, 2)}.

If (b(v1), b(v2), b(v3)) = (1, 1, 1), then we orient the edges of G as follows: |E+(v4)| = 3, |E+(v5)| = 0, |E+(v6)| =

3, |E+(v7)| = 3, and v2v3 from v2 to v3; if (b(v1), b(v2), b(v3)) = (0, 1, 2), then we orient edges of G as follows:
|E+(v4)| = 3, |E+(v5)| = 0, |E+(v6)| = 3, |E+(v7)| = 0, and v3v2 from v3 to v2; if (b(v1), b(v2), b(v3)) = (2, 2, 2),
then we orient edges of G as follows: |E+(v4)| = 3, |E+(v5)| = 0, |E+(v6)| = 0, |E+(v7)| = 0, and v2v3 from v2 to v3. In
each case, for each e ∈ E(G) define f (e) = 1. It is easy to verify that ∂ f (v) = b(v) for each v ∈ V (G).

In each case, there exist an orientation of G and a nowhere-zero mapping f : E(G) → Z3 such that ∂ f = b. Therefore, G
is Z3-connected. �

3. Some special cases

Throughout this section, all sequences are graphic sequences. We provide Z3-connected realizations for some graphic
sequences.

Lemma 3.1. Suppose that one of the following holds,

(i) n ≥ 6 and π = (n − 2, 4, 3n−2);
(ii) n ≥ 5 and π = (4n−4, 34);
(iii) n ≥ 7 and π = (5, 4n−6, 35).

Then π has a Z3-connected realization.

Proof. (i) If n = 6, then by Lemma 2.8, π has a Z3-connected realization G in Fig. 1(a). Thus, we assume that n ≥ 7.
If n = 7, 8, then by Lemma 2.8, π has a Z3-connected realization G in Fig. 1(b) (c). Thus, we assume that n ≥ 9.
Assume that n is odd. Let Wn−5 be an even wheel with the center at v1 and K−

4 on vertex set {u1, u2, u3, u4} with
dK−

4
(u1) = dK−

4
(u3) = 2. Denote by G the graph obtained from Wn−5 and K−

4 by adding edges uiv1 for each i ∈ {1, 2, 3}.

Obviously, the graph G has a degree sequence (n − 2, 4, 3n−2). By part (5) of Lemma 2.2, Wn−5 is Z3-connected. The graph
G/Wn−5 is an even wheel W4. By parts (5) and (6) of Lemma 2.2, G is Z3-connected. This means that π has a Z3-connected
realization.

http://arxiv.org///arXiv.org
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Assume that n is even. Let G0 be the graph in Fig. 1(a) andWn−6 be an even wheel with the center at u1. Denote by G the
graph obtained from Wn−6 and G0 by identifying u1 and v1. Clearly, G has a degree sequence (n − 2, 4, 3n−2). Since n ≥ 10
is even,Wn−6 is Z3-connected by (5) of Lemma 2.2. By Lemma 2.8, G0 is Z3-connected. This shows that G is Z3-connected.

(ii) If n = 5, then an evenwheelW4 is a Z3-connected realization of π ; if n = 6, then by Lemma 2.8, π has a Z3-connected
realization G in Fig. 1(a); if n = 7, then by Lemma 2.9, π has a Z3-connected realization shown in Fig. 2(a); if n = 8, then
by Lemma 2.9, the graph (c) in Fig. 2 is Z3-connected realization of π . If n = 9, then let G1 be an even wheel W4 induced by
{u0, u1, u2, u3, u4}with the center at u0 andG2 be a K−

4 induced by {v1, v2, v3, v4}with dG2(v1) = dG2(v3) = 3.We construct
a graph G fromW4 and K−

4 by adding three edges u1v2, u2v4 and u3v1. Then G is a Z3-connected realization of (45, 34). Thus,
we assume that n ≥ 10.

Assume that n = 2k, where k ≥ 5. By induction of hypothesis, let Gi be a Z3-connected realization of the degree sequence
(4k−4, 34) for i ∈ {1, 2}. Assume that n = 2k+ 1, where k ≥ 5. By induction hypothesis, let G1 be a Z3-connected realization
of the degree sequence (4k−4, 34) and G2 be a Z3-connected realization of the degree sequence (4k−3, 34). In each case, we
construct a graph G from G1 and G2 by connecting a pair of 3-vertices of G1 to a pair of 3-vertices of G2 one by one. It is easy
to verify that G is a Z3-connected realization of the degree sequence (4n−4, 34).

(iii) If n = 7, then by Lemma 2.8, the graph (b) in Fig. 1 is a Z3-connected realization ofπ ; if n = 8, then by Lemma 2.9, the
graph (b) in Fig. 2 is a Z3-connected realization of π . If n = 9, then π = (5, 43, 35). Let G1 be an even wheel W4 induced by
{u0, u1, u2, u3, u4}with the center at u0 andG2 be a K−

4 induced by {v1, v2, v3, v4}with dG2(v1) = dG2(v3) = 3.We construct
a graphG fromW4 and K−

4 by adding three edges u0v2, u1v1, u2v4.We conclude thatG is a Z3-connected realization of degree
sequence (5, 43, 35). Thus, n ≥ 10.

Assume that n = 2k, where k ≥ 5. By (ii), let G1 and G2 be Z3-connected realizations of degree sequence (4k−4, 34).
Assume that n = 2k + 1, where k ≥ 5. By (ii), let G1 be a Z3-connected realization of degree sequence (4k−4, 34) and G2 be
a Z3-connected realization of degree sequence (4k−3, 34). In each case, choose one 4-vertex u1 and one 3-vertex u2 of G1;
choose two 3-vertices v1, v2 of G2. We construct a graph G from G1 and G2 by adding u1v1 and u2v2. Thus, G is a Z3-connected
realization of degree sequence (5, 4n−6, 35). �

Lemma 3.2. If π = (n − 3, 3n−1), then π has not a Z3-connected realization.

Proof. Suppose otherwise that G has a Z3-connected realization of degree sequence (n − 3, 3n−1). Let V (G) = {u, u1,
. . . , un−3, x1, x2},NG(u) = {u1, . . . , un−3} (N for short), and X = {x1, x2}. We now consider the following two cases.
Case 1. x1x2 ∈ E(G).

Since G is Z3-connected, G is 3-flowable. By Lemma 2.5 and symmetry, wemay assume that |E+(x1)| = 3 and |E−(x2)| =

3. Since d(ui) = 3 for i ∈ {1, . . . , n− 3}, by Lemma 2.5, either |E+(ui)| = 3 or |E−(ui)| = 3. This implies that there exists no
vertex ui in N such that uix1, uix2 ∈ E(G). Thus, G[N] is the union of two paths P1 and P2. We relabel the vertices of N such
that P1 = u1 . . . uk and P2 = uk+1 . . . un−3.

Suppose first that x1u1, x1uk ∈ E(G) and x2uk+1, x2un−3 ∈ E(G). Since G is 3-flowable, by Lemma 2.5, Pi contains odd
number of vertices for each i ∈ {1, 2}. Define b(u) = b(x1) = b(x2) = 1 and b(ui) = 0 for each i ∈ {1, . . . , n − 3}. It is easy
to verify that there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G), contrary to that G is Z3-connected.
Next, suppose that x1u1, x1uk+1 ∈ E(G) and x2uk, x2un−3 ∈ E(G). Since G is 3-flowable, by Lemma 2.5 Pi contains even

number of vertices for each i ∈ {1, 2}. Define b(u) = 1, b(x2) = 2 and b(ui) = b(x1) = 0 for each i ∈ {1, . . . , n−3}. It is easy
to verify that there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G), contrary to that G is Z3-connected.
Case 2. x1x2 ∉ E(G).

Since d(xi) = 3 for each i = 1, 2, 0 ≤ |N(x1) ∩ N(x2)| ≤ 3. Assume first that |N(x1) ∩ N(x2)| = 3. We assume,
without loss of generality, that u1, u2, u3 ∈ N(x1) ∩ N(x2). The subgraph induced by {u, x1, x2, u1, u2, u3} is K3,3 which is
not Z3-connected by part (4) of Lemma 2.2. By part (6) of Lemma 2.2, G is not Z3-connected, a contradiction.

Assume that |N(x1)∩N(x2)| = 2.We assume,without loss of generality, that u1, u2 ∈ N(x1)∩N(x2). SinceG is 3-flowable,
the graphH induced byN \{u1, u2} consists of even cycles and a path of length even. This means that n is even. If n = 6, then
this case cannot occur. Thus n ≥ 8. Define b(x1) = 1, b(x2) = 2 and b(ui) = b(u) = 0 for each i ∈ {1, . . . , n − 3}. It is easy
to verify that there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G), contrary to that G is Z3-connected.
Next, assume that |N(x1) ∩ N(x2)| = 1. We assume, without loss of generality, that u1 ∈ N(x1) ∩ N(x2). The graph

induced by N \ {u1} consists of even cycles and two paths P1 and P2. Since G is 3-flowable, Pi contains odd vertices for each
i ∈ {1, 2}. Then n is even. If n = 6, 8, then this case cannot occur. Thus, we assume that n ≥ 10. Define b(x1) = 1, b(x2) = 2
and b(ui) = b(u) = 0 for each i ∈ {1, . . . , n − 3}. In this case, there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for
each v ∈ V (G), contrary to that G is Z3-connected.

Finally, assume that |N(x1) ∩ N(x2)| = 0. Then the graph induced by the vertices of N consists of three paths P1, P2 and
P3, together with even cycles. We relabel the vertices of N such that P1 = u1 . . . us, P2 = us+1 . . . ut and P3 = ut+1 . . . un−3.
By symmetry, we consider two cases: x1 is adjacent to both the end vertices of some Pi; x1 is adjacent to one of each Pj for
j ∈ {1, 2, 3}.

In the former case, we may assume that u1x1, usx1 ∈ E(G) and x2us+1, x2ut . Since G is 3-flowable, by Lemma 2.5,
both |V (P1)| and |V (P2)| are odd. If |V (P3)| is odd, then define b(x1) = 1, b(x2) = 2 and b(ui) = b(u) = 0 for each
i ∈ {1, . . . , n − 3}. If |V (P3)| is even, then define b(x1) = 1, b(x2) = 1, b(u) = 1 and b(ui) = 0 for each i ∈ {1, . . . , n − 3}.
In either case, there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G), contrary to that G is Z3-connected.
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In the latter case, x1u1, x1us+1, x1ut+1, x2us, x2ut , x2un−3 ∈ E(G). It follows that |V (P1)|, |V (P2)| and |V (P3)| have the
same parity. If each of |V (Pi)| for i ∈ {1, 2, 3} is even, then define b(x1) = 1, b(x2) = 1, b(u) = 1 and b(ui) = 0 for each
i ∈ {1, . . . , n − 3}. If each of |V (Pi)| for i ∈ {1, 2, 3} is odd, then define b(x1) = 1, b(x2) = 2, b(u) = b(ui) = 0 for each
i ∈ {1, . . . , n − 3}. In either case, there exists no f : E(G) → Z∗

3 such that ∂ f (v) = b(v) for each v ∈ V (G), contrary to that
G is Z3-connected. �

4. Proof of Theorem 1.4

In order to prove Theorem 1.4, we establish the following lemma.

Lemma 4.1. Suppose that π = (d1, . . . , dn) is a nonincreasing graphic sequence with dn ≥ 3. If d1 = n − 2, then π has a
Z3-connected realization.

Proof. Suppose, to the contrary, thatπ = (d1, . . . , dn) has no Z3-connected realizationwith nminimized, where d1 = n−2.
By Theorem 1.3, we may assume that dn−3 ≤ 3. In order to prove our lemma, we need the following claim.
Claim 1. Each of the following holds.

(i) dn−3 = dn−2 = dn−1 = dn = 3;
(ii) n ≥ 6.

Proof of Claim 1. (i) follows since dn ≥ 3.
(ii) Since dn = 3, n ≥ 4. If n = 4, then d1 = 3 = n− 1, contrary to that d1 = n− 2. If n = 5, then π = (35) is not graphic

by Theorem 2.1. This proves Claim 1.
If n = 6, then d1 = 4 and d3 = d4 = d5 = d6 = 3. By Theorem 2.1, d2 = 4. By Lemma 2.8, π = (42, 34) has a

Z3-realization, a contradiction. Thus, we may assume that n ≥ 7.
Claim 2. d3 = 3.
Proof of Claim 2. Suppose otherwise that d3 ≥ 4 and G is a counterexample with |V (G)| = n minimized. Then d2 ≥ d3 ≥ 4.
Hence, π̄ = (n − 3, d2 − 1, d3 − 1, d4, . . . , dn−1) = (d̄1, . . . , d̄n−1) with d̄1 ≥ · · · ≥ d̄n−1. This implies that d̄n−1 ≥ 3 and
d̄1 = (n−1)−2 or d̄1 = d4. In the former case, since d̄1 = n−3 = (n−1)−2, by theminimality of n, π̄ has a Z3-connected
realization Ḡ. In the latter case, d̄1 ≠ n− 3 and hence d̄1 = d4 > n− 3. Since d1 = n− 2 ≥ d4, d4 = n− 2. This means that
d̄1 = d4 = (n− 1) − 1. By Theorem 1.2, either π̄ has a Z3-connected realization Ḡ or π̄ = (k, 3k), (k2, 3k−1), where k is odd.
If π̄ = (k, 3k), then d1 = k + 1 = n − 2 and d2 = d3 = 4. On the other hand, n = k + 1 + 1 = k + 2. This contradiction
proves that π ≠ (k, 3k). Similarly, π̄ ≠ (k2, 3k−1). If π̄ has a Z3-connected realization Ḡ, then π has a realization G of π
from Ḡ by adding a new vertex v and three edges joining v to the corresponding vertices of Ḡ. By part (8) of Lemma 2.2, G is
Z3-connected, a contradiction. Thus d3 ≤ 3. Clearly, d3 ≥ 3. Then d3 = 3. This proves Claim 2.

By Claims 1 and 2, π = (n − 2, d2, 3n−2). Since π is graphic, d2 is even whenever n is even or odd. Moreover, d2 ≥ 4.
Recall that n ≥ 7. In this case, π = (n− 2, 4, 3n−2). By (i) of Lemma 3.1, π has a Z3-connected realization G, a contradiction.
Thus, we may assume that d2 ≥ 6. Since n − 2 = d1 ≥ d2 ≥ 6, n ≥ d2 + 2 ≥ 8.

Consider the case that n is even. Denote by Wn−d2+2 an even wheel with the center at v1 and by S a vertex set such that
|S| = d2 − 4 and V (Wn−d2+2) ∩ S = ∅. Note that |S| is even. We construct a graph G from Wn−d2+2 and S as follows: First,
pick two vertices s1, s2 of S and add (d2 − 6)/2 edges such that the subgraph induced by S \ {s1, s2} is a perfect matching.
Second, let v1 connect to each vertex of S. Third, pick a vertex v2 in Wn−d2+2 and let v2 join to each vertex of S. Finally, add
one new vertex x adjacent to v2, s1 and s2.

We claim thatGhas a degree sequence (n−2, d2, 3n−2). Since dWn−d2+2(v1) = n−d2+2 ≥ 4, d(v1) = n−d2+2+d2−4 =

n− 2, d(v2) = 3+ d2 − 4+ 1 = d2, each vertex of V (G) \ {v1, v2} is a 3-vertex. SinceWn−d2+2 is an even wheel, by part (5)
of Lemma 2.2, this wheel is Z3-connected. By part (8) of Lemma 2.2, G is Z3-connected, a contradiction.

Consider the case that n is odd. Denote by Wn−d2+1 an even wheel with the center at v1 and by S a vertex set with
|S| = d2 − 3 and V (Wn−d2+1) ∩ S = ∅. We construct a graph G from Wn−d2+1 and S as follows: First, let v1 connect
to each vertex of S. Second, pick one vertex v2 in Wn−d2+1 and let v2 join to each vertex of S. Third, add one vertex x
adjacent to three vertices of S. Finally, add (d2 − 6)/2 edges in S so that the subgraph induced by vertices of S, each of
which is not adjacent to x, is a perfect matching. We claim that G is a realization of degree sequence (n − 2, d2, 3n−2). Since
dWn−d2+1(v1) = n − d2 + 1 ≥ 4, d(v1) = n − d2 + 1 + d2 − 3 = n − 2. Note that d(v2) = 3 + d2 − 3 = d2, each vertex of
V (G) \ {v1, v2} is a 3-vertex. Similarly, it can be verified that G is a Z3-connected realization of π , a contradiction. �

Proof of Theorem 1.4. Assume that π = (d1, . . . , dn) is a nonincreasing graphic sequence with d1 ≥ n − 3. If π is one of
(n − 3, 3n−1), (k, 3k) and (k2, 3k−1), then by Lemmas 2.7 and 3.2, π has no Z3-connected realization.

Conversely, assume that π ∉ {(n − 3, 3n−1), (k, 3k), (k2, 3k−1)}. Since d1 ≥ n − 3 and dn ≥ 3, n ≥ 6. In the case that
n = 6, by Theorem 1.2, d1 = 3, 4. If d1 = 3, then π = (36). Since n = 6, (36) = (n − 3, 3n−1), contrary to our assumption.
If d1 = 4, then by (ii) of Lemma 3.1 π has a Z3-connected realization. In the case that n = 7, by Theorems 1.2 and 2.1,
4 ≤ d1 ≤ 5. If d1 = 5, then any realization of π contains the graph (b) of Fig. 1. By Lemma 2.8, π has a Z3-connected
realization. Assume that d1 = 4. Since n = 7, (4, 36) = (n−3, 3n−1). Thus, by our assumption, π ≠ (4, 36). In this case, any
realization of π contains the graph (a) in Fig. 2. By Lemma 2.9, π has a Z3-connected realization. Thus, assume that n ≥ 8.
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By Theorem 1.2 and by Lemmas 3.2 and 4.1, we are left to prove that if d1 = n − 3, dn ≥ 3 and d2 ≠ 3, then π has a
Z3-connected realization. Suppose otherwise that π = (d1, . . . , dn) satisfying

d1 = n − 3, d2 ≠ 3, dn ≥ 3. (1)

Subject to (1),

π has no Z3-realization with n minimized. (2)

We establish the following claim first.
Claim 1. (i) dn−3 = dn−2 = dn−1 = dn = 3.

(ii) 3 ≤ d3 ≤ 4.
Proof of Claim 1. By Theorem 1.3, dn−3 ≤ 3. (i) follows since dn ≥ 3.

(ii) Suppose otherwise that subject to (1) and (2), π satisfies d3 ≥ 5. Since d2 ≥ d3, d2 ≥ 5. Define π̄ = (n − 4, d2 −

1, d3 − 1, d4, . . . , dn−1) = (d̄1, . . . , d̄n−1) with d̄1 ≥ · · · ≥ d̄n−1. Since d3 ≥ 5, d2 − 1 ≥ d3 − 1 ≥ 4. This means that
d̄1 ≥ d̄2 ≥ 4, and d̄n−1 ≥ 3. If d1 > d4, then d̄1 = (n − 1) − 3. In this case, by the minimality of n, π̄ has a Z3-connected
realization Ḡ. If d1 = d4, then d̄1 = d4. It follows that d4 > n − 4. This implies that d1 = d2 = d3 = d4 = n − 3. Thus,
d̄1 = d4 = n − 3 = (n − 1) − 2. By Lemma 4.1, π̄ has a Z3-connected realization Ḡ. In either case, π has a realization
G obtained from Ḡ by adding a new vertex v and three edges joining v to the corresponding vertices of Ḡ. By part (8) of
Lemma 2.2, G is Z3-connected, a contradiction. Thus d3 ≤ 4. Since d3 ≥ 3, 3 ≤ d3 ≤ 4. This proves Claim 1.

By Claim 1, wemay assume that π = (n−3, d2, d3, . . . , dn−4, 34)with d3 ∈ {3, 4}. We consider the following two cases.
Case 1. d3 = 3.

In this case, π = (n − 3, d2, 3n−2). Since π is graphic, d2 is odd. Since d2 ≠ 3, d2 ≥ 5. We first assume that d2 = 5. In
this case, π = (n − 3, 5, 3n−2). If n = 8, by Lemma 2.8, the graph (d) in Fig. 1 is a Z3-connected realization of π = (52, 36).
Thus, assume that n ≥ 9.

Assume that n is odd. Denote byWn−5 an evenwheelwith the center at v1 and by S a vertex setwith |S| = 2.We construct
graph G fromWn−5 and S as follows: First, connect v1 to each vertex of S. Second, choose one vertex v2 inWn−5 and add two
vertices x1, x2 such that xi is adjacent to v2 and each vertex of S for each i ∈ {1, 2}.

Since d(v1) = n − 5 + 2 = n − 3, d(v2) = 3 + 2 = 5 and each vertex of V (G) \ {v1, v2} is a 3-vertex, this means that
G is a realization of degree sequence (n − 3, 5, 3n−2). By part (5) of Lemma 2.2, Wn−5 is Z3-connected. Note that G/Wn−5 is
an even wheel W4 which is also Z3-connected by Lemma 2.2. It follows by part (6) of Lemma 2.2 that G is Z3-connected, a
contradiction.

Thus we may assume that n is even. Denote by Wn−6 an even wheel with the center at v1 and let S = {s1, s2, s3} be a
vertex set. We construct graph G fromWn−6 and S as follows: First, connect v1 to each vertex of S. Second, choose one vertex
v2 inWn−6 and let v2 be adjacent to s1. Finally, add two vertices x1, x2 such that x1 is adjacent to v2 and s2, s3; x2 is adjacent
to each vertex of S.

It is easy to verify that d(v1) = n−6+3 = n−3, d(v2) = 3+2 = 5 and each vertex of V (G)\ {v1, v2} is a 3-vertex. This
means that G is a realization of degree sequence (n − 3, 5, 3n−2). By (5) of Lemma 2.2, Wn−6 is Z3-connected. By part (8) of
Lemma 2.2, Wn−6 ∪ {s1} is Z3-connected. Note that G/{Wn−6 ∪ {s1}} is an even wheel W4 which is Z3-connected. It follows
by (6) of Lemma 2.2 that G is Z3-connected, a contradiction.

From now on, we assume that d2 ≥ 7. In this case, n ≥ d2 + 3 ≥ 10. Consider the case that n is even. Denote byWn−d2+1
an even wheel with the center at v1 and by S a vertex set with |S| = d2 − 4. We construct graph G from Wn−d2+1 and S
as follows: First, connect v1 to each vertex of S. Second, pick one vertex s of S and let S1 = S \ {s}, pick one vertex v2 in
Wn−d2+1 and connect v2 to each vertex of S1. Third, pick two vertices s1, s2 of S1, and add (d2 − 7)/2 edges such that the
induced subgraph by S1 \ {s1, s2} is a perfect matching. Finally, we add two vertices x1 and x2 such that xi is adjacent to v2, xi
is adjacent to si for i = 1, 2 and s is adjacent to each of x1 and x2.

Since d(v1) = n− d2 +1+ d2 −4 = n−3, d(v2) = 3+ d2 −5+2 = d2 and each vertex of V (G)−{v1, v2} is a 3-vertex,
this implies s that G is a realization of degree sequence (n − 3, d2, 3n−2). By (5) of Lemma 2.2, Wn−d2+1 is Z3-connected.
Contracting this even wheel Wn−d2+1 and contracting all 2-cycles generated in the process, we get K1. By (8) of Lemma 2.2,
G is Z3-connected, a contradiction.

Consider the case thatn is odd. Denote byWn−d2 an evenwheelwith the center at v1 andby S a vertex setwith |S| = d2−3.
We construct a graph from Wn−d2 and S as follows. First, let v1 be adjacent to each vertex of S. Second, pick two vertices s3
and s4 of S, define S1 = S \ {s3, s4} and pick one vertex v2 inW so that v2 is adjacent to each vertex of S1. Third, add two new
vertex x1, x2 such that xi is adjacent to each of v2, s3 and s4. Finally, add (d2 − 5)/2 edges in S1 so that the subgraph induced
by vertices of S1 \ {s3, s4} is a perfect matching.

Since d(v1) = n − d2 + d2 − 3 = n − 3, d(v2) = 3 + d2 − 5 + 2 = d2, and each vertex of V (G) \ {v1, v2} is a 3-vertex,
G is a realization of degree sequence (n − 3, d2, 3n−2). Similarly, by parts (5) and (8) of Lemma 2.2, G is Z3-connected, a
contradiction.
Case 2. d3 = 4.

In this case, d2 ≥ 4 and π = (n − 3, d2, 4, d4, . . . , dn−4, 34). Define π̄ = (n − 4, d2 − 1, 3, d4, . . . , dn−4, 33) =

(d̄1, . . . , d̄n−1) with d̄1 ≥ · · · ≥ d̄n−1. If d1 = d4, then n − 3 = 4 and hence n = 7, contrary to assumption that n ≥ 8. Thus,
d1 > d4. In this case, d̄1 = n − 4.
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Claim 2. d2 = 4.
Proof of Claim 2. Suppose otherwise that d2 ≥ 5. Then d̄2 ≥ 4 and π̄ satisfies (1). By theminimality of n, π̄ has a Z3-connected
realization Ḡ. Thus, we conclude that G is a Z3-connected realization of π obtained from Ḡ by adding a new vertex v and
three edges joining v to the corresponding vertices of Ḡ. This contradiction proves Claim 2.

By Claim 2, d2 = 4. Assume that i ∈ {3, . . . , n − 4} such that di = 4 and di+1 = 3. Thus π = (n − 3, 4i−1, 3n−i).
Claim 3. i = 3.
Proof of Claim 3. If i is even, then n − i is odd (even) when n is odd (even). No matter whether n is odd or even, there are
odd vertices of odd degree, a contradiction. Thus, i is odd. If i ≥ 5, then π̄ = (n − 4, 4i−3, 3n−i+1) satisfies (1). Recall that
n ≥ 8, by the minimality of n, π̄ has a Z3-connected realization Ḡ. In this case, we can obtain a realization G of π from Ḡ by
adding a new vertex v and three edges joining v to the corresponding vertices of Ḡ. By (8) of Lemma 2.2, G is Z3-connected,
a contradiction. This proves Claim 3.

By Claim 3, i = 3. This leads to that π = (n − 3, 42, 3n−3). Recall that n ≥ 8. If n = 8, then by Lemma 2.9, π has a
Z3-connected realization. Thus, we may assume that n ≥ 9.

In the case that n is odd, denote by Wn−5 the even wheel with the center at v1 and by S a vertex set with |S| = 2. We
construct a graph G fromWn−5 and S as follows. First, let v1 be adjacent to each vertex of S. Second, pick two vertices v2, v3
in Wn−5 and add two vertices x1, x2 such that xi is adjacent to vi+1 and each vertex of S for each i ∈ {1, 2}.

It is easy to verify that d(v1) = n−5+2 = n−3, d(vi) = 3+1 = 4 for each i ∈ {2, 3}, and each vertex ofV (G)−{v1, v2, v3}

is a 3-vertex. Obviously, G has a degree sequence (n − 3, 42, 3n−3). By (5) of Lemma 2.2, Wn−5 is Z3-connected. G/Wn−5 is
an even wheelW4 which is Z3-connected. By (6) of Lemma 2.2, G is Z3-connected, a contradiction.

In the case that n is even, denote by Wn−6 the even wheel with the center at v1 and let S = {s1, s2, s3}. We construct a
graph G fromWn−6 and S as follows. First, let v1 be adjacent to each vertex of S. Second, pick two vertices v2, v3 inWn−6 so
that v2 is adjacent to s1. Finally, we add two vertices x1, x2 such that x1 is adjacent to v3 and s2, s3 and such that x2 is adjacent
to each vertex of S.

It is easy to verify that d(v1) = n − 6 + 3 = n − 3, d(vi) = 3 + 1 = 4 for each i ∈ {2, 3}, and each vertex of
V (G)−{v1, v2, v3} is a 3-vertex. Obviously,Ghas a degree sequence (n−3, 42, 3n−3). By (5) Lemma2.2,Wn−6 is Z3-connected.
By (8) of Lemma 2.2, Wn−6 ∪ {s1} is Z3-connected. G/{Wn−6 ∪ {s1}} is an even wheel W4 which is Z3-connected. By (6) of
Lemma 2.2, G is Z3-connected a contradiction. �

5. Proof of Theorem 1.5

We first establish the following lemma which is used in the proof of Theorem 1.5.

Lemma 5.1. Let π = (d1, . . . , dn) be a nonincreasing graphic sequence. If dn ≥ 3 and dn−4 ≥ 4, then either π has a
Z3-connected realization or π = (52, 34).

Proof. Since dn−4 ≥ 4, n ≥ 5. If n = 5, then by Theorem 1.3, π = (4, 34). In this case, an even wheel W4 is a Z3-connected
realization of π . If n = 6, then by Theorem 1.3, π = (42, 34) or (52, 34). If π = (42, 34), then by Lemma 2.8, the graph
(a) shown in Fig. 1 is a Z3-connected realization of π . If n = 7, then by Theorem 1.3, π = (52, 4, 34). Let G be the graph
(b) shown in Fig. 1 which has degree sequence π = (5, 4, 35). Denote by G′ the graph obtained from G by adding an edge
joining a vertex of degree 3 to a vertex of degree 4. By Lemma 2.8, G is a Z3-connected realization of (5, 4, 34) and so G′ is a
Z3-connected realization of (52, 4, 34). Thus, assume that n ≥ 8.

By Theorems 1.3 and 1.4, it is sufficient to prove that if dn−3 = 3, dn−4 ≥ 4 and d1 ≤ n − 4, then π has a Z3-connected
realization. In this case, π = (d1, . . . , dn−4, 34). Suppose, to the contrary, that π = (d1, . . . , dn) satisfies

dn−3 = 3, dn−4 ≥ 4 and d1 ≤ n − 4. (3)

Subject to (3),

π has no Z3-connected realization with nminimized. (4)

Assume that dn−4 ≥ 5. Define π̄ = (d1 − 1, d2 − 1, d3 − 1, d4, . . . , dn−4, 33) = (d̄1, . . . , d̄n−1). Since d1, d2, d3 ≥ 5
and n ≥ 8, d̄n−5 ≥ 4. This implies that π̄ satisfies (3), by the minimality of n, π̄ has a Z3-connected realization Ḡ. Thus, we
construct a realization G of π from Ḡ by adding a new vertex v and three edges joining v to the corresponding vertices of Ḡ.
It follows by (8) of Lemma 2.2 that G is Z3-connected, a contradiction. Thus, we may assume that dn−4 = 4.

On the other hand, if d1 = 4, then π = (4n−4, 34). By Lemma 3.1, π has a Z3-connected realization, a contradiction. Thus,
assume d1 ≥ 5. Since dn−4 = 4 and n ≥ 8, d2 ≥ 5 or d2 = 4.

In the former case, d̄n−5 ≥ 4. In this case, π̄ satisfies (3), by the minimality of n, π̄ has a Z3-connected realization Ḡ.
Thus, we can construct a realization G of π from Ḡ by adding a new vertex v and three edges joining v to the corresponding
vertices of Ḡ. By (8) of Lemma 2.2, G is Z3-connected, a contradiction.

In the latter case, π = (d1, 4n−5, 34). Since π is graphic, d1 is even. Since d1 ≤ n − 4, n − d1 − 1 ≥ 3. In the case that
n− d1 − 1 = 3, we have d1 = n− 4 and n ≥ 10 is even. Denote byWn−4 an even wheel with the center at v1. We construct
a graph G fromWn−4 as follows. First, choose five vertices v2, v3, v4, v5, v6 ofWn−4. Second, add three vertices x1, x2, x3 and
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edges x1x2, x2x3. Finally, add edges v2x1, v3x1, v4x2, v5x3, v6x3. In this case, for each i ∈ {1, 2, 3}, xi is a 3-vertex, and for
each j ∈ {2, . . . , 6} vj is a 4-vertex.

It is easy to see that G is a Z3-connected realization of degree sequence (n − 4, 45, 3n−6). Define S = V (Wn−4) \

{v2, . . . , v6} = {v1, v7, . . . , vn−3}. Then |S| = n − 4 − 5 = n − 9 ≥ 1. If n = 10, then G is a realization of (6, 45, 34).
If n ≥ 12, then define G′ from G by adding vjvn−j+4 for 7 ≤ j ≤

n
2 + 1, that is, adding (n − 10)/2 edges in S. Obviously, G′

has a degree sequence (n − 4, 4n−5, 34). We conclude that G′ is a Z3-connected realization of π .
In the case that n − d1 − 1 = 4, we have d1 = n − 5 and n ≥ 11 is odd. Denote by Wn−5 an even wheel with the

center at v1. We construct a graph G from Wn−5 as follows. First, choose six vertices v2, v3, v4, v5, v6, v7 of Wn−5. Second,
add four vertices x1, x2, x3, x4 and edges x1x2, x2x3, x3x4. Third, add edges x1v2, x1v3, x2v4, x3v5, x4v6, x4v7. In this case, for
each i ∈ {1, 2, 3, 4}, xi is a 3-vertex, and for each j ∈ {2, 3, . . . , 7} vj is a 4-vertex.

It is easy to see that G is a Z3-connected realization of degree sequence (n − 5, 46, 3n−7). Define S = V (Wn−5) \

{v1, v2, . . . , v7} = {v8, . . . , vn−4}. Then |S| = n − 5 − 6 = n − 11 ≥ 0. If n = 11, then G is a realization of (6, 46, 34). If
n ≥ 13, then define G′ from G by adding edges vjvn−j+4 for 8 ≤ j ≤

n+3
2 , that is, adding (n − 11)/2 edges in S. Obviously, G′

is a Z3-connected realization of degree sequence (n − 5, 4n−5, 34), a contradiction.
In the case that n − d1 − 1 ≥ 5, denote by Wd1 an even wheel with the center at v0. Let V (Wd1) = {v0, v1, . . . , vd1}.

Let C : u1 . . . un−d1−1u1 be a cycle of length n − d1 − 1 and define a graph H obtained from C adding edges uiui+2 for
each i ∈ {1, . . . , n − d1 − 1}, where the subscripts are taken modular n − d1. Clearly, H is a 4-regular and is triangularly
connected. DefineH ′

= H−{u2un−d1−1}. Nowwe proveH ′ is Z3-connected. Clearly,H ′

[u1u2,u1u3]
is triangularly connected and

contains a 2-circuit u2u3u2. By Lemma 2.4 (a) and Lemma 2.2(3),H ′

[u1u2,u1u3]
is Z3-connected, and henceH ′ by Lemma 2.3.We

construct a graph G from Wd1 and H ′ as follows. If d1 ≥ 8, then we add two edges v1un−d1−1, v2u2 and add edges vjvd1−j+3

for 3 ≤ j ≤
d1
2 − 1, that is, add (d1 − 6)/2 edges between vertices {v3, . . . , vd1−4} \ {v d1

2
, v d1

2 +1
, v d1

2 +2
, v d1

2 +3
} such that

d(vi) = 4 for each vertex of {v3, . . . , vd1−4} \ {v d1
2
, v d1

2 +1
, v d1

2 +2
, v d1

2 +3
} and the new graph is simple. If d1 = 6, then

we add two edges v1un−d1−1, v2u2. In either case, G is a Z3-connected realization of has a degree sequence (d1, 4n−5, 34), a
contradiction. �

Proof of Theorem 1.5. If π = (52, 34) or (5, 35), then by Lemma 2.7, π has no Z3-connected realization. Thus, assume that
π ≠ (52, 34), (5, 35).

Since dn−5 ≥ 4, n ≥ 6. If n = 6, then by Theorem 1.3, π = (d1, d2, 34). By Lemma 5.1, π = (d1, 35). By our assumption
that dn−5 ≥ 4, π = (5, 35), a contradiction. If n = 7, then by Theorem 1.3 and Lemma 5.1, π = (d1, d2, 35). By our
assumption that dn−5 ≥ 4, π = (5, 4, 35) or (6, 5, 35). In the former, the graph (b) in Fig. 1 is a Z3-connected realization of
π . In the latter case, Theorem 1.4 shows that π has a Z3-connected realization. Thus, we may assume that n ≥ 8.

By Theorems 1.3 and 1.4, and Lemma 5.1, it is sufficient to prove that if dn−4 = 3, dn−5 ≥ 4 and d1 ≤ n − 4, then π has
a Z3-connected realization. Then π = (d1, . . . , dn−5, 35). Suppose to the contrary that π satisfies

dn−4 = 3, dn−5 ≥ 4 and d1 ≤ n − 4. (5)

Subject to (5),

π has no Z3-connected realization with nminimized. (6)

We claim that d3 = 4. Suppose otherwise that d3 ≥ 5. Define π̄ = (d1 − 1, d2 − 1, d3 − 1, d4, . . . , dn−5, 34) =

(d̄1, . . . , d̄n−1). Since d1, d2, d3 ≥ 5, d̄n−6 ≥ 4. Thus π̄ satisfies (5). By the minimality of n, π̄ has a Z3-connected realization
Ḡ. Denote byG the graph obtained from Ḡ by adding a new vertex v and three edges joining v to the corresponding vertices. It
follows by (8) of Lemma2.2 thatG is a Z3-connected realization ofπ , a contradiction. Thus, d3 = 4 andπ = (d1, d2, 4n−7, 35).

We claim that d2 = 4. Suppose otherwise that d2 ≥ 5. In this case, π̄ = (d1 − 1, d2 − 1, 4n−8, 36) = (d̄1, . . . , d̄n−1).
Since d2 ≥ 5 and d3 = 4, n ≥ 3 + 5 = 8. This implies that d̄n−6 ≥ 4. Thus, π̄ satisfies (5). By the minimality of n, π̄ has a
Z3-connected realization Ḡ. Denote by G the graph obtained from Ḡ by adding a new vertex v and three edges joining v to
the corresponding vertices of Ḡ. It follows from (8) of Lemma 2.2 that G is a Z3-connected realization of π , a contradiction.
Thus, d2 = 4 and π = (d1, 4n−6, 35).

Since π is graphic, d1 is odd and d1 ≥ 5. If d1 = 5, then by (iii) of Lemma 3.1, π has a Z3-connected realization.
We are left to the case that d1 ≥ 7. Since d1 ≤ n − 4, n ≥ d1 + 4 ≥ 11. By (iii) of Lemma 3.1, let G′ be a

Z3-connected realization of degree sequence (5, 4n−6, 35). By the construction of G′ in (iii) of Lemma 3.1, G′ has at least
|E(G′)| − 5 − 14 = 2n − 21 ≥ 2(d1 + 4) − 21 = 2d1 − 13 ≥ (d1 − 5)/2 edges not incident with the any vertex of
NG′(u) ∪ {u}, where u is a 5-vertex in G′ since G′ contains a pair of adjacent neighbors of u. Choose (d1 − 5)/2 such edges,
say uivi for each i ∈ {1, . . . , (d1 − 5)/2}. Denote by the graph G from G′ by deleting edges uivi and adding edge uui, uvi for
each i ∈ {1, . . . , (d1 − 5)/2}. It follows by Lemma 2.3 that G is a Z3-connected realization of degree sequence (d1, 4n−6, 35),
a contradiction. We complete our proof.
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